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A rigorous modular specification method requires a proof rule asserting that if each component
behaves correctly in isolation, then it behaves correctly in concert with other components. Such
a rule is subtle because a component need behave correctly only when its environment does, and
each component is part of the others’ environments. We examine the precise distinction between
a system and its environment, and provide the requisite proof rule when modules are specified
with safety and liveness properties.

Categories and Subject Descriptors: D.2.4 [Software Engineering]: Program Verification—
correctness proofs; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs—Specification techniques

General Terms: Theory, Verification

Additional Key Words and Phrases: Compositionality, concurrent programming, liveness proper-

ties, modular specification, safety properties

1. INTRODUCTION

In the transition-axiom method, concurrent systems are specified by combining
abstract programs and temporal logic [16]. The method permits a hierarchical ap-
proach in which the composition of lower-level specifications is proved to implement
a higher-level specification. In [1], we described how to prove that one specification
implements another. Here, we examine how to compose specifications. We work
at the semantic level, independent of any particular specification language or logic.
Thus, our results can be applied to a number of approaches besides the transition-
axiom method—for example, to Lam and Shankar’s method of projections [12], and
to the I/O automata of Lynch and Tuttle [19].
Composition makes sense only for systems that interact with their environments.

Such a system will behave properly only if its environment does. A Pascal program
may behave quite improperly if a read(x) statement receives from the I/O system
a value not allowed by the type of x. A circuit may exhibit bizarre behavior if,
instead of a 0 or a 1, an input line provides a “1/2”—that is, if the input line
has an improper voltage level. A proper specification of an interactive system �
asserts that the system guarantees a property M only under the assumption that
its environment satisfies some property E.
The fundamental problem of composing specifications is to prove that a compos-

ite system satisfies its specification if all its components satisfy their specifications.
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Consider a system � that is the composition of systems �1, . . . , �n. We must
prove that � guarantees a property M under an environment assumption E, as-
suming that each�i satisfies a property Mi under an environment assumption Ei.
Observe that:

(1) We expect � to guarantee M only because of the properties guaranteed by its
components. Therefore, we must be able to infer that � guarantees M from
the assumption that each �i guarantees Mi.

(2) The component�i guarantees Mi only under the assumption that its environ-
ment satisfies Ei; and �i’s environment consists of �’s environment together
with all the other components �j . We must therefore be able to infer Ei from
the environment assumption E and the component guarantees Mj .

These observations lead to the following principle.

Composition Principle Let � be the composition of �1, . . . , �n, and let the
following conditions hold.

(1) � guarantees M if each component �i guarantees Mi.
(2) The environment assumption Ei of each component �i is satisfied if the envi-

ronment of � satisfies E and every �j satisfies Mj.
(3) Every component �i guarantees Mi under environment assumption Ei.

Then � guarantees M under environment assumption E.

The reasoning embodied by the Composition Principle is circular. To prove that
every Ei holds, we assume that every Mi holds; but Mi holds only under the
assumption that Ei holds. So, it is not surprising that the principle is not always
valid. We will show that the principle is valid under suitably weak hypotheses, and
that it provides a satisfactory rule for composing specifications.
Before embarking on a rigorous development of the Composition Principle, we

consider some examples. We begin with partial-correctness specifications of sequen-
tial programs. The Hoare triple {P}�{Q} can be viewed as an assertion that �
guarantees M under environment assumption E, where M asserts that � termi-
nates only when Q is true, and E asserts that � is started (by some action of the
environment) only when P is true. The Composition Principle is valid for such
specifications, and it is the basis for the standard composition rules of Hoare logic.
For example, consider the following rule, where � is the sequential composition
�1;�2 of �1 and �2.

P ⇒ P1, {P1}�1{Q1}, Q1 ⇒ P2, {P2}�2{Q2}, Q2 ⇒ Q

{P}�{Q}
The hypotheses of this rule imply the three conditions of the Composition Principle:

(1) Q2 ⇒ Q: If �2 guarantees M2, then � guarantees M .
(2) P ⇒ P1: If the environment of� satisfies E, then the environment assumption

E1 of �1 is satisfied.
Q1 ⇒ P2: If �1 guarantees M1, then the environment assumption E2 of �2

is satisfied.
(3) {Pi}�i{Qi}: �i guarantees Mi under environment assumption Ei.
ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.
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Fig. 1. Composing Systems

The principle’s conclusion, that � satisfies M under environment assumption E,
is the conclusion {P}�{Q} of the proof rule.
We now consider reactive systems [9]. The interaction of a reactive system with its

environment cannot be expressed simply by pre- and postconditions. For example,
suppose the environment passes values to the system through a register r. If reading
and writing r are not atomic operations, then the system and its environment must
obey a protocol to insure the correct passing of values. If the environment does not
obey the protocol, then the system could read r while it is being written and obtain
completely arbitrary values—for example, values with incorrect types. The system
can therefore be expected to guarantee a property M only under the assumption
that the environment obeys a communication protocol, and such a protocol cannot
be specified simply in terms of a precondition.
When we try to extend the Composition Principle beyond simple partial-correct-

ness properties, we find that its validity depends on the precise nature of the prop-
erties being guaranteed and assumed. Consider the situation depicted in Figure 1,
where a split wire indicates that the same value is sent to two different destinations.
Suppose �1 and �2 have the following specifications.

—�1 guarantees that it never sends a “1” on out1, assuming that its environment
never sends it a “2” on in1.

—�2 guarantees that it never sends a “2” on out2, assuming that its environment
never sends it a “1” on in2.

System �1’s guarantee M1, that it never sends a “1” on its output wire, implies
�2’s assumption E2, that its environment never sends it a “1”. Similarly, �2’s
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guarantee M2 implies �1’s environment assumption E1. Hence, condition 2 of the
Composition Principle holds. We deduce from the principle that if each component
�i guarantees Mi under assumption Ei, then their composition � guarantees the
property M , that it never sends a “1” on out1 and never sends a “2” on out2.
(There is no environment assumption E because � has no inputs, so its behavior
is independent of its environment.) This deduction is valid. For example, suppose
�1 does nothing unless it receives a “2” on in1, whereupon it sends a “1” on out1;
and �2 behaves symmetrically. Each �i then guarantees Mi under assumption
Ei, and the composite system �, which does nothing, guarantees M .
Now consider what happens if we modify these specifications by replacing “never”

with “eventually”, obtaining:

—�1 guarantees that it eventually sends a “1” on out1, assuming that its environ-
ment eventually sends it a “2” on in1.

—�2 guarantees that it eventually sends a “2” on out2, assuming that its environ-
ment eventually sends it a “1” on in2.

Again, the propertyMi guaranteed by each�i implies that the other’s environment
assumption Ej is satisfied. This time, the Composition Principle leads to the
conclusion that � guarantees eventually to send a “1” on out1 and eventually to
send a “2” on out2. This conclusion is invalid. The two systems described above,
which send the appropriate output only after receiving the appropriate input, satisfy
the modified specifications. Their composition, which does nothing, does not fulfill
the guarantee implied by the Composition Principle.
Replacing “never” with “eventually” changed the guarantees Mi and the envi-

ronment assumptions Ei from safety properties to liveness properties. Intuitively, a
safety property asserts that something bad does not happen, while a liveness prop-
erty asserts that something good eventually does happen. (Safety and liveness are
defined formally in Section 2.) For most methods of describing and composing sys-
tems, the Composition Principle is valid if all guarantees and assumptions are safety
properties. Various special cases of this result have appeared, in different guises.
Its most familiar incarnation is in the inference rules for partial-correctness specifi-
cations; the guarantees and assumptions of such specifications are safety properties.
The Composition Principle for safety properties is also embodied in a proof rule of
Misra and Chandy [22] for processes communicating by means of CSP primitives.
Specifications that involve only safety properties are not very satisfying, since any

safety property is satisfied by a system that does nothing. Liveness properties must
be added to rule out trivial implementations. Pnueli [25], considering a different
class of programs, gave a more general proof rule than that of Misra and Chandy.
Pnueli’s rule handles liveness properties, but unlike our Composition Principle, it
requires an explicit induction step. Stark [27] proposed another general proof rule.
Stark’s method handles liveness properties at the cost of requiring the discovery of
a set of auxiliary assertions that explicitly break the circularity of the Composition
Principle.
Our main result, Theorem 2 of Section 5.3, provides a formal statement of the

Composition Principle. Its main hypothesis is that the environment assumptions
are safety properties. The properties guaranteed by the system and its components
need not be safety properties; they can include liveness. Theorem 1 of Section 4.3
shows that any specification satisfying a certain reasonable hypothesis is equivalent
ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.
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to a specification whose environment assumption is a safety property. These the-
orems are the fruit of a detailed examination of the distinction between a system
and its environment, presented in Sections 3 and 4.
Our Composition Principle is extremely general. It does not assume any partic-

ular language or logic for writing specifications. It applies equally to specifications
of Ada programs, microcode, and digital circuits. Formalizing our result in such
generality requires concepts that may seem odd to readers accustomed to language-
based models of computation. The rest of Section 1 introduces these concepts and
relates them to other approaches that some readers may find more familiar. Precise
definitions appear in Section 2.
A glossary of notation and conventions appears at the end.

1.1 States versus Actions

The popular approaches to specification are based on either states or actions. In a
state-based approach, an execution of a system is viewed as a sequence of states,
where a state is an assignment of values to some set of components. An action-based
approach views an execution as a sequence of actions. These different approaches
are, in some sense, equivalent. An action can be modeled as a state change, and
a state can be modeled as an equivalence class of sequences of actions. However,
the two approaches have traditionally taken very different formal directions. State-
based approaches are often rooted in logic, a specification being a formula in some
logical system. Action-based approaches have tended to use algebra, a specification
being an object that is manipulated algebraically. Milner’s CCS is the classic
example of an algebraic formalism [21].
State-based and action-based approaches also tend to differ in practice. To specify

keyboard input using an action-based approach, the typing of a single character
might be represented as a single action. In a state-based approach, it might have
to be represented by two separate state changes: the key is first depressed and then
released. An action-based representation often appears simpler—pressing a key is
one action instead of two state changes. But this simplicity can be deceptive. A
specification in which typing a character is a single action does not provide for the
real situation in which a second key is depressed before the first is released. We have
no reason to expect actions to be simpler than states for accurately describing real
systems. We have found that a state-based approach forces a close examination of
how the real system is represented in the model, helping to avoid oversimplification.
On the other hand, there are circumstances in which oversimplified models are
useful.
We adopt a state-based approach and use the term “action” informally to mean

a state change.

1.2 System versus Environment

We view a specification as a formal description of the interface between the system
and its environment. A state completely describes the state of the interface at some
instant.
It is necessary to distinguish actions performed by the system from ones per-

formed by the environment. For example, consider the specification of a clock cir-
cuit whose output is an increasing sequence of values; the circuit does not change the
clock value until the environment has acknowledged reading it. The specification
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might include state components clock and ack, with a correct behavior consisting
of a sequence of actions that alternately increment clock and complement ack.
Now, consider an “anti-clock”, which is a circuit that assumes its environment

(the rest of the circuit) provides a clock. The anti-clock issues acknowledgments
and expects the environment to change the clock. The clock and anti-clock both
display the same sequence of states—that is, the same sequence of clock and ack
values—but they are obviously different systems. To distinguish them, we must
specify not only what state changes may occur, but also which state changes are
performed by the system and which by the environment.
An action-based formalism could simply partition the actions into system and en-

vironment actions. Formalisms based on joint system/environment actions require
more subtle distinctions, such as between “internal” and “external” nondetermin-
ism, or between the � and operators of CSP [11].
In a state-based formalism, the easiest way to distinguish system actions from

environment actions is to partition the state components into input and output
components and require that the values of an input and an output component can-
not both change at once. We can then declare that changes to output components
are performed by the system and changes to input components are performed by
the environment.
This method of partitioning the state components is not as flexible as we would

like. For example, we might want to specify an individual assignment statement
x := x + 1 as a system whose environment is the rest of the program in which
it appears. Since x can be modified by other parts of the program, it is both an
input and an output component for this system. In general, we want to allow
module boundaries to be orthogonal to process boundaries [15], so modules need
not communicate only by means of simple input and output variables.
Instead of partitioning state components, we assume that each state change is

performed by some “agent” and partition the set of agents into environment agents
and system agents. A system execution is modeled as a behavior, which is a sequence
of alternating states and agents, each agent being responsible for the change into
the next state.

1.3 Specifying the System and its Environment

The specification of a system� asserts that� guarantees a property M under the
assumption that its environment satisfies some property E. We will formally define
a property to be a set of behaviors, so an execution of� satisfies property P if and
only if the behavior (a sequence of states and agents) that represents the execution
is an element of P . The specification of� is the property E ⇒ M , which is the set
of all behaviors that are in M or not in E. A behavior satisfies this specification if
it satisfies M or fails to satisfy E. The system� satisfies the specification E ⇒ M
if all behaviors representing executions of � are elements of E ⇒ M .
It is important to realize that E is an assumption about the environment, not a

constraint placed on it. The environment cannot be constrained or controlled by
the system. The system cannot prevent the user from depressing two keys at the
same time. We can include in E the assumption that the user does not press two
keys at once, but this means that the system guarantees to behave properly only if
the user presses one key at a time. A specification that requires the user not to press
two keys at once cannot be implemented unless the system can control what the
ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.
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user does with his fingers. This distinction between assumption and requirement is
central to our results and is addressed formally in Section 3.
Our definition of a property as a set of behaviors means that we can determine

whether or not a system satisfies a specification by examining each possible system
execution by itself, without having to examine the set of all possible executions as
a whole. For example, we can specify that the system’s average response time must
be less than one millisecond in any execution containing at least 10,000 requests,
where the average is over all responses in a single execution. However, we cannot
specify an average response time where the average is over all responses in all
possible executions.

1.4 Composition and Proof

In a modular specification method, one proves that the composition of lower-level
systems implements a higher-level one. Section 5.2 explains how the refinement-
mapping method described in [1] can be used to prove that a specification of the
form E ⇒ M implements a higher-level specification of the same form.
In our approach, composition is conjunction. Therefore, the composition of two

systems with specifications E1 ⇒ M1 and E2 ⇒ M2 satisfies their conjunction,
(E1 ⇒ M1) ∧ (E2 ⇒ M2). To prove that this composition implements a specifica-
tion E ⇒ M , we first use the Composition Principle to show that it satisfies the
specification E ⇒ M1 ∧M2. We can then use the method described in [1] to prove
that E ⇒ M1 ∧M2 implements E ⇒ M .
Theorem 2 (our formal statement of the Composition Principle) and Proposi-

tion 12 of Section 5.3 allow us to conclude that if E ∧M2 implies the environment
assumption E1, and E ∧ M1 implies the environment assumption E2, then the
composition of systems satisfying E1 ⇒ M1 and E2 ⇒ M2 is a system satisfying
E ⇒ M1 ∧ M2. The circularity of such a deduction was already observed in the
examples based on Figure 1. Those examples had E identically true, E1 = M2,
and E2 = M1; and the Composition Principle permitted us to deduce M1 ∧ M2

from M1 ⇒ M2 and M2 ⇒ M1. Theorem 2 and Proposition 12 imply that this
apparently absurd deduction is valid, the major hypothesis being that E, E1, and
E2 are safety properties. Theorem 1 of Section 4 shows that this is a reasonable
hypothesis.
Our Composition Principle applies in cases where E ⇒ M excludes behaviors

allowed by the specifications Ei ⇒ Mi, so E ⇒ M cannot be deduced logically from
the properties Ei ⇒ Mi. The principle is sound because the excluded behaviors do
not correspond to executions produced by any components satisfying Ei ⇒ Mi—for
example, behaviors in which the environment chooses to violate Ei only after the
component has violated Mi. Thus, the Composition Principle can be valid despite
its apparent logical circularity.

1.5 Semantics versus Logic

In the transition-axiom method, a specification is a logical formula that describes a
set of behaviors. Instead of stating our results for the particular temporal logic on
which transition axioms are based, we take a more general semantic view in which
a specification is a set of behaviors. The relation between logic and semantics is
indicated by the following list of logical formulas and their corresponding semantic
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objects. The symbols P and Q denote formulas (logical view) and their correspond-
ing sets of behaviors (semantic view), and Υ denotes the set of all behaviors.

Logic Semantics Logic Semantics
¬P Υ− P |= P P = Υ

P ∧Q P ∩Q |= P ⇒ Q P ⊆ Q
P ⇒ Q (Υ− P ) ∪Q

Our semantic model is described in the following section.

2. THE SEMANTIC MODEL

We now define the semantic concepts on which our results are based. Most of these
concepts have appeared before, so they are described only briefly; the reader can
consult the cited sources for more complete discussions.

States. A state is an element of a nonempty set S of states. Except where stated
otherwise, we assume that S is fixed. A state predicate, sometimes called an S-
predicate, is a subset of the set S of states.
We think of an element of S as representing the state, at some instant, of the

relevant universe—that is, of the interfaces of all the systems under consideration.
A specification should describe only what is externally visible, so elements of S
represent only the state of the interfaces and not of any internal mechanisms.

Agents. We assume a nonempty set A of agents. If µ is a set of agents, then ¬µ
denotes the set A− µ of agents. An agent set µ is a subset of A such that neither
µ nor ¬µ is empty. This terminology may seem confusing, since an arbitrary set of
agents is not the same as an agent set. The empty set of agents ∅ and the full set of
agents A turn out to be anomalous for uninteresting technical reasons; sometimes
we unobtrusively exclude these anomalous cases by considering only agent sets.
We think of the elements of A as the entities responsible for changing the state.

A specification describes what it means for a set of agents µ to form a correctly
operating system—in other words, what it means for a behavior to be correct
when the agents in µ are considered to form the system and the agents in ¬µ are
considered to form the environment.
In describing a system, the particular agent that performs an action is not impor-

tant; what matters is whether the agent belongs to the system or the environment.
Thus, if we are dealing with a single specification, we could assume just two agents,
a system agent and an environment agent, as was done by Barringer, Kuiper, and
Pnueli in [5] and by us in [2]. However, for composing specifications, one needs more
general sets of agents, as introduced in [13] (where agents were called “actions”).
It may help the reader to think of the agents as elementary circuit components

or individual machine-language instructions. However, the actual identity of the
individual agents never matters.

Behaviors. A behavior prefix is a sequence

s0
α1−→ s1

α2−→ s2
α3−→ . . . (1)

where each si is a state and each αi is an agent, and the sequence is either infinite
or else ends in a state sm for some m ≥ 0. A behavior is an infinite behavior prefix.
If σ is the behavior prefix (1), then si(σ) denotes si and ai(σ) denotes αi. For
ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.
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a behavior σ, we let σ|m denote the finite prefix of σ ending with the mth state
sm(σ), for m ≥ 0. We sometimes use the term S-behavior to indicate that the
states in the behavior are elements of S.
A behavior represents a possible complete history of the relevant universe, start-

ing at some appropriate time. As usual in state-based approaches, we adopt an
interleaving semantics, in which the evolution of the universe is broken into atomic
actions (state changes), and concurrent actions are considered to happen in some
arbitrary order. A step si−1

αi−→ si of a behavior denotes an action in which
agent αi changes the state of the universe from si−1 to si. Steps in our formalism
correspond to the actions of action-based formalisms.

Stuttering-Equivalence. If µ is any set of agents, then a µ-stuttering step is a
sequence s

α−→ s with α ∈ µ. If σ is a behavior prefix, then �µσ is defined to be
the behavior prefix obtained from σ by replacing every maximal (finite or infinite)
sequence s

α1−→ s
α2−→ s . . . of µ-stuttering steps with the single state s. Two

behavior prefixes σ and τ are said to be µ-stuttering-equivalent, written σ �µ τ , iff
(if and only if) �µσ = �µτ . When µ equals A, we write σ � τ instead of σ �A τ
and stuttering-equivalent instead of A-stuttering-equivalent. If σ is a finite behavior
prefix, then σ̂ is defined to be some arbitrary behavior such that σ̂ � σ and σ̂|m = σ
for some m. (The precise choice of σ̂, which involves choosing which agents perform
the infinite number of stuttering steps that must be added to σ, does not matter.)
A state describes the state of the entire relevant universe, and a stuttering step

does not change the state, so a stuttering step has no observable effect. Therefore,
two behaviors that are stuttering-equivalent should be indistinguishable. A useful
way to think about stuttering is to imagine that a state in S describes only the
observable parts of the universe, and that there are also unobservable, internal state
components of the various objects that make up the universe. A stuttering step
represents a step in which some object changes only its internal state. As explained
in [14] and [16], considering stuttering-equivalent behaviors to be equivalent allows
the hierarchical decomposition of specifications by refining the grain of atomicity.
If σ is a finite behavior prefix, then σ̂ is obtained from σ by adding an infinite

number of stuttering steps. The behavior σ̂ represents a history of the universe in
which all externally observable activity ceases after a finite number of steps. (For
example, a computer that has halted continues to take stuttering steps because its
internal clock keeps ticking.)

Properties. A property P is a set of behaviors that is closed under stuttering-
equivalence, meaning that for any behaviors σ and τ , if σ � τ then σ ∈ P iff τ ∈ P .
We sometimes call P an S-property to indicate that it is a set of S-behaviors. A
state predicate I is considered to be the property such that σ ∈ I iff s0(σ) ∈ I.
For properties P and Q, we define P ⇒ Q to be the property (¬P ) ∪ Q, where
¬ denotes complementation in the set of all behaviors. In formulas, ⇒ has lower
precedence than ∩, so P ∩Q ⇒ R denotes (P ∩Q) ⇒ R.
A property P is a safety property iff it satisfies the following condition: a behavior

σ is in P iff σ̂|m ∈ P for all m ≥ 0. A property P is a liveness property iff every
finite behavior prefix is a prefix of a behavior in P . With a standard topology
on the set of behaviors, a property is a safety property iff it is closed, and it is a
liveness property iff it is dense [3]. It follows from elementary results of topology
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that every property is the conjunction of a safety property and a liveness property.
The closure of a property P in this topology, written P , is the smallest safety
property containing P .
Property P is a safety property iff every behavior not in P has a finite prefix

that is not in P . Hence, a safety property is one that is finitely refutable. For any
state predicate I, the property I depends only on the initial state, so it is a safety
property. A property P is a liveness property iff every finite behavior prefix can be
completed to a behavior in P . Hence, a liveness property is one that is never finitely
refutable. Alpern and Schneider [3] discussed these definitions in more detail.
For properties P and Q, we define P −� Q to be the set of all behaviors σ such

that σ̂|m ∈ P ⇒ Q for all m ≥ 0. Thus, P −� Q is the safety property asserting
that Q cannot become false before P does. It follows from the definition that
Q ⊆ (P −� Q) ⊆ (P ⇒ Q), for any properties P and Q.
The specification of a system is the property consisting of all behaviors (histories

of the relevant universe) in which the system is considered to perform correctly.

µ-Abstractness. If µ is a set of agents, then two behaviors σ and τ are µ-equivalent
iff, for all i ≥ 0:

—si(σ) = si(τ)
—ai+1(σ) ∈ µ iff ai+1(τ) ∈ µ.

A set P of behaviors is µ-abstract iff, for any behaviors σ and τ that are µ-equivalent,
σ ∈ P iff τ ∈ P .
Two behaviors are µ-equivalent iff they would be the same if we replaced every

agent in µ by a single agent, and every agent not in µ by a different single agent.
A reasonable specification of a system does not describe which agent performs an
action, only whether the action is performed by a system or an environment agent.
Thus, if µ is the set of system agents, then the specification should not distinguish
between µ-equivalent behaviors, so it should be a µ-abstract property.

3. REALIZABILITY

A specification of a system is a property P consisting of all behaviors in which the
system performs correctly. Whether a behavior is allowed by the specification may
depend upon the environment’s actions as well as the system’s actions. This depen-
dence upon what the environment does is unavoidable, since the system cannot be
expected to perform in a prescribed fashion if the environment does not behave cor-
rectly. However, the ability to specify the environment as well as the system gives
us the ability to write specifications that constrain what the environment is allowed
to do. Such a specification would require the system to control (or predict) what
the environment will do; it would be unimplementable because the environment is
precisely the part of the universe that the system cannot control.
A specification should assert that the system performs properly if the environ-

ment does; it should not assert that the environment performs properly. For exam-
ple, assume that the environment is supposed to decrement some state component
x. A specification (property) P asserting that the environment must decrement x
would not be implementable because given any system, there is a possible universe
containing the system whose behavior is not in P—namely one in which the en-
vironment never decrements x. Hence, no system can satisfy the specification P .
ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.
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A specification of the system should allow all behaviors in which the environment
never decrements x.
A specification that is unimplementable because it constrains the environment’s

actions is called unrealizable. (A specification may be unimplementable for other
reasons that do not concern us here—for example, because it requires the system
to compute a noncomputable function.) We now define precisely what realizability
means, and explore some of its implications for specifications. The definitions are
almost identical to the ones in [1].

3.1 Safety Properties

A safety property is finitely refutable, so if a behavior does not satisfy the property,
then we can tell who took the step that violated it. More precisely, if P is a safety
property and a behavior σ is not in P , then there is some number m ≥ 0 such that
σ̂|m is not in P . If m is the smallest such number, then we can say that P was
violated by the agent that performed the mth step of σ, assuming m > 0. A safety
property is defined to constrain only the system iff the property can be violated
only by system agents.
We now formalize this definition. For any property P and behavior σ, let V (P, σ)

equal the smallest nonnegative integer m such that σ̂|m is not in P . (We leave
V (P, σ) undefined if there is no such m.) If µ is an agent set, then a safety property
P constrains at most µ iff for all behaviors σ, if σ /∈ P then V (P, σ) > 0 and
aV (P,σ)(σ) ∈ µ.

3.2 Realizability of Arbitrary Properties

3.2.1 Definitions. To understand the general concept of realizability, it helps to
think of a behavior as the outcome of a two-person infinite game played by the
system and the environment. The environment chooses the initial state, and then
the environment and the system alternate moves to produce the behavior, with the
environment taking the first move. An environment move consists of adding any
finite number of steps performed by environment agents (possibly zero steps); a
system move consists of doing nothing or adding one step performed by a system
agent. (A similar class of games was studied by Morton Davis [7].) The system wins
the game iff the resulting behavior prefix satisfies the specification or is finite. (Our
informal discussion is simplified by considering the system to win games with finite
outcomes, which do not correspond to the infinite behaviors of our formalism.) A
specification is said to be realizable iff the system has a winning strategy—that is,
iff the system can always win no matter what moves the environment makes.
A specification is realizable if it has enough behaviors so that the system can

win even if the environment plays as well as it can. A specification may also
contain behaviors that are outcomes of games in which the environment had a
chance to win but played badly and lost. A correct implementation can never allow
such behaviors to occur because it can’t count on the environment playing badly.
The realizable part of a specification is defined to consist only of those behaviors
in which the environment never had a chance to win. An implementation that
satisfies the specification can produce only behaviors in the realizable part. Hence,
two specifications have the same implementations iff they have the same realizable
parts. Two such specifications are said to be equirealizable. We can replace a
specification with an equirealizable one without changing the class of real systems

ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.



84 · Mart́ın Abadi and Leslie Lamport

that are being specified.
The formal definitions of these concepts is based on the definition of a strategy,

which is a rule by which the system determines its next move. More precisely, a
strategy is a partial function that determines the system’s next step as a function
of the behavior up to that point. It suffices to consider deterministic strategies,
since the set of behaviors that result from a nondeterministic strategy is the union
of the sets of behaviors produced by some set of deterministic strategies. In the
following definitions, µ is an arbitrary agent set.

—A µ-strategy f is a partial function from the set of finite behavior prefixes to
µ × S. (Intuitively, f(σ) = (α, s) means that, if the system gets to move after
play has produced σ, then it adds α−→ s. If f(σ) is undefined, then the system
chooses not to move.)

—A µ-outcome of a µ-strategy f is a behavior σ such that for allm > 0, if am(σ) ∈ µ
then f(σ|m−1) = (am(σ), sm(σ)). A µ-outcome σ is fair iff am+1(σ) ∈ µ or σ|m
is not in the domain of f for infinitely many values of m. (A µ-outcome of f is
one in which all the µ-moves were produced by the strategy f . It is fair iff it
could have been obtained by giving the system an infinite number of chances to
move.)

—If f is a µ-strategy, then Oµ(f) is the set of all fair µ-outcomes of f .
—The µ-realizable part of a set P of behaviors, denoted Rµ(P ), is the union of all
sets Oµ(f) such that f is a µ-strategy and Oµ(f) ⊆ P . (Intuitively, Rµ(P ) is
the set of fair outcomes that can be produced by correct implementations of P .)
We show in Proposition 1 below that Rµ(P ) is a property if P is.

—A property P is µ-realizable iff Rµ(P ) is nonempty. (A µ-realizable property is
one that has a correct implementation.)

—Properties P and Q are µ-equirealizable iff Rµ(P ) = Rµ(Q). (Equirealizable
properties have the same correct implementations.)

—A property P is µ-receptive iff Rµ(P ) = P . (A µ-receptive property includes
only behaviors that can be produced by correct implementations.)

Stark studied a generalization of receptiveness, which he called local D-consistency
in his thesis [26]. The special case corresponding to our definition of receptiveness
was not considered in the thesis, but did appear in his unpublished thesis pro-
posal. Dill independently developed the notion of receptiveness and introduced its
name [8]. In [2], a concept of realizability was defined in which Oµ(f) included
all outcomes, rather than just fair ones. By eliminating unfair outcomes, we are
preventing the environment from ending the game by taking an infinite number of
steps in a single move. Allowing such an infinite move, in which the environment
prevents the system from ever taking another step, would produce a game that
does not correspond to the kind of autonomous system that we are concerned with
here. Our concept of realizability is similar but not identical to fair realizability as
defined in [2]. The difference between these two concepts is described below.

3.2.2 Discussion of the Definitions. The set Oµ(f) is not in general a property; it
can contain a behavior σ and not contain a behavior σ′ that is stuttering-equivalent
to σ. Moreover, since the strategy f chooses specific agents, the set Oµ(f) is not
µ-abstract. However, our definitions do insure that Rµ preserves invariance under
stuttering and µ-abstractness.
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Proposition 1. For every agent set µ, if P is a property then Rµ(P ) is a
property, and if P is µ-abstract then Rµ(P ) is µ-abstract.

The proofs of this and of our other results appear in the appendix.
Our definition of strategies allows them to depend upon the presence or absence

of stuttering. In other words, if f is a µ-strategy, then f(σ) and f(τ) can be
different for two stuttering-equivalent prefixes σ and τ . This seems to contradict
our assertion that stuttering-equivalent behaviors should be indistinguishable. If we
think of a stuttering step as representing an externally unobservable step of some
object, then the system should certainly not be able to detect stuttering actions
performed by the environment. Define f to be invariant under ¬µ-stuttering iff
σ �¬µ τ implies f(σ) = f(τ), for all finite behavior prefixes σ and τ . It would
be more natural to add to the definition of a µ-strategy f the requirement that f
be invariant under ¬µ-stuttering. The following proposition shows that we could
restrict ourselves to such strategies, and could even add the further requirement
that the strategies be total functions.

Proposition 2. For any agent set µ and any property P , let Sµ(P ) be the subset
of Rµ(P ) consisting of the union of all sets Oµ(f) contained in P such that f is
a total µ-strategy that is invariant under ¬µ-stuttering. Then every behavior in
Rµ(P ) is stuttering-equivalent to a behavior in Sµ(P ).

We could thus define Rµ(P ) to be the closure of Sµ(P ) under stuttering-equiv-
alence. Taking this closure would be necessary even if one of the two conditions—
totality or invariance under ¬µ-stuttering—were dropped from the definition of
Sµ(P ). It is therefore more convenient to allow arbitrary strategies in the definition
of Rµ(P ).
Although we could restrict ourselves to µ-strategies that are invariant under

¬µ-stuttering, requiring strategies to be invariant under all stuttering, as in the
definition of “fair realizability” of [2], would materially change our definitions. A
result in Stark’s unpublished thesis proposal suggests that this restriction would
not change the definition of realizability; but the following example shows that it
would alter the definition of receptiveness. Let P be the property consisting of
all behaviors containing infinitely many nonstuttering steps. With the definitions
used here, P equals its µ-realizable part. With the definition in [2], the “fairly
µ-realizable” part of P would consist of only those behaviors containing infinitely
many nonstuttering µ steps. (This example demonstrates that a conjecture of Broy
et al. [6] is false.)
System stuttering steps represent ones in which the system changes only its inter-

nal state, so allowing a µ-strategy to depend upon µ-stuttering steps is equivalent
to allowing the strategy to depend upon the system’s internal state. More pre-
cisely, suppose that the state includes some “variable” that the property P does
not depend on. Then adding the requirement that a µ-strategy be invariant under
stuttering does not change the definition ofRµ(P ). (This can be proved by showing
that if a µ-strategy f is invariant under ¬µ-stuttering, then one can modify f to
obtain an “equivalent” strategy f ′ that is invariant under all stuttering; f ′ takes a
step that changes only the extra variable whenever f takes a stuttering step.) By
allowing a strategy to depend upon stuttering steps, we obviate the need to rely
upon internal state for our definitions.
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3.2.3 Some Basic Propositions. We now state some results about realizability.
The first asserts that Rµ is monotonic.

Proposition 3. For any properties P and Q and any agent set µ, if P ⊆ Q
then Rµ(P ) ⊆ Rµ(Q).

The next proposition asserts that the realizable part of a property is receptive.

Proposition 4. For any property P and agent set µ, Rµ(Rµ(P )) = Rµ(P ).

The next result provides a useful representation of the realizable part of a prop-
erty.

Proposition 5. For any property P and agent set µ, Rµ(P ) = Rµ(P ) ∩ P .

The next result indicates that “constrains at most” and receptiveness are essen-
tially the same for safety properties.

Proposition 6. For any nonempty safety property P and any agent set µ, prop-
erty P constrains at most µ iff P is µ-receptive.

Proposition 4 asserts that the µ-realizable part Rµ(P ) of a property P is µ-
receptive. Hence, Proposition 6 implies that, if Rµ(P ) is a nonempty safety prop-
erty, then it constrains at most µ. The following result generalizes this to the case
when Rµ(P ) is not a safety property.

Proposition 7. For any agent set µ, if P is a µ-realizable property then Rµ(P )
constrains at most µ.

In general, the realizable part of a property is not expressible in terms of simpler
operations on properties. Proposition 6 describes a simple case in which Rµ(P )
equals P . Since true ⇒ Q and true −� Q both equal Q, the following proposition
generalizes the “only if” part of Proposition 6.

Proposition 8. Let µ be an agent set, I a state predicate, P a safety property
that constrains at most ¬µ, and Q a safety property that constrains at most µ.
Then Rµ(I ∩ P ⇒ Q) equals I ∩ P −� Q.

4. THE FORM OF A SPECIFICATION

Our Composition Principle applies only to specifications of the form E ⇒ M , where
E is a safety property. In this section, we explain why specifications can and should
be written in this way. Before considering general specifications, we first examine
a particular class of specifications—programs. A program is a specification that
is sufficiently detailed so a system that satisfies it can be generated automatically.
Typically, a system satisfying the specification is generated by compiling the pro-
gram and executing the resulting code on a computer.

4.1 The Form of a Complete Program

We start by considering complete programs. In formal models of complete pro-
grams, there are no environment actions, only system actions. Input occurs through
initial values of variables or by executing a nondeterministic input statement in the
program. (An input statement is nondeterministic because the program text and
the execution of the program up to that point do not determine the input value.)
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Thus, a complete program is a specification in which every agent in A is a system
agent. Since we want the specification to be A-abstract, it does not matter what
agents perform the steps of a behavior, so we can ignore the agents and consider a
behavior to be a sequence of states.

4.1.1 The Parts of a Complete Program. A complete program is defined by four
things:

set of states. A state provides an “instantaneous picture” of the execution status
of the program. It is determined by such things as the values of variables, the loci
of control of processes, and the messages in transit—the details depending upon
the programming language.
initial predicate. The initial predicate I is a state predicate that specifies the set

of valid starting states of the program. Recall that the predicate I (a set of states)
is interpreted as the property consisting of all behaviors whose starting state is in I.
next-state relation. The next-state relation N is a set of pairs of states that

describes the state transitions allowed by the program, where (s, t) ∈ N iff executing
one step of the program starting in state s can produce the new state t. It is
described explicitly by the program text and the assumptions about what actions
are considered to be atomic. The next-state relation N determines a property
TA(N ), defined by σ ∈ TA(N ) iff si(σ) = si+1(σ) or (si(σ), si+1(σ)) ∈ N , for all
i ≥ 0. In other words, TA(N ) is the set of all behaviors in which each nonstuttering
step is allowed by the next-state relation N .
progress property. The next-state relation specifies what state changes may oc-

cur, but it does not require that any state changes actually do occur. The progress
property L specifies what must occur. A common type of progress property is one
asserting that if some state change is allowed by the next-state relation, then some
state change must occur.

Formally, the program is the property I ∩ TA(N ) ∩ L. Note that I and TA(N ),
and hence I ∩ TA(N ), are safety properties.
All assertional methods of reasoning about concurrent programs are based on a

description of the program in terms of a set of states, an initial predicate, and a
next-state relation. By now, these methods should be familiar enough that there is
no need for us to discuss those parts of the program. Progress properties are less
well understood and merit further consideration.

4.1.2 The Progress Property. Assertional methods that deal with liveness proper-
ties need some way of specifying the program’s progress property. The requirement
that the program be executable in practice constrains the type of progress prop-
erty that can be allowed. The initial state and the computer instructions executed
by a program are derived from the program’s code, which specifies the next-state
relation. The progress property should constrain the eventual scheduling of instruc-
tions, but not which instructions are executed. For the program to be executable
in practice, the state transitions that it may perform must be determined by the
initial state and the next-state relation alone; they must not be constrained by the
progress property.
As an example, consider the simple next-state relation pictured in Figure 2,

where the program state consists of the value of the single variable x. Assume
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✫✪
✬✩✇

x = 0

✫✪
✬✩✇

x = 2

✫✪
✬✩✇

x = 1

❍❍❍❍❍❥

✟✟✟✟✟✯ ✫✪
✬✩✇

x = 3✲

Fig. 2. A simple next-state relation.

that the initial predicate asserts that x equals 0. The property asserting that
x = 3 holds at some time during execution, usually written ✸(x = 3), is a liveness
property. However, for the program to satisfy this property, it must not make the
state transition from x = 0 to x = 1 allowed by the next-state relation. Thus, if
✸(x = 3) were the program’s progress property, a compiler would have to deduce
that the transition from x = 0 to x = 1, which is permitted by the next-state
relation, must not occur.
The condition that the progress property L does not further constrain the initial

state or the next-state relation is expressed formally by the following conditions,
which are all equivalent.

—For every finite behavior prefix ρ with ρ̂ in I ∩ TA(N ), there exists a behavior σ
in I ∩ TA(N ) ∩ L such that ρ is a prefix of σ.

—I ∩ TA(N ) = I ∩ TA(N ) ∩ L

—If Q is any safety property, then I ∩ TA(N ) ∩ L ⊆ Q iff I ∩ TA(N ) ⊆ Q.

The last condition asserts that the safety properties satisfied by the program are
completely determined by the initial predicate and the next-state relation; in other
words, the progress property does not add any safety properties.
We define a pair (M,P ) of properties to be machine-closed iff M = P . (The

term “machine-closed” was introduced in [1].) Machine closure of (M,P ) means
that P does not imply any safety properties not implied by M . So, if L is a progress
property, we expect the pair (I ∩ TA(N ), I ∩ TA(N ) ∩ L) to be machine-closed.
When this condition is satisfied, we sometimes informally write that the progress
property L or the program is machine-closed. To our knowledge, all the progress
assumptions that have been proposed for programs are machine-closed.
A program’s progress property is usually called a fairness condition. There have

been few attempts to give a general definition of fairness. Manna and Pnueli [20]
define a class of “fairness” properties that is independent of any next-state relation,
but they provide no justification for their terminology. Apt, Francez, and Katz [4]
discuss three “fairness criteria”; one of them is machine-closure, which they call
“feasibility”.
Most of the progress properties that have been proposed can be stated as fair-

ness conditions on program actions—for example, the condition that certain state
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transitions cannot be enabled forever without occurring. These progress proper-
ties are not all generally considered to be fairness properties. In particular, the
property asserting that the entire program never stops if some step can be exe-
cuted is machine-closed, but multiprocess programs satisfying only this progress
assumption are generally called unfair. We believe that machine-closure provides
the proper definition of a progress property, and that any distinction between fair-
ness properties and progress properties is probably language-dependent and not
fundamental.

4.2 The Form of a Partial Program

A partial program is part of a larger program. It may be a single process in a
CSP program, or a single assignment statement in a Pascal program. It should
be possible to implement the partial program independently of the rest of the
program, which constitutes its environment. Such an implementation might be
very inefficient—as, for example, if each assignment statement of a Pascal program
were compiled independently without knowing the types of the variables—but it
should be possible. Actions may be taken either by the partial program or by the
rest of the program, which constitutes the partial program’s environment.

4.2.1 The Parts of a Partial Program. The following modifications of the parts
that define a program are needed to handle partial programs.

set of states. The complete state cannot be determined from the text of the par-
tial program. For example, there is no way of knowing what variables are introduced
in other parts of the complete program. There are two ways to define the set of
states S for a partial program.
—S is the set of states defined by the complete program. Since the complete
program is not known, S is not known, so the meaning of the partial program
depends upon a fixed but unknown set of states.

—S includes all possible program variables and other state components. The mean-
ing of the partial program is defined in terms of a known set of states, but it is
a very “large” set of states, since it must accommodate all possible complete
programs.

Both approaches lead to equivalent formalisms. Here, we find the first assumption
most convenient, and we take S to be the unknown set of states of the larger pro-
gram. The partial program modifies only those components of the state explicitly
mentioned; the environment can modify any part of the state.
agent set. We use agents to distinguish the actions performed by the partial

program from the ones performed by its environment. Program steps are taken by
agents in µ, environment steps by agents in ¬µ. We don’t care which agents in µ
or in ¬µ take the steps, so it suffices to distinguish only µ steps and ¬µ steps.
initial predicate. In our “realization game”, the environment chooses the initial

state. The initial condition must therefore become part of the environment speci-
fication, so it disappears from the program.
next-state relation. The next-state relationN now constrains only the state tran-

sitions performed by the program, not the ones performed by the environment. It
describes the property TAµ(N ), which is defined by σ ∈ TAµ(N ) iff ai+1(σ) ∈ µ
implies si(σ) = si+1(σ) or (si(σ), si+1(σ)) ∈ N , for all i ≥ 0. The next-state
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relation must be defined in such a way that any part of the state not explicitly
mentioned is left unchanged.

This leaves the question of what is the appropriate modification to the machine-
closure condition for progress properties. Recall that machine-closure was derived
from the requirement that a complete program be implementable in practice. Ignor-
ing the initial predicate, machine-closure asserts that any finite execution satisfying
the next-state relation can be completed to an execution satisfying the next-state
relation and the progress property. We similarly require that the partial program
be implementable in practice, except now we have the additional requirement that
it be implementable without knowing its environment. In other words, the im-
plementation must work regardless of what the environment does. We therefore
require that given any finite behavior prefix in which the program’s actions satisfy
the next-state relation, there is a strategy that the program can play from that
point on and “win”—that is, produce a behavior satisfying the next-state relation
and the progress property.
The formal expression of this condition is statement (a) in the following proposi-

tion, when TAµ(N ) is substituted for M . Statement (b) is a useful variant of (a),
and (c) is a reformulation of (a) in terms of topology and receptiveness.

Proposition 9. For any agent set µ, safety property M , and arbitrary property
L, the following three conditions are equivalent:

(a) For every finite behavior ρ such that ρ̂ ∈ M , there exist a µ-strategy f with
Oµ(f) ⊆ M ∩ L and a behavior σ ∈ Oµ(f) with ρ a prefix of σ.

(b) For every finite behavior ρ such that ρ̂ ∈ M , there exist a µ-strategy f with
Oµ(f) ⊆ M ∩ L and a behavior σ ∈ Oµ(f) with ρ stuttering-equivalent to a
prefix of σ.

(c) The pair (M, M ∩ L) is machine-closed, and M ∩ L is µ-receptive.

We define a pair of properties (M,P ) to be µ-machine-realizable iff it is machine-
closed and P is µ-receptive. The generalization to partial programs of the machine-
closure condition on a progress property L is that the pair (TAµ(N ), TAµ(N )∩L)
be µ-machine-realizable, where N is the program’s next-state relation. In this case,
we say informally that L is machine-realizable.
To illustrate the difference between progress properties of partial and complete

programs, let LA be the property asserting that if some program action A is in-
finitely often enabled, then that action must occur infinitely often. More formally,
let A be a subset of the next-state relation N , define A to be enabled in a state
s iff there exists a state t with (s, t) ∈ A, and define LA to be the property such
that σ ∈ LA iff either A is enabled in state si(σ) for only finitely many values of
i, or else (si(σ), si+1(σ)) ∈ A for infinitely many values of i. The property LA is
the usual strong fairness requirement for action A. Strong fairness is a reasonable
progress property for a complete program, since it is machine-closed.
Now, suppose that LA is the progress property of a partial program. When

playing the “realization game”, the environment can play infinitely many moves in
which it adds two states—one in which A is enabled followed by one in which it is
not enabled. (Such environment moves are “legal” because the partial program’s
safety property TAµ(N ) allows any steps by the environment.) The program never
has a chance to take an A step because it never gets to play a move when A is
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enabled. Thus, the resulting outcome does not satisfy the property LA, so LA is not
a machine-realizable progress property. In fact, it is not even realizable. This losing
outcome corresponds to a physical situation in which the environment changes the
state so fast that A never stays enabled long enough for the program to react in
time to perform an A action.
To obtain a machine-realizable progress property, let N ′ be a next-state relation

asserting that A is never disabled. Formally, (s, t) ∈ N ′ iff A is not enabled in
s or is enabled in t. The property TA¬µ(N ′) asserts that the environment never
disables A. The progress property TA¬µ(N ′) ⇒ LA is machine-realizable. In the
realization game, the environment loses if it ever disables A, since doing so ensures
that TA¬µ(N ′) will be false, making TA¬µ(N ′) ⇒ LA true. The program can
therefore always win the game by taking an A step whenever it gets to move with
A enabled.

4.2.2 Hiding the Internal State. Another important concept introduced when
considering partial programs is hiding. Variables and other state components that
are local to the partial program should be hidden—meaning that they are modified
only by the program and do not conflict with similarly-named components in the
environment. In our approach, hiding is effected by existential quantification over
state components.

4.2.2.1 Existential Quantification. Existential quantification is defined formally
as follows. Let X denote a set of values, let ΠS and ΠX denote the projection
functions from S × X to S and X, respectively, and let x be an abbreviation for
ΠX. We extend ΠS to a mapping from S×X-behaviors to S-behaviors by letting
ΠS(σ) be the behavior such that, ai(ΠS(σ)) = ai(σ) and si(ΠS(σ)) = ΠS(si(σ))
for all i. For any S × X-property P , we define ∃x : P to be the S-property such
that σ is in ∃x : P iff there exists an S× X-behavior σ′ in P with ΠS(σ

′) � σ.
Intuitively, S× X is a set of states in which S is the externally observable com-

ponent and X is the component internal to the program. The property ∃x : P is
obtained from P by hiding the x-component. We use the notation “∃x” for this
hiding operator because it obeys the logical rules of existential quantification when
properties are expressed as formulas in an appropriate logic [17]. As usual, ∃ binds
more weakly than other operators.

4.2.2.2 Hiding with Existential Quantification. Let N be the next-state relation
of the program and L its progress property. When there is an internal state com-
ponent, N is a set of pairs of elements of S × X—in other words, a subset of
(S × X) × (S × X)—and L is an S × X-property. Formally, the program is the
property ∃x : P ∩ TAµ(N ) ∩ L, where P is the S × X-property asserting that the
x-component of the state has the correct initial value and is not changed by the
environment. The correct initial value of the state’s x-component is specified by an
initial S × X-predicate Ix. (Remember that the initial value of the S-component
is described by the environment specification.) The assertion that the environment
leaves the x-component unchanged is TA¬µ(Ux), where Ux is the next-state rela-
tion consisting of all pairs ((s, x), (s′, x′)) such that x = x′. The program is then
the property

∃x : Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L (2)

Since we want the program to be machine-realizable, it is natural to ask under
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what conditions the specification (2) is machine-realizable. Machine-realizability is
defined for a pair of properties (M,P ), where M is the program’s safety property
and P is the complete specification, which in this case equals (2). We expect the
safety property M to be

∃x : Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) (3)

This is not always a safety property, but it turns out to be a safety property for
ordinary specifications written in a “reasonable” way—meaning that the next-state
relation is not using the internal state component x to encode progress properties.
For the precise condition under which (3) is a safety property, see Proposition 2
of [1]. A sufficient condition for (M,P ) to be µ-machine-realizable is given by the
following result.

Proposition 10. Let µ be an agent set, let x be the projection function from
S × X to X, and let Ix be an S × X-predicate, N a next-state relation on S × X,
and L an S × X-property. Let M equal (3) and let P equal (2). Assume that:

(a) For all s ∈ S there exists x ∈ X such that (s, x) ∈ Ix.
(b) The pair (TAµ(N ), TAµ(N )∩ (Ix ∩TA¬µ(Ux) ⇒ L)) is µ-machine-realizable.
(c) M is a safety property.

Then (M,P ) is µ-machine-realizable.

This proposition remains valid if, in hypothesis (b), TAµ(N ) is replaced by (Ix∩
TA¬µ(Ux)) −� TAµ(N ), which equals Rµ(Ux ⇒ TAµ(N )) by Proposition 8.

4.3 The Normal Form of a Specification

The specification of a system is written as a property of the form E ⇒ M , as-
serting that the system guarantees property M under the assumption that the
environment satisfies property E. In the transition-axiom approach [13; 16], E and
M are written as abstract partial programs, using next-state relations and progress
properties. Since the environment makes the first move in our realization game, the
initial predicate must be included with E; the abstract program M has no initial
predicate—except on its internal, hidden state. (Intuitively, we are assuming that
the system has control of the initial values only of its internal state, not of the
externally visible state.) We therefore write our specification in the canonical form

I ∩ ES ∩ EL ⇒ MS ∩ML (4)

where I is an initial predicate, ES is a safety property constraining only ¬µ, and
MS is a safety property constraining only µ.
If the system property M were written as an executable program, then we would

expect the pair (MS ,MS ∩ ML) to be machine-realizable. However, M is an ab-
stract program that is meant to specify what the system is allowed to do, not how
it does it. Requiring the abstract program to be executable in practice—that is,
capable of being transformed into executable code by a real compiler—is too re-
strictive, leading to overly complex and overly restrictive specifications. It is not
clear whether requiring the abstract program to be executable in principle—that
is, to be machine-realizable—is too restrictive. If (MS , MS ∩ML) is not machine-
realizable, then it allows behaviors that cannot be achieved in practice. Most of
the specifications we have seen are machine-realizable. But allowing unachievable
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behaviors causes no harm, as long as the specification is realizable. Allowing some
unachievable behaviors may yield a simpler specification. For example, the simplic-
ity of the specification of a serializable database in [16] results from its not being
machine-closed, hence not machine-realizable. We have too little experience writ-
ing specifications to know if this example is an anomaly or if others will arise. We
therefore do not assume machine-realizability of the pair (MS , MS ∩ML).
The situation is different for the environment property E. Progress assumptions

about the environment seem to be unusual. A specification usually requires that
the system eventually do something after the environment has taken some action,
but seldom does it assume that the environment must take that action. Thus,
EL should generally be identically true, so the pair (ES , ES) will be ¬µ-machine-
realizable if ES constrains at most ¬µ. In a transition-axiom specification, ES has
the form TA¬µ(N ), which does constrain at most ¬µ.
Even if a specification does include a nontrivial progress assumption EL about the

environment, we believe that it may be reasonable to require the pair (ES , ES∩EL)
to be ¬µ-machine-realizable. The intent of the specification E ⇒ M is that the
system should win the realization game by making M true, not by making E
false. The machine-realizability condition means that so long as the environment
maintains ES , it can ensure that ES ∩EL will be true; hence, the system can never
win by forcing E to be false. A specification in which (ES , ES ∩ EL) is not ¬µ-
machine-realizable seems likely to be incorrect, in the sense that it does not capture
the intent of its author.
If the environment assumption is machine-realizable, then there is no need for an

environment progress assumption because the property EL can be incorporated into
the system’s progress property. This is stated formally by the following theorem.

Theorem 1. If I is a state predicate, (ES , ES ∩ EL) is ¬µ-machine-realizable,
MS is a safety property, and ML is any property, then

I ∩ ES ∩ EL ⇒ MS ∩ML

and

I ∩ ES ⇒ MS ∩ (EL ⇒ ML)

are µ-equirealizable.

The abstract programs describing the system and the environment may contain
hidden, internal state components, in which case the specification involves existen-
tial quantification. We now consider how Theorem 1 can be applied in the presence
of quantification.
Since environment specifications tend to be simple, we suspect that variables

internal to the environment can usually be confined to ES , allowing E to be written
as (∃x : ES) ∩ EL, so the theorem can be applied. In any case, the following
approach can always be used to eliminate existential quantification from E. The
laws of ordinary predicate logic imply that, if x is not free in M or P , then P ⇒
((∃x : E) ⇒ M) is equivalent to P ⇒ ∀x : (E ⇒ M), which in turn is valid
iff P ⇒ (E ⇒ M) is valid. Similar reasoning about quantification over state
components allows us to replace (∃x : E) ⇒ M by E ⇒ M , if we require that no
implementation P use x. (Implementation is discussed in Section 5.2.)
Existential quantification in the system’s description M is handled by the follow-

ing generalization of Theorem 1, in which the S-predicate EL is identified with the
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S× X-predicate Π−1

S (EL).

Corollary Let µ be any agent set, let x be the projection function from S × X
to X, let I be an S-predicate, let (ES , ES ∩EL) be a ¬µ-machine-realizable pair of
S-properties, and let MS and ML be S×X-properties such that ∃x : MS is a safety
property. Then

I ∩ ES ∩EL ⇒ ∃x : MS ∩ML

and

I ∩ ES ⇒ ∃x : MS ∩ (EL ⇒ ML)

are µ-equirealizable.

4.4 An Overly Normal Form

Theorem 1 permits us to take a specification of the form (4) and move the environ-
ment’s progress property to the right of the implication. But, can we always write
the specification in the form (4) in the first place? The answer is that not only can
we, but we don’t even need the left-hand side of the implication. Propositions 5
and 7 imply that the realizable part of any realizable property P can be written as
MS ∩ML, where MS is a safety property that constrains only µ. (Just take MS to
be Rµ(P ) and ML to be P .) In fact, we can choose the pair (MS , MS ∩ ML) to
be µ-machine-realizable. (The µ-machine-realizability of (Rµ(P ), P ) follows from
Propositions 4 and 5.)
We can go still further in finding a representation of the realizable part of a

property. It can be shown that any safety property that constrains at most µ can
be written in the form

∃x : Ix ∩ TA¬µ(Ux) ∩ TAµ(N )

for some initial predicate Ix satisfying hypothesis (a) of Proposition 10 and some
next-state relation N . (This result is a simple generalization of Proposition 3
of [1].) Thus, the µ-realizable part of any property P can be written in the form
∃x : MS ∩ ML, where MS has the form Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) and the pair
(∃x : MS , ∃x : MS ∩ML) is µ-machine-realizable.
The ability to write a specification in this form seems to imply that there is

no need to write an explicit assumption about the environment. Why write a
specification of the form E ⇒ M when we can simply write M? One answer is
that separating the environment assumption E from the guarantee M allows us to
take advantage of the Composition Principle. Another answer lies in the practical
matter of what the specification looks like. If we eliminate the explicit environment
assumption, then that assumption appears implicitly in the property M describing
the system. Instead of M describing only the behavior of the system when the
environment behaves correctly, M must also allow arbitrary behavior when the
environment behaves incorrectly. Eliminating E makes M too complicated, and it
is not a practical alternative to writing specifications in the form E ⇒ M .
To be useful, a specification must be understandable. Theorems that assert the

existence of a specification in a certain form are of no practical interest because
they prove only that the specification exists, not that it is understandable. On
the other hand, a result like Theorem 1 that provides a simple way to rewrite an
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� 1 µ1
inp mid

� 2 µ2
mid out

The Composition
of � 1 and � 2

µ1
inp mid

µ2
out

Fig. 3. The composition of two systems.

existing specification can be of practical interest because the rewritten specification
will be understandable if the original one is.
Although it seems impractical in general to write E ⇒ M without an explicit

environment assumption, it is practical if M is a safety property. In this case,
Proposition 8 shows that E ⇒ M is equivalent to the system guarantee E −� M .
In fact, this is precisely the form of specification that has been used to develop
composition principles for safety properties [22; 25].

5. COMPOSING SPECIFICATIONS

Our main result is a formal statement of the Composition Principle stated infor-
mally in the introduction. Before stating this result, we must explain how specifica-
tions are composed and what it means for one specification to implement another.
For convenience, we restrict our attention to the composition of two systems. The
generalization to an arbitrary number of systems is straightforward, and is described
after the statement of our main theorem.

5.1 The Composition of Specifications

Consider two systems �1 and �2, and their composition, shown schematically in
Figure 3. The “wires” inp, mid , and out denote state components, and µ1 and µ2

are the systems’ agent sets. If S1 and S2 are the specifications of the two systems,
what is the specification of their composition? Each Si is the property consisting of
all histories of the universe (behaviors) in which component i functions correctly.
A history of the universe is one in which both components function correctly iff it
is in both S1 and S2. Thus, the specification of the composition of the two systems
is simply S1 ∩S2. This simple semantics of composition as intersection rests on the
two basic assumptions, discussed below, that �1 and �2 refer to the same states,
and that µ1 and µ2 are disjoint.

5.1.1 Assumptions about the States. In composing the two systems�1 and�2 of
Figure 3, we combined the two “wires” labeled mid into a single “wire”. When two
specifications are written as logical formulas, a state-component variable like mid
that appears in both formulas is considered to represent the same state component.
In some situations, this use of names to identify state components in the two systems
is natural—for example, if the “systems” are the assignment statements mid :=
inp+1 and out := 2∗mid . In other situations, there may be no connection between
the names used in the two specifications, so renaming is necessary. For example, if
the systems are circuits, �1’s wire labeled mid might have been labeled out , and
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�2’s wire labeled mid might have been labeled inp. In that case, the specification
of the composite system in Figure 3 would be S1|outmid ∩ S2|inp

mid , where S1|outmid is
obtained by substituting mid for out in the formula for S1.
It is this kind of renaming that allows us to make do with the single operator

∩ for composing properties instead of having a multitude of different composition
operators. For example, two programming-language statements can be combined by
parallel composition or by sequential composition (“;”). Simple intersection of their
specifications provides parallel composition; sequential composition is obtained by
first renaming components of their control states in such a way that control is at
the end of one statement iff it is at the beginning of the other, then taking the
intersection of the resulting specifications.
Even with the proper choice of state-component names, we can write the com-

position as the intersection S1 ∩ S2 only if S1 and S2 are both S-properties—that
is, only if they have the same set of states S. But looking at the two systems sepa-
rately, we would not expect out to be a state component of�1 or inp to be a state
component of �2. The two specifications might have to be modified to use the
same set of states. This would be done by expanding S1’s state to include an out
component, modifying S1 to prohibit µ1 agents from changing out , and allowing
¬µ1 agents to change out freely—making the analogous change to S2 too.
The simplicity of representing all forms of composition as intersection is therefore

somewhat illusory. We need renaming and state expansion as well. (By adopting
the approach mentioned in Section 4.2.1 of having a single universal set of states,
state expansion can be avoided at the expense of additional renaming.) Moreover,
we might want some state components of the composed system to be hidden—for
example, the component mid in Figure 3. This requires the use of existential quan-
tification, as described in Section 4.2.2. Still, we feel that the ability to reduce com-
position to the well-understood operation of intersection—or, in the corresponding
logical view, to conjunction—is a significant benefit of our approach.

5.1.2 Assumptions about the Agents. In drawing Figure 3, we have made a subtle
assumption about the agent sets µ1 and µ2. Suppose we want to compose two
copies of the �1 without renaming, so the inp state components of the two copies
would be identified (the two inp “wires” would be connected), as would the mid
state components. The discussion so far might lead one to write the resulting
specification as S1 ∩ S1. But this is obviously wrong, since S1 ∩ S1 equals S1. The
simple intersection of S1 with itself, without renaming, yields a specification of
system �1, not of the composition of two separate copies of �1.
A property S specifies what it means for a particular agent set µ to perform

correctly. Making a separate copy of S means replacing µ by a different agent
set. Let S|µµi

denote the property obtained by substituting µi for µ in the formula
describing S. The property S|µµ1

∩ S|µµ2
specifies a system in which the agent sets

µ1 and µ2 each behave like the agent set µ in the specification S—in other words,
a system in which each µi is a separate copy of the original system µ.
By drawing separate, nonoverlapping boxes for �1 and �2 in Figure 3, we have

tacitly assumed that their agent sets µ1 and µ2 are disjoint. As we have seen in
the extreme case when S1 equals S2, the intersection S1∩S2 does not represent the
expected composition of separate systems unless µ1 ∩µ2 is the empty set of agents.
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5.2 Implementing One Specification by Another

5.2.1 Definition. A system’s specification S describes the set of all behaviors in
which the system is considered to behave correctly. For a system specified by S′

to satisfy specification S, every behavior it allows must be in S. Thus, the system
specified by S′ satisfies the specification S if S′ ⊆ S. Eliminating the phrase “the
system specified by”, we can say that specification S′ implements S if S′ ⊆ S.
While sufficient, the condition S′ ⊆ S is stronger than strictly necessary for S′ to

implement S. We view S′ as a prescription for building an implementation, and we
say that S′ implements S iff every real system built according to the specification
S′ satisfies S. It is not necessary for every behavior in S′ to be in S, just for every
behavior that can be generated by a real implementation of S′ to be in S. The set
of behaviors that can be generated by a real implementation of S′ is included in
the realizable part of S′, so we define S′ implements S to mean Rµ(S′) ⊆ S.
We expect “implements” to be transitive, meaning that if S′′ implements S′, and

S′ implements S, then S′′ implements S. Proving transitivity requires showing
that Rµ(S′′) ⊆ S′ and Rµ(S′) ⊆ S imply Rµ(S′′) ⊆ S. This implication is valid
because, by Propositions 3 and 4, Rµ(S′′) ⊆ S′ implies Rµ(S′′) ⊆ Rµ(S′).
We now return to the composition of systems. Let S1 and S2 be specifications

of systems with agent sets µ1 and µ2, respectively. Any real implementation that
satisfies Si will satisfy Rµi (Si), so combining an implementation of S1 with an
implementation of S2 produces a system whose set of behaviors is contained in
Rµ1(S1) ∩ Rµ2(S2). Thus, to prove that the composition of a system specified by
S1 and one specified by S2 implements a specification S, it suffices to prove

Rµ1(S1) ∩Rµ2 (S2) ⊆ S (5)

If (5) holds, then the following proposition allows us to infer the stronger result
Rµ1(S1) ∩Rµ2 (S2) ⊆ Rµ1∪µ2(S).

Proposition 11. For any disjoint pair of agent sets µ1 and µ2, and any prop-
erties P1 and P2, the property Rµ1(P1) ∩Rµ2 (P2) is µ1 ∪ µ2-receptive.

Proposition 11 implies that Rµ1 (S1)∩Rµ2(S2) ⊆ Rµ1∪µ2(S1∩S2). This in turn
implies that condition (5) is weaker than Rµ1∪µ2(S1 ∩ S2) ⊆ S, which is what we
would have to prove to show that S1 ∩ S2 implements S.
The hypothesis that µ1 and µ2 are disjoint is necessary in Proposition 11. In

particular, the conclusion does not hold if µ1 = µ2, because the intersection of two
µ-receptive properties is not necessarily µ-receptive.

5.2.2 Proving That One Specification Implements Another. We now comment
briefly on how one can prove in practice that a specification S′ of the form E′ ⇒ M ′

implements a specification S of the form E ⇒ M . If S′ is not µ-receptive (equal to
its realizable part), then deriving an explicit formula for Rµ(S′) is likely to be very
difficult. (If it were easy, then we would have written Rµ(S′) instead of S′ in the
first place.) Therefore, unless we can apply some general theorem—like Theorem 2
of Section 5.3 below—to prove that S′ implements S, we will have to prove that
S′ ⊆ S.
Specification S′ has environment assumption E′, while S has environment as-

sumption E. If the system specified by S′ is to satisfy the specification S, it must
do so assuming only that the environment satisfies E. Therefore, E′ must be equal
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to or weaker than E—that is, we must have E ⊆ E′. Since E ⊆ E′ implies
(E′ ⇒ M ′) ⊆ (E ⇒ M ′), if the implementation satisfies E′ ⇒ M ′ then it also
satisfies E ⇒ M ′. Therefore, it suffices to prove (E ⇒ M) ⊆ (E ⇒ M ′).
By elementary set theory, (E ⇒ M ′) ⊆ (E ⇒ M) is equivalent to E ∩ M ′ ⊆

E ∩ M .1 Whereas E ⇒ M consists of all behaviors in which the system behaves
correctly in the face of arbitrary environment behavior, E ∩ M consists of only
those behaviors in which both the environment and system behave correctly. In
the transition-axiom approach, E is an abstract partial program describing the
environment and M is an abstract partial program describing the system, so E∩M
defines the complete program obtained by composing these two partial programs.
Similarly, E∩M ′ describes a complete program. Therefore, provingE∩M ′ ⊆ E∩M
requires proving that one complete program implements another.
Proving that one program implements another is a problem that has been ad-

dressed extensively in earlier work. The basic transition-axiom approach is de-
scribed in [16], and a formal basis along with a completeness result can be found
in [1]. We briefly sketch this approach.
The specification E ∩M can be written in the form

∃x : I ∩ TA¬µ(NE) ∩ TAµ(NM ) ∩ L

where I is an initial predicate, NE and NM are next-state relations describing
the environment and system actions, respectively, and L is a progress property—
all with set of states S × X. (Here, X consists of the system’s internal state
components; as we observed in Section 4.3, we can make the environment’s internal
variables visible.) We can write I as a logical formula on the state variables, NE

and NM as relations between old and new state values, and L as a formula in
some temporal logic. Similarly, E ∩ M ′ can be written in the form ∃y : I ′ ∩
TA¬µ(N ′

E)∩TAµ(N ′
M )∩L′, with a set of internal states Y. Moreover, NE and N ′

E

will be essentially the same relations, depending only on the externally visible state
(including the environment’s internal state components). To prove that E ∩ M ′

implements E ∩ M , we construct a refinement mapping f from S × Y to S × X
that satisfies the following four conditions.

(1) f preserves the S-component. In other words, for all (s, y) ∈ S × Y, there is
some x ∈ X such that f(s, y) = (s, x).
In practice, a set of states is defined by a collection of state components. Let
e1, . . . , em denote the components defining S, so an element s of S is an m-
tuple (e1(s), . . . , em(s)); let x1, . . . , xn and y1, . . . , yp denote the similar com-
ponents defining X and Y. To specify the refinement mapping f , one must
define functions f1, . . . , fn such that f(s, y) = (s, (f1(s, y), . . . , fn(s, y))). The
fj can be described by formulas having the components ei and yk as free vari-
ables. For example, the formula e1 + 4y2 denotes the function g such that
g(s, y) = e1(s) + 4y2(y).

(2) f takes initial states to initial states. The formal condition is f(I ′) ⊆ I.
To explain what this condition means in practice, we first make the following
definition. For any formula H with free variables e1, . . . , em and x1, . . . , xn,
define f∗(H) to be the formula obtained by substituting fj for xj , for j =

1This equivalence was pointed out to us by Amir Pnueli.
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1, . . . , n. This defines f∗(H) to be a formula with free variables e1, . . . , em

and y1, . . . , yp. The semantic condition f(I ′) ⊆ I is expressed in the logical
framework as |= I ′ ⇒ f∗(I), which is a formula “about” the implementation.
In most cases, this condition is easy to check.

(3) f maps N ′
M steps into NM steps or stuttering steps. Formally, we require

that if (s, y) is any state reachable from a state in I ′ by a sequence of N ′
E

and N ′
M steps, then ((s, y), (t, z)) ∈ N ′

M implies (f(s, y), f(t, z)) ∈ NM or
f(s, y) = f(t, z).

In practice, verifying this condition involves finding an S×Y-predicate P such
that I ⊆ P and P is left invariant by N ′

E and N ′
M , meaning that (s, y) ∈ P and

((s, y), (t, z)) ∈ N ′
E ∪ N ′

M imply (t, z) ∈ P . One then proves old.P ∧ N ′
M ⇒

f∗(NM ∨I), where old.P is the formula asserting that P is true in the first state
of a step, and I is the identity relation. Finding an invariant P and proving its
invariance is exactly what one does in a proof by the Owicki-Gries method [18;
23], so the method for proving this condition generalizes the standard method
for proving invariance properties of concurrent programs.

(4) f maps behaviors that satisfy I ′ ∩ TA¬µ(N ′
E) ∩ TAµ(N ′

M ) ∩ L′ into behaviors
that satisfy L. The formal condition is f(I ′∩TA¬µ(N ′

E)∩TAµ(N ′
M )∩L′) ⊆ L.

Translated into the logical framework, the formula to be verified becomes I ′ ∧
TA¬µ(N ′

E) ∧ TAµ(N ′
M ) ∧ L′ ⇒ f∗(L). This formula asserts that the abstract

program described by I ′ ∧ TA¬µ(N ′
E) ∧ TAµ(N ′

M ) ∧ L′ satisfies the property
f∗(L), which is generally a liveness property. Thus, verification of this condition
is tantamount to proving that a program satisfies a liveness property, which can
be done with the method of [24] when L and L′ are expressed as temporal logic
formulas.

Condition 3 is weaker in two ways than the corresponding condition R3 in the
definition of a refinement mapping in [1]. First, condition 3 applies only to µ steps,
while condition R3 applies to all steps. The weaker condition is sufficient because
¬µ steps, which are taken by the environment, are essentially the same in both
E ∩ M ′ and E ∩ M . (The formalism of [1] did not include agents and made no
distinction between system and environment steps.) Second, condition 3 applies
only to steps taken from a reachable state, while R3 applies to steps taken from
any state. The weaker condition was not needed in [1], where history variables were
used to eliminate unreachable states.
Theorem 2 of [1] asserts the existence of a refinement mapping under certain

reasonable assumptions about the specifications, providing a completeness theorem
for the proof method. In general, obtaining the refinement mapping may require
adding two auxiliary variables to the lower-level specification: a history variable
used to record past actions, and a prophecy variable used to predict future ones.
Our limited experience indicates that prophecy variables are almost never needed
and, with condition 3 rather than R3, history variables are seldom needed. Al-
though our experience with this method for verifying concurrent systems is limited,
we have good reason to believe that these mappings can be constructed in practice,
because refinement mappings are essentially abstraction functions of the kind that
have been used for years to prove that one data type implements another [10].
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5.3 The Main Theorem

5.3.1 A Precise Statement of the Composition Principle. Having discussed com-
position and implementation, we come to the problem of proving that the compo-
sition of specifications S1 and S2 implements a specification S. As we observed in
(5) of Section 5.2, we must prove Rµ1(S1) ∩ Rµ2(S2) ⊆ S. One might attempt to
prove this with the refinement-mapping method of Section 5.2.2. Since we cannot
expect to construct the realizable part of a specification, we would have to prove
the stronger result that S1 ∩ S2 implements S. However, S has the form E ⇒ M
and each Si has the form Ei ⇒ Mi. The refinement-mapping method proves that
a specification of the form E ⇒ M ′ implements E ⇒ M , but S1 ∩ S2 is not in
this form. A simple refinement mapping won’t work; we need the Composition
Principle.
We now restate the Composition Principle, for the case n = 2, in terms of our

formal definitions. The principle’s premises are that system � is the composition
of systems �1 and �2, the specification of � is E ⇒ M , and the specification of
each �i is Ei ⇒ Mi. As we have already indicated, E, E1, and E2 must be safety
properties. Also needed are some additional assumptions that are natural conse-
quences of our method of writing specifications—assumptions that we disregard for
now, but add as hypotheses of the theorem and discuss afterwards. The hypotheses
of the principle consist of three conditions:

(1) � guarantees M if each component �i guarantees Mi.
Formally, this condition asserts that M1∩M2 ⊆ M . It can be satisfied automat-
ically by taking M to be M1 ∩M2. We can therefore simplify the Composition
Principle by eliminating M , and letting the conclusion assert that � satisfies
E ⇒ M1 ∩M2. To show that � satisfies the specification E ⇒ M , one proves
that E ⇒ M1∩M2 implements E ⇒ M , using the refinement-mapping method
described in Section 5.2.2.

(2) The environment assumption Ei of each component �i is satisfied if the envi-
ronment of � satisfies E and every �j satisfies Mj.
This condition asserts that E ∩ M1 ∩ M2 ⊆ E1 and E ∩ M1 ∩ M2 ⊆ E2, two
assertions that can be combined as E ∩M1 ∩M2 ⊆ E1 ∩E2.

(3) Every component �i guarantees Mi under environment assumption Ei.
This condition simply asserts that each component�i satisfies its specification
Ei ⇒ Mi.

The Composition Principle’s conclusion asserts that � satisfies the specification
E ⇒ M1 ∩ M2. (Remember that we have replaced M by M1 ∩ M2.) When the
principle is formulated in terms of specifications rather than systems, condition
3 disappears and the conclusion states that the composition of the components’
specifications implements the system’s specification. The Composition Principle
then becomes the proof rule:

E ∩M1 ∩M2 ⊆ E1 ∩ E2

Rµ1(E1 ⇒ M1) ∩Rµ2(E2 ⇒ M2) ⊆ E ⇒ M1 ∩M2
(6)

Unfortunately, this rule is not valid. To obtain a valid rule, we must replace its
hypothesis with a stronger one.
Rule (6) appears unreasonably circular because it allows one to assume Mi in

proving the environment assumption Ei that is necessary for component �i to
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guarantee Mi. This suggests that we strengthen the hypothesis by disallowing the
use of Mi in proving Ei, obtaining the rule:

E ∩M2 ⊆ E1, E ∩M1 ⊆ E2

Rµ1(E1 ⇒ M1) ∩Rµ2(E2 ⇒ M2) ⊆ E ⇒ M1 ∩M2
(7)

This rule is indeed valid. However, it would be wrong to attribute the invalidity of
(6) to simple circularity. Rule (7) is also circular, and it would be incorrect without
the additional assumptions that we have been ignoring. For example, suppose we
could take E1 = E2 = M1 = M2 = P for some safety property P . Both hypotheses
of (7) then reduce to the tautology E∩P ⊆ P ; and each Ei ⇒ Mi becomes P ⇒ P ,
an identically true specification satisfied by any system. Rule (7) would then yield
the ridiculous conclusion that the composition of any two systems satisfies the
specification E ⇒ P .
Not only is (7) valid despite its circularity, but there is an even stronger valid rule

that looks just as circular as (6). The way to strengthen (7) is suggested by a closer
examination of its hypotheses. The first hypothesis asserts that E and M2 imply
E1. Property E1 is assumed to be a safety property, and any safety property that
is implied by M2 is implied by M2. We would therefore expect E ∩ M2 to imply
E1 only if E ∩ M2 does. Similarly, E ∩ M1 should imply E2 only if E ∩ M1 does.
Proposition 12 shows that the following inference rules are indeed valid—again,
under certain natural assumptions.

E ∩M2 ⊆ E1

E ∩M2 ⊆ E1

E ∩M1 ⊆ E2

E ∩M1 ⊆ E2

(8)

We can thus replace M1 and M2 by their closures in the hypotheses of (7). But
we can do even more. In the hypothesis, we can actually assume both M1 and M2

when proving E1 and E2. In other words, rule (6) is valid if, in the hypothesis, we
replace M1 and M2 by M1 and M2. Thus, one can assume Mi when proving the
assumption Ei that is necessary for �i to guarantee Mi.
We now state our precise results. The hypotheses of the proposition and the

theorem are discussed later. The proposition asserts the first rule of (8); the second
rule is obtained by the obvious substitutions. In the theorem, we have strengthened
the proof rule’s conclusion by replacing E ⇒ M1 ∩M2 with its realizable part.

Proposition 12. If µ1, µ2, and µ1 ∪ µ2 are agent sets and E, E1, and M2 are
properties such that:

(1) E = I ∩ P where
(a) I is a state predicate.
(b) P is a safety property that constrains at most ¬(µ1 ∪ µ2).

(2) E1 is a safety property.
(3) µ1 ∩ µ2 = ∅
(4) M2 is a µ2-abstract property.

Then the rule of inference

E ∩M2 ⊆ E1

E ∩M2 ⊆ E1

is sound.
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Theorem 2. If µ1, µ2, and µ1 ∪ µ2 are agent sets and E, E1, E2, M1, and M2

are properties such that:

(1) E = I ∩ P , E1 = I1 ∩ P1, and E2 = I2 ∩ P2, where
(a) I, I1, and I2 are state predicates.
(b) P , P1, and P2 are safety properties that constrain at most

¬(µ1 ∪ µ2), ¬µ1, and ¬µ2, respectively.
(2) M1 and M2 constrain at most µ1 and µ2, respectively.
(3) µ1 ∩ µ2 = ∅
Then the rule of inference

E ∩M1 ∩M2 ⊆ E1 ∩ E2

Rµ1 (E1 ⇒ M1) ∩Rµ2(E2 ⇒ M2) ⊆ Rµ1∪µ2(E ⇒ M1 ∩M2)

is sound.

The theorem handles the composition of two systems. It has an obvious gener-
alization to the composition of n systems, for any n ≥ 2.

E ∩M1 ∩ . . . ∩Mn ⊆ E1 ∩ . . . ∩ En

Rµ1(E1 ⇒ M1) ∩ . . . ∩Rµn(En ⇒ Mn)
⊆ Rµ1∪...∪µn(E ⇒ M1 ∩ . . . ∩Mn)

This rule can be derived from the theorem by using Proposition 11.

5.3.2 The Hypotheses of the Theorem and Proposition. We now discuss the the-
orem’s three numbered hypotheses—which imply the first three hypotheses of the
proposition—and the proposition’s fourth hypothesis.

(1) It is not hard to show that any safety property E′ can be written as I ′ ∩ P ′,
where I ′ is a state predicate and P ′ is a safety property that constrains at most
ν, for some set of agents ν. If E′ specifies the environment of a system with
agent set µ, then ν should equal ¬µ. Therefore, hypothesis 1 will be satisfied if
the environment assumptions E, E1, and E2 are safety properties. Theorem 1
allows us to rewrite a specification so its environment assumption is a safety
property.
Observe that a system implemented by components with agent sets µ1 and µ2

should have µ1 ∪µ2 as its agent set. But, the higher-level specification E ⇒ M
we are ultimately trying to verify may be written in terms of an agent set
µ rather than µ1 ∪ µ2. In this case, we must perform a renaming operation,
substituting µ1 ∪ µ2 for µ, before applying the theorem.

(2) In the transition-axiom approach, each Mi has the form

∃x : Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L

and we expect Mi to equal ∃x : Ix ∩ TA¬µi(Ux) ∩ TAµi(N ), in which case
hypothesis 2 is satisfied.

(3) As we mentioned in Section 5.1.2, this hypothesis means that the two compo-
nents are distinct. They need be distinct only at the current level of abstraction;
their implementations could contain common parts. For example, the two com-
ponents might specify distinct program procedures, while their implementations
both invoke a common subprocedure. We can consider the subprocedure to be
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executed by different agents depending upon which procedure invoked it. Al-
ternatively, we can generalize our notion of implementation to allow renaming
of agents. In practice, this hypothesis seems to be a petty nuisance of the
formalism, not a real concern.

(4) When we write M2 directly, either as an abstract program or by any sort of
logical formula, individual agents are not mentioned. The only reference to
agents is through the symbol “µ2”, so M2 is automatically µ2-abstract.

5.3.3 The Hypotheses of the Proof Rule. We now show how one verifies the hy-
pothesis E ∩ M1 ∩ M2 ⊆ E1 ∩ E2 of the theorem’s proof rule, using the systems
�1 and �2 of Figure 3 as a generic example.
Each of the “wires” inp, mid , and out will have an associated protocol that the

systems on its two ends are expected to obey. For each wire w, let Iw be the
initial condition for the wire, let Lw

µ be the property asserting that the agent set µ
correctly executes the protocol for the system on the left side of the wire, and let
Rw

µ be the corresponding property for the right side of the wire.
For example, suppose the state component mid consists of a register r and two

booleans rdy and ack , and that the following popular hardware protocol is used to
pass values from a sender on the left to a receiver on the right. (Initially, the values
of rdy and ack are equal.)

send : begin loop receive: begin loop
await rdy = ack ; await rdy  = ack ;
write r; read r;
rdy := ¬rdy ack := ¬ack

end loop end loop

Let Nsend and Nreceive be the next-state relations of the sender’s and receiver’s
programs. For this protocol, Imid is the initial predicate rdy = ack , the prop-
erty Lmid

µ equals TAµ(Nsend ), and Rmid
µ equals TAµ(Nreceive). Data is properly

transferred from �1 to �2 across mid in every behavior satisfying the property
Imid ∩ Lmid

µ1
∩Rmid

µ2
.

We will not assume any particular protocols for inp, mid , and out . However, we
can ignore any liveness properties the protocols might require, since these properties
cannot appear in the environment assumptions. Therefore, we assume that Lw

µ and
Rw

µ are safety properties, for each wire w.
In addition to specifying the mechanism by which values are sent over wire w,

the protocol properties Lw
µ and Rw

µ can also specify what values are sent. Thus,
it is reasonable to suppose that these protocol properties include any assumptions
that a system makes about its environment. A system’s environment assumption
then asserts that the environment obeys its side of the protocol for each wire over
which the system and environment communicate. The initial conditions for these
wires must also be part of the environment assumption, since the environment
is responsible for the initial values of all externally visible components. For the
composition in Figure 3, we then get the following environment assumptions.

E1 = I inp ∩ Linp
¬µ1

∩ Imid ∩Rmid
¬µ1

E2 = Imid ∩ Lmid
¬µ2

∩ Iout ∩Rout
¬µ2

E = I inp ∩ Linp
¬(µ1∪µ2) ∩ Imid ∩ TA¬(µ1∪µ2)(Umid ) ∩ Iout ∩Rout

¬(µ1∪µ2)
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We have included in E the assumption that the composite system’s environment
does not affect mid .
We cannot prove the hypothesis of the theorem without knowing something about

�1, �2, and the wires. The assumptions we will make, and their justifications,
are listed below.

A1. For any wire w and agent sets ν1 and ν2:
(a) TAν1(Uw) ∩ Lw

ν2
⊆ Lw

ν1∪ν2

(b) TAν1(Uw) ∩Rw
ν2

⊆ Rw
ν1∪ν2

Property Lw
ν2

asserts that agents in ν2 obey the left-side protocol for wire w.
Actions that do not affect the wire cannot disobey the protocol. Hence, if agents
in ν2 obey the protocol and agents in ν1 do not affect w, then agents in ν1 ∪ ν2

obey the protocol. Part (a) can be derived formally from three assumptions:
(i) Lw

ν1∪ν2
equals Lw

ν2
|ν2
ν1∪ν2 (the property obtained by substituting ν1 ∪ ν2 for

ν2 in Lw
ν2
), (ii) Lw

ν2
constrains at most ν2, and (iii) Lw

ν2
depends only on the

w-component of the state. Part (b) has a similar justification.
A2. (a) M1 ⊆ TAµ1(Uout )

(b) M2 ⊆ TAµ2(Uinp)
Figure 3 assumes that �1 does not affect out and �2 does not affect inp. For-
mally, these assumptions are M1 ⊆ TAµ1(Uout ) and M2 ⊆ TAµ1(Uinp), which
imply A2 because TAµ1(Uout ) and TAµ2(Uinp) are safety properties.

A3. M1 ∩M2 ⊆ Lmid
µ1

∩Rmid
µ2

For the composite system to work properly, �1 and �2 must cooperate to
guarantee that the protocol condition Lmid

µ1
∩Rmid

µ2
is satisfied. Hence, M1 ∩M2

must be a subset of Lmid
µ1

∩Rmid
µ2

. Since Lmid
µ1

∩Rmid
µ2

is a safety property, we expect
it to contain M1 ∩ M2 only if it contains M1 ∩ M2. This is an expectation, not
a logical necessity. If we could always deduce A3 from M1 ∩M2 ⊆ Lmid

µ1
∩Rmid

µ2
,

then proof rule (6) would be valid.

With these assumptions, we can verify E ∩ M1 ∩M2 ⊆ E1 ∩ E2, the hypothesis
of the theorem’s proof rule. We prove that E ∩M1 ∩M2 is a subset of E1; proving
that it is a subset of E2 is similar. Since E1 is the conjunction of four properties,
there are four inclusions to verify.

1. E ∩M1 ∩M2 ⊆ I inp

Proof : The definition of E implies that it is a subset of I inp .

2. E ∩M1 ∩M2 ⊆ Linp¬µ1

Proof : This is proved by the following sequence of steps.
2.1. M2 ⊆ TAµ2(Uinp)

Proof : By A2(b).
2.2. E ⊆ Linp

¬(µ1∪µ2)

Proof : By definition of E.
2.3. E ∩M2 ⊆ Linp¬µ1

Proof : By 2.1, 2.2, and A1(a), substituting µ2 for ν1 and ¬(µ1 ∪µ2) for ν2,
since the hypothesis that µ1 and µ2 are disjoint implies µ2∪¬(µ1∪µ2) = ¬µ1.

3. E ∩M1 ∩M2 ⊆ Imid

Proof : By definition of E.

4. E ∩M1 ∩M2 ⊆ Rmid
¬µ1
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4.1. M1 ∩M2 ⊆ Rmid
µ2

Proof : By A3.
4.2. E ⊆ TA¬(µ1∪µ2)(Umid )

Proof : By definition of E.
4.3. E ∩M1 ∩M2 ⊆ Rmid¬µ1

Proof : By 4.1, 4.2, and A1(b), substituting ¬(µ1 ∪µ2) for ν1 and µ2 for ν2,
using the disjointness of µ1 and µ2.

This completes our justification of the hypothesis E ∩ M1 ∩ M2 ⊆ E1 ∩ E2 for
the composition of Figure 3. It was based on assumptions derived from the figure,
with no assumptions about what �1 and �2 are supposed to do. This example is
therefore quite general, since mid represents all state components involved in com-
munication between�1 and�2, while inp and out represent the state components
with which �1 and �2 interact with the rest of their environments. The only real
assumption implicit in the figure is that the composite system’s environment does
not modify any state component that is accessed by both �1 and �2. Removing
this assumption means that communication over mid involves a three-party proto-
col, requiring an additional property Tmid

µ to be satisfied by the third party. (This
would be represented pictorially by adding a third end to wire mid that is not
connected to anything in Figure 3.) Correct transfer of data over wire mid then
requires Lmid

µ1
∩Rmid

µ2
∩Tmid

¬(µ1∪µ2)
to hold. Our argument can be modified to handle

the more general case.

6. CONCLUDING REMARKS

We have approached the problem of composing specifications from a purely semantic
point of view. A formal specification method can use a language and logic based
on this semantics. Our Theorem 2 would appear as a proof rule in the logic. We
have touched lightly on logical issues in our discussion, mentioning what form some
logical formulas might take. Some concluding remarks about language and logic
are in order.
The semantic form of our specifications suggests the general style of a specification

language. Safety properties are expressed by describing a next-state relation, and
progress properties are expressed either directly in some form of temporal logic, or
with fairness conditions that can be translated into temporal logic.
There are obvious desiderata for a specification language: it should be expressive,

readable, concise, etc. There are also more precise attributes that the specification
logic must have. Clearly, we want all the sets of behaviors expressed to be prop-
erties, meaning that they are closed under stuttering-equivalence. Another simple
attribute of a logic is explicitness, meaning that whether or not a behavior satisfies
a formula F depends only on the values assumed during the behavior by the state
components that are free variables of F . Explicitness is necessary if existential
quantification is to have its expected meaning, but it poses a surprisingly serious
constraint on how specifications are written. For example, consider a formula F
that specifies the assignment statement x := x+1. If this formula is to assert that
executing the assignment statement does not change y, then explicitness requires
that y (and every other variable that is not changed) be free variables of F . A prac-
tical language must allow one to write the formula F so that y is a free variable of
F even though it does not appear in the text.
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Closure under stuttering-equivalence and explicitness may seem esoteric to read-
ers accustomed to popular, simple semantics of programs. In a typical semantics,
the formula specifying a program is satisfied only by behaviors in which each step
corresponds to the execution of a program action—for example, this is the natu-
ral way to write a semantics using the “next-time” temporal operator. However,
composition cannot be conjunction in such a semantics. For example, consider two
completely noninteracting programs, with separate sets of variables, described by
formulas F and G. A behavior of their composition is obtained by interleaving
actions from the two programs. But such an interleaved behavior does not satisfy
F , since it contains steps that do not represent actions of that program, nor does
it satisfy G. Thus, the composition of the two programs is not described by the
formula F ∧G. Closure under stuttering-equivalence and explicitness are needed for
composition to be conjunction even in the trivial case of noninteracting programs.
Many styles of specification have been proposed, ranging from abstract axioms

in a specific logic to abstract programs in a specific language. Most of these styles
can be adapted to our semantics, so they can make use of our results. However,
these specification styles have usually been based on a particular semantic theory,
and that underlying theory might have to be modified. Thus, one can still specify
properties with CSP programs, but the traditional failure-set semantics of CSP [11]
would have to be revisited. We are now investigating a transition-axiom method
based on the temporal logic of actions [17].

Appendix: Proofs

This appendix contains the proofs of all propositions and theorems stated above. Also
included are lemmas, which are used in the proofs but which are not mentioned in the
main text. The proofs have been carried out to an excruciating level of detail, in a
hierarchical style that is explained below. The reader may feel that we have given long,
tedious proofs of obvious assertions. However, what he has not seen are the many equally
obvious assertions that we discovered to be wrong only by trying to write similarly long,
tedious proofs. We believe very strongly that reasoning must be carried out to this level
of detail to avoid mistakes. Without these detailed proofs, we would have little confidence
in the correctness of our results.
The proofs employ the following definitions and notations.

—We make all functions total by defining f(x) to equal ⊥ when x is not in the domain
of f .

—If ρ is a finite behavior prefix, α an agent, and s a state, then ρ · (α, s) is the behavior
prefix obtained by concatenating

α−→ s to the end of ρ.

—The length of a finite behavior prefix ρ, denoted |ρ|, is defined by |s0
α1−→ . . .

αm−→ sm| =
m.

—We extend the definition of ρ|m, previously defined only for a behavior ρ, in the obvious
way when ρ is a finite behavior prefix and 0 ≤ m ≤ |σ|. (Thus σ|0 is a prefix of length
0, consisting of a single state.)

—For a finite behavior prefix ρ, the state ρs is defined to equal s|ρ|(ρ); and, when |ρ| > 0,
the agent ρa is defined to equal a|ρ|(ρ).

—A mapping f from behavior prefixes to behavior prefixes is monotone iff for all behavior
prefixes σ and τ , if σ is a prefix of τ then f(σ) is prefix of f(τ ). Observe that if f is
monotone, then limm→∞ f(σ|m) exists for any behavior σ.

—If f is a µ-strategy, then a finite behavior prefix ρ is said to end according to µ, f iff
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(i) |ρ| = 0, or (ii) ρa /∈ µ, or (iii) f(ρ||ρ|−1) = (ρa, ρs). Note that a behavior τ is a
µ-outcome of f iff every finite prefix of τ ends according to µ, f .

—If f is a µ-strategy, then a finite behavior prefix ρ is said to be a partial µ-outcome of
f iff every prefix of ρ (including ρ itself) ends according to µ, f .

The proofs are written in a hierarchical style. A structured proof consists of a preamble
followed by a sequence of statements, each with its own proof. A proof that uses a case
split will have a separate proof for each case.
The preamble describes the assumptions that are to be made, the desired conclusion,

and why this conclusion implies the result to be proved. It may also contain an informal
description of the proof. The proof statement or statements that assert the preamble’s
desired conclusion are indicated by boxed statement numbers. The preamble is omitted
if the assumptions and conclusion are obvious.
A sufficiently simple proof is not structured, being written in the customary paragraph

style. Some proof statements serve only to make definitions and require no proof.

Lemma 1. For any agent set µ, if (i) f is a µ-strategy, (ii) σ ∈ Oµ(f), and (iii) σ
′ 	 σ,

then there exists a µ-strategy f ′ such that (iv) σ′ ∈ Oµ(f
′) and (v) every behavior in Oµ(f

′)
is stuttering-equivalent to some behavior in Oµ(f).

Proof of Lemma 1

We assume µ is an agent set, f a µ-strategy, σ ∈ Oµ(f), and σ
′ 	 σ; and we construct the

required f ′. We will define f ′ so it “tries to produce” σ′ if that is still possible; otherwise
it tries to act like f . This means that f ′ has to switch from trying to produce σ′ to acting
like f if the environment causes the behavior to diverge from σ′. Our formal definition
will be driven by the need for f ′ to make this switch smoothly. We will first define a
mapping Ξ on behavior prefixes such that Ξ maps prefixes of σ′ to prefixes of σ, and Ξ(ρ)
is stuttering-equivalent to ρ for any behavior prefix ρ. We will then define f ′(ρ) to equal
f(Ξ(ρ)) if ρ is not a prefix of σ′.
1. For any finite behavior prefix ρ, define the finite behavior prefix Ξ(ρ) inductively as
follows.

if |ρ| = 0 then Ξ(ρ) = ρ
if ρ = θ · (α, s) then if ρ is a prefix of σ′

then Ξ(ρ) is the smallest prefix of σ
that is stuttering-equivalent to ρ

else Ξ(ρ) = Ξ(θ) · (α, s)
2. For any finite behavior prefix ρ that is not a prefix of σ′,

Ξ(ρ) = Ξ(ρ|k) · (ak+1(ρ), sk+1(ρ)) · · · (ρa, ρs)
where k is the smallest natural number such that ρ|k+1 is not a prefix of σ

′.
Proof : From 1, by a simple induction on |ρ| − k.

3. For any behavior τ , define Ξ(τ ) as follows.
if τ = σ′ then Ξ(τ ) = σ

else Ξ(τ ) = limm→∞ Ξ(τ |m)
Then Ξ(τ ) is a behavior.
Proof : If τ = σ′, then Ξ(τ ) is a behavior because σ is. If τ 
= σ′, then 2 implies that
limm→∞ Ξ(τ |m) exists and is infinite.

4. Ξ(τ ) 	 τ for any behavior τ .
Proof : If τ = σ′, then the result follows from 3 and the hypothesis that σ′ 	 σ. If
τ 
= σ′, then 2 and 3 imply Ξ(τ ) = Ξ(τ |k) · (ak+1(τ ), sk+1(τ )) · (ak+2(τ ), sk+2(τ )) · · ·,
where τ |k is a prefix of σ′ or k = 0. The result now follows from 1, which implies
Ξ(τ |k) 	 τ |k.

5. For any finite behavior prefix ρ, define f ′(ρ) as follows.
if ρ = σ′|k then if ak+1(σ

′) ∈ µ then f ′(ρ) = (ak+1(σ
′), sk+1(σ

′))
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else f ′(ρ) = ⊥
if ρ is not a prefix of σ′ then f ′(ρ) = f(Ξ(ρ))

Then f ′ is a µ-strategy.
Proof : Follows from the hypothesis that f is a µ-strategy.

6. σ′ ∈ Oµ(f
′)

Proof : It follows from the definition of f ′ that σ′ is a µ-outcome of f ′. It is a fair
outcome because ak+1(σ

′) /∈ µ implies f ′(σ′|k) = ⊥, so if there are only finitely many
µ actions in σ′, then f ′ is undefined on infinitely many prefixes of σ′.

7. If τ is a fair µ-outcome of f ′, then Ξ(τ ) is a fair µ-outcome of f .
Proof : If τ = σ′, then Ξ(τ ) = σ, and σ is a fair µ-outcome of f by hypothesis. We
assume that τ is a fair µ-outcome of f ′ and τ 
= σ′, and we prove that Ξ(τ ) is a fair
µ-outcome of f .
7.1. Choose k to be the largest natural number j such that τ |j = σ′|j , or −1 if there is
no such j. Let l equal |Ξ(τ |k)| if k ≥ 0, or −1 if k = −1. For all i ≥ 0: (i) if k ≥ 0
then Ξ(τ )|l+i = Ξ(τ |k) · (ak+1(τ ), sk+1(τ )) · · · (ak+i(τ ), sk+i(τ )), and (ii) if k = −1
then Ξ(τ )|i = τ |i.
Proof : The existence of k follows from the hypothesis that τ 
= σ′. Case (i) follows
by induction on i from 2 and 3. Case (ii) follows from 1, 2 (where the k of step 2
is 0), and 3.

7.2. f(Ξ(τ )|l+i) = f
′(τ |k+i) for all i > 0.

Proof : By 7.1 and 5.
7.3. Every finite prefix of Ξ(τ ) ends according to µ, f .

Proof : Let m be any natural number. We show that Ξ(τ )|m ends according to
µ, f . The proof is split into three cases.
Case 7.3A. m ≤ l
In this case, k ≥ 0. We have Ξ(τ )|m is a prefix of Ξ(τ )|l, which equals Ξ(τ |k) (by
definition of l in 7.1, since k ≥ 0), which in turn is a prefix of σ. Hence, Ξ(τ )|m
ends according to µ, f by the assumption that σ is in Oµ(f).
Case 7.3B. m = 1 + l
If m = 0, then the result is trivial because any sequence of length 0 ends according
to µ, f . Assume m > 0, so m = 1 + l implies that l ≥ 0, which implies k ≥ 0. If
am(Ξ(τ )) ∈ ¬µ, then the result is trivial. It therefore suffices to prove am(Ξ(τ )) ∈
¬µ. Intuitively, this holds because only the environment can make the behavior
diverge from σ′. Formally, we assume that am(Ξ(τ )) ∈ µ and prove τ |k+1 = σ

′|k+1,
which contradicts the definition of k in 7.1.
7.3B.1. am(Ξ(τ )) = ak+1(τ )

Proof : By 7.1 and the assumption that m = 1 + l.
7.3B.2. f ′(τ |k) = (ak+1(τ ), sk+1(τ ))

Proof : By 7.3B.1 and the assumptions that am(Ξ(τ )) ∈ µ and that τ is a
µ-outcome of f ′.

7.3B.3. f ′(τ |k) = (ak+1(σ
′), sk+1(σ

′))
Proof : By 5 (the definition of f ′), since τ |k is a prefix of σ′ and 7.3B.2
implies that f ′(τ |k) is defined.

7.3B.4. τ |k+1 = σ
′|k+1

Proof : By 7.3B.2 and 7.3B.3, since τ |k = σ′|k by 7.1.
Case 7.3C. m > 1 + l
7.3C.1. Ξ(τ )|m = Ξ(τ )|m−1 · (ak+m−l(τ ), sk+m−l(τ ))

Proof : By applying 7.1 twice, substituting m− l − 1 and m− l for i.
7.3C.2. f(Ξ(τ )|m−1) = f

′(τ |k+m−l−1).
Proof : By 7.2 withm−l−1 substituted for i, since the hypothesism > 1+l
implies i > 0.

7.3C.3. Ξ(τ )|m ends according to µ, f .
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Proof : By 7.3C.1, 7.3C.2, and the hypothesis that τ is a µ-outcome of f ′.
7.4. Ξ(τ ) is a fair µ-outcome of f .

Proof : By 7.3, Ξ(τ ) is a µ-outcome of f . We now show that it is fair. By 7.1, Ξ(τ )
has infinitely many µ actions iff τ does. By 7.2, f is undefined on infinitely many
prefixes of Ξ(τ ) iff f ′ is undefined on infinitely many prefixes of τ . Hence, Ξ(τ ) is
fair because τ is assumed to be a fair µ-outcome of f ′.

8. Every behavior in Oµ(f
′) is stuttering-equivalent to a behavior in Oµ(f).

Proof : By 4 and 7.
End proof of Lemma 1

Lemma 2. For any agent set µ, if (i) f is a µ-strategy, (ii) σ ∈ Oµ(f), and (iii) σ
′ is

µ-equivalent to σ, then there exists a µ-strategy f ′ such that (iv) σ′ ∈ Oµ(f
′) and (v) every

behavior in Oµ(f
′) is µ-equivalent to some behavior in Oµ(f).

Proof of Lemma 2

The proof is almost identical to that of Lemma 1, except with 	 replaced by µ-equivalence.
The definition of Ξ in step 1 becomes:

if |ρ| = 0 then Ξ(ρ) = ρ
if ρ = θ · (α, s) then if ρ is a prefix of σ′

then Ξ(ρ) is the prefix of σ
of the same length as ρ

else Ξ(ρ) = Ξ(θ) · (α, s)
The proof becomes a bit simpler because l equals k in step 7.1. We omit the details.
End Proof of Lemma 2

Proposition 1. For every agent set µ, if P is a property then Rµ(P ) is a property,
and if P is µ-abstract then Rµ(P ) is µ-abstract.

Proof of Proposition 1

The first part of the proposition, that if P is a property then Rµ(P ) is also a property,
follows immediately from Lemma 1 and the definitions. The second part, that if P is
µ-abstract then Rµ(P ) is also µ-abstract, follows from Lemma 2.
End Proof of Proposition 1

Lemma 3. For any agent set µ, if (i) f is a µ-strategy and (ii) σ ∈ Oµ(f), then there
exists a behavior σ′ and a total µ-strategy f ′ that is invariant under ¬µ-stuttering such that
(iii) σ′ 	 σ, (iv) σ′ ∈ Oµ(f

′), and (v) every behavior in Oµ(f
′) is stuttering-equivalent to

a behavior in Oµ(f).

Proof of Lemma 3

We assume that f is a µ-strategy and σ ∈ Oµ(f), and we will construct the required f
′ and

σ′. Instead of using σ and f directly, for technical reasons we will construct a new behavior
φ in step 1 by adding an infinite number of ¬µ-stuttering steps to σ, and will use Lemma 1
to obtain a strategy g that produces φ. The behavior σ′ will be obtained (in step 8) by
replacing ¬µ-stuttering steps in φ by µ-stuttering steps. We will construct f ′ (in step 5)
so it tries to produce σ′ and, failing that, to simulate g. To make f ′ total, we will define
it to stutter when g would be undefined. This requires f ′ to interpret µ-stuttering steps
produced in this way as if they were ¬µ-stuttering steps—an interpretation performed by
the mapping Λ, defined in step 3. The behavior prefix Λ(ρ) will be obtained from ρ by
replacing µ-stuttering steps with ¬µ-stuttering steps if either that will lead to a prefix of
φ, or those µ-stuttering steps were produced by f ′ because g was undefined. To make f ′

invariant under ¬µ-stuttering, we will define f ′ in terms of Ξ, the mapping obtained by
removing ¬µ-stuttering steps and then applying Λ.
1. Choose a behavior φ such that φ 	 σ and φ contains infinitely many ¬µ-stuttering
steps, and choose a µ-strategy g such that φ ∈ Oµ(g) and every behavior in Oµ(g) is
stuttering-equivalent to a behavior in Oµ(f).
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Proof : The existence of φ follows from the assumption that µ is an agent set, so ¬µ is
nonempty. The existence of g follows from Lemma 1.

2. Choose agents βµ in µ and β¬µ in ¬µ.
Proof : Since µ is an agent set, µ and ¬µ are nonempty.

3. For any finite behavior prefix ρ, define Λ(ρ) as follows.
if |ρ| = 0 then Λ(ρ) = ρ
if ρ = θ · (α, s)

then if (Λ(θ) = φ|k) ∧ (s = θs = sk(φ) = sk+1(φ)) ∧
(α ∈ µ) ∧ (ak+1(φ) ∈ ¬µ)
where k = |Λ(θ)|
then Λ(ρ) = φ|k+1

else if (s = θs) ∧ (α ∈ µ) ∧ (g(Λ(θ)) = ⊥)
then Λ(ρ) = Λ(θ) · (β¬µ, s)
else Λ(ρ) = Λ(θ) · (α, s)

For any behavior τ , define Λ(τ ) to equal limm→∞ Λ(τ |m).
Proof : The mapping Λ is monotone on finite behavior prefixes, so the limit exists.

4. For any any behavior prefix τ , let Ξ(τ ) = Λ(�¬µ(τ )). Then τ 	 Ξ(τ ).
Proof : By definition, �¬µτ 	 τ . It follows from 3 (the definition of Λ) by induction
on the length of ρ that Λ(ρ) 	 ρ for any finite behavior prefix ρ. Since Λ(τ ) equals
limm→∞ Λ(τ |m) (by 3), this implies that Λ(τ ) 	 τ for any behavior τ . Hence, Ξ(τ ) 	 τ .

5. For any finite behavior prefix ρ, define f ′(ρ) as follows.
if (Ξ(ρ) = φ|k) ∧ (sk+1(φ) = sk(φ)) ∧ (ak+1(φ) ∈ ¬µ)
where k = |Ξ(ρ)|, or
g(Ξ(ρ)) = ⊥

then f ′(ρ) = (βµ, ρs)
else f ′(ρ) = g(Ξ(ρ))

Then f ′ is a total µ-strategy that is invariant under ¬µ stuttering.
Proof : Since g is a µ-strategy and βµ is in µ, it follows that f

′ is a µ-strategy. Since
θ 	¬µ ρ iff �¬µθ = �¬µρ, the definitions of Ξ (in step 4) and f

′ imply that f ′ is invariant
under ¬µ-stuttering. By definition, f ′ is a total function.

6. Ξ(τ ) ∈ Oµ(g) for any behavior τ ∈ Oµ(f
′).

Proof : We assume τ ∈ Oµ(f
′) and prove Ξ(τ ) ∈ Oµ(g). It is simpler to prove Ξ(τ ) ∈

Oµ(g) if τ has no ¬µ-stuttering steps. We will therefore prove �¬µτ ∈ Oµ(g) (step
6.6) and then observe (in the proof of 6.7) that Ξ(τ ) equals Ξ(�¬µτ ). The proof of
Ξ(�¬µτ ) ∈ Oµ(g) is an intricate exercise in verifying that our definitions of Λ and f

′

work properly.
6.1. For any behavior prefix ψ, |Λ(ψ)| = |ψ|, and if ψ = �¬µψ then Ξ(ψ) = Λ(ψ).

Proof : First, assume that ψ is finite. A simple induction on |ψ| shows that Λ is
length-preserving. If ψ = �¬µψ, then 4 (the definition of Ξ) implies Ξ(ψ) = Λ(ψ).
The case of ψ infinite follows from the finite case by taking limits.

6.2. Let ρ be a finite behavior prefix with ρ = �¬µρ and letm equal |ρ|. If Ξ(ρ) = η·(α, s)
and α ∈ µ, then
(a) α = am(ρ) and s = sm(ρ),
(b) η = Λ(ρ|m−1), and
(c) if sm(ρ) = sm−1(ρ), then neither (i) η = φ|m−1, sm(φ) = sm−1(φ), and am(φ) ∈
¬µ, nor (ii) g(η) = ⊥ holds.
Proof : We assume ρ = �¬µρ, Ξ(ρ) = η · (α, s), and α ∈ µ, and we prove (a)–(c).
6.2.1. For any finite θ, (i) Λ(θ)s = θs, and (ii) if Λ(θ)a ∈ µ then Λ(θ)a = θa.

Proof : By 3.
6.2.2. α = am(ρ) and s = sm(ρ).

Proof : By 6.2.1, since 6.1 implies Ξ(ρ) = Λ(ρ).

6.2.3. η = Λ(ρ|m−1)
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Proof : By 6.1, η · (α, s) = Λ(ρ), and 3 (the definition of Λ) implies that
Λ(ρ) = Λ(ρ|m−1) · (γ, t) for some γ and t.

6.2.4. If sm(ρ) = sm−1(ρ), then it is not the case that: (i) η = φ|m−1, (ii) sm(φ) =
sm−1(φ), and (iii) am(φ) ∈ ¬µ.
Proof : We assume (i)–(iii) and (iv) sm(ρ) = sm−1(ρ), and we obtain a
contradiction. Let θ equal ρ|m−1. Then η equals Λ(θ) by 6.2.3, and s =
θs = sm−1(φ) by (i), (iv), and 6.2.1. Applying 3 with m − 1 substituted
for k, using 6.1 (to infer |Ξ(ρ|m−1)| = m − 1) and the assumption that
α ∈ µ, yields Λ(ρ) = φ|m. Hence, α = am(φ), which by (iii) contradicts the
assumption α ∈ µ.

6.2.5. If sm(ρ) = sm−1(ρ), then g(η) 
= ⊥.
Proof : We assume (i) sm(ρ) = sm−1(ρ) and (ii) g(η) = ⊥, and we obtain
a contradiction. Let θ = ρ|m−1. Then η equals Λ(θ) by 6.2.3, so s = θs
by 6.2.1 and (i). By 6.2.4 and 3 (the definition of Λ), we see that (ii),
s = θs, and the hypothesis α ∈ µ imply Λ(ρ)a = β¬µ. This contradicts the
hypothesis that α, which equals Λ(ρ)a, is in µ.

6.3. For any finite behavior prefix ρ, if ρ = �¬µρ and ρ ends according to µ, f
′, then

Ξ(ρ) ends according to µ, g.
Proof : We assume that ρ = �¬µρ and ρ ends according to µ, f

′, and we prove that
Ξ(ρ) ends according to µ, g. Since this is trivial if |Ξ(ρ)| = 0 or Ξ(ρ)a ∈ ¬µ, it
suffices to assume that Ξ(ρ) = η · (α, s) with α ∈ µ and prove that (α, s) = g(η).
Let m equal |ρ|.
6.3.1. (α, s) = f ′(ρ|m−1)

Proof : By 6.2(a) and the hypothesis that ρ ends according to µ, f ′.
6.3.2. η = Ξ(ρ|m−1)

Proof : By 6.1 and 6.2(b).
6.3.3. f ′(ρ|m−1) = g(Ξ(ρ|m−1))

Proof : We assume f ′(ρ|m−1) 
= g(Ξ(ρ|m−1)) and obtain a contradiction.
Substituting ρ|m−1 for ρ in 5 shows that if f

′(ρ|m−1) 
= g(Ξ(ρ|m−1)) then
f ′(ρ|m−1) = (βµ, sm−1(ρ)). Hence, 6.3.1 and 6.2(a) imply sm(ρ) = sm−1(ρ).
Substituting ρ|m−1 for ρ in 5 again, and using 6.1 to infer |Ξ(ρ|m−1)| = m−1,
then shows that 6.3.2 and 6.2(c) imply f ′(ρ|m−1) = g(Ξ(ρ|m−1)), which is
the required contradiction.

6.3.4. (α, s) = g(η).
Proof : By 6.3.1–6.3.3.

6.4. (a) am(τ ) ∈ µ for infinitely many values of m, and (b) �¬µτ ∈ Oµ(f
′).

Proof : Part (a) follows from the hypothesis that τ ∈ Oµ(f
′), since f ′ is a total

function. This implies that �¬µτ is a behavior. Since f
′ is invariant under ¬µ-

stuttering, τ is an outcome of f ′ iff �¬µτ is. The behavior �¬µτ is a fair outcome
because (a) implies that it contains infinitely many µ actions.

6.5. Ξ(�¬µτ ) is a µ-outcome of g.
Proof : The definition of �¬µ implies that ρ = �¬µρ for every prefix ρ of �¬µτ . By
monotonicity of Λ and 6.1, every prefix of Ξ(�¬µτ ) equals Ξ(�¬µρ) for some finite
prefix ρ of τ . The result then follows from 6.4(b) and 6.3.

6.6. Ξ(�¬µτ ) ∈ Oµ(g)
Proof : Let ψ denote �¬µτ . By 6.5, it suffices to prove that am(Ξ(ψ)) ∈ µ or
g(Ξ(ψ)|m) = ⊥, for infinitely many values of m. Since φ ∈ Oµ(g), we may assume
that Ξ(ψ) 
= φ.
6.6.1. Λ(ψ)|k = Λ(ψ|k) for any natural number k.

Proof : By 3, which asserts that Λ(ψ) = limm→∞ Λ(ψ|m), and 6.1.
6.6.2. Choose k such that Ξ(ψ)|k is not a prefix of φ.

Proof : The existence of k follows from the hypothesis that Ξ(ψ) 
= φ.
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6.6.3. For all m > k, if am(ψ) ∈ µ then am(Ξ(ψ)) ∈ µ or g(Ξ(ψ)|m−1) = ⊥.
Proof : Substituting ψ|m for ρ in 3 yields

if Λ(ψ|m−1) = φ|k ∧ . . .
then . . .
else if g(Λ(ψ|m−1)) = ⊥ ∧ . . .

then . . .
else Λ(ψ|m) = . . . · (am(ψ), . . .)

By 6.6.1 and 6.6.2, m > k implies Λ(ψ|m−1) is not a prefix of φ. Hence,
Λ(ψ|m)a = am(ψ) or g(Λ(ψ|m−1)) = ⊥. But 6.6.1 implies Λ(ψ|m)a =
am(Λ(ψ)) and g(Λ(ψ|m−1)) = g(Λ(ψ)|m−1). Hence, am(ψ) ∈ µ implies
am(Λ(ψ)) ∈ µ or g(Λ(ψ)|m−1) = ⊥. The result now follows from 6.1, which
implies that Λ(ψ) = Ξ(ψ).

6.6.4. am(ψ) ∈ µ for infinitely many values of m.
Proof : By 6.4(a), since ψ = �¬µτ and �¬µ preserves actions in µ.

6.6.5. am(Ξ(ψ)) ∈ µ or g(Ξ(ψ)|m) = ⊥, for infinitely many values of m.
Proof : By 6.6.3 and 6.6.4, since Am ∨ Bm holds for infinitely many values
of m iff Am holds for infinitely many values of m or Bm holds for infinitely
many values of m.

6.7. Ξ(τ ) ∈ Oµ(g)
Proof : By 6.6, since Ξ(�¬µτ ) = Ξ(τ ) by 4 (the definition of Ξ) and the idempotence
of �¬µ.

7. For any behavior τ ∈ Oµ(f
′), there exists a behavior υ ∈ Oµ(f) such that υ 	 τ .

Proof : By 6, τ ∈ Oµ(f
′) implies Ξ(τ ) ∈ Oµ(g). By 1, there exists a behavior υ in

Oµ(g) such that Ξ(τ ) 	 υ. By 4, τ 	 Ξ(τ ). The transitivity of 	 then yields τ 	 υ.
8. There exists a behavior σ′ ∈ Oµ(f

′) such that σ′ 	 σ.
Proof : We will construct σ′ from φ by replacing ¬µ-stuttering steps with µ-stuttering
steps. The proof that σ′ is a µ-outcome of f ′ is a matter of checking the definitions of
Λ and f ′. Fairness will follow from having chosen φ with infinitely many ¬µ-stuttering
steps.
8.1. Define σ′ as follows. For all k ≥ 0,

sk(σ
′) = sk(φ)

if ak+1(φ) ∈ ¬µ ∧ sk+1(φ) = sk(φ)
then ak+1(σ

′) = βµ

else ak+1(σ
′) = ak+1(φ)

8.2. �¬µ(σ
′|k) = σ′|k for all k ≥ 0.

Proof : By the definition 8.1, σ′ has no ¬µ-stuttering steps.
8.3. Λ(σ′|k) = φ|k for all k ≥ 0.

Proof : The proof is by induction on k. The result is obvious for k = 0. We assume
it true for k and prove it for k + 1. We consider two cases:
Case 8.3A. ak+1(σ

′) 
= ak+1(φ)
8.3A.1. ak+1(σ

′) ∈ µ, ak+1(φ) ∈ ¬µ, and sk+1(φ) = sk(φ).
Proof : By the definition of σ′ and the assumption that ak+1(σ

′) 
= ak+1(φ).
8.3A.2. sk+1(σ

′) = sk(σ
′).

Proof : By 8.1 (the definition of σ′) and 8.3A.1, since sm(σ
′) = sm(φ) for

all m.
8.3A.3. Λ(σ′|k+1) = φ|k+1

Proof : By the induction hypothesis, 8.1, 8.3A.1, 8.3A.2, and 3 (the defi-
nition of Λ).

Case 8.3B. ak+1(σ
′) = ak+1(φ)

We assume that Λ(σ′|k+1) 
= φ|k+1 and obtain a contradiction.
8.3B.1. ak+1(σ

′) ∈ µ and g(Λ(σ′|k)) = ⊥.
Proof : By the induction hypothesis, 8.1 (which implies sk+1(φ) = sk+1(σ

′)),

ACM Transactions on Programming Languages and Systems, Vol 15, No. 1, January 1993.



Composing Specifications · 113

the assumption that Λ(σ′|k+1) 
= φ|k+1, and 3 (the definition of Λ).
8.3B.2. ak+1(φ) ∈ µ and g(φ|k) = ⊥.

Proof : By 8.3B.1, the hypothesis that ak+1(σ
′) = ak+1(φ), and the induc-

tion hypothesis that Λ(σ′|k) = φ|k.
8.3B.3. Contradiction.

Proof : 8.3B.2 and the hypothesis that φ is a µ-outcome of g.
8.4. Ξ(σ′|k) = φ|k for all k ≥ 0.

Proof : By 8.2, 8.3, and 4 (the definition of Ξ).

8.5. σ′ 	 σ
Proof : 8.2, 8.3, and the definition of Ξ imply φ = Ξ(σ′). Step 4 asserts σ′ 	 Ξ(σ′),
so σ′ 	 φ. By 1, φ 	 σ, so σ′ 	 σ follows from the transitivity of 	.

8.6. σ′ ∈ Oµ(f
′)

Proof : Since φ contains an infinite number of ¬µ-stuttering steps (by 1), 8.1 (the
definition of σ′) implies that am(σ

′) ∈ µ for infinitely many values of m. Therefore,
to show that σ′ ∈ Oµ(f

′), it suffices to assume that am+1(σ
′) ∈ µ and prove that

(am+1(σ
′), sm+1(σ

′)) = f ′(σ′|m). We consider two cases.
Case 8.6A. am+1(σ

′) 
= am+1(φ)
8.6A.1. am+1(φ) ∈ ¬µ, sm+1(φ) = sm(φ), and am+1(σ

′) = βµ.
Proof : By 8.1 (the definition of σ′).

8.6A.2. f ′(σ′|m) = (am+1(σ
′), sm+1(σ

′)).
Proof : By 8.6A.1, 8.4, 8.1 (which implies sm(σ

′) = sm(φ) and sm+1(σ
′) =

sm+1(φ)), and the definition of f
′.

Case 8.6B. am+1(σ
′) = am+1(φ)

8.6B.1. g(φ|m) = (am+1(φ), sm+1(φ))
Proof : Since am+1(σ

′) is assumed to be in µ, and φ is a µ-outcome of g.
8.6B.2. f ′(σ′|m) = g(Ξ(σ′|m))

Proof : By definition of f ′, since am+1(φ) ∈ µ by hypothesis, g(φ|m) 
= ⊥
by 8.6B.1, and σ′|m = φ|m by 8.4.

8.6B.3. f ′(σ′|m) = (am+1(σ
′), sm+1(σ

′))
Proof : By 8.6B.1, 8.6B.2, 8.1, 8.4, and the assumption that am+1(σ

′) =
am+1(φ).

End Proof of Lemma 3

Proposition 2. For any agent set µ and any property P , let Sµ(P ) be the subset of
Rµ(P ) consisting of the union of all sets Oµ(f) contained in P such that f is a total µ-
strategy that is invariant under ¬µ-stuttering. Then every behavior in Rµ(P ) is stuttering-
equivalent to a behavior in Sµ(P ).

Proof of Proposition 2

This is an immediate consequence of Lemma 3.
End Proof of Proposition 2

Proposition 3. For any properties P and Q and any agent set µ, if P ⊆ Q then
Rµ(P ) ⊆ Rµ(Q).

Proof of Proposition 3

We assume P ⊆ Q and σ ∈ Rµ(P ), and we prove σ ∈ Rµ(Q).
1. Choose a µ-strategy f such that σ ∈ Oµ(f) ⊆ P .
Proof : The existence of f follows from the definition of Rµ(P ).

2. σ ∈ Oµ(f) ⊆ Q
Proof : 1 and the hypothesis P ⊆ Q.

3. σ ∈ Rµ(Q)
Proof : By 2 and the definition of Rµ(Q).

End Proof of Proposition 3
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Proposition 4. For any property P and agent set µ, Rµ(Rµ(P )) = Rµ(P ).

Proof of Proposition 4

We assume that P is a property and µ is an agent set, and we prove Rµ(Rµ(P )) = Rµ(P ).
The set Rµ(P ) consists of all outcomes of winning strategies when the system is trying to
produce an outcome in P . Any such strategy is also a winning strategy when the system
is trying to produce an outcome in Rµ(P ), so Rµ(Rµ(P )) must equal Rµ(P ). The formal
proof is as follows.
1. Rµ(Rµ(P )) ⊆ Rµ(P )
Proof : By Proposition 3, since Rµ(P ) ⊆ P .

2. Rµ(P ) ⊆ Rµ(Rµ(P ))
Proof : We assume that σ ∈ Rµ(P ) and prove that σ ∈ Rµ(Rµ(P )).
2.1. Choose a µ-strategy f such that σ ∈ Oµ(f) ⊆ P .

Proof : f exists by definition of Rµ(P ).
2.2. Oµ(f) ⊆ Rµ(P )

Proof : By definition of Rµ(P ).
2.3. σ ∈ Rµ(Rµ(P ))

Proof : By definition of Rµ(Rµ(P )), since Oµ(f) ⊆ Rµ(P ) by 2.2 and σ ∈ Oµ(f)
by 2.1.

End Proof of Proposition 4

Proposition 5. For any property P and agent set µ, Rµ(P ) = Rµ(P ) ∩ P .

Proof of Proposition 5

1. Rµ(P ) ⊆ Rµ(P ) ∩ P
Proof : Rµ(P ) is included both in Rµ(P ) (by the definition of closure) and in P (by
the definition of Rµ).

2. Rµ(P ) ∩ P ⊆ Rµ(P )

Proof : We assume σ ∈ Rµ(P ) ∩ P and prove σ ∈ Rµ(P ). By definition of Rµ(P ), it
suffices to prove that there exists a µ-strategy f such that σ ∈ Oµ(f) and Oµ(f) ⊆ P .
To construct f , we will choose a sequence φi of behaviors in Rµ(P ) having σ as their
limit, and strategies gi that produce the φi. We will define f so it tries to produce
σ. As it does so, it is acting like gi for all sufficiently large i. When f can no longer
produce σ, it continues to act like one of the gi.
2.1. For all i ≥ 0, choose a behavior φi in Rµ(P ) such that σ|i is a prefix of φi.

Proof : The φi exist by definition of closure, since σ ∈ Rµ(P )
2.2. For all i ≥ 0, choose a µ-strategy gi such that σ|i is a prefix of a fair outcome of

gi and Oµ(gi) ⊆ P .
Proof : By 2.1, there exist µ-strategies gi with φi ∈ Oµ(gi) ⊆ P in 2.1.

2.3. Define the µ-strategy f as follows.
if ρ = σ|j for some j

then if aj+1(σ) ∈ µ then f(ρ) = (aj+1(σ), sj+1(σ))
else f(ρ) = ⊥

else f(ρ) = gi(ρ), where i is the smallest integer
such that ρ|i 
= σ|i

Proof : f is a µ-strategy since each gi is (by 2.2).

2.4. σ ∈ Oµ(f)
Proof : By 2.3, if am(σ) ∈ µ then f(σ|m−1) = (am(σ), sm(σ)), for all m > 0.
Thus σ is a µ-outcome of f . Furthermore, 2.3 implies that f(σ|m) is undefined if
am+1(σ) ∈ ¬µ, so σ is fair.

2.5. For all τ ∈ Oµ(f), if τ 
= σ then τ ∈ Oµ(gi) for some i.
Proof : Assume τ ∈ Oµ(f) and τ 
= σ. Let i be the smallest integer such that
τ |i 
= σ|i. We show that τ ∈ Oµ(gi).
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2.5.1. For all j ≥ i, f(τ |j) = gi(τ |j).
Proof : By definition of i, if j ≥ i then σ|j 
= τ |j . The result then follows
from 2.3 (the definition of f).

2.5.2. τ is a µ-outcome of gi.
Proof : We must show that for all j ≥ 0, if aj+1(τ ) ∈ µ then gi(τ |j) =
(aj+1(τ ), sj+1(τ )). We split the proof into two cases.
Case 2.5.2A. j < i
2.5.2A.1. σ|j = τ |j

Proof : By the hypothesis that j < i and the definition of i.
2.5.2A.2. (aj+1(τ ), sj+1(τ )) = (aj+1(σ), sj+1(σ))

Proof : By 2.5.2A.1, 2.3, and the hypotheses that τ is a µ-outcome
of f and aj+1(τ ) ∈ µ.

2.5.2A.3. σ|j+1 is a prefix of σ|i.
Proof : By hypothesis that j < i.

2.5.2A.4. gi(σ|j) = (aj+1(σ), sj+1(σ))
Proof : 2.5.2A.2 and the assumption aj+1(τ ) ∈ µ imply aj+1(σ) ∈
µ. The result then follows from 2.5.2A.3 and 2.2, which asserts
that σ|i is a partial µ-outcome of gi.

2.5.2A.5. gi(τ |j) = (aj+1(τ ), sj+1(τ ))
Proof : By 2.5.2A.1, 2.5.2A.2, and 2.5.2A.4.

Case 2.5.2B. j ≥ i
2.5.1 and the two hypotheses τ ∈ Oµ(f) and aj+1(τ ) ∈ µ imply gi(τ |j) =
(aj+1(τ ), sj+1(τ )).

2.5.3. τ is a fair µ-outcome of gi.
Proof : 2.5.2 asserts that τ is a µ-outcome of gi, and fairness follows from
2.5.1 and the assumption that τ is a fair outcome of f .

2.6. Oµ(f) ⊆ P
Proof : We assume τ ∈ Oµ(f) and prove that τ ∈ P . This is immediate if τ = σ,
because σ is in P by hypothesis. If τ 
= σ, it follows from 2.5 and 2.2.

End Proof of Proposition 5

Proposition 6. For any nonempty safety property P and any agent set µ, property P
constrains at most µ iff P = Rµ(P ).

Proof of Proposition 6

We assume that P is a nonempty safety property and µ is an agent set. Since Rµ(P ) ⊆ P
by definition of Rµ(P ), it suffices to prove that P ⊆ Rµ(P ) iff P constrains at most µ.

1. If P constrains at most µ, then P ⊆ Rµ(P ).
Proof : We assume that σ is any behavior in P and construct a µ-strategy f such that
σ ∈ Oµ(f) and Oµ(f) ⊆ P . We will define f so it tries to produce the outcome σ and
does nothing if this is no longer possible. Since P is a safety property, doing nothing
cannot violate P .
1.1. For any finite behavior prefix ρ, define f(ρ) by

if ρ = σ|m and am+1(σ) ∈ µ, for some m
then f(ρ) = (am+1(σ), sm+1(σ))
else f(ρ) = ⊥

Then f is a µ-strategy.
Proof : f is obviously a µ-strategy.

1.2. σ ∈ Oµ(f)
Proof : It is immediate from 1.1 (the definition of f) that σ is a µ-outcome of f .
It is a fair µ-outcome because am+1(σ) ∈ ¬µ implies that f(σ|m) = ⊥.

1.3. Oµ(f) ⊆ P
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Proof : We assume that τ is an arbitrary behavior in Oµ(f) but not in P and
derive a contradiction.

1.3.1. Let m be the smallest integer such that τ̂ |m /∈ P .
Proof : m exists because P is a safety property and, by hypothesis, τ /∈ P .

1.3.2. m > 0 and am(τ ) ∈ µ.
Proof : By 1.3.1 and the hypothesis that P constrains at most µ.

1.3.3. f(τ |m−1) = (am(τ ), sm(τ ))

Proof : By 1.3.2 and the hypothesis that τ is a µ-outcome of f .

1.3.4. (am(τ ), sm(τ )) = (am(σ), sm(σ))

Proof : By 1.3.3 and 1.1 (the definition of f).

1.3.5. τ |m−1 = σ|m−1

Proof : By 1.3.3, since 1.1 (the definition of f) implies ρ is in the domain
of f iff ρ is a prefix of σ.

1.3.6. τ̂ |m = σ̂|m
Proof : By 1.3.4 and 1.3.5.

1.3.7. σ̂|m ∈ P
Proof : By the hypotheses that P is a safety property and σ ∈ P .

1.3.8. Contradiction.

Proof : 1.3.1, 1.3.6, and 1.3.7.

2. If P ⊆ Rµ(P ), then P constrains at most µ.

Proof : We assume that P does not constrain at most µ and prove that there exists a
behavior in P that is not in Rµ(P ). The behavior will be one in which the environment
could have taken a step that would have violated P , but chose not to. Thus, the
behavior cannot be produced by a winning strategy for µ.

2.1. Choose σ /∈ P andm ≥ 0 such that σ̂|m /∈ P and either (i)m = 0 or (ii) ̂σ|m−1 ∈ P
and am(σ) /∈ µ.
Proof : Such a σ exists by the assumption that P does not constrain at most µ.

2.2. If m = 0 then Rµ(P ) = ∅.
Proof : We assume m = 0 and prove that Rµ(P ) = ∅. The proof involves showing
that if there is some initial state in which the system loses, then it has no winning
strategy.

2.2.1. For any behavior τ , if s0(τ ) = s0(σ) then τ /∈ P .
Proof : 2.1 and the hypothesis m = 0 imply σ̂|0 /∈ P . Hence, s0(τ ) = s0(σ)

implies τ̂ |0 /∈ P , which implies τ /∈ P because P is a safety property.
2.2.2. For any state s and any µ-strategy f , there exists a behavior τ ∈ Oµ(f)

such that s0(τ ) = s.

Proof : Let s be any state and let α be any agent not in µ. Define τ
inductively by letting s0(τ ) = s and for i > 0, if τ |i−1 is in the domain of
f , then (ai(τ ), si(τ )) = f(τ |i−1), otherwise ai(τ ) = α and si(τ ) = si−1(τ ).

2.2.3. Rµ(P ) = ∅
Proof : 2.2.1 and 2.2.2 imply that there exists no µ-strategy f with Oµ(f) ⊆
P .

2.3. If m > 0, then ̂σ|m−1 is in P but not in Rµ(P ).

Proof : Assume m > 0, so ̂σ|m−1 ∈ P by 2.1. Let f be any µ-strategy with
̂σ|m−1 ∈ Oµ(f). We prove that there exists a behavior τ in Oµ(f) that is not in
P . We will take τ to be an outcome in which σ|m−1 is produced and then the
environment adds (am(σ), sm(σ)).

2.3.1. Let α be any agent in ¬µ, and let τ be the behavior such that τ |m = σ|m
and, for all i > m, if τ |i−1 is in the domain of f , then (ai(τ ), si(τ )) =
f(τ |i−1), otherwise ai(τ ) = α and si(τ ) = si−1(τ ).
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2.3.2. τ ∈ Oµ(f)
Proof : To prove that τ is a µ-outcome of f , we must show that for all
i > 0, if ai(τ ) ∈ µ then (ai(τ ), si(τ )) = f(τ |i−1). For i < m, this follows

because τ |i = σ|i (by 2.3.1) and ̂σ|m−1 is a µ-outcome of f (by hypothesis).
For i = m − 1, it follows because am(σ) /∈ µ (by 2.1 and the assumption
that m > 0). For i > m, it follows immediately from the definition of τ .
Fairness follows from the definition of τ .

2.3.3. τ /∈ P
Proof : σ̂|m /∈ P by 2.1 (the choice of σ), and τ |m = σ|m by 2.3.1 (the
definition of τ ), so τ̂ |m /∈ P . Since P is a safety property, this implies
τ /∈ P .

2.4. There exists a behavior in P that is not in Rµ(P ).
Proof : If m > 0, this follows from 2.3. If m = 0, it follows from 2.2 and the
hypothesis that P is nonempty.

End Proof of Proposition 6

Proposition 7. For any agent set µ, if P is a µ-realizable property then Rµ(P ) con-
strains at most µ.

Proof of Proposition 7

1. For any property Q, if Q is a safety property then Rµ(Q) is a safety property.
Proof : By Proposition 5, Rµ(Q) = Rµ(Q)∩Q. The conjunction of safety properties is
a safety property (since safety properties are closed sets), so Rµ(Q) is a safety property.

2. Rµ(Rµ(P )) = Rµ(P )

2.1. Rµ(Rµ(P )) ⊆ Rµ(P )
Proof : By definition of Rµ.

2.2. Rµ(P ) ⊆ Rµ(Rµ(P ))

2.2.1. Rµ(Rµ(P )) ⊆ Rµ(Rµ(P ))
Proof : By monotonicity of R, since Q ⊆ Q for any property Q.

2.2.2. Rµ(P ) ⊆ Rµ(Rµ(P ))
Proof : By 2.2.1 and Proposition 4.

2.2.3. Rµ(Rµ(P )) is a closed set.
Proof : By 1.

2.2.4. Rµ(P ) ⊆ Rµ(Rµ(P ))

Proof : By 2.2.2 and 2.2.3, since Rµ(P ) is by definition the smallest closed
set containing Rµ(P ).

3. Rµ(P ) constrains at most µ.
Proof : By 2, Proposition 6, and the hypothesis that P is µ-realizable, so Rµ(P ) is
nonempty.

End Proof of Proposition 7

Lemma 4. Let µ be an agent set, and let E and M be properties such that:

(1) E = I ∩ P , where
(a) I is a state predicate.
(b) P is a safety property that constrains at most ¬µ.
(2) M constrains at most µ.

For any behavior σ and i ≥ 0, if σ ∈ Rµ(E ⇒M) and σ̂|i /∈M , then i > 0 and σ̂|i−1 /∈ E.

Proof of Lemma 4

Proof : We assume σ ∈ Rµ(E ⇒M) and σ̂|i /∈M , and we prove that i > 0 and σ̂|i−1 /∈ E.
1. i > 0
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Proof : By the assumption σ̂|i /∈M , the hypothesis that M constrains at most µ, and
the definition of constrains at most.

2. For all j ≥ 0, if σ̂|j /∈M then σ̂|j /∈ E.
Proof : We assume σ̂|j /∈ M and σ̂|j ∈ E, and obtain a contradiction. We will first
construct a behavior τ that equals σ for its first j steps, after which it follows a strategy
that puts it in E ⇒M , taking ¬µ-stuttering steps whenever the strategy is undefined.
We will then construct φ by changing those ¬µ-stuttering steps to µ-stuttering steps.
This φ will not be in M because σ violates M by its jth step, and it will be in E
because it will not have any ¬µ steps that can violate E, so φ /∈ (E ⇒M). This will
lead to a contradiction because τ ∈ (E ⇒M) and φ 	 τ .
2.1. Choose a behavior τ such that:

(a) τ |j = σ|j
(b) τ ∈ (E ⇒M)

(c) ak+1(τ ) ∈ ¬µ implies sk+1(τ ) = sk(τ ), for all k ≥ j.
2.1.1. Choose a µ-strategy f such that σ ∈ Oµ(f) ⊆ (E ⇒M).

Proof : f exists by the assumption σ ∈ Rµ(E ⇒ M) and the definition of
Rµ.

2.1.2. Choose β¬µ ∈ ¬µ and define τ by τ |j = σ|j and, for all k ≥ j:
if f(τ |k) 
= ⊥ then (ak+1(τ ), sk+1(τ )) = f(τ |k)

else (ak+1(τ ), sk+1(τ )) = (β¬µ, sk(τ ))
Proof : β¬µ exists by the assumption that µ is an agent set, which implies
that ¬µ is nonempty.

2.1.3. τ |j = σ|j
Proof : By 2.1.2 (the definition of τ ).

2.1.4. τ ∈ Oµ(f)
Proof : To show that τ is a µ-outcome of f , we must show that τ |k ends
according to f for all k ≥ 0. For k < j, this follows from 2.1.1 and 2.1.3.
For k ≥ j, it follows from 2.1.2. The outcome τ is fair because 2.1.2 implies
that, for all k ≥ j, the strategy f is undefined on τ |k iff ak+1(τ ) ∈ ¬µ.

2.1.5. τ ∈ (E ⇒M)
Proof : From 2.1.1 (the choice of f) and 2.1.4.

2.1.6. ak+1(τ ) ∈ ¬µ implies sk+1(τ ) = sk(τ ), for all k ≥ j.
Proof : By 2.1.2 (the definition of τ ) and 2.1.1, which asserts that f is a
µ-strategy.

2.2. Choose a behavior φ such that:

(a) φ|j = σ|j
(b) φ 	 τ
(c) ak+1(φ) ∈ µ, for all k ≥ j.
2.2.1. Choose βµ ∈ µ and define φ by φ|j = τ |j and, for all k ≥ j:

sk+1(φ) = sk(τ )
if sk+1(τ ) 
= sk(τ ) then ak+1(φ) = ak+1(τ )

else ak+1(φ) = βµ

Proof : βµ exists by the assumption that µ is an agent set and therefore
nonempty.

2.2.2. φ|j = τ |j
Proof : By 2.2.1 and 2.1(a).

2.2.3. φ 	 τ
Proof : By 2.2.1, since φ is obtained from τ by changing only agents on
stuttering steps.

2.2.4. ak+1(φ) ∈ µ, for all k ≥ j.
Proof : By 2.2.1 (the definition of φ) and 2.1(c).
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2.3. φ ∈ E
2.3.1. φ̂|j ∈ E

Proof : By 2.2(a) and the assumption σ̂|j ∈ E.
2.3.2. φ ∈ I

Proof : By 2.3.1 and the hypotheses that I is a state predicate and E =
I ∩ P .

2.3.3. φ ∈ P
Proof : By 2.3.1, 2.2(c), and the hypotheses that P constrains at most ¬µ
and E = I ∩ P .

2.3.4. φ ∈ E
Proof : By 2.3.2 and 2.3.3, since E = I ∩ P by hypothesis.

2.4. φ /∈M
2.4.1. φ̂|j /∈M

Proof : 2.2(a) and the assumption σ̂|j /∈M .
2.4.2. φ /∈M

Proof : By 2.4.1, since M is a safety property.
2.4.3. φ /∈M

Proof : By 2.4.2, since M ⊆M .
2.5. φ /∈ (E ⇒M)

Proof : By 2.3 and 2.4.
2.6. τ /∈ (E ⇒M)

Proof : By 2.2(b), 2.5, and the hypothesis that E and M are properties.

2.7. Contradiction.
Proof : By 2.6 and 2.1(b).

3. σ̂|i−1 /∈ E
Proof : Let j be the smallest natural number such that σ̂|j /∈ M . The hypothesis

σ̂|i /∈M implies j ≤ i. We now consider two cases.
Case 3A. j < i

3A.1. σ̂|k /∈M , for all k ≥ j.
Proof : σ̂|k /∈M by definition of j, and M is a safety property.

3A.2. σ̂|i−1 /∈M
Proof : By 3A.1 and the assumption j < i.

3A.3. σ̂|i−1 /∈ E
Proof : By 3A.2 and 2.

Case 3B. j = i

3B.1. σ̂|i−1 ∈M
Proof : By definition of j and the assumption j = i, since i > 0 by 1.

3B.2. ai(σ) ∈ µ
Proof : By 3B.1, the assumption σ̂|i /∈M , and the hypothesis thatM constrains
at most µ.

3B.3. σ̂|i /∈ E
Proof : By 2 and the assumption σ̂|i /∈M .

3B.4. σ̂|i−1 /∈ E
Proof : By 3B.2, 3B.3, and the hypothesis that E constrains at most ¬µ.

End Proof of Lemma 4

Proposition 8. Let µ be an agent set, I a state predicate, P a safety property that
constrains at most ¬µ, and Q a safety property that constrains at most µ. Then Rµ(I ∩
P ⇒ Q) equals I ∩ P −$ Q.
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Proof of Proposition 8

1. Rµ(I ∩ P ⇒ Q) ⊆ (I ∩ P −$ Q)
Proof : We assume that there exists a behavior σ such that σ ∈ Rµ(I ∩ P ⇒ Q) and
σ /∈ (I ∩ P −$ Q), and we obtain a contradiction.
1.1. Let i be the smallest integer such that σ̂|i /∈ (I ∩ P −$ Q).

Proof : i exists by the hypothesis σ /∈ (I∩P −$ Q) and the definition of I∩P −$ Q.
1.2. σ̂|i /∈ Q

Proof : By 1.1.

1.3. σ̂|i−1 ∈ P
Proof : By 1.1, which implies σ̂|i ∈ P , since P is a safety property and (σ|i)|i−1

equals σ|i−1.

1.4. Contradiction.
Proof : By 1.2, 1.3, the hypothesis σ ∈ Rµ(I∩P ⇒ Q), and Lemma 4 (substituting
Q for M).

2. (I ∩ P −$ Q) ⊆ Rµ(I ∩ P ⇒ Q)
2.1. (I ∩ P −$ Q) ⊆ (I ∩ P ⇒ Q)

Proof : By definition of (I ∩ P −$ Q)
2.2. Rµ(I ∩ P −$ Q) ⊆ Rµ(I ∩ P ⇒ Q)

Proof : By 2.1 and Proposition 3.
2.3. I ∩ P −$ Q constrains at most µ.

Proof : I ∩ P −$ Q is a safety property and Q ⊆ (I ∩ P −$ Q) by definition of
I ∩ P −$ Q. Since Q constrains at most µ by hypothesis, any safety property
containing Q also constrains at most µ.

2.4. I ∩ P −$ Q is nonempty.
Proof : Q is nonempty by the hypothesis that it constrains at most µ, and Q is a
subset of I ∩ P −$ Q.

2.5. Rµ(I ∩ P −$ Q) = I ∩ P −$ Q
Proof : By 2.3, 2.4, and Proposition 6.

2.6. (I ∩ P −$ Q) ⊆ Rµ(I ∩ P ⇒ Q)
Proof : By 2.2 and 2.5.

End Proof of Proposition 8

Proposition 9. For any agent set µ, safety property M , and arbitrary property L, the
following three conditions are equivalent:

(a) For every finite behavior ρ such that ρ̂ ∈ M , there exist a µ-strategy f with Oµ(f) ⊆
M ∩ L and a behavior σ ∈ Oµ(f) with ρ a prefix of σ.

(b) For every finite behavior ρ such that ρ̂ ∈ M , there exist a µ-strategy f with Oµ(f) ⊆
M ∩ L and a behavior σ ∈ Oµ(f) with ρ stuttering-equivalent to a prefix of σ.

(c) The pair (M, M ∩ L) is machine-closed, and M ∩ L is µ-receptive.

Proof of Proposition 9

It is obvious that (a) implies (b). We prove that (b) implies (c), and that (c) implies (a).
We first assume that (b) holds and prove (c).
1. M ⊆ Rµ(M ∩ L)
Proof : We assume σ ∈ M and prove that σ ∈ Rµ(M ∩ L). By definition of the
topology, it suffices to assume that i > 0 and prove that there exists a behavior τ ∈
Rµ(M ∩ L) such that σ|i 	 τ |j , for some j.
1.1. σ̂|i ∈M

Proof : Since M is closed by hypothesis, and the definition of the topology.
1.2. Choose a µ-strategy f with Oµ(f) ⊆ M ∩ L and a behavior τ ∈ Oµ(f) such that

σ|i 	 τ |j for some j.
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Proof : By (b) and 1.1, substituting σ|i for ρ and τ for σ in (b).
1.3. τ ∈ Rµ(M ∩ L) and σ|i 	 τ |j , for some j.

Proof : By 1.2, since Oµ(f) ⊆M ∩ L implies Oµ(f) ⊆ Rµ(M ∩ L) by definition of
Rµ.

2. The pair (M,M ∩ L) is machine-closed.
Proof : We must prove that M =M ∩ L.
2.1. M ∩ L ⊆M

2.1.1. M ∩ L ⊆ M
Proof : By monotonicity of closure.

2.1.2. M =M
Proof : By hypothesis, M is a safety property.

2.1.3. M ∩ L ⊆ M
Proof : By 2.1.1 and 2.1.2.

2.2. Rµ(M ∩ L) ⊆M ∩ L
Proof : Since Rµ(U) ⊆ U for any property U , and closure is monotone.

2.3. M ⊆M ∩ L
Proof : By 1 and 2.2.

3. M ∩ L is µ-receptive.
Proof : By definition, we must prove that M ∩ L = Rµ(M ∩ L).
3.1. M ∩ L ⊆ Rµ(M ∩ L)

Proof : By 1.
3.2. Rµ(M ∩ L) ∩M ∩ L =M ∩ L

Proof : By 3.1.
3.3. Rµ(M ∩ L) = Rµ(M ∩ L) ∩M ∩ L

Proof : By Proposition 5.
3.4. M ∩ L = Rµ(M ∩ L)

Proof : By 3.2 and 3.3.
We now assume that (c) holds and prove (a). Let ρ be a finite behavior with ρ̂ ∈M . We
must find a µ-strategy f with Oµ(f) ⊆ M ∩ L and a behavior σ ∈ Oµ(f) with ρ a prefix
of σ.
1. Choose σ ∈M ∩ L such that ρ is a prefix of σ.
Proof : σ exists by the machine-closure hypothesis (M =M ∩ L).

2. σ ∈ Rµ(M ∩ L)
Proof : By 1 and the hypothesis that M ∩ L is receptive.

3. There exists a µ-strategy f such that σ ∈ Oµ(f) and Oµ(f) ⊆M ∩ L.
Proof : By 2 and the definition of Rµ(M ∩ L).

End Proof of Proposition 9

Proposition 10. Let µ be an agent set, let x be the projection function from S × X
to X, and let Ix be an S × X-predicate, N a next-state relation on S × X, and L an
S × X-property. Let M equal (3) and let P equal (2). Assume that:

(a) For all s ∈ S there exists x ∈ X such that (s, x) ∈ Ix.
(b) The pair (TAµ(N ), TAµ(N ) ∩ (Ix ∩ TA¬µ(Ux)⇒ L)) is µ-machine-realizable.

(c) M is a safety property.

Then (M,P ) is µ-machine-realizable.

Proof of Proposition 10

By part (b) of Proposition 9, it suffices to assume that ρ is a finite behavior prefix such
that ρ̂ ∈ ∃x : Ix∩TA¬µ(Ux)∩TAµ(N ) and to construct a µ-strategy f such that Oµ(f) is
a subset of ∃x : Ix∩TA¬µ(Ux)∩TAµ(N )∩L, and a behavior σ ∈ Oµ(f) such that ρ 	 σ|j
for some j. To construct f and σ, we will first choose a strategy g whose outcomes all lie
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in TAµ(N )∩ (Ix∩TA¬µ(Ux)⇒ L) and a behavior φ produced by g whose projection (by
ΠS) has ρ as a prefix. We will then define an “inverse projection” Ψ from S-behaviors to
S×X-behaviors whose image contains φ, and will define f to be g composed with Ψ and
σ to be the projection of φ.
1. Choose φ ∈ Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) such that ΠS(φ) 	 ρ̂.
Proof : The existence of φ follows from the hypothesis that ρ̂ ∈ ∃x : Ix ∩ TA¬µ(Ux) ∩
TAµ(N ) and the definition of existential quantification.

2. Choose j such that ΠS(φ|j) 	 ρ.
Proof : j exists by 1, which asserts that ΠS(φ) 	 ρ̂.

3. Choose a µ-strategy g such that Oµ(g) ⊆ TAµ(N ) ∩ (Ix ∩ TA¬µ(Ux)⇒ L) and φ|j is
a partial µ-outcome of g.
Proof : By hypothesis (b), the definition of machine-realizability, and part (a) of Propo-
sition 9 (with φ|j substituted for ρ).

4. Choose a behavior τ ∈ Oµ(g) such that τ |j = φ|j and τ ∈ Ix∩TA¬µ(Ux)∩TAµ(N )∩L.
4.1. Define τ inductively as follows, where β¬µ is any element of ¬µ.

if i ≤ j then ai(τ ) = ai(φ) and si(τ ) = si(φ)
if i > j then if g(τ |i−1) = ⊥

then (ai(τ ), si(τ )) = (β¬µ, si−1(τ ))
else (ai(τ ), si(τ )) = g(τ |i−1)

Then τ |j = φ|j and τ ∈ Oµ(g).
Proof : By construction, τ |j = φ|j . Since φ|j is a partial µ-outcome of g (by 3),
the definition of τ implies that τ is a µ-outcome. It is a fair µ-outcome because,
for all i > j, ai(τ ) ∈ ¬µ iff g(τ |i−1) = ⊥.

4.2. τ ∈ Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L
Proof : By 4.1 and 3, τ ∈ Oµ(g) ⊆ TAµ(N )∩ (Ix ∩ TA¬µ(Ux)⇒ L). It therefore
suffices to prove that τ ∈ Ix∩TA¬µ(Ux), which means proving that (i) s0(τ ) ∈ Ix
and (ii) ai(τ ) ∈ ¬µ implies ΠX(si−1(τ )) = ΠX(si(τ )). But (i) holds because
s0(τ ) = s0(φ) and s0(φ) ∈ Ix by 1. Condition (ii) follows for i ≤ j by 1, since
τ |j = φ|j by 4.1. For i > j, (ii) follows immediately from the definition of τ .

5. Choose a monotone mapping Ψ from behavior prefixes with state space S to behavior
prefixes with state space S × X such that
(a) For any finite behavior prefix η

(i) ΠS(Ψ(η)) = η
(ii) s0(Ψ(η)) ∈ Ix
(iii) For all i > 0, if ai(Ψ(η)) ∈ ¬µ then (si−1(Ψ(η)), si(Ψ(η))) ∈ Ux.
(iv) For any agent α and state s in S, if ΠS(g(Ψ(η))) = (α, s), then Ψ(η · (α, s)) =
Ψ(η) · g(Ψ(η)).

(b) Ψ(ξ) = limm→∞Ψ(ξ|m) for any behavior ξ.
(c) Ψ(ΠS(τ |i)) = τ |i, for all i ≥ 0.
Proof : We define Ψ(η) for any finite behavior prefix η by induction on |η| as follows.

if |η| = 0
then if s0(η) = ΠS(s0(τ ))

then s0(Ψ(η)) = s0(τ )
else s0(Ψ(η)) = (s0(η), x) for any x with (s0(η), x) ∈ Ix.

if η = θ · (α, s)
then if α ∈ ¬µ

then Ψ(η) = Ψ(θ) · (α, (s,ΠX(Ψ(θ)s)))
else if (α, s) = ΠS(g(Ψ(θ)))

then Ψ(η) = Ψ(θ) · g(Ψ(θ))
else Ψ(η) = Ψ(θ) · (α, (s, x)) for any x in X.

Note that in the case |η| = 0, the x chosen in the else clause exists by hypothesis (a) of
the Proposition. We take (b) as the definition of Ψ for behaviors. The monotonicity of
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Ψ is immediate from the definition, so the limit in (b) exists. Property (a)(ii) follows
from the case |η| = 0 in the definition of Ψ(η). Properties (a)(i), (a)(iii), and (a)(iv)
follow from the definition of Ψ by induction on |η|. The proof of (c) is by induction on
i. For i = 0, it follows immediately from the definition of Ψ. For the induction step, we
assume τ |i = τ |i−1 · (α, (s, x)) and Ψ(ΠS(τ |i−1)) = τ |i−1 and prove Ψ(ΠS(τ |i)) = τ |i.
If α ∈ µ, then this follows from the definition of Ψ because τ ∈ Oµ(g) (by 4). If α /∈ µ,
then it follows from the definition of Ψ because τ ∈ TA¬µ(Ux) (also by 4).

6. For any finite behavior prefix η with states in S, define f(η) to equal ΠS(g(Ψ(η))),
where ΠS is extended to a mapping from A × (S × X) to A × S in the obvious way.
Then f is a µ-strategy, and ξ ∈ Oµ(f) implies Ψ(ξ) ∈ Oµ(g).
6.1. ηa = Ψ(η)a, for any finite behavior prefix η.

Proof : By 5(a)(i) and the definition of ΠS.

6.2. f is a µ-strategy.
Proof : By 6.1, since g is a µ-strategy (by 3).

6.3. For any finite behavior prefix η, if η ends according to µ, f then Ψ(η) ends according
to µ, g.
Proof : If ηa ∈ ¬µ, then this follows from 6.1. If ηa ∈ µ, then it follows from
5(a)(iv).

6.4. If ξ ∈ Oµ(f) then Ψ(ξ) ∈ Oµ(g).
Proof : Assume that ξ ∈ Oµ(f). Since ξ is a µ-outcome of f , 6.3 implies that Ψ(ξ)
is a µ-outcome of g. Since f(η) = ⊥ iff g(Ψ(η)) = ⊥, 6.1 and the fairness of ξ
implies that Ψ(ξ) is also fair.

7. If ξ ∈ Oµ(f) then Ψ(ξ) ∈ Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L.
Proof : By 3 and 6, Ψ(ξ) ∈ TAµ(N )∩ (Ix ∩TA¬µ(Ux)⇒ L). By 5(a)(ii) and 5(a)(iii),
Ψ(ξ) ∈ Ix ∩ TA¬µ(Ux).

8. Oµ(f) ⊆ ∃x : Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L
Proof : By definition of existential quantification, it suffices to prove that for every
behavior ξ ∈ Oµ(f) there exists a behavior ξ

′ ∈ Ix ∩ TA¬µ(Ux) ∩ TAµ(N ) ∩ L such
that ΠS(ξ

′) = ξ. By 5(a)(i) and 7, we can let ξ′ equal Ψ(ξ).

9. Let σ = ΠS(τ ). Then σ ∈ Oµ(f) and ρ 	 σ|j .
9.1. f(σ|i) = ΠS(g(τ |i)), for all i ≥ 0.

Proof : By 5(c) and 6 (the definition of f).
9.2. For all i ≥ 0, if ai+1(σ) ∈ µ then σ|i+1 = σ|i · f(σ|i).

Proof : By 4, τ ∈ Oµ(g). Therefore, 5(a)(i) implies that if ai+1(σ) ∈ µ then
τ |i+1 = τ |i · g(τ |i). Hence, ΠS(τ |i+1), which by definition equals σ|i+1, is equal to
ΠS(τ |i · g(τ |i)). The desired result now follows from 9.1.

9.3. σ ∈ Oµ(f)
Proof : By 9.2, σ is a µ-outcome of f . Since 4 asserts that τ is a fair µ-outcome
of g, fairness of σ follows from 5(a)(i), 5(c), and 6, which imply that ai(σ) ∈ µ iff
ai(τ ) ∈ µ and that f(σ|i) is defined iff g(τ |i) is.

9.4. ρ 	 σ|j
Proof : By 2, 4 (which asserts τ |j = φ|j), and the definition of σ.

End Proof of Proposition 10

Theorem 1. If I is a state predicate, (ES, ES ∩ EL) is ¬µ-machine-realizable, MS is
a safety property, and ML is any property, then

I ∩ES ∩EL ⇒ MS ∩ML

and

I ∩ES ⇒ MS ∩ (EL ⇒ML)

are µ-equirealizable.
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Proof of Theorem 1

We assume that I is a state predicate, (ES, ES ∩ EL) is ¬µ-machine-realizable, MS is a
safety property, and ML is any property, and we prove

Rµ(I ∩ES ∩ EL ⇒MS ∩ML) = Rµ(I ∩ES ⇒MS ∩ (EL ⇒ML))

1. Rµ(I ∩ES ⇒MS ∩ (EL ⇒ML)) ⊆ Rµ(I ∩ES ∩EL ⇒MS ∩ML)
Proof : By Proposition 3, since (I ∩ ES ⇒ MS ∩ (EL ⇒ ML)) ⊆ (I ∩ ES ∩ EL ⇒
MS ∩ML) by propositional reasoning.

2. Rµ(I ∩ES ∩EL ⇒MS ∩ML) ⊆ Rµ(I ∩ ES ⇒MS ∩ (EL ⇒ML))
Proof : Let f be a µ-strategy such that Oµ(f) ⊆ (I ∩ES ∩EL ⇒MS ∩ML); we must
prove that Oµ(f) ⊆ (I ∩ES ⇒MS ∩ (EL ⇒ML)). We assume σ ∈ Oµ(f) and prove
that σ ∈ (I ∩ ES ⇒ MS ∩ (EL ⇒ ML)). We do this by assuming σ /∈ (I ∩ ES ⇒
MS ∩ (EL ⇒ML)) and obtaining a contradiction.
The proof rests on the observation that the hypotheses imply σ ∈ I ∩ES, σ /∈MS,

and σ /∈ EL. SinceMS is a safety property, σ must violate it at some finite point, while
it is still possible for the environment to satisfy EL. The contradiction is obtained by
playing the strategy f , from the point at which σ violates MS , against an environment
strategy h (constructed in step 2.4) that achieves ES ∩ EL (producing the behavior
φ of step 2.5). For technical reasons, we replace σ and f in this argument with a
behavior τ 	 σ and a total strategy g, obtained from Lemma 3.
2.1. Choose a total µ-strategy g and a behavior τ such that τ 	 σ, τ ∈ Oµ(g), and

every behavior in Oµ(g) is stuttering-equivalent to a behavior in Oµ(f).
Proof : g and τ exist by Lemma 3.

2.2. τ ∈ I ∩ES, τ /∈MS , and τ /∈ EL.
2.2.1. τ /∈ (I ∩ES ⇒MS ∩ (EL ⇒ML))

Proof : τ 	 σ by 2.1 (the definition of τ ), σ /∈ (I∩ES ⇒MS ∩(EL ⇒ML))
by hypothesis, and properties are by definition closed under stuttering-
equivalence.

2.2.2. τ ∈ (I ∩ES ∩EL ⇒MS ∩ML)
Proof : τ 	 σ by 2.1, σ ∈ (I ∩ ES ∩ EL ⇒ MS ∩ML) since σ ∈ Oµ(f) ⊆
(I ∩ES ∩EL ⇒MS ∩ML) by hypothesis, and properties are closed under
stuttering-equivalence.

2.2.3. τ ∈ I ∩ES, τ /∈MS , and τ /∈ EL.
Proof : From 2.2.1 and 2.2.2, by propositional reasoning.

2.3. Choose i ≥ 0 such that τ̂ |i /∈MS .
Proof : Such an i exists becauseMS is a safety property by hypothesis and τ /∈MS

by 2.2.
2.4. Choose a ¬µ-strategy h and a behavior ψ ∈ O¬µ(h) such that ψ|i = τ |i and

O¬µ(h) ⊆ ES ∩ EL.
Proof : The existence of h and ψ follows from 2.2, the hypothesis that (ES, ES ∩
EL) is ¬µ-machine-realizable, and Proposition 9.

2.5. Choose a behavior φ such that

(a) φ|i = τ |i
(b) φ ∈ Oµ(g)

(c) φ ∈ O¬µ(h)

Proof : Define φ by φ|i = ψ|i and, for all j ≥ i,
if j is odd or h(φ|j) is undefined

then (aj+1(φ), sj+1(φ)) = g(φ|j)
else (aj+1(φ), sj+1(φ)) = h(φ|j)

2.5.1. φ is a behavior
Proof : g is total by 2.1.
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2.5.2. φ|i = τ |i
Proof : By 2.4 and the definition of φ.

2.5.3. φ is a µ-outcome of g.
Proof : We must prove that if aj+1(φ) ∈ µ then g(φ|j) = (aj+1(φ), sj+1(φ)).
For j < i, this holds because φ|i = τ |i by 2.5.2, and τ ∈ Oµ(g) by 2.1.
For j ≥ i, it holds by the definition of φ and 2.4, which asserts that h is a
¬µ-strategy.

2.5.4. φ ∈ Oµ(g)
Proof : φ is an outcome by 2.5.3. It is fair because, by definition, φ has
infinitely many steps of the form g(φ|j), which are µ steps because g is a
µ-strategy (by 2.1).

2.5.5. φ is a ¬µ-outcome of h.
Proof : We must prove that if aj+1(φ) ∈ ¬µ then h(φ|j) = (aj+1(φ),
sj+1(φ)). For j < i, this holds because φ|i = ψ|i by definition of φ, and
ψ ∈ O¬µ(h) by 2.4. For j ≥ i, it holds by definition of φ and 2.1, which
asserts that g is a µ-strategy.

2.5.6. φ ∈ O¬µ(h)
Proof : φ is an outcome by 2.5.5. It is fair because, by definition of φ, either
h(φ|j) is undefined infinitely often or else an infinite number of steps of φ
are of the form h(φ|j), which are ¬µ steps because 2.4 asserts that h is a
¬µ-strategy.

2.6. φ /∈MS

Proof : φ̂|i = τ̂ |i by 2.5(a), τ̂ |i /∈ MS by 2.3, and MS is a safety property by
hypothesis.

2.7. φ ∈ (I ∩ES ∩ EL ⇒MS ∩ML)
Proof : 2.5(b) asserts that φ ∈ Oµ(g), so 2.1 implies that φ is stuttering-equivalent
to an element ofOµ(f). Hence φ ∈ (I∩ES∩EL ⇒MS∩ML) becauseOµ(f) ⊆ (I∩
ES ∩EL ⇒MS ∩ML) by hypothesis, and properties are closed under stuttering-
equivalence.

2.8. φ ∈ I ∩ES ∩ EL

Proof : φ is in I because τ ∈ I by 2.2, s0(φ) = s0(τ ) by 2.5(a), and I is a state
predicate by hypothesis. It is in ES ∩ EL because φ ∈ O¬µ(h) by 2.5(c), and
O¬µ(h) ⊆ ES ∩ EL by 2.4.

2.9. Contradiction.
Proof : 2.7 and 2.8 imply φ ∈MS ∩ML, which contradicts 2.6.

End Proof of Theorem 1

Corollary Let µ be any agent set, let x be the projection function from S × X to X,
let I be an S-predicate, let (ES, ES ∩EL) be a ¬µ-machine-realizable pair of S-properties,
and let MS and ML be S × X-properties such that ∃x :MS is a safety property. Then

I ∩ES ∩ EL ⇒ ∃x :MS ∩ML

and

I ∩ES ⇒ ∃x :MS ∩ (EL ⇒ML)

are µ-equirealizable.

Proof of Corollary

Substituting ∃x :MS for MS and ∃x :MS ∩ML for ML in Theorem 1 shows that

I ∩ES ∩ EL ⇒ ∃x :MS ∩ML

and

I ∩ES ⇒ ((∃x :MS) ∩ ∃x : (EL ⇒MS ∩ML))
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are µ-equirealizable. Since EL does not depend on the x component, it follows from the
definition of existential quantification and simple logical deduction that (∃x :MS) ∩ ∃x :
(EL ⇒MS ∩ML) equals ∃x :MS ∩ (EL ⇒ML).
End Proof of Corollary

Proposition 11. For any disjoint pair of agent sets µ1 and µ2, and any properties P1

and P2, the property Rµ1(P1) ∩Rµ2(P2) is µ1 ∪ µ2-receptive.

Proof of Proposition 11

By definition of receptiveness, it suffices to assume σ ∈ Oµi(fi) ⊆ Rµi(Pi) for i = 1, 2,
where the fi are µi-strategies, and to construct a µ1 ∪ µ2-strategy g such that σ ∈
Oµ1∪µ2(g) ⊆ Oµ1(f1) ∩ Oµ2(f2). We will define g to be the strategy that begins by
trying to generate σ, and when that is no longer possible, performs either an f1 or an f2
step, alternating between the two when it can do either.
1. For any finite behavior prefix ρ, define g(ρ) as follows (where max ∅ equals −∞).

if ρ = σ|j , for some j ≥ 0
then if aj+1(σ) ∈ µ1 ∪ µ2

then g(ρ) = (aj+1(σ), sj+1(σ))
else g(ρ) = ⊥

else if (f2(ρ) = ⊥) ∨ ((f1(ρ) 
= ⊥) ∧ (0 < n) ∧ (an(ρ) ∈ µ2)),
where n = max{k ≤ |ρ| : ak(ρ) ∈ µ1 ∪ µ2}

then g(ρ) = f1(ρ)
else g(ρ) = f2(ρ)

Then g is a µ1 ∪ µ2-strategy.
Proof : g is a µ1 ∪ µ2-strategy because each fi is a µi-strategy.

2. σ ∈ Oµ1∪µ2(g)
Proof : It is immediate from 1 (the definition of g) that σ is a µ1 ∪ µ2-outcome of g.

3. Oµ1∪µ2(g) ⊆ Oµ1(f1) ∩Oµ2(f2)
Proof : We assume τ ∈ Oµ1∪µ2(g) and i ∈ {1, 2}, and we prove that τ ∈ Oµi(fi). Since
σ ∈ Oµ1(f1) ∩Oµ2(f2) by hypothesis, we may assume that τ 
= σ.
3.1. τ is a µi-outcome of fi.

Proof : It suffices to assume aj+1(τ ) ∈ µi and prove fi(τ |j) = (aj+1(τ ), sj+1(τ )).
There are two cases.
Case 3.1A. τ |j = σ|j
In this case, the desired result follows from the hypothesis that σ ∈ Oµi(fi).
Case 3.1B. τ |j 
= σ|j
Since τ is a µ1∪µ2-outcome of g by hypothesis, and aj+1(τ ) ∈ µi implies aj+1(τ ) ∈
µ1 ∪ µ2, it suffices to prove that if g(τ |j) = (α, s) with α ∈ µi, then fi(τ |j) =
g(τ |j). The desired equality follows from 1, the assumption that τ |j 
= σ|j , and
the hypothesis that µ1 and µ2 are disjoint.

3.2. τ ∈ Oµi(fi)
Proof : 3.1 asserts that τ is a µi-outcome of fi, so we need only prove that it is a
fair outcome. We assume that τ has only finitely many µi steps and prove that
fi(τ |j) is undefined for infinitely many values of j ≥ 0.
Case 3.2A. aj(τ ) ∈ µ1 ∪ µ2 for only finitely many j ≥ 0.
In this case, the hypothesis τ ∈ Oµ1∪µ2(g) implies that g(τ |j) is undefined for
infinitely many j. By 1, if ρ is not a prefix of σ, then g(ρ) is undefined iff both
f1(ρ) and f2(ρ) are undefined. Hence, g(τ |j) undefined for infinitely many j and
the assumption τ 
= σ imply that fi(τ |j) must be undefined for infinitely many
values of j.
Case 3.2B. aj(τ ) ∈ µ1 ∪ µ2 for infinitely many j ≥ 0.
3.2B.1. Choose l ≥ 0 such that for all j ≥ l,

(a) If aj(τ ) ∈ µ1∪µ2 then (i) aj(τ ) /∈ µi, and (ii) n > 0 implies an(τ ) /∈ µi,
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where n = max{k ≤ j − 1 : ak(τ ) ∈ µ1 ∪ µ2}.
(b) τ |j−1 
= σ|j−1

Proof : We can choose l satisfying (a) by the assumptions that τ has only
finitely many µi steps and that aj(τ ) ∈ µ1 ∪ µ2 for infinitely many j ≥ 0.
Since τ 
= σ, we can choose l large enough so that (b) also holds.

3.2B.2. For all j ≥ l, if aj(τ ) ∈ µ1 ∪ µ2, then fi(τ |j−1) = ⊥.
Proof : Assume j ≥ l and aj(τ ) ∈ µ1 ∪ µ2. Since τ ∈ Oµ1∪µ2(g), we have
g(τ |j−1) = (aj(τ ), sj(τ )). Since aj(τ ) /∈ µi by 3.2B.1(a), and fi is a µi-
strategy, we infer g(τ |j−1) 
= fi(τ |j−1). In the definition of g(ρ) in 1, if ρ
is not a prefix of σ and n ≤ 0 implies an(ρ) /∈ µi, then g(ρ) 
= fi(ρ) implies
fi(ρ) = ⊥. Hence, 3.2B.1 implies fi(τ |j−1) = ⊥.

3.2B.3. fi(τ |j) is undefined for infinitely many j ≥ l.
Proof : By 3.2B.2, fi(τ |j) is undefined for all j ≥ l with aj(τ ) ∈ µ1 ∪ µ2,
and by hypothesis, there are infinitely many such j.

End Proof of Proposition 11

Proposition 12. If µ1, µ2, and µ1∪µ2 are agent sets and E, E1, andM2 are properties
such that:

(1) E = I ∩ P where
(a) I is a state predicate.
(b) P is a safety property that constrains at most ¬(µ1 ∪ µ2).

(2) E1 is a safety property.

(3) µ1 ∩ µ2 = ∅
(4) M2 is a µ2-abstract property.

Then the rule of inference

E ∩M2 ⊆ E1

E ∩M2 ⊆ E1

is sound.

Proof of Proposition 12

Proof : We assume E ∩M2 ⊆ E1 and prove E ∩M2 ⊆ E1. We do this by assuming the
existence of a behavior σ in E ∩M2 but not in E1, and obtaining a contradiction. We will
obtain the contradiction by constructing a behavior in E ∩M2 that is not in E1. We will
first construct a behavior φ in M2 by continuing σ from the point at which it violates the
safety property E1. We will then modify φ by replacing agents in ¬(µ1 ∪ µ2) with agents
in µ1 to obtain a behavior τ that will still be in M2 (because M2 is µ2-abstract), in E
(because only ¬(µ1 ∪ µ2) steps can violate E), but not in E1.

1. Choose i ≥ 0 such that σ̂|i ∈ E ∩M2 and σ̂|i 
∈ E1.

Proof : Since E1 is a safety property and σ 
∈ E1, there exists an i such that σ̂|i 
∈ E1.
Since E and M2 are safety properties, E ∩M2 is also a safety property. Hence, the

assumption σ ∈ E ∩M2 implies σ̂|i ∈ E ∩M2.
2. Choose a behavior φ in M2 such that σ|i = φ|i.
Proof : φ exists by 1, which asserts σ ∈M2, and the definition of closure.

3. Choose β ∈ µ1 and let τ be the behavior such that, for all k ≥ 0:
sk(τ ) = sk(φ)
if (k + 1 ≤ i) ∨ (ak+1(φ) ∈ (µ1 ∪ µ2)) then ak+1(τ ) = ak+1(φ)

else ak+1(τ ) = β
Then τ is µ2-equivalent to φ.
Proof : τ is the same as φ except that some agents not in µ1 ∪ µ2 have been replaced
by β, an agent in µ1. Since µ1 and µ2 are disjoint by hypothesis 3, τ is µ2-equivalent
to φ.
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4. τ |i = σ|i
Proof : By 2 and 3, which implies φ|i = τ |i.

5. τ ∈ E ∩M2

5.1. τ ∈ I
Proof : 1 and 4 imply τ̂ |i ∈ I , since E ⊆ I ; and I is a state predicate by hypothe-
sis 1(a).

5.2. τ ∈ P
5.2.1. ak(τ ) ∈ (µ1 ∪ µ2), for all k ≥ i.

Proof : By 3.

5.2.2. τ̂ |i ∈ P
Proof : By 1 and 4, since E ⊆ P .

5.2.3. τ ∈ P
Proof : By 5.2.1, 5.2.2, and hypothesis 1(b), which asserts that P constrains
at most ¬(µ1 ∪ µ2).

5.3. τ ∈M2

Proof : φ ∈ M2 by 2, τ is µ2-equivalent to φ by 3, and M2 is µ2-abstract by
hypothesis 4.

5.4. τ ∈ E ∩M2

Proof : By 5.1, 5.2, and 5.3, since E equals I ∩ P .
6. τ 
∈ E1

Proof : 1 and 4 imply τ̂ |i 
∈ E1, and E1 is a safety property by hypothesis 2.

7. Contradiction.
Proof : 5, 6, and the hypothesis E ∩M2 ⊆ E1.

End Proof of Proposition 12

Theorem 2. If µ1, µ2, and µ1 ∪ µ2 are agent sets and E, E1, E2, M1, and M2 are
properties such that:

(1) E = I ∩ P , E1 = I1 ∩ P1, and E2 = I2 ∩ P2, where
(a) I, I1, and I2 are state predicates.
(b) P , P1, and P2 are safety properties that constrain at most

¬(µ1 ∪ µ2), ¬µ1, and ¬µ2, respectively.

(2) M1 and M2 constrain at most µ1 and µ2, respectively.

(3) µ1 ∩ µ2 = ∅
Then the rule of inference

E ∩M1 ∩M2 ⊆ E1 ∩E2

Rµ1(E1 ⇒M1) ∩Rµ2(E2 ⇒M2) ⊆ Rµ1∪µ2(E ⇒M1 ∩M2)

is sound.

Proof of Theorem 2

Proof : We assume the hypotheses of the theorem, and we prove the soundness of the
inference rule by assuming its hypothesis and deducing its conclusion.
1. Rµ1(E1 ⇒M1) ∩Rµ2 (E2 ⇒M2) ⊆ (E ⇒M1 ∩M2).
Proof : We assume σ ∈ Rµ1 (E1 ⇒ M1) ∩ Rµ2 (E2 ⇒ M2) and σ /∈ (E ⇒ M1 ∩M2),
and we obtain a contradiction.
1.1. σ /∈ E1 ∩E2

1.1.1. Choose j ∈ {1, 2} such that σ /∈Mj .
Proof : The assumption σ /∈ (E ⇒M1 ∩M2) implies σ /∈M1 or σ /∈M2.

1.1.2. σ ∈ (Ej ⇒Mj)
Proof : By the assumption σ ∈ Rµ1(E1 ⇒ M1) ∩ Rµ2(E2 ⇒ M2) and the
definition of Rµj .

1.1.3. σ /∈ Ej
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Proof : By 1.1.1 and 1.1.2.
1.1.4. σ /∈ E1 ∩ E2

Proof : By 1.1.3.

1.2. Let i be the smallest natural number such that σ̂|i /∈ E1 ∩E2.
Proof : Such an i exists by 1.1, because hypothesis 1 implies that E1 ∩ E2 is a
safety property.

1.3. σ̂|i /∈ E ∩M1 ∩M2

Proof : By 1.2 and the assumption that the hypothesis of the inference rule holds.

1.4. σ̂|i ∈ E
Proof : The assumption σ /∈ (E ⇒ M1 ∩M2) implies σ ∈ E, and E is a safety
property.

1.5. σ̂|i /∈M1 ∩M2

Proof : By 1.3 and 1.4.

1.6. i > 0 and σ̂|i−1 /∈ E1 ∩E2.

Proof : By 1.5, there exists j ∈ {1, 2} such that σ̂|i /∈ Mj . Hypotheses 1 and 2
of the theorem, and the assumption σ ∈ Rµj (Ej ⇒ Mj) then allow us to apply
Lemma 4, substituting µj , Ij , Pj , and Mj for µ, I , P , and M , to conclude i > 0

and σ̂|i−1 /∈ Ej .
1.7. Contradiction.

Proof : By 1.6 and the choice of i in 1.2.
2. Rµ1(E1 ⇒M1) ∩Rµ2 (E2 ⇒M2) ⊆ Rµ1∪µ2(E ⇒M1 ∩M2)
Proof : By 1, Proposition 3, and Proposition 11, which we can apply by hypothesis 3.

End Proof of Theorem 2

Glossary

ai(σ) The ith agent of behavior σ.
f , g, h Strategies, except in Section 5.2.2, where f is a refinement mapping.
inp, mid , out State components from the example in Figure 3.
si(σ) The ith state of behavior σ.
s, t States.
x, y Internal state components.
A The set of all agents.
E An environment assumption (a property).
ES , EL Safety and liveness parts of E (in Section 4.3).
I A state predicate.
Ix An initial condition for an internal state component x.
I The identity next-state relation.
L A progress property.
M A system guarantee (a property).
MS , ML Safety and liveness parts of M (in Section 4.3).
N A next-state relation.
NE , NM Next-state relations of an environment and a system.
Oµ(f) The set of behaviors generated by µ-strategy f .
P , Q Sets of behaviors—usually properties.
Rµ(P ) The µ-realizable part of P .
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S A specification.
S The set of all states.
TA(N ) The property defined by the next-state relation N of a complete program.
TAµ(N ) The property asserting that every µ-step satisfies the next-state rela-
tion N .

Ux The next-state relation asserting that state component x is unchanged.
V (P, σ) The step number of the first step at which behavior σ violates property P .
X, Y Sets of internal states.
α, β Agents.
βµ An agent in µ.
µ A set of agents, usually an agent set.
η, θ, ρ Behavior prefixes, usually finite.
ξ, σ, τ , φ Behavior prefixes, usually infinite.
ψ A behavior prefix (finite or infinite).
Λ, Ξ Mappings on behavior prefixes.
� A system (not a formally defined concept).
ΠS The projection mapping onto the external states.
ΠX The projection mapping onto the internal states.
∃x Existential quantification over a state component x.
s

α−→ t A step performed by agent α.
P The closure of P (the smallest safety property containing P ).
P ⇒ Q The property consisting of all behaviors that are in Q or not in P .
P −� Q The property asserting that Q holds as long as P does.
S|xy The result of substituting x for y in the formula for S.

ρ · (α, s) The finite behavior prefix obtained by adding α−→ s to the end of ρ.
ρa The last agent of ρ.
ρs The last state of ρ.
|ρ| The length of ρ.
ρ̂ The behavior obtained by extending the finite behavior prefix ρ with stuttering
steps.

σ|n The finite behavior prefix consisting of the first n steps of σ.
�µσ The behavior prefix obtained by removing µ-stuttering steps from σ.
� Stuttering-equivalence.
�µ µ-stuttering-equivalence.
{P}�{Q} A Hoare triple.
f(ρ) = ⊥ Asserts that ρ is not in the domain of f .
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