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(a) a single global path (b) our bundled paths

Figure 1: Comparison between traditional 2D stabilization (a single global camera path) and our bundled camera paths stabilization. We
plot the camera trajectories (visualized by the y-axis translation over time) and show the original path (red) and the smoothed path (blue) for
both methods. Our bundled paths rely on a 2D mesh-based motion representation, and are smoothed in space-time.

Abstract

We present a novel video stabilization method which models cam-
era motion with a bundle of (multiple) camera paths. The proposed
model is based on a mesh-based, spatially-variant motion repre-
sentation and an adaptive, space-time path optimization. Our mo-
tion representation allows us to fundamentally handle parallax and
rolling shutter effects while it does not require long feature trajec-
tories or sparse 3D reconstruction. We introduce the ‘as-similar-
as-possible’ idea to make motion estimation more robust. Our
space-time path smoothing adaptively adjusts smoothness strength
by considering discontinuities, cropping size and geometrical dis-
tortion in a unified optimization framework. The evaluation on a
large variety of consumer videos demonstrates the merits of our
method.
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1 Introduction

A video captured with a hand-held device (e.g., a cell-phone or
a portable camcorder) often appears remarkably shaky and undi-
rected. Digital video stabilization improves the video quality by re-
moving unwanted camera motion. It is of great practical importance
because the devices (mobile phones, tablets, camcorders) capable

of capturing video have become widespread and online sharing is
so ubiquitous.

Prior video stabilization methods synthesized a new stabilized
video by estimating and smoothing 2D camera motion [Matsushita
et al. 2006; Grundmann et al. 2011] or 3D camera motion [Liu et al.
2009; Liu et al. 2012]. In general, 2D methods are more robust and
faster because they only estimate a linear transformation (affine or
homography) between consecutive frames. But the 2D linear mo-
tion model is too weak to fundamentally handle the parallax caused
by non-trivial depth variation in the scene. On the contrary, the
3D methods can deal with the parallax in principle and generate
strongly stabilized results. However, their motion model estimation
is less robust to various degenerations such as feature tracking fail-
ure, motion blur, camera zooming, and rapid rotation. Briefly, 2D
methods are more robust but may sacrifice quality (e.g., introduc-
ing unpleasant geometrical distortion or producing less stabilized
output), while 3D methods can achieve high-quality results but are
more fragile.

Some recent methods [Liu et al. 2011; Goldstein and Fattal 2012]
have successfully combined the advantages of these two kinds of
methods. Liu et al. [2011] applied a low-rank, subspace constraint
on 2D feature trajectories, which is an effective simplification of 3D
reconstruction. Goldstein and Fattal [2012] avoided 3D reconstruc-
tion by exploiting the ‘epipolar transfer’ technique. These methods
relax the requirement from 3D reconstruction to 2D long feature
tracking. Nevertheless, requiring long feature tracking (typically
over 20 frames) makes it difficult to handle more challenging cases
(e.g., rapid motion, fast scene transition, large occlusion) in the con-
sumer videos.

This paper aims at the same goal of robust high-quality result but
from an opposite direction: we propose a more powerful 2D cam-
era motion model. Specifically, we present bundled camera paths
model which maintains multiple, spatially-variant camera paths. In
other words, each different location in the video has its own camera
path. This flexible model allows us to fundamentally deal with non-
linear motion caused by parallax and rolling shutter effects [Liang
et al. 2008; Baker et al. 2010; Grundmann et al. 2012]. At the same
time, the model enjoys the robustness and simplicity of 2D meth-
ods, because it only requires feature correspondences between two
consecutive frames.
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Our bundled camera paths model is built on two novel components:
a warping-based motion representation (and estimation), and an
adaptive space-time path smoothing. The first component repre-
sents the motion between two consecutive frames by mesh-based,
spatially-variant homographies (Figure 1(b)) with a ’as-similar-as-
possible’ regularization constraint [Igarashi et al. 2005; Schaefer
et al. 2006]. This constraint is critical because estimating a model
with such a high degree of freedom is usually risky in the cases of
insufficient features or large occlusions. To the best of our knowl-
edge, this is the first work to employ the mesh-based ’as-similar-as-
possible’ regularization for spatially-variant motion estimation in
video stabilization. Notice that the ’as-similar-as-possible’ warping
was used in [Liu et al. 2009; Liu et al. 2011] for video stabilization.
But we directly use the mesh vertices as the motion model itself. No
intermediate representation is used, such as 3D reconstruction [Liu
et al. 2009] or subspace [Liu et al. 2011].

Based on the proposed motion representation, we construct a bun-
dle of camera paths, each of which is the concatenation of local
homographies at the same grid cell over time (Figure 1(b)). Our
second component smooths all bundled camera paths as a whole
to maintain both spatial and temporal coherences. Furthermore, to
avoid excessive cropping/geometrical distortion and approximate
cinematography favored path, we adopt a discontinuity-preserving
idea similar to bilateral filtering [Tomasi and Manduchi 1998] to
adaptively control the strength of smoothing.

For a quantitative evaluation, we provide a comprehensive dataset
(including both public examples and our own video clips of differ-
ent kinds of motions). We show that our new 2D method is compa-
rable to or outperforms other competitive 2D or 3D methods.

2 Related Work

2D Methods estimate 2D transformations between consecutive
video frames and smooth them over time to generate a steady video.
Most previously developed methods apply an affine or homography
model, and focus on the design of the smoothing algorithm. Ear-
lier works [Morimoto and Chellappa 1998; Matsushita et al. 2006]
apply low-pass filters to individual model parameters. Some meth-
ods assume prior motion models such as polynomial curves [Chen
et al. 2008] for desired camera trajectories. Gleicher and Liu [2007]
divide the original camera trajectory into multiple segments for
subsequent individual smoothing. More recently, Grundmann et
al. [2011] gracefully apply L1-norm optimization to generate a
camera path consisting of constant, linear and parabolic motions,
which follow cinematography rules. Grundmann et al. [2012] fur-
ther adopt a homography-array-based motion model to deal with
rolling shutter effects. These two techniques have been integrated
into Google YouTube. It is robust, follows cinematography rules,
and performs well on many consumer videos.

Our method belongs to this category. But we use a spatially-variant
model to represent the motion between video frames and design an
appropriate smoothing technique for this model.

3D Methods often rely on robust feature tracking for stabilization.
Beuhler et al. [2001] perform stabilization with a projective 3D
reconstruction of the scene from an uncalibrated camera. Liu et
al. [2009] develop the first successful 3D video stabilization sys-
tem and are the first to introduce ‘content-preserving’ warping for
stabilization.

Since 3D reconstruction is difficult, recent methods directly smooth
the trajectories of tracked features. Liu et al. [2011] smooth some
basis trajectories (preferably longer than 50 frames) of the subspace
formed by the feature tracks. This method achieves similar quality
to 3D reconstruction-based methods, while reducing the require-

ment from 3D reconstruction to long feature tracking. It has been
transferred to Adobe After Effects as a feature called “Warp Sta-
bilizer”. Goldstein and Fattal [2012] utilize an “epipolar transfer”
technique to avoid the fragile 3D reconstruction. This technique
also alleviates the strain on long feature tracks. But it still requires
moderate feature track length (typically over 20 frames). Feature
track smoothing is also used in light-field camera video stabiliza-
tion work [Smith et al. 2009]. To address the occlusion issue, Lee
et al. [2009] introduce feature pruning to choose robust feature tra-
jectories for smoothing.

Nearly all methods involving feature tracking face a common ob-
stacle – in many consumer videos obtaining long feature tracks is
fragile due to occlusion, motion blur or rapid camera motion. Our
method does not encounter this issue since it only computes relative
motion between consecutive frames.

Motion Estimation computes the transition between two images
with view overlap. Optical flow algorithms [Lucas and Kanade
1981] model this transition by individual displacement vectors at
every pixel. When there is no parallax, this transition can be rep-
resented elegantly by a global homography transformation [Hartley
and Zisserman 2003]. Local alignment [Shum and Szeliski 2000]
or a dual-homography model [Gao et al. 2011] can reduce align-
ment error caused by parallax. Szeliski and Shum [1996] repre-
sent motion using a mixture of spline models with spatially variant
spatial support to facilitate registration. Lin et al. [2011] estimate
a smoothly varying affine field to align images of large viewpoint
changes. This model can be potentially used for video stabilization.
However, its current motion estimation technique is slow (may take
8 minutes to process a 720p frame).

Our motion model is essentially a mesh-based, spatially-variant
homography model, inspired by recent image warping techniques
[Igarashi et al. 2005; Schaefer et al. 2006; Liu et al. 2009]. We ex-
tend the “as-similar-as-possible” idea from image synthesis to mo-
tion estimation, and apply it to video stabilization. It is very effi-
cient to estimate our motion model (may take only 50 milliseconds
to process a 720p frame).

Rolling Shutter Removal estimates and corrects inter-row motion
caused by the row-parallel readout, i.e., electronic rolling shutter
[Nakamura 2005] mainly in CMOS sensors. Prior works design
different parametric inter-row motion models, including a per-row
translation model [Liang et al. 2008; Baker et al. 2010] and 3D ro-
tation model [Forssén and Ringaby 2010]. Recently, Grundmann et
al. [2012] proposed a calibration-free homography mixture model,
which shows significant improvement. Karpenko et al. [2011] use
dedicated hardware – the gyroscope on mobile devices, to correct
the rolling shutter effects in real-time.

Similar to [Grundmann et al. 2012], our method corrects rolling
shutter effects without any prior calibration. Our warping-based
model naturally handles the rolling shutter effects as a special kind
of spatially variant motion. So we do not need a separate rolling
shutter correction step in our stabilization.

3 Bundled Camera Paths

In this section, we introduce our warping-based motion model and
bundled camera paths.

3.1 Warping-based Motion Model

We propose using an image warping model to represent the motion
between consecutive video frames, which provides stronger model-
ing power than conventional single, 2D linear transformations. We
adopt the warping model in [Igarashi et al. 2005; Liu et al. 2009],
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Figure 2: (a) Parameterization of the motion between two frames
by a regular grid mesh, where a pair of matched features (p, p̂)
should be represented by the same bilinear interpolation of their
four enclosing vertices. (b) The as-similar-as-possible term re-
quires each triangle v̂, v̂0, v̂1 to follow a similarity transformation.

though more general models such as ‘moving-least-square’ [Schae-
fer et al. 2006] or parameterized optical flow [Nir et al. 2008] might
be used.

Model At each frame, we define a uniform grid mesh as illustrated
in Figure 2. The motion is represented by an (unknown) warping
of the grid mesh to register two frames (in fact, their correspond-
ing feature points). We require matched features (e.g., p and p̂ in
Figure 2) to share the same bilinear interpolation of the four cor-
ners of the enclosing grid cell after warping. At the i-th grid cell,
the warping from frame t to frame t + 1 introduces a homography
Fi(t), which can be determined from the motion of the four enclos-
ing vertices. Thus, the warping-based motion model is actually a
set of spatially-variant homographies on a 2D grid.

Note that this highly flexible model is able to handle parallax. It is
between global homography and per-pixel optical flow. However,
estimating a model with such a high degree of freedom is very risky
because we may not have sufficient features (due to textureless re-
gions or occlusions) in every cell.

Regularization To address this challenge, we propose imposing
a shape-preserving (i.e., “as-similar-as-possible” [Igarashi et al.
2005]) constraint. The combination of the shape-preserving and
mesh representation together provides two kinds of regularizations:
1) for each cell, the fitted homography should be biased toward a
reduced similarity (or rigid) transformation; 2) the intrinsic connec-
tion of the mesh (two neighboring mesh cells share two vertices)
enforces a first-order continuity constraint. They can help to prop-
agate or fill in information from regions with sufficient features to
other regions.

Finally, we estimate the motion by minimizing two energy terms:
a data term for matching features, and a shape-preserving term for
enforcing regularization.

3.2 Model Estimation

We first describe our basic method by following [Liu et al. 2009],
and later extend it for better robustness in the next subsection.

Data term As shown in Figure 2, suppose {p, p̂} is the p-th
matched feature pair from frame t to frame t+ 1. The feature p can
be represented by a 2D bilinear interpolation of the four vertices
Vp = [v1
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We expect that the corresponding feature p̂ can be represented by
the same weights of the warped grid vertices V̂p = [v̂1
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Therefore the data term is defined as

Ed(V̂ ) =
∑

p
||V̂pwp − p̂||2. (1)
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Figure 3: Comparison of motion estimation with and without the
shape-preserving term.

Here V̂ contains all the warped grid vertices. Solving V̂ determines
the warping of the grid.

Shape-preserving term We use the same shape-preserving term as
[Liu et al. 2009] involving all vertices in V̂ ,

Es(V̂ ) =
∑
v̂

‖v̂ − v̂1 − sR90(v̂0 − v̂1)‖2, R90 =

[
0 1
−1 0

]
, (2)

where s = ‖v − v1‖/‖v0 − v1‖ is a known scalar computed from
the initial mesh. This shape-preserving term requires the triangle of
neighboring vertices v, v0, v1 to follow a similarity transformation.

Linearly combining two terms forms our final energy E(V̂ ):

E(V̂ ) = Ed(V̂ ) + αEs(V̂ ), (3)

where α is an important weight to control the amount of regulariza-
tion. We will discuss how to adaptively determine it later. Since the
energy E(V̂ ) is quadratic, the warped mesh V̂ can be easily solved
by a sparse linear system solver.

Estimating homographies After having a new mesh, we can esti-
mate each local homography Fi(t) in the grid cell i of frame t by
solving a linear equation:

V̂i = Fi(t)Vi, (4)

where Vi and V̂i are the four vertices before and after the warping.

Figure 3 shows the warped mesh grid according to the estimated
motion. Left and right are the results with and without the shape-
preserving term. It is clear that the regularization term helps main-
tain a smooth varying mesh representation.

3.3 Robust Estimation

We further generalize our motion estimation to make it more robust.

Outlier rejection We reject incorrectly matched features at two
scales. At the coarse scale (the whole image), we apply RANSAC
algorithm [Fischler and Bolles 1981] to fit a global homography
F̄ (t) and discard features by a relatively large threshold on fitting
error (6% image width). At the fine scale (4 × 4 sub-images), we
apply RANSAC again to reject features by a relatively small thresh-
old (2% image width).

Pre-warping To facilitate the warping estimation, we use global
homography F̄ (t) to bring matching features closer. We then solve
the warping to estimate the residual motion, which generates a ho-
mography F ′i (t) at each grid cell. The final homography Fi(t) is
simply computed as F ′i (t) × F̄ (t). Note that this coarse-to-fine
strategy has been used in [Liu et al. 2009] for image synthesis and
proven effective in motion estimation literature [Brox et al. 2004].
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Figure 4: Our method automatically chooses an appropriate α for
different scenes: (a) a scene free of occlusion; (b) a scene with
severe occlusion.

Adaptive regularization A good regularization should be adaptive
to image content. For example, if reliable features are uniformly
distributed over the whole image, we should trust the data term
more and use a smaller weight α in Equation 3 for a weaker regu-
larization. But when there is occlusion or insufficient features, we
prefer stronger regularization as the data term is less reliable. To
implement this strategy, we adaptively set α per frame, based on
two errors: fitting error eh and smoothness error es.

The fitting error eh is the average residual of the fea-
ture matching under the estimated homographies, i.e., eh =
1
n

∑
p ‖Fp × p− p̂‖

2, where Fp is the homography in the cell con-
taining p, and n is the number of feature pairs. The smoothness
error es measures the similarity (L2 distance) between neighboring
local homographies by es = β

∑
j∈Ωi

‖Fi − Fj‖2, where Ωi con-
sists of the neighboring cells of i. Here, the homography matrix is
normalized so that sum of all its elements is one. We empirically set
β = 0.01, since it makes the scale of eh and es similar on most of
the examples. Then we define the combined error as e = eh + es.
We equally discretize α into 10 values between 0.3 and 3. We per-
form the model estimation using every discretized value and select
the model with minimum error e.

As shown in Figure 4(a), for simple scenes with smooth depth vari-
ation, neighboring cells tend to have similar homographies. So we
choose a small α(=0.9) to better minimize the data error. On the
contrary, for scenes with large occlusion (Figure 4(b)), neighboring
local homographies are less similar. The smoothness error can be
significantly reduced by increasing α. So our system will automat-
ically choose a large α(=3.0) to ensure consistent local motion.

Finally, we show an example in Figure 5 to verify the strength of
the regularization of our method. In this example, we compare two
meshes estimated using all features and a subset of features. Two
similar results indicate our method can robustly deal with regions
of insufficient features.

3.4 Bundled Camera Paths

With estimated local homographies, we can define a bundle of
spatially-variant camera paths for the whole video. Let Ci(t) be

Figure 5: Left: the estimated warping mesh from all feature points.
Right: we exclude all the features in the orange box when estimat-
ing the warping model. A similar mesh can be obtained despite the
lack of features.
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Figure 6: (a) Bundled camera paths. (b) Relationships among
original path {C(t)}, smoothed path {P (t)}, and transformations
{B(t)}

the camera pose of the grid cell i at frame t. It can be written as:

Ci(t) = Ci(t−1)Fi(t−1),⇒ Ci(t) = Fi(0)Fi(1) · · ·Fi(t−1),

where {Fi(0), ..., Fi(t − 1)} are estimated local homographies at
the same grid cell i, as shown in Figure 6 (a). We call these
spatially-variant paths as “bundled camera paths”. In the next sec-
tion, we describe how we smoothen these bundled paths for video
stabilization.

4 Path Optimization

We first describe our smoothing method for a single camera path,
and extend it to a bundle of camera paths.

4.1 Optimizing a Single Path

A good camera path smoothing should consider multiple compet-
ing factors: removing jitters, avoiding excessive cropping, and min-
imizing various geometrical distortions (shearing/skewing, wob-
ble). To reach a desired balance, we propose an optimization-based
framework taking all factors into account.

Formulation Given an original path C = {C(t)}, we seek an
optimized path P = {P (t)} by minimizing the following function:

O ({P (t)}) =∑
t

(
‖P (t)− C(t)‖2 + λt

∑
r∈Ωt

ωt,r (C) · ‖P (t)− P (r)‖2
)
,

(5)
where Ωt are the neighborhood at frame t. The other terms are:

• data term ‖P (t)− C(t)‖2 enforcing the new camera path to
be close to the original one to reduce cropping and distortion;

• smoothness term ‖P (t)− P (r)‖2 stabilizing the path;

• weight ωt,r (C) to preserve motion discontinuities under fast
panning/rotation or scene transition;
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Figure 7: Comparison of with and without adaptive weights Gm()
for a video with rapid camera panning. The camera paths on the
top plot the x-translation over time.

• parameter λt to balance the above two terms.

Since Equation 5 is quadratic, we can solve it with any linear system
solver. Here, we use a Jacobi-based iterative solver [Bronshtein and
Semendyayev 1997]:

P (ξ+1)(t) =
1

γ
C(t) +

∑
r∈Ωt,r 6=t

2λtωt,r
γ

P (ξ)(r), (6)

where γ = 1 + 2λt
∑
r∈Ωt,r 6=tωt,r , and ξ is an iteration index.

At initialization, P (0)(t) = C(t). Once we obtain the optimized
path P, we compute the warping transformB(t) = C−1(t)P (t) to
warp the original video frame to the stabilized result (Figure 6(b)).

Discontinuity-preserving The adaptive weight ωt,r is important
to preserve motion discontinuity. We follow the idea of bilateral
filter [Tomasi and Manduchi 1998] and design it by two Gaussian
functions:

ωt,r = Gt (‖r − t‖) ·Gm (‖C(r)− C(t)‖) , (7)

where Gt() gives larger weight to the nearby frames. Gm() mea-
sures the changes of two camera poses.

We use a large kernel to ensure successful suppression of both high-
frequency jitters (e.g., handshake) and low-frequency bounces (e.g.,
walking). In our implementation, we set Ωt to 60 neighboring
frames and the standard deviation of Gt() to 10. In contrast, previ-
ous low-pass filtering based methods [Matsushita et al. 2006] typ-
ically need a smaller amount of support (e.g., 10 frames) to avoid
aggressive cropping and distortion. But such a small kernel is often
insufficient in suppressing low frequency bounces.

The reason why we can use a larger kernel lies in Gm(). In video
stabilization, for rapid camera motion (e.g, caused by fast panning
or scene transition), an inappropriate amount of smoothing may
lead to excessive cropping, as shown in Figure 7. In this case,
the camera pans quickly, and naı̈ve Gaussian smoothing (second
row) causes the camera path to significantly deviate from its origi-
nal path, as indicated by the dashed lines in the left plot on top. The

corresponding frames shown on the second row will require large
cropping. Our adaptive term Gm() preserves the sudden camera
motions to a certain degree. The result from our adaptive smooth-
ing (bottom row) produces much less cropping.

To measure the camera motion, we use the change in translation
components µx(t), µy(t) extracted from the camera pose C(t),
namely |µx(t)− µx(r)|+ |µy(t)− µy(r)|. The frame translation
µx(t), µy(t) can describe most camera motions in practice except
for an in-plane rotation or scale around the principal axis.

Cropping and distortion control The above adaptive term ωt,r
can give us a certain amount of ability to control cropping and dis-
tortion. However, the user may want to have strict control on the
cropping ratio and distortion. In principle, we could formulate a
constrained optimization to address this issue. But it may be too
complex to be solved or reproduced.

In this work, we resort to a simple but effective method - adaptively
adjust the parameter λt for each frame. We first run the optimiza-
tion with a global fixed λt = λ (empirically set to 5) and then check
the cropping ratio and distortion of every frame. For any frame that
does not satisfy the user requirements (cropping ratio or distortion
is smaller than a pre-defined threshold), we decrease its parameter
λt by a step (1/10λt) and re-run the optimization. Note, accord-
ing to Equation 6, a smaller λ will make the optimized path closer
to the original one, which has less cropping and distortions. The
procedure is iterated until all frames satisfy the requirements.

We measure the cropping ratio and distortion from the warping
transform B(t) = C−1(t)P (t). The anisotropic scaling of B(t)
measures the distortion. It can be computed by the ratio of the two
largest eigenvalues of the affine part of B(t) [Hartley and Zisser-
man 2003]. We use B(t) to compute the overlapping area of the
original video frame and the stabilized frame. The cropping ratio
is the ratio of this area and the original frame area. In our experi-
ments, we require the cropping ratio to be larger than 0.8, and the
distortion score to be larger than 0.95 for all examples. In princi-
ple, we can further measure the perspective distortion by the two
perspective components in B(t). But we empirically find they are
always too small when compared with the affine components and
do not include them.

4.2 Optimizing Bundled Paths

Our motion model generates a bundle of camera paths. If these
paths are optimized independently, neighboring paths could be less
consistent, which may generate distortion in the final rendered
video. Hence, we do a space-time optimization of all paths by min-
imizing the following objective function∑

i

O ({Pi(t)}) +
∑
t

∑
j∈N(i)

‖Pi(t)− Pj(t)‖2, (8)

where N(i) includes eight neighbors of the grid cell i.

The first term is the objective function in Equation 5 for each sin-
gle path, and the second term enforces the smoothness between
neighboring paths. This optimization is also quadratic and the opti-
mum result can be obtained by solving a large sparse linear system.
Again, our solution is updated by a Jacobi-based iteration [Bron-
shtein and Semendyayev 1997]:

P
(ξ+1)
i (t) =

1

γ′
(Ci(t)+

∑
r∈Ωt
r 6=t

2λtwt,rP
(ξ)
i (r)+

∑
j∈N(i)
j 6=i

2P
(ξ)
j (t)),

where
γ′ = 2λt

∑
r∈Ωt,r 6=t

wt,r + 2N(i)− 1.



We typically iterate 20 times to optimize camera paths.

During optimization, the motion-adaptive term Gm(·) is evaluated
at individual cells, since different cells have different motion. In
comparison, λt is determined from the global path (generated by
concatenating the pre-warping global homographies), because it
controls the overall cropping and distortion. Then, we use λt to
optimize the camera paths in all cells.

Result synthesis After path optimization, we compute the warp-
ing matrix Bi(t) for each cell i by Bi(t) = C−1

i (t)Pi(t). We then
apply Bi(t) to warp the i-th cell at the t-th frame to generate the
final output video. Usually, applying Bi(t) directly generates good
results. This is because our motion estimation ensures first order
smoothness of the original paths. Furthermore, the bundled opti-
mization in Equation 8 requires nearby optimized paths to be simi-
lar. Thus, the smoothness is naturally satisfied byBi(t) most of the
time. Sometimes, there are slight distortions (e.g., seams of about
1-pixel width), in which case we perform a bilinear interpolation to
fix them.

4.3 Correcting Rolling Shutter Effects

Our bundled paths model can naturally handle rolling shutter effects
without pre-calibration. The principle of our method is similar to
that of [Grundmann et al. 2012]. Our system does rolling shutter
correction while simultaneously stabilizing the video. In a shaky
video, a rolling shutter causes spatially variant high frequency jit-
ters. When smoothing the camera paths, we simultaneously rectify
rolling shutter effects and other jitters caused by camera shake.

5 Results

We run our method on an Intel i7 3.2GHZ Quad-Core machine with
8G RAM. We extract 400-600 SURF features [Bay et al. 2008] per
frame. For motion estimation, we always divide the video frame
to 16 × 16 cells. For a video of 1280 × 720 resolution, our un-
optimized system takes 392 milliseconds to process a frame (around
2.5fps). Specifically, we spend 300ms, 50ms, 12ms and 30ms to
extract features, estimate motion, optimize camera paths and render
the final result. All original and result videos are provided on our
webpage1.

5.1 Algorithm Validation

We first verify the effectiveness of different components of the pro-
posed approach.

A Global Path vs. Bundled Paths For the example in Figure 1, the
result according to a global path has remaining jitters in some im-
age regions. This is because the parallax makes the global homog-
raphy motion model invalid, therefore some image regions cannot
be stabilized very well. But our bundled paths can handle this kind
of typical situation. Please refer to our accompanying video for a
visual comparison.

Spatially-variant Homographies vs. Homography Mixture
Grundmann et al. [2012] proposed a homography mixture model
for rolling shutter correction. They divide a video frame into a 1D
array of horizontal blocks, and use a Gaussian mixture of homogra-
phies for each block. This model is beyond a single 2D transforma-
tion and able to partially handle parallax.

1http://www.ece.nus.edu.sg/stfpage/eletp/Projects/Stabilization/Stabili-
zationSig13.html

(a) original video frame (b) YouTube result

(c) our result (d) homography mixtures (our implementation)

Figure 8: Comparison with the homography mixture models in
[Grundmann et al. 2012]. (a) A sample frame in the original video.
(b) The output frame produced by YouTube Stabilizer. (c) The result
produced by our method. (d) The result produced using our imple-
mentation of homography mixture [Grundmann et al. 2012] (with
the same bundled path smoothing).

Compared with our 2D mesh-based, spatially-variant homogra-
phies, this model has two limitations: 1) it does not address hori-
zontal depth variation; 2) it uses weaker feature points (which apply
lower threshold level for feature detection) and a simple Gaussian
mixture for the regularization. Weaker feature points may result in
larger fitting errors and the ability to use simple Gaussian smooth-
ing is limited.

Figure 8 shows a comparison of these two models. In this example,
the scene has horizontal depth variation and the sky region lacks
feature points. Figure 8 (a) is the result of using YouTube Stabi-
lizer (integrated Homography Mixture feature). We can observe
severe geometrical distortions. To further verify our observation,
we replace our spatially-variant model with the homography mix-
ture model (our implementation) in our framework and generate the
result in Figure 8 (d), where we observe similar distortion. In com-
parison, our warping-based motion estimation can fundamentally
handle depth variation (not limited to vertical direction). Our result
(Figure 8 (c)) does not suffer from such distortion. Please also see
the comparison in the accompanying video.

Rolling Shutter Handling Figure 9 compares our methods with
[Grundmann et al. 2012] on two example videos from their paper.
Our model accounts for frame distortions such as skew (left exam-
ple) and local wobble (right example). More examples are included
in the supplementary video, which shows we achieve similar results
on correcting rolling shutter distortion as [Grundmann et al. 2012].

5.2 Quantitative Evaluation

To quantitatively evaluate and measure the result from different as-
pects, we define three objective metrics.

Cropping and distortion Our first two metrics measure cropping
ratio and global distortion. We first fit a global homography at each
frame between input video and output video. We then compute the
cropping ratio and distortion for each frame. The cropping ratio can
be directly computed from the scale component of the homography.
There is one global cropping ratio for the whole sequence, and each
frame provides an estimation. We average these estimations at all
frames as the final metric. The distortion is computed as defined in
Section 4.1. Because any distortion in a single frame will destroy
the perfection of the whole result, we choose their minimum across
the whole sequence as the final metric. This “worst-case” metric



input frames [Grundmann et al. 2012] our results input frames [Grundmann et al. 2012] our results

Figure 9: Two rolling shutter removal examples using our method and [Grundmann et al. 2012]. Our results are on par with that from
[Grundmann et al. 2012]. Please see video for a full comparison.

allows us to easily see whether the whole result video is completely
successful. For a good result, both metrics should be close to 1.

Stability The third metric measures the stability of the result. De-
signing a good metric is non-trivial because it is hard to compare
two different videos. We suggest an empirically good metric us-
ing frequency analysis on estimated 2D motion from a video. Our
basic assumption is that the more energy is contained in the low
frequency part of the motion, the more stable a video is.

Computationally, we estimate our bundled camera paths to approx-
imate the true motion (optical flow) in a video. We do not smooth
out anything after the estimation. Then, we extract translation and
rotation components from each path. Each component is a 1D tem-
poral signal. Finally, we evaluate the energy percentage of the low
frequency components (expect for DC component) in these 1D sig-
nals to measure the stability.

Specifically, we take a few of the lowest (empirically set as from the
2nd to the 6th) frequencies and calculate the energy percentage over
full frequencies (excluded by the DC component). Similar to the
distortion, we take the smallest measurement among the translation
and rotation as the final metric. For a good result, the metric should
approach 1 here as well.

5.3 Comparison with Publicly Available Results

The purpose of this comparison is to test whether our results are
comparable with (if not better than) previous “successful” results in
[Liu et al. 2009; Liu et al. 2011; Goldstein and Fattal 2012; Grund-
mann et al. 2011]. We collect eleven test videos from these papers
(thumbnails in Figure 10), and compare our results with their pub-
lished results (all from authors’ project webpages).

Overall, all methods generate similar stability both subjectively and
quantitatively (Figure 10) on these examples, while our results are
slightly better on some videos in terms of cropping ratio and distor-
tion.

For video (2)-(4), 3D stabilization [Liu et al. 2009] achieves the
best stability and distortion scores. It suggests that 3D methods
are the first choice (in term of stability and distortion error), when
the 3D motion can be successfully estimated. Although our results
are slightly worse in stability, the visual difference is quite small
(please verify from the supplementary video). Furthermore, the ag-
gressive smoothing in 3D methods sometimes leads to an output
FOV that is too small as demonstrated by the cropping score. Our
method manages to provide a good trade-off. For video (5-9), [Liu
et al. 2011], [Goldstein and Fattal 2012], and our method achieve
similar stability, while our method is slightly better in cropping and

[Liu et al. 2011]input our result

Figure 11: Comparison with a failure case of prior methods.

distortion. For video (10-11)2, our method outperforms the L1-
optimization [Grundmann et al. 2011] in stability (slightly), crop-
ping ratio, and distortion scores.

Figure 11 highlights the most challenging video (10) in this dataset.
Liu et al. [2011] refer this example as a failure case because a single
subspace cannot account for the feature trajectories on both the face
and the background. Their results have visible distortion. [Grund-
mann et al. 2011] produced better result on this example. But in the
video result, we still observe large temporal distortion on the back-
ground region. (See our accompanying video.) In comparison, our
method can successfully handle this example (achieve best in terms
of all three metrics) because the warping-based motion model can
represent this complicated motion.

5.4 Comparison with the State-of-the-Art Systems

Due to no publicly available implementation of previous works, we
compare our system with two well-known commercial systems –
YouTube Stabilizer and ‘Warp Stabilizer’ in Adobe After Effects
CS6. The YouTube Stabilizer is based on the combination of the
L1-norm path optimization [Grundmann et al. 2011] and homog-
raphy mixtures [Grundmann et al. 2012]. The ‘Warp Stabilizer’ in
Adobe After Effects is largely based on subspace stabilization [Liu
et al. 2011]. We understand that commercial products are often dif-
ferent from a given research system. But we believe these two sys-
tems represent the essential elements of research conducted in this
field, and the comparison makes sense for examining strengths or
weaknesses and robustness (for various videos using a set of fixed
parameters) of our system.

Dataset We assemble a comprehensive dataset of 174 short
videos (10 ∼ 60 seconds) from previous publications, Internet, and
our own captures. To know the strength and weakness of a method
in different situations, we roughly divide our data into 7 categories
based on camera motion and scene type. They are: (I) simple, (II)
quick rotation, (III) zooming, (IV) large parallax, (V) driving, (VI)
crowd, and (VII) running.

2To better measure stability on background motion (caused by camera
shake), we use a manual foreground mask to exclude foreground motion.
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Figure 10: Quantitative comparison with existing stabilization techniques on publicly available data.

YouTube Stabilizer is a parameter-free online tool. But ‘Warp Sta-
bilizer’ is an interactive system, and the user might carefully tune
a few parameters. Here, we wish to examine its robustness as an
automatic tool by fixing its parameters. We use the example videos
in [Liu et al. 2011] to decide the best parameters. Finally, we choose
the default parameters (smoothness: 50%, ‘Smooth Motion’ and
‘Subspace Warp’) to produce results.

Quantitative Comparison For each category, we compute the
average metrics and standard deviation of three systems (Figure 12
(a)). We discuss the results with regard to each system in detail
below.

All three systems perform well in category (I) “simple”, since this
category contains videos with relatively smooth camera motion and
mild depth variations. Though our method has a minor advantage,
the users can safely choose any of three to get a desired result.

Among the remaining categories, we want to highlight the category
(IV) “large parallax”. The three systems achieve similar stability,
while our system is clearly better in terms of distortion. We show
two examples in Figure 12 (b) and (c) for visual comparison of our
system and the YouTube Stabilizer. These examples show the lim-
itation of a 1D array of homography mixtures – it cannot model
depth changes in horizontal direction. Warp Stabilizer also gener-
ates some shearing/skewing artifacts in some video frames, though
in principle this 3D method should be able to handle parallax. Fig-
ure 12 (d) shows such an example (please note the shearing of the
bookshelf). This is probably due to the subspace analysis failure
caused by occlusion. Our method succeeds in all of these examples.
Comparison in this category clearly demonstrates the advantages of
our warping-based motion model in dealing with a large parallax.

Categories (II–III) contain quick rotation or zooming, which are
challenging cases for methods requiring long feature tracking.
‘Warp Stabilizer’ often generates significant cropping. Figure 12(e)
is such an example. To alleviate this problem, we try to interactively
tune its smoothing parameters. When applying a weaker smooth-
ing, however, we find its result becomes shaky. In comparison, our
method generates stable results with much less cropping. For cat-
egories (V–VII), the three systems generate similar stability levels
(‘Warp Stabilizer’ is slightly better in category VII), while our sys-

tem is consistently better with respect to either cropping ratio or
distortion control.

We notice that our method generates relatively smaller standard de-
viations of the three metrics for all categories. It suggests that our
method generates more consistent results from various inputs.

User Study We further conduct a user study with 40 participants
to evaluate and compare our method with the YouTube Stabilizer
and the ’Warp Stabilizer’ in Adobe AfterEffects CS6. Every par-
ticipant is required to evaluate results on 28 different input videos
(randomly sampled from our dataset), in which there are 4 videos
for each category mentioned above (The 4 video are prepared in
the way that two of them compare our result to YouTube Stabilizer,
and the other two to ’Warp Stabilizer’). In the user study, we use the
scheme of forced two-alternative choice. Every participant is asked
to pick a better one between the results of our method and YouTube
Stabilizer, or between the results of our method and the ’Warp Sta-
bilizer’. These videos are displayed to the subjects in a random
order. The subjects are unaware of the video categories. Neither do
they know which technique is used to produce the stabilized results.
Figure 13 (a) shows such an interface for the user study. The origi-
nal video is displayed on the top. The two stabilized ones are shown
side-by-side below. Users can simultaneously play input video and
both two results to better examine the difference. And these videos
can be played back and forth, or be paused at a certain frame to help
users carefully make their decision. The user can also play each of
these videos individually to examine their quality without other dis-
tractions. We ask users to disregard differences in aspect ratio, or
sharpness since each one may undergo different video codecs or
further post-processing which makes uniform treatment difficult.

The user study results are shown in 13 (b). For each category, we
show the average percentage of user preference. In general, the ma-
jority of all users showed significant preference towards our results
when compared to any of the other two systems respectively. In
particular, the participants prefer the overall quality of our results
for category (IV) “large parallax” over YouTube Stabilizer (72%
vs. 28%) and ‘Warp Stabilizer’ (69% vs. 31%). The result is con-
sistent with our metric evaluation. For category (II–III) containing
quick rotation or zooming, users show a strong bias in preference
toward our results over ‘Warp Stabilizer’ (93% vs. 7% for rotation,
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Figure 12: Comparisons with two popular systems: YouTube Stabilizer and Adobe After Effect “Warp Stabilizer”. Top: quantitative com-
parisons by three metrics: cropping (C), distortion (D) and stability (S). Bottom: some sample video frames for visual comparisons.
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Figure 13: (a) Pair-wise comparison interface for user study. (b) User study results by comparing our method with two popular systems:
YouTube Stabilizer and Adobe After Effect “Warp Stabilizer”.

83% vs. 17% for zooming). This is possibly due to the significant
cropping in the results of ’Warp Stabilizer’. For categories (V–VII),
more participants prefer our results to the other two systems, al-
though the three systems generate similar stability levels according
to our stability metric. It is likely because of the superior distortion
and cropping control in our method. In category (I) “simple”, users
express similar preference toward three results.

After the user study, we also ask all participants to articulate the
criteria for their feedbacks. We conclude the main criteria for un-
acceptable videos: 1) the video gets a smaller field of view or
even contains frames with visible empty (black) area; 2) the video
presents structure distortions in individual frames; 3) the motions
in some video frames vibrate or oscillate; 4) the scene transition
looks abrupt or not smoothed in the video. From these criteria, our
proposed metrics can be partially related with human preferences.
And both quantitative evaluation and user study results consistently
indicate our system performs better than the other two systems.

5.5 Limitations and Discussion

We find that when 3D reconstruction is successful, 3D methods of-
ten generate the best results. However, our system is more robust
as we do not require feature tracking, and it produces comparable
or only slightly worse results. It is interesting to note that our adap-
tive path optimization can also be applied to path smoothing for
3D methods [Liu et al. 2009; Liu et al. 2011; Goldstein and Fattal
2012], which often use low-pass filtering (Gaussian smoothing), or
curve fitting for path planning. In comparison, our adaptive camera

path smoothing technique can automatically adjust the smoothness
strength by considering discontinuity and distortion. We show such
an example video on our project webpage.

There are cases where the warping-based motion model fails to
handle severe occlusions or dis-occlusions, especially when com-
bined with rolling shutter effects. Figure 14 shows two such exam-
ples. Our warping-based motion model chooses a large α to enforce
strong coherence between grid cells. In this way, we can minimize
the geometrical distortion, but at the same time, we sacrifice mo-
tion accuracy and eventually the stability of the result. In general,
we find geometrical distortion is more disruptive than some slight
remaining jitters.

Our path optimization does not strictly follow cinematography
rules, which may be desirable in certain applications. But our
discontinuity-preservation optimization produces visually pleasing
results in most examples. If necessary, we could apply the strategy
in [Gleicher and Liu 2007] as a post-process to solve this problem.
We also do not deal with motion blur. Sometimes, the stabilized
results contain visible blur artifacts. This problem can be addressed
by the recent work [Cho et al. 2012].

6 Conclusion

We have presented a new 2D video stabilization method with a bun-
dled camera paths model. The proposed method can simultaneously
generate comparable results to 3D methods while keeping merits of
2D methods. Using image warping techniques for motion represen-
tation is an interesting finding in this paper. In the future, we would
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Figure 14: Two failure cases. The left is due to severe occlusion to-
gether with rolling shutter effects. The right is caused by the crowd.

extend this kind of representation to other video-based applications.
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