
This paper is included in the Proceedings of the 
2016 USENIX Annual Technical Conference (USENIX ATC ’16).

June 22–24, 2016 • Denver, CO, USA

978-1-931971-30-0

Open access to the Proceedings of the 
2016 USENIX Annual Technical Conference 
(USENIX ATC ’16) is sponsored by USENIX.

Fast and Cautious: Leveraging Multi-path Diversity 
for Transport Loss Recovery in Data Centers

Guo Chen, Tsinghua University and Microsoft Research; Yuanwei Lu, University of Science 
and Technology of China and Microsoft Research; Yuan Meng, Tsinghua University;  

Bojie Li, University of Science and Technology of China and Microsoft Research;  
Kun Tan, Microsoft Research; Dan Pei, Tsinghua University;  Peng Cheng, Layong (Larry) Luo, 

and Yongqiang Xiong, Microsoft Research; Xiaoliang Wang, Nanjing University;  
Youjian Zhao, Tsinghua University

https://www.usenix.org/conference/atc16/technical-sessions/presentation/chen



USENIX Association  2016 USENIX Annual Technical Conference 29

Fast and Cautious: Leveraging Multi-path Diversity for
Transport Loss Recovery in Data Centers

Guo Chen1,2, Yuanwei Lu3,2, Yuan Meng1, Bojie Li3,2, Kun Tan2, Dan Pei1
∗
, Peng Cheng2,

Layong (Larry) Luo2, Yongqiang Xiong2, Xiaoliang Wang4, and Youjian Zhao1

1Tsinghua National Laboratory for Information Science and Technology, Tsinghua University,
2Microsoft Research, 3University of Science & Technology of China, 4Nanjing University

Abstract
To achieve low TCP flow completion time (FCT) in

data center networks (DCNs), it is critical and challeng-
ing to rapidly recover loss without adding extra conges-
tion. Therefore, in this paper we propose a novel loss
recovery approach FUSO that exploits multi-path diver-
sity in DCN for transport loss recovery. In FUSO, when
a multi-path transport sender suspects loss on one sub-
flow, recovery packets are immediately sent over another
sub-flow that is not or less lossy and has spare conges-
tion window slots. FUSO is fast in that it does not need
to wait for timeout on the lossy sub-flow, and it is cau-
tious in that it does not violate congestion control algo-
rithm. Testbed experiments and simulations show that
FUSO decreases the latency-sensitive flows’ 99th per-
centile FCT by up to ∼82.3% in a 1Gbps testbed, and up
to ∼87.9% in a 10Gpbs large-scale simulated network.

1 Introduction
In recent years, large data centers have been built at an

unforeseen rate and scale worldwide. Each data center
may contain 100K servers, interconnected together by a
large data center network (DCN) consisting of thousands
of network equipments e.g., switches and links. Mod-
ern applications hosted in DCN care much about the tail
flow completion time (FCT) (e.g., 99th percentile). For
example, in response to a user request, a web application
(e.g., Bing, Google, Facebook) often touches computa-
tion or memory resources of hundreds of machines, gen-
erating a large number of parallel latency-sensitive flows
within the DCN. The overall application performance is
commonly governed by the last completed flows [1, 2].
Therefore, the application performance will be greatly
impaired if the network is lossy, as the tail FCT of TCP
flows may greatly suffer from retransmission timeouts
(RTO) [3, 4] under lossy condition.

Unluckily, packet losses are not uncommon even
in well-engineered modern datacenter networks (§2.1).
Conventionally, most of packet losses are due to buffer
overflow caused by congestion, e.g., incast [5, 6]. How-
ever, with the increasing deployment of the Explicit Con-
gestion Notification (ECN) and fine-tuned TCP conges-
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tion control algorithm (e.g., [1, 7]), the network con-
gestion has been greatly mitigated (e.g., from 1% to
0.01% [6]). But it still cannot be eliminated [7, 8]. Be-
sides congestion, packets may also get lost due to fail-
ure (e.g., malfunctioning hardware [3]). While normally
hardware-induced loss rate is low (∼0.001%) [3], the
rate can exceed 1% when hardware does not function
properly. The reason for malfunctioning hardware is
complex. It can come from ASIC deficits, or simply due
to aging. Although the overall instances of malfunction-
ing hardware are small, once it happens, it usually takes
hours or days to detect and mitigate [3].

We show, both analytically and experimentally, that
even a moderate rise of loss rate (e.g., to 1%) can already
cause more than 1% of flows to hit RTOs (§2), and there-
fore greatly increases the 99th percentile of flow FCT.
Thus, we need a more robust transport that can ensure
low tail FCT even when facing this adverse situation with
lossy hardware. Previously, several techniques have been
proposed to reduce TCP RTOs by adding more aggres-
siveness in loss recovery [4]. These schemes, originally
designed for the Internet, have not been well tested in a
DCN environment, where congestion may be highly cor-
related, i.e., incast. Therefore, they are facing a difficult
dilemma: if being too aggressive, this additional aggres-
siveness may offset the effect of the fine-tuned conges-
tion control algorithm for DCN and induce congestion
losses; Otherwise, being too timid would still cause de-
layed tail FCT.

In this paper, we advocate to utilize multiple parallel
paths, which are plenty in most existing DCN topolo-
gies [6, 9–12], to perform faster loss recovery, with-
out adding more congestion. To this end, we present
Fast Multi-path Loss Recovery (FUSO), which employs
multiple distinct paths for data transmission (similar
to MPTCP [13–15]). FUSO fundamentally avoids the
aforementioned dilemma of single-path TCP enhance-
ments [4]. On one hand, FUSO strictly follows TCP con-
gestion control algorithm which is well tuned for existing
DCN. That is, a packet can leave the sender only when
the TCP congestion window allows. Therefore, FUSO
will behave equally aggressively as TCP flows (or pre-
cisely MPTCP flows). On the other hand, FUSO sender
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will proactively (immediately) recover potential packet
loss in a few paths (usually the “bad” paths) using other
paths (usually the “good” paths). By exploiting the diver-
sity of these paths, FUSO can keep the tail FCT low even
with malfunctioning hardware. This behavior is funda-
mentally different from MPTCP, where each sub-flow is
normally responsible to only recover its own losses. Al-
though MPTCP provides an excellent performance for
long flows’ throughput, it may actually hurt the tail FCT
of small flows compared to normal TCP (more discus-
sion in §2.4).

Particularly, FUSO conducts proactive multi-path loss
recovery as follows. When a sub-flow has no more new
data to send, FUSO tries to utilize this sub-flow’s spare
resources permitted by transport congestion control to
do proactive loss recovery on another sub-flow. FUSO
speculates a path status from the information already
recorded in the transport stack (e.g., packet retransmis-
sion). Then it proactively transmits recovery packets
through those good paths, to protect those packets sus-
pected to be lost in the bad paths. By doing this, there
is no need to wait for bad paths to recover loss by them-
selves which may cost a rather long time (e.g., rely on
timeout). Note that, because FUSO adds no aggressive-
ness to congestion control, even when loss happens at the
edge (e.g., incast) where no path diversity could be uti-
lized, FUSO can still gracefully bound the redundancy
incurred by proactive loss recovery, and offer a good per-
formance (§5.2.3). The major contributions of the paper
are summarized as follows.

1) We measure the attributes of packets loss in a Mi-
crosoft’s production DCN. Then, through analysis and
testbed experiments, we quantify the impact of packet
loss on TCP FCT in DCN for the first time. We show
that even a moderate rise of loss rate (e.g., to 1%) would
already cause enough flows (e.g., >1%) to timeout to af-
fect the 99th percentile FCT.

2) We identify that the fundamental challenge for
transport loss recovery in DCN is how to accelerate loss
recovery under various loss conditions without causing
congestion. We further show that existing loss recovery
solutions differ just in their fixed choices of aggressive-
ness when dealing with the above challenge, and are not
adaptive enough to deal with different loss conditions.

3) We design a novel loss transport recovery approach
that exploits multi-path diversity in DCN. In our pro-
posed solution FUSO, when loss is suspected on one sub-
flow, recovery packets are immediately sent over another
sub-flow that is speculated to be not or less lossy and
has a spare congestion window. However, we show that,
although conventional MPTCP [13–15] provides an ex-
cellent multi-path transport architecture and significantly
improves the performance for long flows, it actually hurts
the tail FCT for small flows.
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Figure 1: Loss rate and location distribution of lossy links (loss
rate > 1%) in a production DCN. Level0-3 denote server↔ToR,
ToR↔Agg, Agg↔Spine, and Spine↔Core, respectively.

4) We implement FUSO in Linux kernel with ∼900
lines of code (available at https://github.com/

1989chenguo/FUSO). Experiment results show that
FUSO’s dynamic speculation-based loss recovery adapts
to various loss conditions well. It decreases the latency-
sensitive flows’ 99th percentile FCT by up to ∼82.3% in
an 1Gbps testbed, and up to ∼87.9% in a 10Gpbs large-
scale simulated network.

2 Fighting Against Packet Loss
2.1 Packet Loss in DCN

We first measure the attributes of packets loss in DCN,
using Netbouncer within a Microsoft Azure’s production
data center. NetBouncer is a service deployed in Mi-
crosoft data centers for measuring link status. It is an
end-host and switch joint solution and employs an active
probing mechanism. End-hosts inject probing packets
destined to network switches via IP-in-IP tunneling and
switches bounce back the packets to the endhosts. It is an
always-on service and the probing is done periodically.
We have measured the packet loss in the data center for
five days during December 1st-5th, 2015. The data cen-
ter has four layers of switches, top-of-rack (ToR), Aggre-
gation (Agg), Spine and Core from bottom to top.

Loss is not uncommon: In our operation experience,
we find that although the portion of lossy links is small,
they are not uncommon (also revealed in [3]). We de-
fine those links with loss rate (measured per hour) greater
than 1% as lossy links, which may greatly impair the up-
layer application performance (§2.2). Taking one day’s
data as an example, Fig. 1 (left part) shows the loss rate
distribution among all lossy links during an hour (22:00-
23:00). The mean loss rate of all the lossy links is ∼4%,
and ∼63% of lossy links have the loss rate between 1% to
10%. About 22% of links even have a detected loss rate
larger than 60%, where such exceptionally high loss rate
maybe due to switch ASIC deficits (e.g., packet black-
hole [3]). We examine all the 5 days’s data and find the
loss rate distributions all very similar. It shows that al-
though the portion of lossy link is small, they are the
norm rather than the exception in large-scale data cen-
ters. Packet loss can be caused due to various reasons
including failures and congestion.

Location of loss: Next, we analyze the location where
packet loss happens. As shown in Fig. 1 (right part),
among all the detected lossy links, there are only ∼22%
of lossy links that are at the edge (server↔ToR, i.e.,
level0), and ∼78% are happening in the network (above
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Figure 2: Timeout probability of various flows passing a path with
different random packet loss rate.

ToR, i.e., level1-3). About 22%, 24%, 25% and 29%
of lossy links are located respectively at server↔ToR,
ToR↔Agg, Agg↔Spine and Spine↔Core.

In summary, even in well-engineered modern data
center networks, packet losses are inevitable. Although
the overall loss rate is low, the packet loss rate in some ar-
eas (e.g., links) can exceed several percents, when there
are failures such as malfunctioning hardware or severe
congestions. Moreover, most losses happen in the net-
work instead of the edge.

2.2 Impact of Packet Loss
Once a packet gets lost in the network, TCP needs to

recover it to provide reliable communication. There are
two existing loss detection and recovery mechanisms in
TCP 1: fast recovery and retransmission timeout (RTO).
Fast recovery detects a packet loss by monitoring dupli-
cated ACKs (or DACKs) and starts to retransmit an old
packet once a certain number (i.e., three) of DACKs have
been received. If there are not enough DACKs, TCP has
to rely on RTO and retransmits all un-ACKed packets
after the timeout. To prevent premature timeouts and
also limited by the kernel timer resolution, the RTO value
is set rather conservatively, usually several times of the
round-trip-time (RTT). Specifically, in a production data
center, the minimum RTO is set to be 5ms [1,3] (the low-
est value supported in current Linux kernel [16]), while
the RTT is usually hundreds of µs [1, 3, 16]. As a con-
sequence, for a latency-sensitive flow, which is usually
small in size, encountering merely one RTO would al-
ready increase its completion time by several times and
cause unacceptable performance degradation.

Therefore, the core issue in achieving low FCT for
small latency-sensitive flows when facing packet losses
is to avoid RTO. However, current TCP still has to rely
on RTO to recover from packet loss in the following three
cases [4, 17, 18]. i) The last packet or a series of consec-
utive packets at the tail of a TCP flow are lost (i.e., tail
loss), where the TCP sender cannot get enough DACKs
to trigger fast recovery and will incur an RTO. ii) A
whole window worth of packets are lost (i.e., whole win-
dow loss). iii) A retransmitted packet also gets lost (i.e.,
retransmission loss).

1Many production data centers also use DCTCP [1] as their network
transport protocol. DCTCP has the same loss recovery scheme as TCP.
Thus, for ease of presentation, we use TCP to stand for both TCP and
DCTCP while discussing the loss recovery.

To understand how likely RTO may occur to a flow,
we take both a simple mathematical analysis (estimated
lower bound) and testbed experiments to analyze the
timeout probability of a TCP flow with different flow
sizes and different loss rates. We consider one-way ran-
dom loss condition here for simplicity, but the impact
on TCP performance and our FUSO scheme are by no
means limited to this loss pattern (see §5).

Let’s first assume the network path has a loss proba-
bility of p. Assuming the TCP sender needs k DACKs
to trigger fast recovery, any of the last k packets get-
ting lost will lead to an RTO. This tail loss probability is
ptail = 1− (1− p)k. For standard TCP, k = 3, but recent
Linux kernel which implement’s early retransmit [19] re-
duces k to 1 at the end of the transaction. Therefore, if
we consider early retransmit, the tail loss probability is
simply p. The whole window loss probability can eas-
ily be derived as pwin = pw, where w is the TCP win-
dow size. For retransmission loss, clearly, the proba-
bility that both the original packet and its retransmis-
sion are lost is p2. Let x be the number of packets in
a TCP flow. The probability that the flow encounters at
least one retransmission loss is pretx = 1− (1− p2)x. In
summary, the timeout probability of the flow should be
pRTO ≥ max(ptail , pwin, pretx). The solid lines in Fig. 2
show the analyzed lower bound timeout probability of
a TCP flow with different flow sizes under various loss
rates. Here, we consider the early retransmit (k = 1).

To verify our analysis, we also conduct a testbed ex-
periment to generate TCP flows between two servers. All
flows pass through a path with one-way random loss.
Netem [20, 21] is used to generate different loss rate on
the path. More details about the testbed settings can be
found in §4.2 and §5. The dotted lines in Fig. 2 shows
the testbed results, which verify that our analysis serves
as a good lower bound of the timeout probability.

There are a few observations. Firstly, for tiny flows
(e.g., 10KB), the timeout probability linearly grows with
the random loss rate. This is because the tail loss proba-
bility dominates. However, a tiny loss probability would
affect the tail of FCT. For example, a moderate rise of
the probability to 1% would cause a timeout probability
larger than 1%, which means the 99th percentile of FCT
would be greatly impacted. Secondly, when the flow size
increases, e.g., ≥100KB, the retransmission loss may
dominate, especially when the random hardware loss rate
is larger than 1%. We can see a clear rise in timeout prob-
abilities for the flows with 100KB in Fig. 2. In summary,
we conclude that a small random loss rate (i.e., >1%)
would already cause enough flows to timeout to affect
the 99th percentile of FCT. This can also explain why a
malfunctioning switch in the Azure datacenter that drops
∼2% of the packets causes great performance degrada-
tion of all the services that traverse this switch [3].
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2.3 Challenge for TCP Loss Recovery
To prevent timeout, when there are not enough re-

turned DACKs to trigger fast recovery, prior work (e.g.,
[4]) adds aggressiveness to congestion control to do loss
recovery before RTO. However, deciding the aggressive-
ness level, i.e., how long to wait before sending recov-
ery packets, to adapt to complex network conditions in
DCNs is a daunting task.

As introduced before, congestion and failure loss co-
exist in DCN. Congestion losses are very bursty and of-
ten lead to multiple consecutive packet losses [1, 4, 5, 7].
For congestion loss, recovery should be delayed for
enough time before being sent out after the original pack-
ets. If a recovery packet is sent too fast before conges-
tion disappears, the recovery packet may get dropped by
the overflowed buffer and also worsen the congestion.
However, for some failure loss such as random drop, re-
covery packets should be sent as fast as possible to ac-
celerate the recovery process. Otherwise the delay for
sending recovery packets already increases the FCT of
latency-sensitive flows. Facing this difficult dilemma,
previous schemes choose different aggressiveness levels
in an ad-hoc manner, from a conservative 2RTT in Tail
Loss Probe (TLP) [22], modestly conservative 1/4 RTT
in TCP Instant Recovery (TCP-IR) [23], to a very ag-
gressive zero time in Proactive [4]. Unfortunately, the
fixed settings of aggressiveness levels make above exist-
ing schemes incapable of adapting to complex loss con-
ditions: different loss characteristics under either con-
gestion loss, failure loss or both.

Essentially, we identify that the fundamental challenge
for transport loss recovery in DCN is how to acceler-
ate loss recovery as soon as possible, under various
loss conditions without causing congestion. Single-path
loss recovery is not a promising direction to address this
challenge because the recovery packets have to be sent
over the same path that is under various loss conditions,
the exact nature (congestion-induced, failure-induced, or
both) of which are often unclear to the sender. One might
think that through explicitly identifying congestion loss
using schemes such as CP [24], transport can distinguish
congestion and failure loss with the help of switches.
However, there lacks a study on such design and its reli-
ability under hardware failure conditions still remains to
be an open question in complex production DCNs.

2.4 Utilizing Multi-path
Then it is natural to raise a question: why not try an-

other good path when loss is speculated on one “bad”
path? Actually, current DCN environment offers us a
good chance to design a better loss recovery scheme
based on multi-path. Current DCN provides many par-
allel paths (e.g., 64 or more) between any two nodes by
dense interconnected topologies [6,9–12]. Usually, these
paths have a big loss diversity due to different conges-

tion and failure conditions. When a few paths are expe-
riencing failure such as random loss or black-hole, the
rest paths (i.e., the majority) may remain in a good state
without failure loss. Also, caused by uneven load bal-
ance [25], some paths may be heavily congested to drop
packets while other paths are in light load.

One might think that using multi-path transport proto-
col such as MPTCP [13–15] is able to address the chal-
lenge above. On the contrary, although MPTCP provides
excellent performance for long flows, it actually hurts the
tail FCT of small latency-sensitive flows under lossy con-
dition (see §5). It is because that, while MPTCP explores
multiple paths, each of its paths normally has to recover
loss by itself. Therefore, its overall completion time de-
pends on the last completed sub-flow on the worst path.
Simply exploring multiple paths actually increases the
chance to hit the bad paths. Therefore, MPTCP’s lack of
an effective loss recovery mechanism leads to a long tail
FCT especially for small flows.

To this end, we propose Fast Multi-path Loss
Recovery (FUSO), which leverages multi-path diversity
for transport loss recovery. FUSO fundamentally avoids
the aforementioned dilemma (§2.3), by utilizing those
paths in good status to proactively (or immediately) con-
duct loss recovery for bad paths. First, FUSO is cautious
in that it strictly follows TCP congestion control algo-
rithm that is tuned for existing DCN, adding no aggres-
siveness. Second, FUSO is fast in that the sender will
proactively recover potential packet loss in bad paths us-
ing good paths before timeout. As shown before, most
losses happen in the network (§2.1), which gives plenty
of opportunities for FUSO to leverage multi-path diver-
sity. On the other hand, sometimes packet losses may
happen at the edge (e.g., incast) due to congestion, where
there is no path diversity that can be utilized for multi-
path loss recovery. Thanks to strictly following the con-
gestion control, FUSO can adaptively throttle its proac-
tive loss recovery behaviour and be conservative to avoid
worsening the congestion (see §5.2.3).

Note that there is a mechanism named opportunistic
retransmission [14] in MPTCP, which may also trigger
proactive retransmission through alternative good sub-
flows similar to the scheme in our FUSO solution. Al-
though sharing the same high-level idea which is uti-
lizing path diversity, it addresses different problems
from FUSO. MPTCP opportunistic retransmission is de-
signed for wide-area network (WAN) to maintain a high
throughput and minimize the memory (receive or send
buffer) usage, to cope with severe reordering caused by
diverse delay of multiple paths. It is triggered only when
the new data cannot be sent because the receive window
or the send buffer is full. It immediately retransmits the
oldest un-ACKed packet through alternative good paths
which have the smallest RTT. Although opportunistic re-
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Algorithm 1 Proactive multi-path loss recovery.
1: function TRY SEND RECOVERIES( )
2: while BytesInFlightTotal <CWNDTotal and no new data do
3: return ← SEND A RECOVERY( )
4: if return == NOT SEND then
5: break
1: function SEND A RECOVERY( )
2: FIND WORST SUB-FLOW( )
3: FIND BEST SUB-FLOW( )
4: if no worst found or no best sub-flow found then
5: return NOT SEND
6: recovery packet←one un-ACKed packet of the worst sub-flow
7: Send the recovery packet through the best sub-flow
8: BytesInFlightTotal += Sizerecovery packet

transmission helps to achieve a high throughput for long
flows in WAN scenario, it offers little help on maintain-
ing a low FCT under lossy condition in DCN scenario
where paths often have very similar delay. More im-
portantly, in DCN those latency-sensitive flows are of-
ten with too small sizes (e.g., <100KB) to cause severe
reordering, which cannot eat up the end-host’s buffer.
Therefore, these small flows cannot trigger the oppor-
tunistic retransmission.

3 FUSO Design
3.1 Overview

We now introduce FUSO. FUSO is built on top of
the multi-path transport, in which a TCP flow is divided
into multiple sub-flows. Note that FUSO focuses on
multi-path loss recovery rather than multi-path conges-
tion control. Particularly, in this paper, we build FUSO
on MPTCP2 [13–15]. ECMP [26] or SDN methods (e.g.,
XPath [27]) can be used to implicitly or explicitly map
the sub-flows3 onto different physical paths in DCN.

The core scheme of FUSO is that, by strictly follow-
ing the congestion control, if there is a spare congestion
window (cwnd), FUSO first tries to transmit new data.
If the up-layer application currently has no new data,
FUSO utilizes this transmission opportunity to proactive-
ly/immediately transmit recovery packets for those sus-
pected lost (un-ACKed4) packets on “bad” sub-flows, by
utilizing “good” sub-flows. Note that FUSO does not
affect the existing MPTCP opportunistic retransmission
mechanism triggered by full receive window. These two
mechanisms can be complementary to each other.

We separately discuss the FUSO sender and receiver
for better clarification. In a FUSO connection, the sender
and receiver refer to the end hosts sending data and the
ACK respectively. Both ends are simultaneously the
sender and receiver in a two-way connection.

2FUSO can also work on other multi-path transport protocols.
3We use ‘sub-flow’ and ‘path’ interchangeably in this Section.
4For TCP with SACK [28] enabled, un-ACKed packets refer to

those un-SACKed and un-ACKed ones.

3.2 FUSO Sender
The FUSO sender’s proactive multi-path loss recovery

process can be summarized as Algo. 1. Specifically, we
insert a function TRY SEND RECOVERIES() in the trans-
port stack, monitoring the changes of BytesInFlightTotal ,
CWNDTotal and the application data. This function needs
to be inserted into two positions: i) after all the data de-
livered from the application has been pushed into the
transport send buffer and sent out, which indicates that
there is currently no more new data delivered from the
up-layer application; ii) after an ACK is received and the
transport status (e.g., BytesInFlightTotal , CWNDTotal)
has been changed. More implementation-related details
are discussed in §4.1. Within this function, the sender
calls the function SEND A RECOVERY() to send a recov-
ery packet if the following conditions are both satisfied:
i) there is spare window capacity allowed by congestion
control, and ii) all new data has been sent out.

In the function SEND A RECOVERY(), FUSO sender
first calls the function FIND WORST SUB-FLOW() and
FIND BEST SUB-FLOW() to find the current worst and
best sub-flows. The worst sub-flow is selected only
among those who have un-ACKed data, and the best sub-
flow is selected only among those whose congestion win-
dow (cwnd) has spare spaces permitted by congestion
control. We defer the discussion on how to find the worst
and best paths to §3.2.1.

If currently there is no worst or no best sub-flow,
FUSO stops generating recovery packets for this round.
Next, if the worst and best sub-flows are found, a recov-
ery packet for the worst sub-flow is generated. Because
FUSO conducts proactive loss recovery before a packet
is detected as lost either by DACKs or RTO, we have
to guess which packet is most likely to be the lost one.
FUSO infers the packet as the oldest un-ACKed packet
which has been sent out for the longest time. Thus, the
sender proactively generates a recovery packet for one
un-ACKed packet on the worst path in the ascending or-
der of TCP sequence number (i.e., the oldest packet in
this path). To avoid adding too much unnecessary traffic
to the network, an un-ACKed packet will be sent at most
once by the proactive loss recovery scheme in FUSO.

After the recovery packet is generated, FUSO sender
sends it through the best sub-flow. Note that the recov-
ery packet is regarded as a new data packet for the best
sub-flow. The recovery packet is under the best sub-
flow’s congestion control, and, if it gets lost in the best
sub-flow, it will be retransmitted as normal packets in
the best sub-flow using the standard TCP loss recovery.
However, to avoid duplicate recovery, these packets will
not be counted in the un-ACKed packets waiting for re-
covery when FUSO sender conducts fast multi-path loss
recovery later. In the last step of SEND A RECOVERY(),
BytesInFlightTotal is incremented and the conditions

5
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in the while loop in TRY SEND RECOVERIES() will be
checked again.

3.2.1 Path Selection
Whenever congestion control offers a chance to trans-

mit packets, FUSO tries to proactively recover the sus-
pected lost packet in the currently “worst” path which
is most likely to encounter packet loss, utilizing the
currently “best” path which is least likely to encounter
packet loss. Therefore, we define a metric Cl = α ·
lossrate+ β · lossratelast , to describe the possibility of
packet loss happening in a sub-flow. Cl is the weighted
sum of the overall packet loss rate lossrate and the most
recent packet loss rate lossratelast in this sub-flow. α and
β are the respective weight of each part. Since current
TCP/MPTCP retransmits a packet after detecting it as
lost either by DACK or RTO, FUSO uses the ratio of total
retransmitted packets to the total transmitted packets as
the approximation of lossrate. Note that recovery pack-
ets generated by FUSO are regarded as new packets in-
stead of retransmitted packets for sub-flows. lossratelast
is calculated as the ratio of one to the number of trans-
mitted packets from (including) the last retransmission.

The worst sub-flow is picked among those which have
at least one un-ACKed packet (possibly lost), and with
the largest Cl . For sub-flows which have never encoun-
tered a retransmission yet, their Cl equals zero. If all
sub-flows’ Cl equals zero, FUSO picks the one with the
largest measured RTT thus to optimize the overall FCT.

The best sub-flow is picked among those which have
spare cwnd, and with the smallest Cl . For sub-flows
never encountering a retransmission yet, their Cl equals
zero and is smaller than others. If more than one sub-
flows have zero Cl , FUSO picks the one with the small-
est measured RTT as the best sub-flow. Note that at the
initial state, some sub-flows may have never transmit-
ted any data when FUSO starts proactive loss recovery.
Then these sub-flows’ Cl equal infinity and have the least
priority when FUSO selects the best sub-flow. If all sub-
flows’ Cl equal infinity, FUSO randomly picks one as
the best sub-flow. Note that the best and worst sub-flows
may be the same one. Under this condition, FUSO sim-
ply transmits the recovery packets in the same sub-flow
after the original packets.

3.3 FUSO Receiver
FUSO receiver is relatively simple. In multi-path

transport protocol such as MPTCP, the receiver has a
data-level (i.e., flow-level) receive buffer and each sub-
flow has a virtual receive buffer that is mapped to the
data-level receive buffer. Upon receiving a FUSO recov-
ery packet, FUSO receiver directly inserts the recovery
packet into the corresponding position of the data-level
receive buffer, to complete the flow transmission. The
FUSO recovery packets will not affect the bad sub-flows’

behaviour on the sub-flow-level, but directly recovery the
lost packets on the data-level.

For the best sub-flow that transmits FUSO recovery
packets, these packets are naturally regarded as normal
data packets in terms of this sub-flow’s congestion con-
trol and original TCP loss recovery. Although protected
by them, the bad sub-flow is not aware of these recovery
packets, and may unnecessarily retransmit the old data
packet (if lost) itself. FUSO currently chooses such a
simple approach to maintain the exact congestion control
behavior and add no aggressiveness, both on individual
sub-flows and the overall multi-path transport flow. It
needs no further coordination besides the original ACK
schemes in TCP between the sender and the receiver, but
may incur some redundant retransmissions. A naive so-
lution to eliminate the redundant retransmissions may be
that the receiver proactively generates ACKs for the orig-
inal packets in the bad sub-flow, upon receiving recov-
ery packets from other good sub-flows. However, this
may cause adverse interaction with congestion control.
Specifically, the bad sub-flow’s sender end may wrongly
judge the path as in a good status and increases its send-
ing rate, which may exacerbate the loss.

In order to maintain the congestion control behav-
ior and eliminate the redundant retransmissions, it may
need very complex changes to the MCTCP/TCP proto-
cols. The sender and receiver must coordinate to decide
whether/how it should change each sub-flow’s conges-
tion control behavior (e.g., increase/decrease how much
to the cwnd), to cope with various conditions, such as
i) the proactive retransmission received but the origi-
nal packet lost, ii) the original packet received but the
proactive retransmission lost, iii) both packets lost, iv)
the proactive retransmission received before the original
packet, v) the original packet received before the proac-
tive retransmission, etc. The feasibility of such a solution
and how to design it still requires further study and is left
as our future work. FUSO currently chooses to trade a
little redundant retransmission (see §5.2.2 and 5.2.3) for
the aforementioned simple and low-cost approach.

4 Implementation and Testbed Setup
4.1 FUSO Implementation

We implemented FUSO in Linux kernel 3.18 with
827 lines of code, building FUSO upon MPTCP’s latest
Linux implementation (v0.90) [29].

FUSO sender: We insert TRY SEND RECOVERIES() in
Algo. 1 into the following positions of the sender’s trans-
port kernel, to check whether a FUSO recovery packet
should be sent now: 1) in function tcp sendmsg() after all
the data delivered from the application has been pushed
into the send buffer; 2) in function tcp v4 rcv() after an
ACK is received and the transport status (cwnd, bytes in
flight etc.) has been changed.
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In TRY SEND RECOVERIES(), FUSO detects that there
is currently no more new data from the up-layer appli-
cation, if the two conditions are both satisfied: i) the
data delivered from the application has all been pushed
in the send buffer; ii) the packets in the send buffer
have all been sent. If a multi-path loss recovery packet
is allowed to be sent, FUSO sender calls the function
SEND A RECOVERY() and picks one un-ACKed packets
(in ascending order of sequence number) on the worst
sub-flow, then copies and transmits it on the best sub-
flow. We utilize existing functions in MPTCP to recon-
struct the mapping of the recovery packet’s data-level
(i.e., flow-level) sequence number to the new sub-flow-
level sequence number. Also, FUSO sender remembers
this packet to ensure that each un-ACKed packet is pro-
tected for at most once. In FUSO, both the formats of
data packets and FUSO recovery packets have no differ-
ence from those in the original MPTCP protocol. The
data-level sequence number (DSN) in the existing Data
Sequence Signal (DSS) option of MPTCP header can no-
tify the receiver how to map this recovery packet into
data-level data.

It is noteworthy that, besides the opportunistic retrans-
mission introduced before, original MPTCP may also re-
transmit the data packets originally delivered to one sub-
flow through other sub-flows under the following condi-
tion: if one sub-flow is judged to be dead when it encoun-
ters certain number of consecutive timeouts, all the pack-
ets once distributed to this sub-flow will be re-injected
to a special flow-level sending buffer called “reinject
queue”. Then MPTCP will redistribute these packets to
other sub-flows. This is a failover scheme to deal with
the case that some of its sub-flows completely fail. How-
ever, it is too slow (after a sub-flow is dead) to provide a
low FCT under lossy conditions.

FUSO receiver: The receiving process has already
been implemented in MPTCP’s original receiving logic,
which requires no other modification. According to
the DSN in the header option, the receiver will insert
the multi-path loss recovery packet in the correspond-
ing position of the data-level receive buffer, and com-
plete the data transmission. Note that in the current
MPTCP’s Linux implementation, the receiver only hands
over packets to the data-level receive buffer which are in-
sequence in the sub-flow level, and buffers the packets
which are out-of-sequence (OoS) in the sub-flow level in
the sub-flow’s OoS queue. This implementation reduces
the reordering computation overhead, but may severely
defer the completion time of the overall MPTCP flow.
Since packets may be retransmitted by other sub-flows,
those packets OoS in sub-flow level may be in-sequence
in the data level. As such, in-sequence data-level pack-
ets may not be inserted to the data-level receive buffer
even when they arrive at the receiver, because of being

Rack2 Rack1

ToR1ToR2

ToR1 ToR2

Rack1 Rack2

H1 H2 H3 H4 H5 H6

P1
P2
P3

Figure 3: Basic topology of the testbed.

deferred by the former lost packets in the same sub-flow.
To solve this problem, we implement a minor modifica-
tion to current MPTCP’s receiving end implementation,
which immediately copies the sub-flow-level OoS pack-
ets directly to the MPTCP data-level receive buffer. This
receiving end modification is 34 lines of code.

4.2 Testbed Setup
We build a small 1Gbps testbed as shown in Fig. 3. It

consists of two 6-port ToR switches (ToR1, ToR2) and six
hosts (H1 ∼H6) located in the two racks below the ToR
switches. There are three parallel paths between the two
racks, emulating the multi-path DCN environment.

Each host is a desktop with an Intel E7300 Core2
Duo 2.66GHz CPU, 4GB RAM and 1Gbps NIC, and
runs Ubuntu 14.04 64-bit with Linux 3.18.20 kernel. We
use two servers to emulate the two ToR switches. Each
server-emulated switch is a desktop with an Intel Core
i7-4790 3.60GHz CPU, 32GB RAM, and 7 Intel I350
Gigabit Ethernet NICs (one reserved for the manage-
ment). All server-emulated switches run Ubuntu 14.04
64-bit with Linux 4.4-RC7 kernel. Originally, current
Linux kernel only support IP-address-based (<src,dst>
pair) ECMP [26] when forwarding packets. There-
fore, we made a minor modification (8 lines of code)
to the switches kernel, thus to enable layer-4 port-based
ECMP [26] (<src,dst,sport,dport,protocol> pair) which
is widely supported by commodity switches and used in
production DCNs [3, 6, 16].

Flows are randomly hashed to the physical paths by
ECMP in our testbed. Each switch port buffer size is
128KB. The basic RTT in our testbed is ∼280µs. ECN
is enabled using Linux qdisc RED module, with marking
threshold set to be 32KB according to the guidance by
[7]. We set TCP minRTO to 5ms [1, 3]. These settings
are used in all the testbed experiments .

5 Evaluation
In this section, we use both testbed experiments and

ns-2 simulations to show the following key points. 1)
Our testbed experiments show FUSO’s good perfor-
mance under various lossy conditions, including fail-
ure loss, failure & congestion loss, and congestion loss.
2) We also use targeted testbed experiments to ana-
lyze the impact of sub-flow number on FUSO’s perfor-
mance. 3) Our detailed packet-level simulations confirm
that FUSO scales to large topologies.
5.1 Schemes Compared

We compare the following schemes with FUSO in our
testbed and simulation experiments. For the simulations,
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we implement all the following schemes in ns-2 [30]
simulator. For the testbed, we implement Proactive and
Repflow [31] in Linux, and directly use the source codes
of other schemes.

TCP: The standard TCP acting as the baseline. We en-
able the latest loss recovery schemes in IETF RFCs for
TCP, including SACK [28], SACK based recovery [18],
Limited Transmit [32] and Early Retransmission [19].
The rest of the compared schemes are all built on this
baseline TCP.

Tail Loss Probe (TLP) [22]: The latest single-path
TCP enhancement scheme using prober to accelerate loss
recovery. TLP transmits one more packet after 2 RTTs
when no ACK is received at the end of the transaction or
when the congestion window is full. This extra packet is
a prober to trigger the duplicate ACKs from the receiver
before timeout.

TCP Instant Recovery (TCP-IR)5 [23]: The latest
single-path TCP enhancement scheme using both prober
and redundancy. It generates a coded packet for every
group of packets sent in a time bin, and waits for 1/4 RTT
to send it out. This coded packet protects a single packet
loss in this group providing “instant recovery”, and also
acts like a prober as in TLP. According to the authors’
recommendation [4], we set the coding timebin to be 1/2
RTT and the maximum coding block to be 16.

Proactive [4]: A single-path TCP enhancement
scheme to accelerate loss recovery by duplicating ev-
ery TCP data packet. We have implemented Proactive
in Linux kernel 3.18.

MPTCP [15]: The state-of-the-art multi-path trans-
port protocol. We use the latest Linux version of MPTCP
implementation (v0.90 [29]), which includes the oppor-
tunistic retransmission mechanism [14].

RepFlow [31]: A simple multi-path latency improve-
ment scheme by proactively transmitting two duplicated
flows. We have implemented RepFlow in the application
layer according to [31].

For all compared schemes, the initial TCP window is
set to 16 [3]. Note that for FUSO and MPTCP, the initial
window of each sub-flow is set to be 16

number o f sub f lows ,
which forms the same 16 initial window in total for a
connection. Unless specified otherwise, we configure 4
sub-flows for each FUSO and MPTCP connection in the
testbed experiments, which offers the best performance
for both methods in various conditions. We compare the
performance of FUSO/ MPTCP using different number
of sub-flows in §5.2.4. FUSO’s path selection parameters
α , β (§3.2.1) are both set to be 0.5.

5TCP-IR has published its code [33] and we successfully compiled
it to our testbed hosts. However, after trying various settings, we are not
able to get it running on our testbed environment due to some unknown
reasons. As such, we evaluate TCP-IR only in simulation experiments.

5.2 Testbed Experiments
Benchmark Traffic: Based on the code in [34], we

develop a simple client-server application. Each client
sends requests to some randomly chosen servers for a
certain size of data, with inter arrival time obeying the
Poisson process. There are two types of requests from
the client, 1) latency-sensitive queries with data sizes
smaller than 100KB, and 2) background requests with
sizes larger than 100KB. All the requests’ sizes are sam-
pled from two real data center workloads, web-search [1]
and data-mining [10]. Each client initiates 10 long-lived
transport connections (5 for latency-sensitive queries,
and 5 for background requests) to each server, and round-
robinly distributes the requests on each connection (of
their type) to the server. We generate different loads
through adjusting the requests’ inter arrival time. All 6
hosts run both client and server processes. We separately
enable the various compared schemes to serve the con-
nections for latency-sensitive queries, and use standard
TCP for the rest of connections for background requests.
Note that before all evaluations, we generate 100KB data
to warmup each FUSO/MPTCP connection and wait for
an idle time to reset the initial window, thus to activate all
the sub-flows. We compare the request completion time6

of those latency-sensitive queries.
Emulating failure loss: We use netem [20,21] to gen-

erate failure packet loss with different loss patterns and
loss rates. The network and edge loss are emulated by en-
abling netem loss module on certain network interfaces
(on the switches or hosts). Two widely-used loss patterns
are evaluated, random loss and bursty loss [35].

Due to space limitation, we only present the testbed
results under random loss using web-search workload.
We have evaluated FUSO under various settings, with
different loss models (random and bursty [35]) using
different workloads (web-search and data-mining), and
FUSO consistently outperforms other schemes (reduce
the latency-sensitive flows’ 99th percentile FCT by up to
∼86.2% under bursty loss and data-mining traffic). All
the experiment results are from 10 runs in total, with 15K
flows generated in each run.

5.2.1 Failure Loss
We first show how FUSO can gracefully handle fail-

ure loss in DCN. To avoid the interference of conges-
tion, no background traffic is injected, and we deploy the
clients on H4-H6 generating small latency-sensitive re-
quests (data size < 100KB) respectively to H1-H3 with-
out edge contention. We only focus on the failure loss in
this experiment, and later we will show how FUSO per-
forms when failure and congestion coexist. The requests
are generated in an average load of 10Mbps [1].

6We use ‘flow’ and ‘request’, ‘request completion time’ and ‘FCT’
interchangeably in §5.

8



USENIX Association  2016 USENIX Annual Technical Conference 37

FUSO
MPTCP
RepFlow
TCP
TLP
Proactive

0.125 0.25 0.5 1 2 410−3

10−2

10−1

FC
T 

(s
)

lossrate (%)
(a) Net-loss: 99th FCT

0.125 0.25 0.5 1 2 40

5

10

15

Ti
m

eo
ut

 fr
ac

tio
n 

(%
)

lossrate (%)
(b) Net-loss: Timeout flows (%)

0.125 0.25 0.5 1 2 410−3

10−2

10−1

FC
T 

(s
)

lossrate (%)
(c) Edge-loss: 99th FCT

0.125 0.25 0.5 1 2 40

10

20

30

Ti
m

eo
ut

 fr
ac

tio
n 

(%
)

lossrate (%)
(d) Edge-loss: Timeout flows (%)

Figure 4: Failure loss in the network or at the edge: 99th FCT (log scale) and timeout fraction of the latency-sensitive flows, while one
network path is lossy or all the edge paths are lossy. Path loss rate varies from 0.125% to 4%.

Loss in the network: We first evaluate the condition
when failure loss happens in the network, by deliberately
generating different loss rate for the path P1 in Fig. 3.
Note that the two directions of P1 both have the same
loss rate. Fig. 4(a) and Fig. 4(b) present the 99th per-
centile FCT and the fraction of timeout ones among all
the latency-sensitive flows. The results show that FUSO
maintains both very low 99th percentile FCT (<2.4ms)
and fraction of timeout flows (<0.096%), as the path loss
rate varies from 0.125% to 4%. FUSO reduces the 99th

percentile FCT by up to ∼82.3%, and the timeout frac-
tion up to 100% (no timeout occurs in FUSO), compared
to other schemes. The improvement is due to the multi-
path loss recovery mechanisms of FUSO, which can ex-
plore and utilize good paths that are not lossy, and also
makes the FCT depend on the best path explored. Al-
though MPTCP also explores multiple paths, each of its
paths normally has to recover loss by itself (more de-
tails in §2.4). Therefore, its overall completion time de-
pends on the last completed sub-flow on the worst path.
Lacking an effective loss recovery mechanism actually
lengthens the tail FCT in MPTCP, as exploring multiple
paths actually increases the chance to hit the bad paths.
RepFlow offers a relatively better performance than other
schemes by excessively duplicating every flow. How-
ever, this way of redundancy is actually less effective
than FUSO, because each flow independently transmits
data with no cooperative loss recovery as in FUSO. Since
there is still a big chance for ECMP to hash the two dupli-
cated flows into the same lossy path, it makes RepFlow
have an ∼32%-64.5% higher 99th percentile FCT than
FUSO. Proactive also behaves inferiorly, suffering from
similar problems as RepFlow. TLP performs almost the
same as TCP because it sacrifices the ability to prevent
timeouts in order to keep low aggressiveness.

Loss at the edge: We then evaluate the extreme condi-
tion when severe failure loss happens at the edge, by de-
liberately generating different loss rates for all the access
links of H4-H6. We try to investigate how FUSO per-
forms when sub-flows cannot leverage diversity among
different physical paths. Fig. 4(c) and Fig. 4(d) show the
results. Even with all sub-flows passing the same lossy
path, FUSO still can maintain a consistent low timeout
fraction to be under 0.8% when the loss rate is below 1%.
However, the timeout fraction of other approaches except
RepFlow and Proactive exceeds 3.3% at the same loss
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Figure 5: Failure & congestion loss: Average and 99th FCT (log
scale) of latency-sensitive flows, and the average extra load of all
FUSO flows. Each flow’s extra load is calculated by the extra bytes
incurred by FUSO divided by the total bytes transmitted.

rate. As such, FUSO reduces the 99th percentile FCT
by up to ∼80.4% compared to TCP, TLP and MPTCP.
When loss rate exceeds 2%, FUSO still maintains the
99th FCT under 12.7ms. Although all sub-flows traverse
the same lossy path in this scenario, the chance that all
four of them simultaneously hit the loss has been de-
creased. FUSO can leverage the sub-flow which does
not encounter loss currently to help recover lost packets
in the sub-flow which hits loss at this moment. Due to the
excessive redundancy, RepFlow and Proactive perform
the best in this scenario when loss rate is high, but hurt
the 99th FCT when the loss rate is low. Later (§5.2.3) we
will show that this excessive load and the non-adaptive
redundancy ratio will substantially degrade the perfor-
mance of latency-sensitive flows, when the congestion is
caused by themselves such as in the incast [5] scenario.

5.2.2 Failure & Congestion Loss

Next we evaluate that how FUSO performs with co-
existing failure and congestion loss. We generate a 2%
random loss rate on both directions of path P1, which
is similar to a real Spine switch failure case in produc-
tion DCN [3]. We deploy the aforementioned clients on
the H4-H6 and configure them to generate small latency-
sensitive queries as well as background requests, to the
servers randomly chosen from H1-H3. This cross-rack
traffic [13, 36] ensures that all the flows have a chance
going through the lossy network path. We inject differ-
ent traffic load from light (0.1) to high (0.9), to inves-
tigate how FUSO performs from failure-loss-dominated
scenario to congestion-loss-dominated scenario.

Results: Fig. 5 shows the results. Under conditions
where failure and congestion loss coexist, FUSO main-
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tains both very low average and 99th percentile FCT of
latency-sensitive flows, from light to high load. Com-
pared to MPTCP, TCP and TLP, FUSO reduces the av-
erage FCT by ∼28.2%-47.1%, and the 99th percentile
by ∼17.2%-80.6%. FUSO also outperforms RepFlow
by ∼10%-30.3% in average and ∼20.1%-44.8% in tail,
due to two reasons: 1) the chance of two replicated flows
in RepFlow being hashed to the same lossy path is non-
negligible, and 2) excessive redundancy RepFlow adds
congestion when load is high. As for Proactive, the
replicated packets always go through the same path as
the original data packets, which makes them share the
same loss rate and further decrease its redundancy effi-
ciency compared to RepFlow. Moreover, the simple du-
plicating behaviour extremely degrades its performance
under heavy load. On the contrary, FUSO’s proactive
multi-path loss recovery helps to recover the congestion
and failure loss fast, meanwhile remaining cautious to
avoid adding aggressiveness. Even at the high load of
0.9, FUSO maintains the average and tail FCT to be be-
low 4.5ms and 17.1ms, respectively. TCP behaves inferi-
orly due to coexisting severe congestion and failure loss,
while MPTCP performs better in this case. TLP’s faster
loss recovery by adding moderate aggressiveness makes
it perform better than both TCP and MPTCP.

We show the average extra load of all FUSO flows in
Fig. 5(c). Each flow’s extra load is calculated by the extra
bytes incurred by FUSO divided by the total bytes trans-
mitted. The results show that FUSO’s fast loss recovery
behaviour can gracefully adapt to the network condition.
Particularly, when the load is low, FUSO generates rela-
tively more recovery packets (∼42% extra load) to proac-
tively recover the potential loss. Such relative high re-
dundancy rate does not affect the FUSO flows’ FCT, be-
cause that FUSO only generates redundancy utilizing the
opportunity when the network is not congested (detected
from spare cwnd) and there is no more new data. As the
congestion becomes severe, FUSO naturally throttles the
redundancy generation (down to ∼40% in 0.9 load) by
strictly following the congestion control behaviour. Later
(§5.2.3) we will show that FUSO generates even lesser
redundancy when the network is more congested. Note
that although FUSO’s redundancy helps to improve the
latency flows’ FCT, they do incur some extra load to the
network and slightly affect the overall network through-
put. Compared with MPTCP, which uses the same con-
gestion control as FUSO but incurs zero extra load, the
average throughput of all flows in FUSO is ∼7.8% lower
to ∼3.4% higher at various loads.
5.2.3 Congestion Loss: Incast

Now, we focus on the congestion loss at the edge
which is a very challenging scenario for FUSO, to in-
vestigate whether FUSO is cautious enough to avoid
adding congestion when there is no spare capacity in
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Figure 6: Incast: Request completion time and the average extra
load of all FUSO flows.

the bottleneck link. We deploy a receiver application on
H1 to simultaneously generate requests to a number of
sender applications deployed on H2-H6. After receiv-
ing the request, each sender immediately responds with
a 64 KB data using the maximum sending rate. This
traffic pattern, which is called incast [5], is very com-
mon in MapReduce-like [37] applications. We use all
physical sending hosts in our testbed to emulate multi-
ple senders [38]. We measure the completion time when
all the responses have been successfully received. In this
case we do not inject failure loss.

Results: Fig. 6(a) shows the request completion time
as the number of senders (i.e., fanout) grows. When the
fanout is below 44, FUSO, MPTCP, TCP and TLP be-
have similarly. As studied before [24, 39], a small min-
RTO and appropriate ECN setting can offer a fairly good
performance for standard TCP in the incast scenario. Be-
cause the total response size equals 64KB×fanout, the
completion time linearly grows as the fanout increases.
When fanout grows above 44, timeout occurs in MPTCP,
which leads to a sudden rise of completion time. It is
due to the relatively high burstiness caused by multiple
sub-flows. However, FUSO’s multi-path loss recovery
scheme compensates this burstiness and remains an ap-
proximately linear growth of completion time in FUSO.
The performance begins to degrade for all methods when
the fanout exceeds 48. FUSO keeps performing the best,
and keeps the completion time below 51.2ms even when
the fanout becomes 70.

RepFlow and Proactive always take roughly twice the
time to complete the query even when fanout is low (e.g.,
<23), because they duplicate every flow (or packet) and
add a certain excessive extra load to the network. As the
fanout becomes larger, many timeouts occur and signif-
icantly impair the performance of them. For example,
for a fanout of 30, RepFlow and Proactive need ∼47ms
and ∼58ms to complete the request, respectively, while
FUSO only needs less than 25ms. Although duplicat-
ing small flows can help to improve their performance
under some lossy cases, it is not adaptive to compli-
cated DCN environments, and even deteriorates the per-
formance especially when the network is congested by
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Figure 7: Various number of sub-flows: 99th FCT (log scale) and
timeout fraction of the latency-sensitive flows, while one network
path is lossy.

the small flows themselves. On the contrary, Fig. 6(b)
shows that FUSO can gracefully adapt to the network
condition and throttle the extra load in such extremely
congested scenarios.
5.2.4 Various Number of Sub-flows

Now, we investigate the impact of the number of sub-
flows on FUSO’s performance. The settings are the
same as in the network loss experiment in §5.2.1. We
compare FUSO with 1,2,4 and 8 sub-flows, denoted as
FUSO1,2,4,8. Note that FUSO1 simply retransmits the
suspected lost packets in the same flow after the original
packets before standard TCP loss recovery begins, with-
out using multi-path.

Results: Fig. 7 shows the results. We can see that
FUSO behaves better as it explores more paths using
more sub-flows. Only adding redundancy without lever-
aging multi-path diversity causes the inferior perfor-
mance of FUSO1. FUSO4 can offer a fairly good per-
formance that is very close to FUSO8, which means 4
sub-flows is enough for our small testbed with 3 paral-
lel paths. On the contrary, MPTCP behaves worse as the
number of sub-flows grows, lagged by the last completed
sub-flow on the worst path (see §2.4).

5.3 Large-scale Simulations
Simulation settings: Besides testbed experiments, we

also use ns-2 [30] to build a larger 3-layer, 4-pod sim-
ulated Fat-tree topology. The topology consists of 4
Spine switches and 4 pods below them, each containing
2 Aggregation and 2 ToR switches. All switches have
4 40Gbps ports, and each ToR switch has a rack of 8
10Gbps servers below. Each switch has 1MB buffer per
port, with ECMP and ECN enabled. The whole topol-
ogy contains 20 switches and 64 servers, i.e., the largest
scale for detailed packet-level simulation that could be
finished in an acceptable time on our servers. The base
RTT without queueing is ∼240µs. Given that, the ECN
threshold is set to be 300KB [7]. We set the TCP min-
RTO to be 5ms [3, 16]. The input traffic is generated
the same as in §5.2.2, letting all the clients request both
latency-sensitive queries and background data from ran-
domly chosen servers. Besides web-search [1], we also
evaluate another empirical data-mining workload [10].
Both FUSO and MPTCP use 8 sub-flows to adapt to the
large topology. The results are from 10 runs in total, with
32K flows generated in each run.

Empirical failure loss: To emulate the real condition
in production data centers, we randomly set 5% links to
be lossy. The loss rate of each lossy link is sampled from
the distribution measured in §2.1 (Fig. 1(a)). Note that
we have excluded the part in the distribution with excep-
tionally high loss rate (right most part in Fig. 1(a) with
loss rate > 60%) for sampling. It is because that standard
TCP flows almost cannot finish and often upper-layer ap-
plications operations are triggered (e.g., requesting re-
sources from other machines) under such high loss rates.
We randomly generate those lossy links at different lo-
cations including the edge and network, according to the
real location distribution7 in §2.1 (Fig. 1(b)).

Results: The results in Fig. 8 confirm that FUSO
can gracefully scale to large topologies and complex
lossy conditions. Under all loads, the average FCT of
FUSO is ∼10.4%-60.3% lower than TCP, MPTCP, TLP
and TCP-IR in web search workload, and ∼4.1%-39.4%
lower in data mining workload. Also, the 99th percentile
is ∼29.2%-87.4% and ∼0%-87.9% lower in the two
workloads respectively. TCP-IR chooses a more aggres-
sive loss recovery manner than TLP. This improves the
performance, but TCP-IR still has ∼29.2%-46.5% and
∼0%-6.1% higher 99th FCT than FUSO under two work-
loads, respectively. Lacking multi-path makes TCP-IR’s
loss recovery less efficient, because the recovery pack-
ets may be also dropped while traversing the same lossy
path as the former dropped data packets. Compared with
RepFlow and Proactive which use certain excessive re-
dundancy rate, FUSO still has up to ∼33.9% and ∼2.6%
better 99th percentile FCT under the two workloads re-
spectively, due to the reasons discussed before. Because
the simulated topology has a much higher capacity in the
fabric link (40G) than the access link (10G), the con-
gestion is significantly alleviated compared to the small
testbed topology in §5.2.2. Thus TCP performs better
than MPTCP for small flows in this scenario, because
their performance depends more on the failure loss.

6 Discussion
FUSO follows the principle of prioritizing new data

transmission over loss recovery, utilizing spare oppor-
tunities to conduct proactive loss recovery when there
is currently no new data. As such, FUSO avoids sacri-
ficing throughput to transmit redundant recovery pack-
ets ahead of new data, which would increase the FCT.
Moreover, FUSO can dynamically adapt its redundancy
rate to the network condition (Fig. 5(c) and Fig. 6(b)),
by strictly following the congestion control constraint.
Thus, FUSO naturally generates relatively more redun-
dancy to accelerate loss recovery when the congestion

7There are only 3 layers in our simulation topology, thus we merge
the portion of those lossy links at and above the 3rd layer in the real
topology into one layer in the simulated topology.
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Figure 8: Simulations under 10Gbps fat tree: Average and 99th FCT (log scale) of latency-sensitive flows from web-search and data-mining
workloads. Lossy links are randomly generated according to realistic measurements in §2.1.

is light, and becomes conservative when the congestion
is heavy, which outperforms other methods’ (e.g., TCP-
IR, Repflow, and Proactive) fixed redundancy rate. As
such, FUSO’s redundancy helps to greatly decrease the
FCT, meanwhile only slightly affecting the overall net-
work throughput (§5.2.2).

Although we focus on how FUSO improves the per-
formance of small latency-sensitive flows in §5, FUSO is
also applicable to long flows, which are typically band-
width greedy and cwnd limited. Therefore, the neces-
sary condition for proactive multi-path loss recovery in
FUSO (when there is no more new data to be sent and
the flow has spare cwnd slots) is only triggered at the
end of the long flows. Previous studies [13] have shown
that MPTCP provides a very good performance for long
flows. We first ran experiments to compare FUSO and
MPTCP, and the results (omitted for space limitation)
confirm that FUSO incurs a negligible overhead and be-
haves almost exactly the same as the original MPTCP
for long flows. We then enabled FUSO for all small
and long flows and reran all experiments in §5, and ob-
served that FUSO still outperforms other methods at the
tail FCT. We also note that enabling MPTCP in general
in data centers may hurt the average FCT of small flows
for the following reason (also revealed in [36,41]): Orig-
inally designed for improving long flow’s throughput,
MPTCP’s current congestion control can cause bursti-
ness of multiple sub-flows and drive up queue lengths on
all paths. How to improve multi-path congestion control,
however, is orthogonal to FUSO and beyond the scope of
this paper.

7 Related Work
Besides the works [4, 13–15, 22, 23, 31] that we have

previously discussed in-depth, there is a rich literature
on the general TCP loss recovery (e.g., [18, 19, 32, 42]),
short flows’ tail FCT in both DCN (e.g., [43–45]) and
Internet (e.g., [46, 47]), and utilizing multi-path in the
transport (e.g., [48–51]). Due to space limitation, we do
not review these works in details. The key difference
between FUSO and these works is that, to the best of our
knowledge, FUSO is the first work to address the long
tail FCT of short flows in DCN caused by failure-packet-
loss-incurred timeout. FUSO is also the first systematic
work to utilize multi-path diversity to conduct proactive
transport loss recovery in DCN.

It is noteworthy that several data centers have recently

deployed Remote Direct Memory Access (RDMA) [52,
53], a complementary technique to TCP. It relies on
Priority-based Flow Control (PFC) to remove conges-
tion drops. However, RDMA would perform badly in
face of failure-induced loss (e.g., even a slight 0.1%)
due to its simple go-back-N loss recovery schemes [3].
FUSO is able to deal with both congestion-induced loss
and failure-induced loss, and works for the widely used
TCP in DCN [3, 6, 16]. We will study how to apply the
principle of FUSO to RDMA/PFC in the future.

8 Conclusion
The chase for ultra-low FCT in data center networks

has been a very active research area, and the solutions
range from better topology and routing designs, optical
switching, flow scheduling, congestion control, to pro-
tocol architectures (e.g., RDMA/PFC), etc. This paper
adds an important thread to this area, which is to prop-
erly leverage the inherent multi-path diversity for trans-
port loss recovery, to deal with both failure-induced and
congestion-induced packet loss in DCN. In our proposed
FUSO, when a multi-path transport sender suspects loss
on one sub-flow, recovery packets are immediately sent
over another sub-flow that is not or less lossy and has
spare congestion window slots. Our experiments show
that the fast yet cautious FUSO can decrease the tail FCT
by up to ∼82.3% (testbed) and ∼87.9% (simulation).
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