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Abstract
Today, we depend on numerous large-scale services for
basic operations such as email. These services are com-
plex and extremely dynamic as developers continuously
commit code and introduce new features, fixes and, con-
sequently, new bugs. Hundreds of commits may enter
deployment simultaneously. Therefore one of the most
time-critical, yet complex tasks towards mitigating ser-
vice disruption is to localize the bug to the right commit.

This paper presents the concept of differential bug lo-
calization that uses a combination of differential code
analysis and software provenance tracking to effectively
pin-point buggy commits. We have built Orca, a cus-
tomized code search-engine that implements differential
bug localization. On-Call Engineers (OCEs) of Orion,
a large enterprise email and collaboration service, use
Orca to localize bugs to the appropriate buggy commits.
Our evaluation shows that Orca correctly localizes 77%
of bugs for which it has been used. We also show that it
causes a 3x reduction in the work done by the OCE.

1 Introduction
Orion 1 is a large enterprise email and collaboration ser-
vice that supports several millions of users, runs across
hundreds of thousands of machines, and serves millions
of requests per second. Thousands of developers con-
tribute code to it at the rate of hundreds of commits per
day. Dozens of new builds are deployed every week.
Software bugs are bound to be common in such a com-
plex and dynamic environment. It is critical to detect
and promptly localize such bugs since service disrup-
tions lead to customer dissatisfaction and significantly
lower revenues [21].

When a service disruption happens because of a soft-
ware bug, the first-step towards mitigating its effect is
to localize the responsible bug to the right commit. We
call this commit-level bug localization. This is a non-
trivial task since the intense pace of development de-
mands that multiple commits be aggregated into a sin-
gle deployment. In addition, commit-level bug localiza-
tion needs to happen as quickly as possible so that buggy

1Name changed.

commits can be reverted promptly thereby restoring ser-
vice health. About half of all Orion’s service disruptions
are caused by software bugs.

Unfortunately, bug localization in large services such
as Orion is a cumbersome, time-consuming, and error-
prone task. The On-Call Engineers (OCEs) are the first
points-of-contact when a disruption occurs, and they are
responsible for bug localization. Though knowledgeable,
on-call engineers can hardly be expected to have com-
plete and in-depth understanding of all recent commits.
Moreover, bugs that emerge after deployment are com-
plex and often non-deterministic. And yet, very few tools
exist to enable OCEs to perform this critical task.

Our goal is to build a tool that will help OCEs correctly
and swiftly localize a bug to the buggy commit. Over
a period of eight months, we studied post-deployment
bugs, their symptoms, the buggy commits that caused
them, and the current approach to bug localization that
Orion’s OCEs follow. We made four key observations.

1) Bug localization is time-critical, bug fixing is not.
When a bug disrupts a service, the OCE’s task is to keep
the service disruption time to a minimum. She finds the
buggy commit as fast as possible and reverts it rather than
wait for the concerned developer to fix the bug. The rea-
son is that, depending on the complexity of the bug, the
developer may take a long time to fix it. Therefore to
keep disruption to a minimum, it is better to revert the
buggy commit first and introduce the fix at a later time.
Thus, fast commit-level bug localization is critical.

2) Rich monitoring infrastructure exists but is insuffi-
cient because of uncaptured dependencies. Since service
disruptions are a major concern, developers have cre-
ated thousands of active probes that periodically moni-
tor service-components or API calls and raise alerts if
they fail. Despite this, bug localization is a challenge
because a probe to a component may fail not because
of any change to the component itself, but because of a
change to another component that depends upon it. For
instance, a server-side probe failed with an exception
Type RecipientId not supported because a
developer made a commit to client-side code that added
support for the data type RecipientIdwithout adding
support on the server-side. To make matters worse, as the
service evolves fast, new dependencies emerge at a rapid



rate and no tool can completely capture all of them.
3) Symptom descriptions and their causes tend to have

similar terms. We have found that when a probe de-
tects a bug, a similarity often exists between terms in
the unhealthy probe name or exception text that it gen-
erates and the source-code change that caused the bug.
In the example mentioned in the previous paragraph, the
term recipient occurs in both symptom (the excep-
tion text) and cause (added support to the data type on
the client). We also see this similarity in some customer
complaints as well which predominantly use natural lan-
guage. For instance, a customer recently complained that
“Email ID suggestions for people I know is not work-
ing.”. The cause for this was an incorrect change to a
function named PeopleSuggest.

4) Bugs may appear well after the buggy commit is
deployed. We observed that while the symptoms of a
bug appear in a current build, the cause may be a commit
deployed in a much older build. These are particularly
challenging for the OCE to localize because they have to
investigate, in the worst-case, all commits in the current
build before moving on to investigate an older build. This
can significantly lengthen service disruptions.

Keeping these observations in mind, we design a novel
search technique that we call differential bug localiza-
tion. Using descriptions of the bug as a query, we de-
tect changes to the abstract syntax tree in the source-code
and search only these changes for text-based similarity.
We call this differential code analysis. To find offend-
ing commits in older builds, we introduce a construct
called the build provenance graph that captures depen-
dencies between builds. We designed Orca, a custom
code search-engine that leverages differential bug local-
ization to provide a ranked list of “suspect” commits.

The Orion service has integrated Orca into its alerting
and monitoring processes. This paper describes Orca and
makes the following contributions:

• We provide a study of post-deployment bugs found
in the Orion service and their characteristics (Sec-
tion 3).

• We introduce differential bug localization, which
uses two constructs: differential code analysis of
the abstract syntax tree, and the build provenance
graph. In addition, we use a prediction of commit
risk to call out riskier commits in the list of potential
root-causes (Section 4).

• We have designed Orca, a tool that Orion’s OCEs
are actively using to localize bugs (Section 5).

• We provide an evaluation of Orca for bugs found in
the Orion service (Section 6).

To the best of our knowledge, ours is the first study of a
bug localization tool deployed on a large-scale enterprise
service. We have evaluated Orca on 48 post-deployment
bugs found in Orion since October 2017. We show that
Orca correctly localizes 37 out of 48 bugs for a recall
of 77%. In 30 of the 37 cases, the correct commit was
ranked in the top 5 records shown by our UI (Section 6).
We also show that Orca causes a 3× reduction in the
work done by the OCE.

We have designed Orca for usability and ease-of-
adoption. While this paper concentrates on Orion’s de-
ployment of the tool, Orca has been deployed on five
other services within our enterprise. Our techniques are
generic and extend well to other large services. To make
it easy for OCEs to use the tool interactively, we have
optimized its performance through multiple caching and
preprocessing techniques. Our user-interface provides
results with an average run-time of 5.9 seconds per query.

2 Related Work

The Programming Languages, Software Engineering and
Systems communities have extensively studied bug de-
tection, bug localization and debugging. While Orca
takes inspiration from some of this prior work, it targets
a fundamentally different application space, i.e. large-
scale service deployments. Also, Orca is meant to be
used by on-call engineers, not developers.

A bug localization tool for such services needs to be
fast: the query response time should be at most a few sec-
onds since OCEs will use the UI interactively. It should
be general: the techniques should support code in differ-
ent languages and should not need an OCE or developer
to provide specification. It should be non-intrusive: we
should not require any changes to the service’s existing
coding and deployment practices. Finally, it should be
adaptive: it should work in an extremely dynamic and
changing environment. We now describe prior work in
the area and explain why it does not satisfy some or all
of these requirements.

IR-based Bug localization techniques [3, 25, 35, 36,
38,42,49] use a given bug-report to search, based on tex-
tual similarity, for similar bug reports in the past. For
each match, they localize the bug at the file-level, not at
commit-level, to files that have been changed to address
similar bug-reports. Wang et al. [38] present a structured
and detailed study of the various techniques that are used
for information-retrieval based bug localization. They
use similar search techniques over five major concepts:
version history, bug reports, stack traces, and reporter in-
formation.

While these techniques are fast, general and non-
intrusive, they assume a stationary system, i.e. they as-



sume that there is an inherent similarity between the cur-
rent version of the system and previous versions. This
is fundamentally not true in service deployments. For
instance, Orion experiences a change in module depen-
dencies at the rate of 1% to 3% every month, and some
source-code files consistently change more than once a
day.

Moreover, prior work has mostly studied software
products, not deployed services. Comparatively, the
work presented in this paper is different because it fo-
cuses on (a) dynamic deployments of software services,
and (b) both structured and unstructured queries for lo-
calization of the manifested issue. Finally Orca is de-
ployed and being used in real-time on a large service de-
ployment. To our knowledge, existing bug localization
techniques have not seen such scale of deployment.

Dynamic Analysis techniques are the most commonly
used and widely studied approaches for detecting bugs
and issues in software. Testing and automated fuzz test-
ing techniques [6, 18] provide an effective method to au-
tomatically generate test-cases that produce random in-
puts for the underlying software. Although these tech-
niques are useful, they are complementary to our ap-
proach. Testing is never complete and does not pro-
vide guarantees about the correctness of the software.
As a result, in spite of comprehensive testing, bugs still
emerge regularly in service deployments, as we have no-
ticed with Orion.

To find post-deployment bugs, previous work has pre-
sented statistical techniques [7, 9, 26] to automatically
isolate bugs in programs by tracking and analyzing suc-
cessful and failed runs of the program. While these tech-
nique hold promise, they are intrusive: they requires fine-
grained instrumentation and a large number of program
traces from the service deployment. Given the stringent
performance needs and dynamism in services, we do not
have the luxury of utilizing such techniques.

Delta Debugging techniques [12, 45] help automate
the problem of debugging by providing the debugger or
programmer information about the state of the program
in passing and failing runs. The possible search space
of the root cause is systematically pruned by using in-
formation from the various runs and by creating new ex-
ecutions. The ideas in delta debugging rely heavily on
program slicing [1,39]. Given its requirements, delta de-
bugging tends to require a large number of tests and the
data from instrumented programs. Hence, it is intrusive.

The GIT bisect command [17] is similar in flavor.
Given the last good commit, it uses an algorithm based
on binary search to go through subsequent commits, re-
peatedly test the code, and ultimately localize the prob-
lem to the buggy commit. However, like delta debug-
ging, this may require a large number of testing cycles.
Moreover, a bug in a large deployment may not be repro-

ducible by simple testing.
Static analysis entails analyzing software without ex-

ecuting the programs in question. The analysis may be
performed at the level of the source-code itself, or at the
level of the object code that is generated for execution
(byte code or binary). Analysis is performed by auto-
mated tools that tend to be rooted in some formal method
such as model checking [11], symbolic execution [29],
and abstract interpretation [13]. Although such tech-
niques have shown significant promise in the past, per-
forming such analysis on a large scale for services has
proven to be very slow and intractable. Performing pro-
gram analysis and verification at smaller scales for in-
dividual components is the current limit of such tech-
niques.

Tools such as Semmle [14] provides a unified frame-
work that implements various program analysis tech-
niques and correctness checks. In our experience,
Semmle has proven to be somewhat useful for simple
situations, but it lacks generality.

Differential static analysis techniques such as SymD-
iff [24] are immediately relevant to the problem dis-
cussed in this paper. But differential analysis techniques
are usually property driven; two versions of the program
are analyzed with respect to a specific correctness prop-
erty. For example, the analysis may be performed for as-
serting differences in the new version w.r.t. null pointer
dereferences. We believe this approach too lacks gener-
ality since it is not feasible to enumerate all such proper-
ties of code in large dynamic services with multiple de-
pendent components. Yet, we do draw inspiration from
this work to build Orca’s AST-based differential analysis.

Tools such as Gumtree [15] use differences in ASTs to
derive accurate edit scripts. Their techniques need to be
fine-grained and therefore use heavyweight algorithms
that implement isomorphism detection. Orca uses differ-
ences in ASTs with a different goal: for a changed file,
we use the AST difference to enumerate all changed enti-
ties, such as changed variables, methods, classes, names-
paces, etc. So we use faster, more coarse-grained heuris-
tics than Gumtree, making our techniques much more
performant.

Log Enhancement techniques [44, 47] improve log-
based debugging by making logs richer and more tar-
geted towards diagnosability. We believe such work is
complementary to our approach and Orca can gain sig-
nificantly with such techniques.

3 Overview

In this Section, we first describe the system development
lifecycle of the Orion enterprise email service and the
role of the OCE. We next describe the characteristics



Figure 1: System Development Lifecycle (SDLC) of the Orion Service.

of post-deployment bugs in Orion and motivate the ap-
proaches we adopt in Orca. We provide an overview of
Orca and its goals, and finally state Orca’s scope.

3.1 System Development Lifecycle
Figure 1 shows Orion’s system development lifecycle
(SDLC) and Table 1 holds a summary definition of each
term we use for the reader’s convenience. Multiple de-
velopers commit code, where a commit varies in com-
plexity from a small tweak to a single file to changes to
hundreds, even thousands of files. These commits are
reviewed by one or more reviewers that the developer
chooses. After multiple iterations with the reviewers, the
commits are tested using unit, integration, and functional
tests. Periodically, the administrator creates a new build
by combining a set of commits. A build is a unit of de-
ployment of the service and may contain just one, or hun-
dreds of commits.

Builds are deployed in stages onto rings. A ring is a
pre-determined set of machines on which the same build
runs. The build is first deployed onto the smallest ring, or
“Ring 0”, consisting of a few thousand machines. When
it is considered safe, the build progresses through multi-
ple rings such as Ring 1 and Ring 2 until it is finally de-
ployed world-wide. The idea of this staged deployment
is to find bugs early in the life-cycle.

Once the build is deployed to a ring, several tools mon-
itor it. A tool may use passive or active monitoring tech-
niques, either analyzing logs or sending periodic probes
to a component. It uses anomaly detection techniques to
raise an alert that the OCE receives.

If only the machines running a specific build raise
alerts, the OCE concludes that the build is buggy and
she begins bug localization. Roughly half of all alerts
in Orion are caused by bugs. Consequently, bugs are
a significant reason for service disruption. If the alerts
are not confined to a particular build, the bug is likely
due to other reasons such as faulty networks or hardware

misconfiguration. Root-causing infrastructure issues is
not our focus as several tools already exist for this pur-
pose [43, 46].

To localize the bug to a commit, the OCE picks the
commit that she feels is most likely to cause an issue
and contacts the developer who created it. If the devel-
oper responds in the affirmative that her commit may in-
deed have caused the bug, the commit is immediately re-
verted and the service is restored to a healthy state. Note
that the developer does not necessarily debug or fix the
bug before responding to the OCE. If the developer says
that their commit is not responsible for the bug, then the
OCE picks the next most likely commit, and repeats the
process until the service becomes healthy. Compared to
a novice, an experienced OCE with domain-knowledge
may pick the correct commits more promptly and there-
fore restore the service much faster. Orca removes
this dependency on experience and domain-knowledge
by codifying it in its search algorithms.

3.2 Post-Deployment Bugs
Over a period of eight months, we analyzed various post-
deployment bugs and the buggy source-code that caused
them. Table 2 outlines a few characteristic issues. The
table shows the type of alert, it provides an overview of
the symptom, and a description of the root-cause. It also
shows the number of commits (and the number of files)
that an OCE has to consider while performing bug attri-
bution which, in some cases is more than 200.

In general, we have found that bugs fall predominantly
into one of the following categories:

• Bugs specific to certain environments. Often, a
component starts failing because files implement-
ing that component have a bug (Bugs 2, 5). Usu-
ally, the failures happen only for a specific type of
client such as web-based clients, or in a specific re-
gion such as Japan. Tests do not catch the bug since



Term Definition
Commit Set of file changes made by one developer.
Review Recommendations made by one or more developers for a commit.
Build Unit of deployment for the service consisting of one or more commits.
Ring Set of machines onto which a build is deployed.
Probe Periodic checks to functions/APIs to ensure they are working as expected.
Alert An email- or web-based notification that warns the OCE of a problem.

Table 1: Terms used in the SDLC description and their definitions

not all configurations, clients and environments are
tested.

• Bugs due to uncaptured dependencies. Depen-
dencies can be of various types. In Bug 10, a server-
side implementation is modified without appropri-
ately modifying the client-side code. This happens
because developers often overlook such dependen-
cies as no compile-time tool captures them com-
pletely. Another example of an uncaptured depen-
dency is Bug 4. A commit modifies a certain library,
but unbeknownst to the developer, another compo-
nent depends on certain features in the older version
of the library and stops working correctly.

• Bugs that introduce performance overheads.
Several probes track performance issues. For in-
stance, in Bug 8, a code addition that was not
thread-safe caused CPU overload that slowed down
the service. The bug emerges only when a large
number of users use the service. Hence it is not
caught in testing.

• Bugs in the user-interface. A UI Feature starts
misbehaving, so a customer complains. An example
of this is Bug 1.

3.3 Orca Overview

Studying these bugs and observing the OCEs gave us
valuable insights. We state these insights, and describe
how Orca ’s design is influenced by them.

Often, the same meaningful terms occur both in the
symptom and the cause. Table 2 captures this under
the “Term Similarity” column. Some matched terms are
proper nouns such as the component name (Bug 3) or
global data types (Bug 7). They can also be commonly
used terms such as protocols (Imap in Bug 9) or the
function performed (suggest in Bug 1 and migrat in
Bug 6). Given the term similarity between symptom and
cause, we designed Orca as a custom-designed search
engine, using the symptom as the query-text, and giving
us a ranked list of commits as results. Orca searches for
the symptomatic terms in names of the modified code by

performing differential code analysis on the abstract syn-
tax tree. We describe this procedure in Section 4.1.

Testing and anomaly detection algorithms do not al-
ways find a bug immediately. A bug may start surfacing
in a new build despite being introduced through a commit
to a much older build. Bug 3 in Table 2 is an example.
We introduce a build provenance graph to allow Orca to
expand its search to older builds from which the current
build has been derived. We describe this in Section 4.2.

Builds may have hundreds of commits, so manually
attributing bugs can be long-drawn task. For instance,
Bug 2 appears in a build that had 201 commits. Bug 3 ap-
pears in a build with 160 commits but the root-cause was
in the previous build which had 41 commits. The OCE
is faced with the uphill task of analyzing, in these cases,
up to 200 commits before discovering the buggy com-
mit. OCEs often work at odd hours and are constantly
pressed for time. Orca therefore ranks commits based on
a prediction of commit risk. Orca uses machine-learning
and several features such as developer experience, code
hot-spots and commit type to make this prediction. We
describe this in Step 4 of Section 4.3.

To facilitate its use, we have built an Orca user inter-
face and leverage caching and parallelism to ensure an
interactive experience for the OCE. We describe our op-
timizations in Section 5.

There are thousands of probes in the system, and probe
failures and exceptions are continuously logged. There-
fore there is rich data on what symptoms, or potential
queries to Orca look like. This allows us to track fre-
quency of terms that appear in the queries and use the
Inverse Query Frequency (IQF) rather than the Inverse
Document Frequency (IDF) in our search rankings. We
explain this further in in Section 4.3.

3.4 Orca Scope
In this section, we elaborate what Orca does not aim to
solve. This is primarily because existing techniques al-
ready address these issues.

Orca does not target issues caused by faults in the in-
frastructure. Several techniques [22, 43] exist to do this.
Orca does not solve the anomaly detection problem di-
rectly as several techniques already exist for this [4, 10].



No. Type Symptom Cause Term Similarity Commits

1 Customer
complaint

”People Suggestion” feature,
that suggests potential recip-
ients for an email, was not
working for a subset of users.

A ”people ranking” algorithm was in-
correctly modified.

A variable used the keyword
suggest in the modified func-
tion.

33

2 Probe An email synchronization
problem was detected.

A buggy commit to the synchroniza-
tion component caused requests com-
ing only from web-based clients to
fail.

The probe contained the name of
the synchronization component,
which was also in the directory
path of the modified files.

201

3 Probe A worker process for a
specific component started
crashing repeatedly.

Incorrect configuration changes to the
component’s environment caused this.
The commit was to a previous build
but bug showed later only after a large
number of users hit it.

The component name matched
in the class name of modified
code.

201

4 Customer
complaint

Authentication process for
some applications that used
REST started crashing.

A library that these applications de-
pended upon was modified but was not
tested for all applications.

Keyword auth was in the path-
name of the change.

46

5 Probe Threads were getting
blocked in processing, large
delays were noticed in REST
calls made by a web service.

HTTP client code for the service had
been modified to make some syn-
chronous calls asynchronous.

The component name matched a
modified user-agent string in the
HTTP client.

18

6 Probe No. of exceptions generated
anomalously high while mi-
grating mailboxes

Caused by a code-change to a mailbox
migration components.

Keyword migrat matched a
changed function’s name.

12

7 Probe Number of exceptions in the
log file for a component C
became abnormally high.

Support for a new data type was added
in a component that made an API call
to component C, but C does not sup-
port that data type.

The exception text for C con-
tained the data type.

70

8 Probe CPU Usage on a set of
machines was anomalously
high.

Reads and writes to a dictionary were
not thread-safe. Multiple threads were
reading from a dictionary while it
was being modified, causing a CPU
blowout.

No keyword matched. 89

9 Probe POP and IMAP services
started failing.

Dependencies were broken when a
code commit changed a library that the
POP and IMAP services used.

Keywords Pop and Imap
matched in code changes.

110

10 Customer
complaint

A client signing in via OAuth
does not display calendar.

Client-side implementation was in-
compatible with the server-side com-
mit.

Keyword OAuth matched the
symptom and the server-side
change.

39

Table 2: Examples of post-deployment bugs.

But we do recognize that anomaly detection algorithms
are imperfect. Orca’s build provenance graph helps find
bugs even when the anomaly detection algorithm detects
a bug well after a commit introduces the bug.

Orca does not handle bugs where the query does not
have any context-specific information. Notable examples
are performance issues, where the symptoms are, sim-
ply, out-of-memory exceptions or CPU-above-threshold
exceptions. There exist other techniques [10, 48] in the
literature which can debug such issues and therefore, can
be used in combination with Orca. We discuss this fur-
ther in Section 7.

4 Design

In this Section, we describe Orca’s differential bug local-
ization constructs in more detail. The input query to Orca
is a symptom of the bug. This could be the name of the

anomalous probe, an exception message, a stack-trace, or
the words of a customer-complaint. The idea is to search
for this query through changes in code or configurations
that could have caused this bug. Thus the “documents”
that the tool searches are properties that changed with
a commit, such as names of files that were added, re-
moved or modified, commit and review comments, mod-
ified code and modified configuration parameters. Orca’s
output is a ranked list of commits, with the most likely
buggy commit displayed first.

First, we describe two novel constructs that we use
for search-space pruning and search-space expansion
respectively: differential code analysis, and the build
provenance graph. Next, we describe the machine-
learning based model of commit risk prediction which
Orca uses to determine a rank-order of probably root-
cause commits. Finally we provide a detailed description
of the search algorithm.



4.1 Differential Code Analysis

Orca can search the entire code file to perform bug lo-
calization. But this approach can find false matches and
drop Orca’s precision, especially since we have found
that every commit changes, on average, only about 20
lines of source-code per-file (including file additions),
whereas the entire file can consist of hundreds of lines
of code.

Another simple approach, on the other end of the spec-
trum, would be to search only the file names for matches,
and not look into the code at all. While this is partially
effective, our evaluation in Section 6 shows that this does
not give us satisfactory recall.

We therefore employ a middle-path – differential code
analysis – within Orca. Prior work has studied dif-
ferential code analysis, albeit mostly at the semantic
level [23]. It identifies relevant pieces of the code change
that can potentially cause different behavior in the new
version relative to the old version, but with reference to
a specified property, such as null dereference, memory
consistency, etc. Such techniques rely on compuation-
ally expensive techniques such as differential symbolic
execution [34] and regression verification [19].

We do not go with the semantic approach because
(a) it is difficult to determine the full set of properties
to capture all bugs in large-scale services, and (b) we
would like to avoid the performance overhead of tradi-
tional static analyzers for differential analysis.

On the other hand, we could go with a complete lexi-
cal analysis on the differences, i.e., we can match terms
in the query with terms in the difference, without any
syntactic or semantic understanding. This approach will
be relatively lightweight. However, it will miss several
root-causes because very often, terms that match, such as
protocol names, are parts of higher-level structures such
as the method names and classes that have been modi-
fied. Consider Bug 6 in Table 2, for instance. the term
migrat appears in the name of the function that has
been changed, but not in text that has changed. Our tech-
niques therefore need to identify syntactic constructs,
such as methods and classes, that have changed.

Therefore, rather than going with a semantic or lexical
analysis, we perform a syntactic analysis. We use the
abstract syntax trees (AST) of the old and new version of
the program to discover relevant parts of the source that
have been added, removed, and modified.

Our analysis finds differences in entities of the follow-
ing types: class, method, reference, condition, and loop.
We create a “difference set” D of two ASTs, Aold and
Anew, in the following way. Say ei is the old version of
an entity, and ej the new version. Say t is the type of the
entity. Then,

D =



dadded = ∀e ∈ Anew | e 6∈ Aold

dremoved = ∀e ∈ Aold | e 6∈ Anew

dchanged = ∀enew ∈ Anew | type(enew) = t

∧enew ∈ Aold ∧ enew 6= eold

∧type(eold) = t

ddiff = eold∆enew | enew ∈ Anew

∧type(enew) = t ∧ eold ∈ Aold

∧enew 6= eold

Thus, the difference set D captures entities that have
been added, removed, or changed. For all entities in D
that have been changed, we also capture the differences
(ddiff ) between the two versions of the entity using a
heuristic. For instance, say our heuristic detects that two
lines of a function F have been changed. In addition to
D containing the name of the function F , D also includes
ddiff , which contains the entire text of the two changed
lines: both the old version, and the new version.

We would like to point out that our syntactic approach
to differential code analysis is not sound: we may de-
tect changes even though there are none. For instance,
consider the case where a function name changes com-
pletely, but the body remains unchanged. Our algorithm
will treat this as a completely new function. While this
could cause a precision drop in Orca since we are in-
cluding more textual differences than actually exist, the
algorithm does ensure that all changes are captured.

4.2 Build Provenance Graph
In Section 3.2, we have shown that a buggy commit to
an older build may show symptoms only in a subsequent
build. This could be because an inaccurate anomaly de-
tection algorithm detects an anomaly too late. It may
also be that a subtle bug manifests only in certain envi-
ronments or only when a large number of users hit the
service.

To accommodate this scenario, we expand our search
to include previous builds that the symptomatic build
is “derived” from. We maintain a build provenance
graph (BPG) that captures dependencies between vari-
ous builds along the axes of time and ring ID. Figure 2
shows an example fragment of a build provenance graph.

4.2.1 Construction

We now describe how we construct the build provenance
graph. The BPG captures how builds are created and pro-
moted in the different rings. Every build is represented
as Bi

r,v , where i is a the build identifier, r is the ring
identifier, and v is the version of the build within a ring.



Figure 2: Example fragment of a build provenance graph.

Say a build spends a certain amount of time in Ring
0. If it is stable and shows no unhealthy behavior for
a while, it is considered for promotion to the next ring.
Build Bn

0,0 is one such build. It forks off build Bn
1,0

which runs in the next ring, Ring 1. Since Bn
1,0 is di-

rectly derived from Bn
0,0, any bugs that emerge in Bn

1,0

could potentially be due to commits originally made to
Bn

0,0. Thus, we introduce an inter-ring edge between the
two builds. Similarly, once a build is considered stable
in Ring 1, it is forked off to Ring 2. This introduces the
inter-ring edge between Bn

1,0 and Bn
2,0. For a given build

identifier n, only one inter-ring edge can exist between
two consecutive rings.

Meanwhile, developers make fresh commits within
each ring too, thereby creating the next build versions
within the same ring. So in Figure 2, Bn

0,1 is derived from
Bn

0,0, Bn
1,1 from Bn

1,0, and so on. We call the edges be-
tween these builds intra-ring edges. Several such intra-
ring edges may exist in all rings though most are in Ring
0 which is the most dynamic and experimental ring.

At any given time, a vertical line drawn through the
graph yields the active build within each ring at that time.
For instance, at time t1, the active builds are Bn

0,3, Bn
1,1,

and Bn
2,0. For ease of explanation, we assume that at any

given time there is only one active build in every ring
though in reality there could be many.

We now explain a third edge-type called the back-port
edge, shown in Figure 2 by dotted arrows. A critical bug
that goes undetected may, with time, propagate to a large
number of builds across all rings. Say at time t0, such a
bug causes an alert in build Bn

1,1. Say at time t1, using the
process described in Section 4.2.2, we localize the bug to
a commit made to the earlier build Bn

0,0. The bug is fixed
through a new commit c to the code of Bn

1,1, and this
generates Bn

1,2, with an intra-ring edge between them.
We can see that since the bug originated in Bn

0,0, it
also exists in the active builds within Ring 0 and Ring 2
that have been derived from it, i.e. Bn

0,3 and Bn
2,0. Con-

sequently we apply the commit c, or we back-port it, to
Bn

0,3 and Bn
2,0. This creates new builds Bn

0,4 in Ring 0

and Bn
2,1 in Ring 2. Thus we add two back-port edges

with the label c from Bn
1,2 to Bn

0,4, and Bn
1,2 to Bn

2,1.
Finally, we describe how the build identifier n gets

incremented in the build provenance graph. All builds
across all rings that have the build identifier n are derived
originally from Bn

0,0. Thus Bn
0,0 is called an origin build.

With time, several new commits are applied in Ring 0.
To ensure that these commits are fully deployed across
all rings, a subsequent build from Ring 0 is chosen to be
the next origin build. In the figure, this is Bn

0,4, which we
rename as Bn+1

0,0 , or the next origin build. All subsequent
builds are now derived from this new origin build.

It can be seen that, barring backport edges, every node
in the build provenance graph has only one incoming
edge. This can be either an inter-ring or an intra-ring
edge.

4.2.2 Traversal

We now describe how Orca uses the build provenance
graph to expand its search-space and find potential buggy
commits in older builds. Given a symptomatic build
Bi

p,q , the purpose of the traversal is to find a list of can-
didate commits for the search.

We observe that Ring 0 is the most experimental of
all rings. Builds in Ring 0 see a large number of sig-
nificant commits. Consequently, our intuition is that, to
localize a bug that appears in Bi

p,q , we should search all
builds back to the the origin build Bi

0,0, which is in Ring
0. Thus using inter-ring and intra-ring edges, we back-
track from Bi

p,q to the origin build Bi
0,0. In addition, we

also include all back-ported commits to every build on
the same path. Since every build has only one incom-
ing inter-ring or intra-ring edge, there is only one such
path from Bi

p,q to Bi
0,0. The candidate list of commits

to search will include all commits made to the builds on
this path, and the back-ported commits on the same path.

We now explain this through an example with Fig-
ure 2. Say an alert is raised in Bn

2,1. Backtrack-
ing from Bn

2,1 to Bn
0,0 yields the set of commits

{C(Bn
2,1), C(Bn

2,0), C(Bn
1,0), C(Bn

0,0}), where C(Bi,j)
is the set of commits that were made to build Bi,j . To
this, we add c, which is a backported commit from Bn

1,2

to Bn
2,1, thereby giving us the final list of commits to

search in. That is,

Γ = {C(Bn
2,1), C(Bn

2,0), C(Bn
1,0), C(Bn

0,0), c}

4.3 Algorithm
In this Section, we describe Orca’s search algorithm
which uses differential code analysis and the build prove-
nance graph. The Orca search algorithm consists of four



steps: 1) Query pre-processing where we perform to-
kenization, stemming and stop-word removal, 2) build
graph traversal described in Section 4.2.2, 3) token-
matching in code changes using Differential Code Anal-
ysis and 4) ranking and visualization of results. Our
system runs differential code analysis and constructs the
build provenance graph in the background periodically
so that these tasks do not slow down the query response
time.

Step 1: The search queries are symptoms of the prob-
lem, consisting of probe names, exception texts, log mes-
sages, etc. We first tokenize the terms in these symptoms
by using a custom-built code tokenizer. This tokenizer
uses heuristics that we have built specifically for code
and log messages, such as splitting large complex strings
along Camel-cased or Pascal-cased fragments. We also
create n-gram based tokens since we have found that bi-
grams, such as ImapTransfer and mailboxSync,
capture important information.

Next, we filter out irrelevant words also called stop-
words [27] from these symptoms. Previous work
has shown that logs have a lot of inherent struc-
ture [40]. For instance, all exception names have the
suffix Exception and almost all log messages have
a timestamp. Unlike conventional search-engines, even
before we built Orca, we had access to about 8 mil-
lion alerts consisting of probe names, exceptions and log
messages from Orion’s log store. We therefore perform
stop-word removal on these to weed out commonly used
or irrelevant terms such as Exception or timestamps.
This step gives us a list of relevant “tokens” in the symp-
tom. For each token t, we also maintain an Inverse Query
Frequency (IQF) value [41] that we call tIQF , obtained
by analyzing Orion ’s logs. tIQF is calculated as (No. of
queries/No. of queries in which token t appears). A high
value of tIQF implies that the token t is more important.

Step 2: We traverse the build provenance graph to find
all builds related to the symptomatic build. From each
build we discover, we enumerate all the commits that
created the build. This leads us to the next step, which is
matching tokens to files for each commit.

Step 3: Within a given commit C, for each file f and
token t in the symptom, i.e for each tuple T =< f, t >,
we search for the token in the difference set of the file,
Df . We use TF-IQF [41] as a “relevance” score, RC

T ,
for each tuple. RC

T is calculated as n ∗ tIQF where n is
the number of times the token t appears in difference set.
This relevance score captures that the tuple < f, t > is
more relevant if the token t is very infrequent (i.e. tIQF

is very high), or if it appears many times in f .
We repeat this step for every token and file in the com-

mit. At this point, we have file-level relevance values.
Note though that we perform commit-level bug local-
ization. Thus, we now aggregate the relevance values

across all files and tokens to get one relevance value for
the commit C, that we call RC . So,

RC = Θ
T
RC

T (1)

where Θ is an aggregation function such as such as Max,
Avg or Sum. We show in Section 6 that the MAX func-
tion provides the best results in our deployment.

Step 4: Finally, Orca returns a list of commits in
decreasing-order of their relevance. However, in deploy-
ment, we found that ranking solely based on decreas-
ing order of relevance was not enough. Quite often,
more than one commit had the same relevance score be-
cause several commits made at similar times matched the
search terms equally.

We therefore build a machine-learning model that pre-
dicts commit risk to break the tie between commits that
have the same relevance. This model uses ideas from a
vast body of prior-work in this space in the Software En-
gineering community [5,20,30,32]. However, we believe
ours is the first tool to apply such a risk prediction model
to bug localization at the commit-level.

We have built a regression tree-based model that,
given a commit, outputs a risk value for it which falls
between 0 and 1. This is based on data we have collected
for around 93,000 commits made over 2 years. Commits
that caused bugs in deployment are labeled “risky” while
those that did not, we labeled “safe”. We have put in
considerable effort into engineering the features for this
task. The features that we input to the learner roughly
fall into four categories:

• Developer Experience. Developers who are new to
the organization and to the code-base tend to create
more post-deployment bugs. Hence, we associate
several experience-related features with each com-
mit.

• Code ownership. We found that certain files that
were mostly changed by a single developer caused
fewer bugs than files that were constantly touched
by several developers. Hence, for each commit, we
use features to capture whether it touched files with
very few owners or many owners.

• Code hotspots. Certain code-paths, when touched,
tend to cause more post-deployment bugs than oth-
ers. Some of our features capture this fact.

• Commit complexity. Several features, such as file
types changed, number of lines changed, and num-
ber of reviewer comments capture the complexity of
the commit.

Thus, for commits that have the same relevance score
based on the terms match, we use the commit risk as a



secondary sort key to obtain a rank-order for Orca’s out-
put.

4.3.1 Example

We shall use the following example to illustrate
how the search algorithm works. Say commits C1

and C2 create a build B. Say a probe called
LdapAuthProbe, that monitors the LDAP authen-
tication service, starts throwing exceptions of type
AuthFailedException. Let us also say that
the bug was caused by commit C2 that erroneously
modified a function LdapRequestHandler in a
class LdapService, declared and defined in a file
LdapService.cs. Say C1 modified an Imap pro-
tocol implementation in a file Imap.cs.

The query to Orca is “LdapAuthProbe
AuthFailedException”. First, we tokenize
and stem the query, and remove stop-words Failed
and Exception. This yields the tokens Ldap, Auth
and Probe. The word Probe occurs very frequently
across all symptoms and therefore receives a very low
IQF score, whereas Ldap, being a specific protocol,
gets the highest IDF score. Auth, being somewhat more
frequent than Ldap, receives a slightly lower IQF score.

We leave out build graph traversal for the sake of sim-
plicity. Therefore, our list of candidate commits are
only C1 and C2. In our example, the token Ldap will
match both the class name, LdapService, and the
function modified, LdapRequestHandler. There-
fore the value of relevance for this is 2∗ the IDF value
of token Ldap. C2 will also find a match with token
Auth. C1, however, does not match any of these tokens.
Our ranking algorithm will therefore choose C2 over C1

and, as the highest-ranked result, it will show the file-
name LdapService.cs and token Ldap rather than
Auth.

5 Implementation
We have implemented Orca in a combination of C# (us-
ing .NET Framework v4.5) and SQL. We use the Fast-
Tree [16] algorithm within the ML.Net [31] suite for our
commit risk prediction. Currently, the implementation
is approximately 50,000 lines of code. In this Section,
we briefly describe our implementation of Orca, and the
various user interfaces we expose for OCEs.

5.1 Data Loaders
Since Orca requires information about various different
parts of the system – source-code, builds, deployment
information and alerts – a significant part of our imple-
mentation are data loaders for these different types of

data. Figure 3 shows an architectural overview of the
implementation. At the heart of Orca is a standard SQL
database. This database is populated by data loaders at a
predefined frequency. We now describe the different data
loaders we use.

Source Data We implemented loaders for various
source-control systems such as GIT and others in-
ternal to our organization. These loaders ingest
source-code, code-versions and histories. The dif-
ferential code analysis algorithm uses data from this
loader.

Builds Data about builds resides in multiple big-data
logs. We have build loaders that interface with sev-
eral big-data logging systems to load build-specific
information into our SQL database. We use this
loader to construct the build provenance graph.

Deployment and Machine Data We load logs created
by continuously monitoring the state of all ma-
chines within all rings. The state includes in-
formation about the current status of the machine
(healthy/unhealthy), along with the information on
the build version running on the machine.

Alerts are loaded from existing databases. Today, Orca
supports multiple data sources for loading alert in-
formation.

5.2 Background Analyses
As our data loaders periodically load new data into the
SQL database, we periodically initiate differential code
analysis, build provenance graph construction, IQF cal-
culation, and the commit risk prediction used in Sec-
tion 4.3. If needed, the frequency of an analysis can
be changed to make it more/less frequent. For example,
the IQF calculation runs once a week, while commit risk
prediction runs once every day. The other two processes
run once every hour. Finally, it should be noted that all
analyses that have been developed and deployed within
this system are agnostic of the data source. The SQL
database schema is normalized; thus, providing the same
interface to all analyzers irrespective of the data source.

5.3 API Implementation
We now describe the Orca API and its implementation.
Each Orca request is processed in real-time by the core
Orca engine, and results are returned in JSON format.
Clients decide on the relevant parts of the return re-
sult and how to display them. We make use of a Re-
dis Cache [8] for improving our lookup times associ-
ated with data that is static. This includes data about the



Figure 3: Implementation of Orca.

builds, files, source-code, difference sets, and the build
provenance graph. Internally, the Orca system records
all requests made and any feedback provided, which we
use for learning and improvement.

All our services, servers, databases, and caches are im-
plemented and operated using Azure as both a Platform
as a Service (PaaS) and Infrastructure as a Service (IaaS)
provider.

5.4 Usage

Orca can be used in two ways: OCEs can use it to make
ad-hoc queries interactively, or an alerting infrastructure
can query Orca to get a list of suspect commits for an
alert and include it in the alert itself.

For the OCEs, we have built a web-based UI that al-
lows them to enter the details of their query and view
the results. Figure 4 shows a screenshot of the UI with
sensitive information removed. We have also built a
PowerShell R© cmdlet with which the OCE can interact
with through a command-line interface.

To integrate Orca with alerting infrastructure, we have
built an API that the alerting system can query directly.
Currently, this mechanism is being used by multiple
groups that are generating alerts within the Orion group.
The web-based UI and cmdlet tend to be used by OCEs
when new information such as log text or exception text
has been discovered after the original alerts were gener-
ated.

Today, Orca has been deployed on multiple code-bases
for six large-scale services within our enterprise. The
combination of data loaders used in each code-base is
slightly different and unique, but fully operational and
functional.

Figure 4: Web based UI of ORCA for Orion.

6 Evaluation
In this section, we provide results we obtain by evalu-
ating Orca. First, we evaluate Orca’s result quality, i.e.
how often it attributes a bug correctly to the right com-
mit. Next, we evaluate how much effort an OCE saves by
using Orca. Third, we evaluate the performance of Orca
and the savings we get by using a Redis-based cache.

Since its deployment with Orion in October 2017, the
Orca API has been invoked 4400 times to debug issues
within the Orion service. Unfortunately, there is no cen-
tral location where OCEs retrospectively log information
about buggy commits. To evaluate how well Orca local-
izes a bug, we not only need the complete symptom of
the bug, such as error messages or exceptions, but also
the root-cause commit. Consequently, we begun a man-
ual process towards gaining this information for as many
bugs as we could. We interviewed multiple OCEs and
manually analyzed source-code, bug-reports and email-
threads.

By performing this exercise, we collected complete in-
formation for 48 of these bugs. These bugs vary greatly
in characteristics. While some were inadvertently intro-
duced by a single line-change, others were caused by
complex dependencies between components.

6.1 Result Quality
To measure the quality of Orca’s results, we interviewed
several OCEs about how they would quantify result qual-
ity. Based on these interviews we determined that it is
important that we find the buggy commit in as many
cases as possible. This is captured by the Recall, i.e.
the fraction of bugs where we found the buggy commit
in any position in our results. The OCEs also told us that
they linearly scan the list of commits that Orca provides,
hence the closer the correct commit is to the top, the more
time they save. To capture this, we use the Mean Recip-



No. of results = 5 No. of results = 10 No. of results = 20
Agg.fn. DCA DCA+BPG ALL DCA DCA+BPG ALL DCA DCA+BPG ALL
MAX 0.65(31) 0.60(29) 0.63(30) 0.69(33) 0.77(37) 0.77(37) 0.69(33) 0.77(37) 0.77(37)
SUM 0.52(25) 0.52(25) 0.60(29) 0.71(34) 0.67(32) 0.77(37) 0.73(35) 0.79(38) 0.77(37)
AVG 0.60(29) 0.46(22) 0.58(28) 0.67(32) 0.73(35) 0.77(37) 0.69(33) 0.75(36) 0.77(37)

Table 3: We use recall to evaluate applying differential code analysis alone (DCA), differential code analysis with
build provenance graph (DCA+BPG), and differential code analysis with build provenance graph and commit risk
(ALL). Numbers in parentheses are the number of bugs correctly localized. We evaluate aggregating by MAX, SUM,
and AVG.

No. of results = 5 No. of results = 10 No. of results = 20
Agg.fn. DCA DCA+BPG ALL DCA DCA+BPG ALL DCA DCA+BPG ALL
MAX 0.41 0.38 0.39 0.44 0.38 0.42 0.44 0.38 0.42
SUM 0.42 0.36 0.40 0.44 0.38 0.43 0.44 0.39 0.43
AVG 0.36 0.25 0.38 0.37 0.29 0.41 0.37 0.29 0.41

Table 4: We use MRR to evaluate applying differential code analysis alone (DCA), differential code analysis with
build provenance graph (DCA+BPG), and differential code analysis with build provenance graph and commit risk
(ALL). We also evaluate aggregating by MAX, SUM, and AVG.

rocal Rank (MRR) [28]. MRR is the most suitable metric
since we assume there is only one buggy commit that
causes the symptom. MRR is calculated as 1

nΣn
i=11/ri,

where n is the number of queries, ri is the rank of the
buggy commit for query i. If Orca is unable to find the
correct commit, we assume ri is infinity, i.e. we add 0 to
the sum total.

We first evaluate differential code analysis (DCA)
only. Next, we add the build provenance graph, with-
out the commit risk-based ranking (DCA+BPG). Finally,
we add commit risk prediction and evaluate Orca using
all the techniques described in the paper (ALL). Tables 3
and 4 show the results for various combinations of pa-
rameters and features. We have varied the number of
results we return as part of the Orca API to evaluate
the quality for 5, 10 and 20 results, and we have evalu-
ated Orca for different aggregation functions (Θ in Equa-
tion 1): MAX, SUM and AVG.

To evaluate Orca, we ask three questions:

• How much value does differential code analysis
add? We wanted to understand whether looking
into code was necessary.

• How much value does the build provenance
graph and commit risk prediction add? We
wanted to understand in what number of cases the
build graph helped improve result quality. In addi-
tion, we wanted to see whether our rank-order based
on commit-risk helped improve our results.

• How should we aggregate the file-level relevances
to commit-level? Equation 1 in Section 4.3 de-

scribed how we need to aggregate file-level rele-
vance value into one value at the commit-level.

• How many results should we show in the Orca
UI? When asked, the OCEs mentioned that they
would not want to see beyond 10 results for each
query. Hence, we wanted to evaluate the trade-off
between the number of results shown and the recall
and MRR.

We now answer each of these questions in order.
The build provenance graph adds 8% to the recall.

Observe the data in bold in Table 3. DCA alone localizes
33 bugs for a recall of 0.69. Adding the build provenance
graph helps us localize 4 more bugs correctly thereby in-
creasing our recall to 0.77. While at first glance, this may
appear to be a small increase, OCEs find it significantly
more difficult to attribute bugs that occur in older builds,
and therefore the value of finding these 4 bugs eases the
OCE’s workload considerably. We show this quantita-
tively in Section 6.2.

Adding commit risk-based ranking improves
MRR by 11%. Observing the data in bold in Table 4,
one can see that adding the build provenance graph re-
duced our MRR from 0.44 to 0.38. This happens because
the build provenance graph increases our search-space
significantly, and this increases the number of false-
positive matches between terms and commits. Here,
adding our secondary rank order based on commit risk
improved our results by restoring the MRR value to 0.42.

The MAX and SUM aggregation functions per-



Figure 5: For all 48 bugs, a cumulative distribution func-
tion of the expected number of commits that the OCE
investigates without Orca and with Orca.

form better than AVG. While the buggy code-changes
match some very high-relevance tokens, several lower-
relevance tokens match these code-changes too. Hence
taking the average value across all matches dilutes the
high-value token matches, therefore reducing both recall
and MRR. Such a dilution does not happen if we use
MAX or SUM. We choose MAX in our implementation.

Showing 10 results seems a good trade-off between
result quality and UI succinctness. We evaluated re-
sults while setting the number of results shown as 5, 10
and 20. We find that with 10 results we achieve close to
our best recall and MRR values.

With 10 results and using MAX, we obtained a recall
of 0.77, i.e. we found the root-cause in 37 out of 48
cases. The MRR was 0.42. We also studied the matched
terms for these 37 bugs and found that term-similarity
serves as a good proxy to capture different types of bugs.
Table 2 showed that matched terms fall roughly into four
categories: they either match a component name, a func-
tion that the component performs such as migrat or
suggest, data types, or protocol names such as Imap.
We found in our case that of the 37 correctly localized
cases, in 14 cases the token was a component name, in
17 cases it captured the function being performed, in 4
cases it matched a protocol name, and in the remaining
2 cases, the match was on a data type. Therefore term-
similarity is quite versatile: it helps us catch a variety of
bugs.

Of the 11 cases that we could not localize, in 1 case the
issue was related to performance. In 4 cases, the prob-
lem was because a configuration setting. changed, and
that triggered the use of code that was committed much
earlier than our build provenance graph covered. In fu-
ture work, we therefore plan to include all configuration

settings in our differential analysis. In the remaining 6
cases, term similarity just did not capture the high-level
semantics of the bug, and static or dynamic analysis may
be required.

6.2 Reduction of OCE Workload
We now investigate the effect of Orca on reducing the
OCE’s workload. There are multiple ways to measure
this. One way is to measure the amount of time saved
by Orca for the OCE. Another is to determine the de-
crease in the number of commits that the OCE needs to
manually investigate, both with and without Orca. We
chose the latter metric because it allows us to quantify
the reduction of OCE workload both at the level of every
individual bug and as an aggregate. The former metric,
i.e. the amount of time saved, can only provide us an
aggregate across all alerts. Moreover, unless we shadow
OCEs over an extended period of time, it is difficult to
accurately quantify the time saved.

Given a bug, an OCE will investigate an average of c/2
commits to localize it, where c is the number of commits
in the buggy build. If the OCE uses Orca, they need in-
vestigate at most r commits, where r is the rank of the
correct commit in the results that the UI shows. If Orca
does not find the correct commit, then apart from the 10
commits that Orca shows, the OCE needs to investigate
an additional (c− 10)/2 commits in expectation.

Figure 5 shows the number of commits investigated
with and without Orca, for all 48 bugs that we evalu-
ated, as a cumulative distribution function. Over all 48
bugs, without Orca, the OCE investigates a median of
22.75 commits, and an average of 28.9 commits. With
Orca, she investigates a median of just 3.5 commits and
an average of only 9.4 commits. Therefore, using Orca
causes a 6.5× reduction in median OCE workload and a
3× (67%) reduction in the OCE’s average workload. For
the 37 bugs Orca localizes, this reduction factor in the
average is much higher, i.e. 9.7×. For the 4 bugs that
were caught only because of the build provenance graph,
the OCE had to investigate an average of 59.4 commits
without Orca, and only 1.25 commits with it. This is a
47.5× improvement. These numbers point out the ben-
efits that the build provenance graph gives us, and the
benefits overall of using Orca for commit-level bug lo-
calization.

6.3 Performance
Finally, we evaluate the performance of Orca. We run
Orca on a 32 core, 2GHz Intel Xeon E7-4820 CPU with
64 GB memory. We ran all 48 queries in sequence to ob-
tain these results. First, we evaluated the effect of the Re-
dis cache on Orca’s average query response time. Using



Redis, the average response time reduced from 12.4 sec-
onds to 5.97 seconds, a gain of 51.8%. Next, we varied
the degree of parallelism in Orca from 32 to 128 using the
C# MAXDOP parameter [37] and noticed a significant
effect on average query response time. With parallelism
set to 32, the average response time is 30.94 seconds,
whereas with parallelism of 128, it is 5.97 seconds. Our
evaluation shows that there is a significant potential for
parallelizing Orca further, thereby catering to many more
queries and providing lower response times. Therefore
we can effectively scale Orca out to more services within
our enterprise without loss in performance.

Figure 6: The efficacy of using Redis in Orca’s deploy-
ment.

Figure 6 shows the effect of using Redis with Orca’s
deployment over two months, starting from August 2018.
On average, the number of hits is 2.2 times the number
of misses. This shows that users of the Orca API make
queries that have locality and therefore benefit greatly
from the use of the Redis cache. This is to be expected
as successive queries to Orca will be highly likely for the
same builds and therefore will access similar difference
sets.

7 Discussion
In this section, we first discuss the generalizability of
Orca to other services. We then discuss the limitations,
and how we intend to address these in the future.

7.1 Generalizing Orca
Fundamentally, in a CI/CD pipeline, to save time and
resouce-usage, services combine various commits before
they build, test and deploy. Performing these procedures
after every commit would be prohibitively expensive.
Since such an aggregation of commits is absolutely nec-
essary, so is the need for a tool that localizes bugs at the
commit-level, such as Orca.

Though we describe Orca in the context of a large
service and post-deployment bugs, we believe the tech-
niques we have used also apply generically to many Con-
tinuous Integration/Continuous Deployment (CI/CD)
pipeline. This is based on our experience with multiple
services that Orca is operational on within our organiza-
tion. Orca needs expressive symptoms as input. Modern-
day services use rich monitoring systems enabled by in-
frastructure such as Nagios [33] and AlertSite [2] which
can provide probe-level symptoms of problems.

7.2 Future Work

Two types of bugs that Orca currently cannot localize are
performance and configuration issues. Addressing these
bugs, therefore, are immediate next-steps.

To deal with performance-related bugs, we plan to in-
corporate better anomaly detection algorithms, and cor-
relate anomalies with code-changes that could poten-
tially cause them. We believe that the principal idea of
Orca, i.e. keyword match, can also be applied to bugs
that arise from faulty configuration settings. Therefore,
we plan to include configuration-based difference sets
into our search engine.

8 Conclusion
In this paper, we described Orca and the differential bug
localization algorithm. Orca uses differential code anal-
ysis and the build provenance graph to find buggy com-
mits in large-scale services. Orca is deployed with a large
email and collaboration platform. We have shown that
Orca finds the correct buggy commits in about 77% of
bugs that we studied, and causes a 3× reduction in the
work done by the OCE. We have also shown that Orca is
efficient, accurate and easy to deploy.
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