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Shell Radiance Texture Functions

Abstract The appearance of an inhomogeneous translu-
cent material depends substantially on its volumetric
variations and their effects upon subsurface scattering.
For efficient rendering that accounts for both surface
mesostructures and volumetric variations of such mate-
rials, shell texture functions have precomputed irradi-
ance within a volume with respect to incoming illumina-
tion, but even with this irradiance data a fair amount of
run-time computation is still required. Rather than pre-
compute volume irradiance, we introduce the shell ra-
diance texture function (SRTF) which relates incoming
illumination more directly to outgoing surface radiance
by representing a set of subsurface transport components
from which surface radiance can be calculated without
ray marching or run-time evaluation of dipole diffusion.
Using this precomputed SRTF information, inhomoge-
neous objects can be rendered in real-time with distant
local lighting or global lighting.

Keywords subsurface scattering · mesostructure ·
texture mapping · real time rendering

1 Introduction

The realism of rendered images can be significantly en-
hanced by incorporating visual effects such as light prop-
agation within translucent objects, and shadowing, mask-
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ing, and interreflection by surface mesostructures. To
render the effects of translucency, full physical simula-
tions of subsurface scattering by Monte Carlo methods
provide high quality results but at a considerable expense
in computation [1,11,14], especially for illumination and
viewing directions that vary from frame to frame. For
greater efficiency, Jensen et al. [12] propose the dipole ap-
proximation based on diffusion theory [23] for optically
dense homogeneous materials in which multiple scatter-
ing dominates. Although this method reduces rendering
times from hours down to seconds, it cannot handle the
vast range of common materials that are inhomogeneous.

To render the appearance details of surface mesostruc-
tures, many texture functions have been introduced for
handling the interactions of mesostructures with illumi-
nation. These methods, which include height field dis-
placements [2], volumetric textures [18], and bidirectional
texture functions (BTFs) [5], mainly focus on surface
geometry and cannot fully capture object translucency
effects, which is especially evident for backlighting.

The shell texture function (STF) [4] has recently been
introduced to render both object mesostructures and
translucency. It proposes a two-layer model consisting
of an inhomogeneous outer shell and a homogeneous in-
ner core. The shell is synthesized from a base volume
with spatially-variant subsurface scattering parameters
specified by the user. Each voxel of the shell stores irra-
diance precomputed by photon mapping, while the inner
core is evaluated by the dipole diffusion approximation
[12]. In rendering, ray marching is applied from the top
to the bottom voxels of the shell, and the final radiance
is integrated along the ray. STFs are hard to implement
in real-time for two reasons. First, it uses ray marching
to gather the radiance along a viewing ray through the
volume, which is a time-consuming process. Second, it
computes the dipole approximation at run time, which
also slows rendering.

In this paper, we employ the same object model as
in STF, but to enable real-time rendering we precom-
pute the shell radiance texture function (SRTF), which
consists of 6D subsurface transport components that are



2 Ying Song et al.

directly related to surface radiance. Using the layered
model, we efficiently divide radiance into shell and core
contributions. While the low-frequency core radiance con-
tribution can be precomputed and stored on each vertex,
the detailed radiance contribution from the inhomoge-
neous shell can be evaluated more finely by per pixel
computation. By offline computation of radiance-based
components on the surface instead of irradiance values
within the volume, ray marching is avoided at run time.
To deal with the higher dimensionality of 6D radiance
data in comparison to 5D irradiance data, we propose
compression methods for local illumination and global
illumination that greatly reduce the memory usage. For
more efficient evaluation of the dipole diffusion approx-
imation, we present a precomputation scheme to mini-
mize run-time processing. With the precomputed SRTF
and precomputed dipole diffusion, objects with surface
mesostructures and inhomogeneous translucency can be
rendered in real time.

2 Related Work

Mesostructures contribute significantly to surface appear-
ance. While image-based representations such as BTFs
[5] and surface light fields [24] have been proposed for
mesostructure modeling, they provide a representation of
subsurface scattering that is accurate only for the specific
object geometries under which they are acquired. A good
survey on real-time BTF rendering can be found in [15].
Traditional rendering techniques for mesostructures such
as view-dependent displacement maps [26] and general-
ized displacement maps [25] have also been presented,
but they are designed to handle only opaque materials.

Efficient methods for rendering translucent materi-
als have generally been based on the dipole diffusion
approximation presented by Jensen et al. [12]. Jensen
and Buhler [10] propose a hierarchical approach where
subsurface scattering can be evaluated in a few seconds,
which is far more efficient than Monte-Carlo methods
but still not real-time.

Several subsequent techniques achieve interactive or
real-time performance based on Jensen’s dipole approx-
imation. Lensch et al. [13] introduced a method based
on precomputation to render translucent materials, and
has been used to render inhomogeneous objects captured
from the real world [7]. Their preprocessing is divided
into a local and a global part. The local part computes
pixel-to-pixel scattering throughput factors accounting
for subsurface scattering from the immediate neighbor-
hood, while the global part computes vertex-to-vertex
throughput factors accounting for subsurface scattering
over a greater distance. In rendering, both the local and
global parts are convolved with the illumination map
over the entire surface. Because of substantial compu-
tation on the CPU, only interactive frame rates can be
achieved.

In [3], Carr et al. evaluate subsurface scattering on
the GPU with a hierarchical radiosity approach. The
scattering throughput factor which represents subsurface
scattering between two surface patches is modeled as a
link between two areas in the geometry atlas. These links
are used to evaluate the scattered radiance in the ren-
dering process. In rendering, an illumination map is first
created, storing the irradiance on each pixel of the geom-
etry atlas. The illumination map is then integrated with
the precomputed links to obtain the scattered radiance
map. Finally the scattered radiance map is scaled by the
Fresnel term to obtain the final result. The approach is
fully implemented on hardware, and the links are stored
as textures. Only a few links are employed for real-time
evaluation of subsurface scattering due to hardware lim-
itations, which results in less accurate local variation.
Adding more links, however, would lead to slower ren-
dering performance.

Hao et al. [8,9] render translucent materials by pre-
computing an integral of the BSSRDF [12] with a local
illumination model. The precomputation is performed
on each vertex, and is integrated over the local neigh-
borhood of the vertex. Only the local subsurface scat-
tering contribution is accounted for. To extend to inho-
mogeneous materials, a dense mesh must be utilized to
preserve local variation, which would slow down perfor-
mance significantly.

Sloan et al. [21] use precomputed radiance transfer
(PRT) to precompute subsurface scattering. Since PRT
applies per-vertex radiance transfer, preserving local ap-
pearance variations requires dense vertices, which re-
duces rendering speed. They later present bi-scale pre-
computed radiance transfer to maintain local appearance
variations [22], but this framework is designed only for
opaque objects.

Translucent shadow maps (TSMs) [6] render translu-
cent objects with local illumination based on standard
shadow maps. In rendering, subsurface scattering is com-
puted by filtering the shadow map neighborhood. TSM
can only render homogeneous materials because they use
the dipole approximation, and this approach is difficult
to extend to global illumination.

Premože et al. [19] introduce an interactive render-
ing method for translucent media using path integration.
This approach is only valid for sparse inhomogeneous
media with smoothly varying scattering coefficients. In
contrast, our method mainly focuses on optically dense
inhomogeneous materials which may have sharp changes
in scattering properties.

3 SRTF Model

As illustrated in Figure 1, the object model of the SRTF
is the same as that of the STF, where an inhomogeneous
translucent object is divided into an inhomogeneous shell
and a homogeneous core. The shell is formed by texture
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Fig. 1 The two-layered object model.

synthesis of a volumetric material sample called the base
volume, as described in [4]. In contrast to the STF where
irradiance values are precomputed within the base vol-
ume and then used to render the surface radiance by ray
marching at run time, we precompute the SRTF from
the base volume, which is then used to directly evaluate
the surface radiance at run time. Light transport through
the core is modelled by the dipole diffusion approxima-
tion, whose contribution is computed and stored on the
mesh before the rendering.

3.1 SRTF Construction

The SRTF is precomputed from the base volume with the
following material properties for each voxel: extinction
coefficient σt, albedo α, and phase function p(−→ω ,−→ω ′).
The scattering coefficient is related to the extinction co-
efficient and the albedo by σs = ασt. The transmittance

between x and x′ is defined as τ(x, x′) = e
−

∫ x′

x
σt(u)du.

As described in [4], the material parameters within a
base volume can be acquired by computed tomography
(CT) or designed with 3D modeling tools.

Different from the STF which is defined in the base
volume, the SRTF is defined on the reference plane that
lies on the top of the base volume. As an image-based
representation, SRTF directly records the outgoing radi-
ance from the base volume for all viewing and lighting
directions. At rendering time, the precomputed SRTF is
directly obtained from the object surface and thus avoids
ray marching.

As illustrated in Figure 2, the SRTF is composed of
two components, fshell and fcore. For each incoming light
ray along direction ωl = (θl, φl) that samples the up-
per hemisphere, the outgoing radiance towards direction
ωv = (θv, φv) is represented by fshell(x, y, θv, φv, θl, φl),
where (x, y) is a sampling point on the reference plane.
fshell records both scattering effects within the base vol-
ume and inter-reflection, masking and shadowing effects
caused by surface mesostructure. Likewise, fcore models
radiance in the outgoing direction due to light arriving
from the lower hemisphere. Since in rendering the back-
lighting from the lower hemisphere comes from the dif-
fuse radiance of homogeneous inner core, fcore is related
only to the viewing direction and is independent of the
lighting direction.

Fig. 2 The two SRTF components, fshell (left) and fcore

(right).

As illustrated in Figure 3, for sampled illumination
directions, we compute fshell in two steps using the ma-
terial properties of the base volume. In the first step, we
employ photon mapping proposed in [11] to compute the
in-scattered radiance within the volume and the irradi-
ance on the mesostructure surfaces. From the mapped
photons, we then evaluate the surface radiance for each
viewing direction by ray tracing. fcore is modelled in the
same way by using diffuse light from the entire lower
hemisphere.

3.2 Layered Object Modeling

Given the base volume and target mesh, we synthesize
or map the base volume onto the target mesh to form
the two-layered model, as described in [4]. In synthesis,
we align the top voxels of the base volume with the tar-
get mesh surfaces. After that, each surface point on the
target mesh is assigned a texture coordinate and corre-
sponds to a point on the reference plane. As a result,
the SRTF values associated with the reference plane are
assigned to the surface.

3.3 Core Radiance Precomputation

Based on the two-layer object model, we divide surface
radiance into two parts: from light scattered only within
the shell, and from light scattered from the core, as il-
lustrated in Figure 4. Using fshell, surface radiance from
shell scattering can be directly evaluated at run time.
To compute light scattered from the inner core, we com-
bine the precomputed core radiance Lc with fcore, which

Fig. 3 Sampling the SRTF from the base volume. To avoid
boundary effects in sampling, the base volume is surrounded
by eight other identical volumes as done in [4].
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Fig. 4 Light scattering in the layered model. (a) Light scat-
tered within the shell. (b) Light scattered through the core.
The blue part is precomputed by core radiance, while the red
part is evaluated with fcore.

models the scattering of light from the inner core through
the outer shell.

To precompute the core radiance for incident light on
the surface, we must first account for the effects of light
transmission through the shell to compute the core ir-
radiance. To accelerate the core irradiance computation,
we precompute firra(x, y, θl, φl), which records for each
sampled light direction from ωl = (θl, φl) the multiple
scattering irradiance arriving at each voxel (x, y) that
is on the bottom level of the base volume. This irradi-
ance value is sampled from the base volume by photon
mapping and then used in the following core radiance
precomputation.

Since multiple scattering is dominant in the homo-
geneous inner core, we then use the dipole diffusion ap-
proximation Rd [12] to compute the core radiance Lc

from the core irradiance. In our computation, we ignore
the thickness of the shell layer and directly compute the
core radiance over the mesh surface. For efficient deter-
mination of the dipole approximation, we employ a pre-
computation scheme with respect to directional lighting.
Specifically, for incoming illumination from direction ωl,
the core radiance at a surface point xo can be computed
by:

Lc(xo, ωl) ≈
1

π

∫

A

Rd‖xi − xo‖firra(T (xi), ω
′
l)V (xi, ωl)L(ωl)d(A(xi))

where Rd is evaluated as done in [12]. xi is a point on the
surface, and A(xi) is a small area around xi. V (xi, ωl) is
the visibility of light at xi and ω′l is the light direction
computed in the local coordinate frame of xi. T (xi) is
the texture coordinate of xi. We uniformly sample over
the entire sphere of incoming directions and precompute
this integral for each sampled light direction. Due to
the homogeneity of the inner core, the resulting radiance
varies slowly over the surface. Therefore we precompute
the core radiance on each mesh vertex. The set of pre-
computed integrals on each vertex is then compressed
using spherical harmonics (SH). In rendering, Lc is re-
constructed from a dot product with spherical harmonic
lighting coefficients. Since Lc is a low-frequency diffuse
term, this scheme works even for a local illumination

Fig. 5 Comparison between the core radiance recovered from
4th-order SH-compressed coefficients for directional lighting
(left) and core radiance directly computed from the input
irradiance (right).

model, as done in [9]. But while [9] represents scattering
in a local volume, our technique accounts for scattering
throughout the entire object. In our implementation, we
use a 4th-order spherical harmonic compression of the
core radiance. As shown in Figure 5, it is visually indis-
tinguishable from the original one.

4 Rendering with SRTF

Rendering the layered model with SRTF is straightfor-
ward. From the SRTF and precomputed core radiance
Lc, surface radiance can be rapidly computed at run time
by combining the radiance contributions from the shell
and core according to

L(x, ωv) =∫

Ω

(fshell(T (x), ωv, ωl) + fcore(T (x), ωv)Lc(x, ωl))L(ωl)dωl

where x is a surface point and T (x) is the texture coor-
dinate of x. ωv is the viewing direction at x.

To render the layered model with graphics hardware,
we decompose and compress the 6D fshell into several
lower dimensional texture functions. For the relatively
small 4D fcore data, we pack the two dimensions of the
lighting direction into one dimension and reorganize it
as a 3D texture, which is used for rendering directly.

4.1 Rendering with Local Illumination

For local illumination, we assume the lighting to be dis-
tant and directional. To fit fshell into the graphics mem-
ory, we compress fshell data based on Principal Compo-
nent Analysis(PCA)[16,17,20] using Singular Value De-
composition (SVD). Specifically, we pack each 4D sub-
set fshell sampled under the same viewing direction as
a 2D matrix A, in which each row is the image sampled
from one lighting direction. Applying SVD to A gen-
erates a set of 2D Eigen-maps Ev

l (x, y) and 2D weight
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maps W v
l (θl, φl). By keeping a small number of Eigen-

maps (8 in our current implementation), the fshell data
are decomposed and compressed as a set of 2D maps. In
rendering, fshell can be reconstructed by graphics hard-
ware as

fshell(x, y, θv, φv, θl, φv) =
∑

i

W v
i (θl, φl)Ev

i (x, y).

To render the layered model under local illumination, we
first compute the viewing direction v, lighting direction
l, texture coordinate T (x) and the local coordinate frame
for each vertex. The core radiance Lc is also evaluated
at each vertex by projecting the directional light onto
the SH basis and computing its dot product with the
precomputed core radiance SH coefficient vector stored
on the vertex. After rasterization, these vertex attributes
are interpolated to pixels. In the pixel shader, the inter-
polated vertex attributes are used to fetch and evaluate
the fcore and fshell values for each pixel. After scaling
fcore by Lc in each pixel, we combine the radiance contri-
butions from shell and core to generate the final result.

4.2 Rendering with Global Illumination

For global illumination, we employ the PRT framework
[22] to render the layered model illuminated with the
SH-based environment map. To apply fshell with SH-
based environment lighting, we project fshell for each
viewing direction and compute the SH coefficients for
each viewing direction by

fm
l (x, ωv) =

∫

Ω

fshell(x, ωl, ωv)ym
l (ωl)dωl

where ym
l (ωl) is the real-valued SH basis. By keeping the

low orders of SH coefficients (4 in our current implemen-
tation), the fshell data is compressed.

Before rendering, we precompute a radiance transfer
matrix MT in the local frame for each vertex, which ac-
counts for visibility when transforming the environment
map illumination to transferred incidence radiance.

In rendering, the High Dynamic Range(HDR) envi-
ronment map is first projected onto the SH basis to ob-
tain a SH light vector L′ by keeping the 4th-order co-
efficients. We then multiply the MT with light vector
L′ to get the incident radiance vector at each vertex.
The SH coefficients of the incident radiance vector are
assigned to a vertex as vertex attributes and then inter-
polated to pixels after rasterization. In the pixel shader,
we compute the contribution of the shell by a dot prod-
uct Lshell = f ′shell · MT · L′ where f ′shell is a SH coeffi-
cient vector of fshell. The final radiance is computed as
L = Lshell + Lc · fcore, where core radiance is evaluated
in the same manner as for local illumination.

Fig. 6 Comparison between the result rendered by STF
(left) at about one frame per minute, and result rendered
by real-time SRTF (right).

5 Experimental Results

We tested our algorithm on a 2.4GHZ Pentium IV PC
with an ATI Radeon 9800 128MB graphics card. SRTF
rendering is implemented using vertex/pixel shader 2.0
with Direct3D.

In Figure 8(a), a torus made of translucent jade-
like material is rendered both with local illumination
and with global illumination. The radiance contributions
from subsurface scattering in the outer shell and the in-
ner core have a clear effect on appearance. Figure 8(b)
exhibits rendering results for a bird model. The back-
lighting effects caused by subsurface scattering through
this inhomogeneous volume are evident. Also note that
the masking effects caused by mesostructure on the sur-
face. Figure 8(c) displays rendering results of a bunny
model with high frequency surface details and material
variations, which are challenging for existing techniques
[9,22].

A rendering comparison between STFs and SRTFs is
shown in Figure 6. SRTFs exhibit slight blurring in com-
parison to STFs because of compression, and silhouettes
are not included. However, real-time rates are achieved
with SRTF, while rendering with STF requires approxi-
mately one minute per frame. With the material in Fig-
ure 6, the data storage of the STF is 22MB, and that
of the SRTF is 64MB with the same sampling resolution
before compression. After compression, the SRTF will be
21MB.

Table 1 lists the rendering performance and SRTF
resolution for the three models shown in Figure 8. The
rendering performance is tested for a 512×512 output
window. The compression ratio of SRTF data is about
3:1 for both local and global illumination. Figure 7 com-
pares the results under different compression rates, using
PCA and SH respectively. We can conclude that 8-terms
in PCA and 4th-order in SH compression can achieve
acceptable results.
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Fig. 7 Comparison between results rendered with SRTF at different compression rates. (a) using PCA in compression, and
(b) using SH in compression.

Table 1 Rendering performance of three models with differ-
ent materials.

6 Conclusion

Rendering of inhomogeneous translucent objects with
complex surface mesostructures and arbitrary shape has
been a challenging problem in computer graphics, and
with the SRTF, they can be rendered in real time. The
SRTF also has some limitations. SRTF is not suitable
for rendering very translucent objects. In addition, the
detailed silhouette caused by surface mesostructure is ig-
nored in SRTF rendering. We are investigating how to
combine an existing silhouette rendering approach (such
as [25]) with SRTF rendering. Another direction of fu-
ture work is to extend the SRTF to represent and render
arbitrary existing objects of non-homogeneous materials,

which can presently be rendered only by full participat-
ing media simulation now.
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