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Abstract

We present a real-time approach for image-based local-
ization within large scenes that have been reconstructed
offline using structure from motion (Sfm). From monocu-
lar video, our method continuously computes a precise 6-
DOF camera pose, by efficiently tracking natural features
and matching them to 3D points in the Sfm point cloud.
Our main contribution lies in efficiently interleaving a fast
keypoint tracker that uses inexpensive binary feature de-
scriptors with a new approach for direct 2D-to-3D match-
ing. The 2D-to-3D matching avoids the need for online
extraction of scale-invariant features. Instead, offline we
construct an indexed database containing multiple DAISY
descriptors per 3D point extracted at multiple scales. The
key to the efficiency of our method lies in invoking DAISY
descriptor extraction and matching sparingly during local-
ization, and in distributing this computation over a window
of successive frames. This enables the algorithm to run in
real-time, without fluctuations in the latency over long du-
rations. We evaluate the method in large indoor and out-
door scenes. Our algorithm runs at over 30 Hz on a laptop
and at 12 Hz on a low-power, mobile computer suitable for
onboard computation on a quadrotor micro aerial vehicle.

1. Introduction
The problem of computing the position and orientation

of a camera with respect to a geometric representation of
the scene, which is referred to as image-based localiza-
tion, has received a lot of attention in the computer vi-
sion community. It has important applications in loca-
tion recognition [23, 26, 13, 18], autonomous robot naviga-
tion [24, 20, 1] and augmented reality [15, 10, 33]. Broadly
speaking, there are two approaches to image-based local-
ization. The first addresses the problem of simultaneous
localization and mapping (SLAM), where the camera is lo-
calized within an unknown scene. In contrast, approaches
in the second category use the knowledge of a prior map
or 3D scene model. Several recent methods fall in the

Figure 1: Our method can precisely localize a camera in real-time
within a scene reconstructed offline using Sfm. The flight path of
a quadrotor micro aerial vehicle (MAV) within a 8m × 5m room
(reconstruction has 76K points), and 3D points that were matched
to 2D features in the current frame (LOWER-LEFT), are shown.

second category [13, 10, 18, 25], and this renewed inter-
est has been sparked by progress in structure from motion
(Sfm) [29, 14], which makes it possible to easily reconstruct
large scenes in great detail.

Despite the scalability of recent approaches [13, 18, 25],
real-time image-based localization in large environments
remains a challenging problem. As the scene gets larger,
recognizing unique identifiable landmarks becomes more
challenging. In [13, 18, 25], this difficulty is overcome by
using sophisticated image features such as SIFT [19], but
these are too expensive to compute in real-time. On the
other hand, some visual SLAM [15, 7, 36] systems are real-
time, but their performance degrades in larger scenes, where
map maintenance becomes progressively expensive. These
techniques are also fragile if the camera moves too quickly,
which makes them less attractive for persistently computing
a precise camera pose over longer durations.

Recently, image-based localization has gained impor-
tance for autonomous aerial navigation, especially in GPS-
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denied areas [1]. It is particularly attractive for micro-aerial
vehicles (MAV), such as the PIXHAWK quadrotors [20],
which have limited payload but are capable of full-fledged
onboard vision processing. However, previous approaches
[13, 18, 10, 25] are not fast enough for such platforms.

In this paper, we propose a new approach for continu-
ously localizing a camera within large environments, which
have already been reconstructed using Sfm. Our algorithm
is real-time and runs over long periods with low fluctuations
in the frame-rate. At its core lies a fast keypoint tracker.
Keypoints (Harris corners) from one frame are tracked in
the following frame by matching to candidate keypoints
within a local search neighborhood [30] in the next frame.
Inexpensive to compute, binary feature descriptors (BRIEF)
[6] are used to find the best frame-to-frame match. This
fast tracker is interleaved with a new, efficient approach to
find corresponding 3D points in the Sfm reconstruction to
the tracked keypoints. These 2D-3D correspondences then
robustly determine the camera pose for each frame. For de-
termining these correspondences, we match features using
more expensive DAISY descriptors [31, 37], and a kd-tree
index over the descriptors. This approach is related to re-
cent work on direct 2D-to-3D matching [25]. However, in
contrast to their work which focuses on localizing single
images, we address the problem of continuous localization
from video over long durations and propose several modifi-
cations to exploit spatio-temporal coherence.

We are able to achieve real-time performance by avoid-
ing the need for scale-invariant keypoints at runtime. This
is a key distinction from prior approaches [13, 10, 18, 25],
which rely on the scale-invariance of SIFT [19]. However,
matching features across different scales is important for re-
liable 2D-to-3D matching and we address this requirement
by computing redundant descriptors during offline process-
ing, i.e. multiple descriptors for each 3D point in our recon-
struction, extracted at different scales from multiple images.
By storing corresponding camera indices along with the
descriptors, we can efficiently perform place recognition,
which we use to prune false 2D-3D matches prior to geo-
metric verification during camera pose estimation. Other in-
direct methods first perform keyframe recognition [10, 13]
using global image descriptors [7] or with local image fea-
tures and a hierarchical bag-of-visual-words model [21].
However, they incur the overhead of storing images or fea-
tures in memory and having to geometrically verify the pair-
wise feature matches during online processing.

Our feature matcher can also be used for localizing a
single image from scratch. This is vital for localizing the
camera in the first frame or for quick relocalization when
the camera is lost. However, at other times when tracking is
successful, we adopt a much more efficient guided matching
approach for 2D-to-3D matching, similar to strategies used
in SLAM [9, 15]. Unlike traditional robust feature match-

ing [19, 28], where ambiguous matches are usually pruned
using a ratio-test [19, 13, 25], we recover multiple (one-to-
many) 2D-3D match hypotheses for each tracked keypoint,
and prune outliers later, during robust pose estimation. We
optimize guided matching further, by distributing the com-
putation in batches over a window of successive frames.
By avoiding too many descriptor computations and kd-tree
queries all at once, large fluctuations in the per-frame pro-
cessing time are prevented. With lower per-frame latency,
keypoints with known 3D point correspondences are typi-
cally tracked over longer sequences. This higher efficiency
in tracking amortizes the cost of the relatively more expen-
sive feature matching step, by requiring the matcher to be
invoked less frequently over longer periods of time.

1.1. Related Work

A number of existing works in image-based localization
have adopted an image-based retrieval approach to the prob-
lem, and used it for urban scene navigation [23] and city-
scale location recognition [26]. However, these approaches
often recover an approximate location estimate or may not
even compute a complete 6-DOF pose. Existing work on
markerless augmented reality [8, 16] addresses real-time
3D camera tracking but typically only with respect to spe-
cific objects, that often requires a CAD model of the object.

Approaches for 3D camera tracking using visual land-
mark recognition [28] based on SIFT features [19], was
proposed for global localization and used for robot navi-
gation [27]. However, the need for repeated pairwise image
matching in these approaches makes them too slow for real-
time systems. Efficient keypoint recognition with random-
ized trees [17] and random ferns [22] have enabled real-time
camera tracking, but their significant memory requirements
have limited their use beyond relatively small scenes.

SIFT features [19] are also used in recent work [13, 18,
25] on location recognition, where Sfm is used to estimate
3D coordinates for the landmarks. The approaches scale
well and some variants use the GPU [13]. However, these
methods address the single-image localization problem, and
are not fast enough for real-time localization from video.

Recently, a method for continuous localization was pro-
posed for scenes reconstructed using Sfm [10]. It uses
keyframe recognition repeatedly on video frames to indi-
rectly recover 2D-3D matches. SIFT feature extraction is
also the bottleneck in their method, which runs at 6 fps on
a single thread and at 20 fps using parallel threads on four
cores. Although our approach is related, it differs in the fol-
lowing ways – we explicitly track keypoints using binary
descriptors [6], to amortize the cost of feature matching
over time, which is performed only as needed. Instead of
keyframe-based matching, we use 2D-to-3D matching in-
terleaved with tracking. This allows us to exploit spatio-
temporal coherence and lowers the per-frame latency.



Real-time localization approaches for augmented reality
on mobile devices have also been recently proposed [2, 33,
7]. However, these approaches derive their speedup from
tracking relatively fewer features, making them less suitable
for continuous 6-DOF localization in larger scenes or over
longer durations. An efficient approach for tracking scale-
invariant features in video was proposed in [30], but it was
used for object recognition, not real-time localization.

Visual SLAM systems have recently been used for real-
time augmented reality [9], by utilizing parallel threads for
tracking and mapping (PTAM) [15], using multiple local
maps [7] and performing fast relocalization using random
ferns [36]. However, these approaches are susceptible to
the problem of drift and error accumulation in the pose es-
timate, and existing solutions for fast relocalization do not
scale to larger scenes. Visual SLAM (PTAM) [15] was re-
cently used onboard a micro aerial vehicle for vision-based
position control i.e. hovering at a pre-specified location [1],
and autonomous navigation was demonstrated for scenes
with salient visual features [20, 4]. However, these ap-
proaches focus more on the challenges of autonomous flight
control, and so far have demonstrated vision-based localiza-
tion either in small areas or within controlled scenes.

2. Key elements of the proposed approach
We now discuss our scene representation and the

building blocks of the new 2D-to-3D matching approach.
The offline and online stages of our algorithm are described
in Sections 2.3 and 3 respectively. Real-time localization
requires efficient 2D-to-3D matching in two specific sce-
narios. First, for initializing localization or relocalization,
the camera pose must be efficiently computed from a single
image from scratch [25, 18, 13, 10]. We call this global
matching, which is challenging because the complete
map must be searched. However, for intermediate video
frames, a pose estimate computed from tracked features
with known 3D point matches is used to significantly speed
up the search for the keypoints with unknown correspon-
dences; we call this guided matching.

Scene representation. Our representation consists of a
3D scene reconstruction in a global coordinate system,
which is computed using Sfm [29] on an input sequence.
This consists of the calibrated images, a 3D point cloud
and a set of 2D-3D matches, that encode the views
from which a particular 3D point was triangulated from
during Sfm. The calibrated images are used to build a
database of feature descriptors for the 3D points, and
a kd-tree index is constructed over the descriptors to
support efficient approximate nearest neighbor (ANN)
queries during feature matching. We extract keypoints
using the Harris corner detector at multiple scales and
compute DAISY descriptors [31], in particular T2-8a-2r6s

descriptors [37] for each keypoint1. Descriptors in the
database are labeled with their image indices, and the
mapping between descriptors and corresponding 3D points
is saved in a lookup table. This makes retrieving 3D
points corresponding to the descriptors in the database
very efficient. We further optimize the point retrieval
by grouping cameras into overlapping clusters and use
them for place recognition, as described later in this section.

Multi-scale features. To avoid extracting scale invariant
keypoints (e.g. DoG [19]) during online computation, of-
fline we store in a database multiple descriptors for each
3D point from keypoints detected across a range of scales.
First, multi-scale Gaussian image pyramids are computed
and Harris corners are extracted in all levels of the pyra-
mids. At each keypoint, its orientation is computed by find-
ing a peak in the gradient orientation histogram [19], and a
rotation invariant T2-8a-2r6s-32d DAISY descriptor [37] is
computed from a resampled patch.

The 3D points in the map are then projected into the im-
ages they were triangulated from during Sfm. For each key-
point in a particular pyramid level of an image, the closest
point amongst all 2D projections of the 3D points corre-
sponding to that image is computed. If the closest point is
within a threshold of τ pixels 2 (we set τ=2.0), that keypoint
and its descriptor is assigned to the corresponding 3D point.
This computation is performed for each image pyramid to
generate all the descriptors for the 3D points in the map.

Having multiple descriptors, as described above, has an
associated overhead in storage. However, the redundancy
in this representation allows keypoints extracted at a fixed
scale during online localization to be matched to a set of
descriptors in the database, as long as one of the descriptors
in this set was extracted at a similar scale. Using multiple
descriptors per 3D point is advantageous for ANN queries
during feature matching for reasons pointed out in [5],
where using multiple descriptors boosted the accuracy of a
simple nearest neighbor classifier for image classification.

Place recognition. In large scenes, global matching be-
comes more difficult due to greater ambiguity in feature de-
scriptors. A query descriptor in an image could match de-
scriptors for several different 3D points, which are similar
in appearance. To address this, we perform coarse location
recognition to filter as many incorrect 2D-3D matches as
possible before the geometric verification step. As a result,
fewer RANSAC [11] hypotheses will be required during ro-
bust pose estimation, making that step more efficient.

For place recognition, we cluster nearby cameras during
the offline stage into location classes, which are identified
by solving an overlapping view clustering problem [12],

1using PCA to reduce the dimension to 32.
2the distance is computed in the appropriate pyramid level.



where cameras with many Sfm points in common are
grouped into the same cluster. We use an approach similar
to the one proposed in [12], for clustering Internet image
collections, which iterates between finding a disjoint parti-
tion of the cameras by analyzing the match graph from Sfm,
and growing the clusters locally by including cameras from
neighboring clusters to improve the coverage of 3D points
[12, 18]. When localizing an image, the most likely location
class is selected using a simple voting scheme over the set of
matching descriptors returned by the ANN query on the im-
age descriptors. Matched descriptors that correspond to 3D
points that do not belong to the selected location cluster are
removed. This approach is non-parametric in comparison
to some approaches that cluster features in pose space [19],
to achieve a similar goal. The global and guided matching
are next described in more detail.

2.1. Global matching

Given 2D keypoints in an image and their corresponding
DAISY descriptors denoted as Q = {qi}, we seek to re-
trieve a set of 3D point correspondences for them. For each
descriptor qi, we perform a k-ANN query based on priority
search using a kd-tree [3, 19], which retrieves approximate
nearest neighbors Di = {dij} sorted by increasing distance
{sij}, j = 1 . . . k, from qi. For each neighbor dij , where
sij < σsi0, the corresponding 3D point Xij is retrieved,
and every cluster that Xij belongs to, receives a vote equal
to its strength si0/sij 3. We find the highest score s̃ amongst
the clusters, and select the clusters that have a score of at
least βs̃. The set of images in the selected clusters is de-
noted as S. We set parameters k = 50, σ = 2.0 and β = 0.8.

The set of retrieved descriptorsDi is filtered by retaining
descriptors corresponding to the selected database images
in S. Next, for each query qi, we compute a set of retrieved
3D points, where a matching strength for each 3D point is
obtained by summing the strengths of its corresponding de-
scriptors dij , which were computed earlier. Finally, two
set of matches are constructed. The first set contains the
best 3D point match for each keypoint, where the best two
matches based on matching strength, passed a ratio test with
a threshold of 0.75 [19]. The second set contains one-to-
many 3D point matches; for each keypoint all the matches
with ratios greater than 0.75 were included. The two set of
matches are used for pose estimation. The first set is used
for generating RANSAC hypotheses whereas the second set
is used in the verification step.

2.2. Guided matching

During guided matching, other than the usual set of key-
points and query descriptors, we are also given an additional
set of keypoints with known 3D point correspondences.

3Each 3D point could belong to multiple overlapping clusters.

This knowledge will be exploited to efficiently retrieve 2D-
3D matches for the query set. Unlike global matching,
where a voting scheme was used to narrow down the search
to a few images, here, the scope is computed by inspecting
the known 2D-3D correspondences. Concretely, we count
the number of 3D points (from the known matches) visible
in each image and then select the top 30 database images
where some 3D points were visible. The k-ANN search for
the query descriptors is now constrained to retrieve descrip-
tors that belong to one of the selected images.

Although this check could have been enforced after the
nearest neighbor search step, significant speedup is obtained
by avoiding unnecessary distance computations during the
backtracking stage of the kd-tree search. Thus, by check-
ing the descriptor’s image label, the ones that are out-of-
scope can be rejected early. We take the descriptors re-
turned by the nearest neighbor query and obtain 3D point
matches from them using the steps described in Section 2.1.
The final matches are obtained after geometric verification
is performed on the one-to-many 2D-3D matches using the
camera pose estimate computed from the known matches.

2.3. Offline Preprocessing

The offline steps of our algorithm are now summarized.
- The input images are processed using Sfm.

- The cameras are grouped into overlapping clusters.

- Keypoints are extracted in Gaussian image pyramids and
multiple DAISY descriptors are computed 4.

- A kd-tree is built for all the descriptors with image labels,
and appropriate lookup tables are constructed.

During online localization, we currently assume that the
feauture database and map will fit into main memory. How-
ever, an out-of-core approach should be possible for larger
scenes, where the map is partitioned into overlapping sub-
maps, kd-trees are built for each of them and only a few
relevant sub-maps need to be memory at any time.

3. Real-time Localization
In this section, we introduce our approach for 2D key-

point tracking in video. We then discuss how guided match-
ing is interleaved with tracking and finally describe pose es-
timation and filtering in brief. Algorithm 1 summarizes the
online algorithm for localizing frame f , given the map M ,
and a track table T , which is updated every frame. The table
T stores the features tracks, feature descriptors, multiple 3D
point match hypotheses and other attributes.

3.1. Keypoint Tracking

To track features in video, we extract Harris corners in
the original frame as described earlier. Next, for a µ × µ

4Our pyramid has two octaves and four sub-octaves.



pixel, square patch around each keypoint, a 256-bit BRIEF
descriptor [6] is computed. The keypoints tracked in the
prior frame are compared to all the keypoint candidates in
the current frame, within a ρ× ρ search window around its
respective positions in the prior frame. BRIEF descriptors
are compared using Hamming distance 5, and the best can-
didate is accepted as a match, when the ratio between the
best and second-best match is less than ψ. We set param-
eters µ=32, ρ=48 and ψ=0.8. In Algorithm 1, TRACK-2D

performs keypoint tracking. When the feature count drops
below κ1(= 25), new candidates are added (ADD-GOOD-
FEATURES) in regions where there are no tracked keypoints.

BRIEF descriptors lack rotational and scale invariance,
but can be computed very fast. Using BRIEF, our method
can track many more features than KLT [32], for a given
computational budget. Keypoint extraction is the main bot-
tleneck in our tracker. We have tried using FAST corners,
but found Harris corners to be more repeatable. We do not
prune the detected Harris corners using a non maximal sup-
pression step, but instead, select all keypoint candidates that
have a cornerness value greater than an adaptive threshold.
The contrast-sensitive threshold is set to γr̃ where r̃ is the
maximum cornerness of keypoint candidates in the previous
frame and γ = 0.001. We do not perform any geometric ver-
ification during tracking, but let the subsequent RANSAC-
based pose estimation step handle outliers.

3.2. Distributing matching computation

When many new keypoints are added in ADD-GOOD-
FEATURES, computing their DAISY descriptors and query-
ing the kd-tree immediately will increase the latency in
those frames. However, these matches are not needed right
away. Therefore, we distribute this computation over sev-
eral successive frames, performing guided matching only
on a small batch of keypoints at a time (usually 100–
150), until all pending keypoints have been processed (i.e.
MATCHES-PENDING returns false). Our lazy evaluation strat-
egy also reduces the overall number of descriptors/queries
computed. This is because the tracker usually drops many
features right after new keypoints are inserted into the track
table and by delaying the matching computation, we avoid
wasting computation on keypoints that do not get tracked. A
verified 2D-3D match is saved in the track table and reused
as long as the keypoint is accurately tracked. When fewer
than κ2 (= 10) 2D-3D matches are available to the tracker,
it relocalizes by calling GLOBAL-MATCHING.

3.3. Pose Estimation and Filtering

Given 2D-3D matches, the 6-DOF pose is robustly com-
puted. First, RANSAC is used with three-point pose esti-

5computed with bitwise XOR followed bit-counting using the parallel
bit-count algorithm [http://graphics.stanford.edu/ seander/bithacks.html].

Algorithm 1 P ← LOCALIZE-FRAME (f , T , M )
KALMAN-FILTER-PREDICT ( )
P ← ∅
K ← EXTRACT-KEYPOINTS (f )
η ← TRACK-2D (f , K, T )
if η < κ1 then

ADD-GOOD-FEATURES (f , K, T )
end if
C1 ← FETCH-2D-3D-MATCHES-FROM-TABLE ( T )
if |C1| > κ2 then
P ← ESTIMATE-POSE ( C1 )
if MATCHES-PENDING ( T ) then

GUIDED-MATCHING (f , T , P , M )
end if

else
GLOBAL-MATCHING (f , T , M )

end if
C2 ← FETCH-2D-3D-MATCHES-FROM-TABLE ( T )
if |C2| > κ2 ∧ C1 6= C2 then
P ← ESTIMATE-POSE ( C2 )

end if
KALMAN-FILTER-UPDATE ( P )
return P

Name size (m.) Cams. Pts. D L Mem.

LAB 8 × 5 2111 76,560 1,019,253 450 124 MB

HALL 30 × 12 2749 88,248 1,377,785 253 111 MB

OUTDOOR1 from [10] 1448 120,313 1,241,045 188 117 MB

OUTDOOR2 from [10] 1011 26,484 1,282,227 126 107 MB

Table 1: DATASETS: The scene size, the #cameras (Cams.) and
the #3D points (Pts.) in the offline 3D reconstruction, the #DAISY
descriptors (D) in the database, the #camera clusters (L) and the
in-memory footprint (Mem.) of each dataset is listed.

mation [11] to find the set of inliers, after which the pose
parameters are refined using non-linear least squares opti-
mization. If less than 10 inliers are found, the estimate is
rejected. Finally, the pose is filtered with a discrete Kalman
filter that take position and orientation as input and esti-
mates velocity. It assumes a constant velocity, constant an-
gular velocity motion model similar to [9]. Currently, this
is implemented as two independent filters for position and
orientation6, similar to the implementation in [20], which
explains why this choice is suitable for a quadrotor MAV.

4. Experiments
We have tested our method on ten sequences from four

different scenes. This is summarized in Tables 1 and 2.
The eight LAB and HALL sequences were captured from a
PtGrey Firefly-MV camera at 30 fps. Two of them were
acquired with the camera mounted on our quadrotor MAV,
while it was flown manually. OUTDOOR 1–2 are webcam

6We provide details in the supplementary material [35].



Figure 2: LAB-WALK1 SEQUENCE (237 FRAMES): [TOP] The #detected keypoints, #tracked keypoints and #keypoints with 2D-3D
matches are shown. [MIDDLE] The red curves shows the per-frame processing time. Frames where guided matching and global matching
is computed is shown with grey and tall black bars (first frame) respectively. [BOTTOM] The per-frame error in position (in cm.) and
orientation (in degrees). The evaluation methodology is explained in the text. The maximum position error (within a 8 × 5 m. room)
occurs when relatively fewer 3D points are being tracked, but this error becomes smaller as the system starts tracking more 3D points.

Map Sequence F Floc T (ms.) M TM (ms.)

LAB WALK1 237 237 (100%) 19 ± 4 10 (4%) 27 ± 11

LAB WALK2 3793 3790 (99.9%) 18 ± 3 210 (6%) 23 ± 6

LAB FLIGHT1 1000 1000 (100%) 17 ± 2 34 (3%) 22 ± 5

LAB FLIGHT2 1210 1204 (99.5%) 17 ± 3 47 (4%) 23 ± 7

HALL WALK1 475 475 (100%) 17 ± 3 27 (6%) 20 ± 7

HALL WALK2 713 712 (100%) 17 ± 2 30 (4%) 20 ± 4

HALL WALK3 540 540 (100%) 16 ± 1 33 (6%) 18 ± 3

HALL WALK4 201 201 (100%) 16 ± 8 4 (2%) 24 ± 7

OUTDOOR1 1033 1033 (100%) 21 ± 4 169 (16%) 25 ± 6

OUTDOOR2 605 603 (99.6%) 27 ± 10 115 (19%) 40 ± 15

Table 2: TIMINGS: The #frames (F ), #frames localized (Floc)
and the timing on a laptop (T ) (mean± std. dev.) listed for all test
sequences, as well as the number of frames in which matching was
performed (M ) and the average timing for those frames (TM ).

sequences from [10], which were made publicly available
online. The videos were processed at 640× 480 resolution.

Timings. A single-threaded C++ implementation of our
algorithm runs at an average frame-rate exceeding 30 Hz
on all our datasets, on a laptop with an Intel Core 2 Duo
2.66GHz processor running Windows 7 (see Table 2). It
is about fives times faster than the single-threaded imple-
mentation of the approach proposed in [10] with a reported
frame-rate of 6Hz with a single core and 20Hz using four
cores. The frame-rate of our method on the OUTDOOR
datasets from [10] varies between 20 to 50Hz (see Table 2).
Figure 4 shows how our efficient 2D-to-3D matching ap-
proach minimizes fluctuations in the frame-rate and low-

(a)

(b)
Figure 3: OUTDOOR SEQUENCES from [10]: The trajectories es-
timated by our method (in blue) are qualitatively similar to those
computed using offline Sfm (in red).

ers the processing overhead for extracting and matching
DAISY features. For the two minute long LAB-WALK2 se-
quence, our system took 75 ms. in the first frame, 40–55 ms.
for relocalization, and on average only 18 ms. per frame.
The supplementary video shows our system in action [35].
Evaluation. To evaluate the accuracy of our estimates, we
performed offline Sfm on the LAB-WALK1 sequence 7 and
robustly registered this reconstruction to the original map.

7we processed all the 237 frames in addition to all the original images.



The true scale of the map was computed using known dis-
tances between scene landmarks. The camera position and
orientation estimates from our method were compared to
these pose estimates 8. Figure 2 shows the error in pose
alignment for the LAB-WALK1 sequence (along with other
relevant statistics). The average position and orientation er-
ror for this sequence was 5.1 cm. and 1.7 degrees respec-
tively. The size of the LAB scene was 8m × 5m.

The accuracy of our method can also be qualitatively
judged from Figure 3, which shows the camera trajectories
from our method and from offline Sfm on the OUTDOOR
sequences. The two trajectories are well aligned. This con-
firms the accuracy of the position estimates, even though a
quantitative evaluation was not possible due to the unknown
map scale. The mean camera orientation error for the two
sequences was 1.4 and 1.6 degrees respectively. Accord-
ing to [10], the visual SLAM system (PTAM) [15], failed on
both these sequences due to fast camera motion, even when
it was configured to run at slower than real-time (5 fps).

We also tested our method on the larger HALL scene
which contains a narrow corridor, doorways and some
textureless walls. The relatively fewer salient visual fea-
tures makes 2D-to-3D matching more challenging in this
scene. All frames from the four sequences were accurately
localized using our approach at frame-rates exceeding 30
Hz (see Table 2). Figure 5 shows the recovered trajectories.

MAV Experiments. To evaluate the feasibility of our
approach running onboard a MAV, we designed our own
quadrotor vehicle mounted with the Firefly camera and a
FitPC2i computer [34] running Windows 7. The FitPC,
which has an Intel Atom Z550 2GHz CPU, 2GB RAM and
a 64GB SSD drive, weighs less than 500gms. (incl. battery)
and consumes only 10W at full load 9. Our algorithm runs
at about 12Hz on the FitPC. It was tested on the two flight
sequences from the LAB dataset. All the frames processed
from the FLIGHT1 sequence and 98.5% of those processed
from the FLIGHT2 sequence were successfully localized 10.
The frame-rate in our case is comparable to the 5-10 Hz on-
board visual SLAM system [15] used for vision-based posi-
tion control [1]. These experiments show that if combined
with an inertial measurement unit (IMU), our method could
be used for autonomous aerial navigation in areas larger and
more complex than what has been tackled before [1, 4, 20].

5. Conclusions and Future Work
In this paper, we have proposed a new approach for real-

time video-based localization in scenes reconstructed of-
fline using Sfm. Our algorithm efficiently combines key-

8orientation error was measured with the angle metric, where error be-
tween rotations R1 and R2 is the angle of the rotation R1R2

T .
9Some advanced MAVs have faster onboard computers [20].

10When the processing exceeded 33 ms., we skipped the next frame.

point tracking in video with direct 2D feature to 3D point
matching, without requiring scale-invariant image features.
It exploits spatio-temporal coherence, invoking expensive
feature matching computations sparingly and distributes the
computation over time. Our implementation can process
640 × 480 video faster than video-rate on a laptop. Pre-
liminary tests demonstrate that it is practical for onboard
computation on a micro aerial vehicle and could be practi-
cal for autonomous navigation. Our approach can fail when
the camera faces a part of the scene poorly represented in
the map. Using visual SLAM to dynamically extend the
map in real-time to address this limitation is an interesting
avenue for future work.
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