
Rex: Replication at the Speed of Multi-core

Zhenyu Guo* Chuntao Hong* Mao Yang* Dong Zhou# Lidong Zhou* Li Zhuang*

*Microsoft Research #CMU
*{zhenyug, chhong, maoyang, lidongz, lizhuang}@microsoft.com #dongz@cs.cmu.edu

Abstract
Standard state-machine replication involves consensus on
a sequence of totally ordered requests through, for exam-
ple, the Paxos protocol. Such a sequential execution mod-
el is becoming outdated on prevalent multi-core servers.
Highly concurrent executions on multi-core architectures
introduce non-determinism related to thread scheduling and
lock contentions, and fundamentally break the assumption
in state-machine replication. This tension between concur-
rency and consistency is not inherent because the total-
ordering of requests is merely a simplifying convenience
that is unnecessary for consistency. Concurrent executions
of the application can be decoupled with a sequence of con-
sensus decisions through consensus on partial-order traces,
rather than on totally ordered requests, that capture the non-
deterministic decisions in one replica execution and to be re-
played with the same decisions on others. The result is a new
multi-core friendly replicated state-machine framework that
achieves strong consistency while preserving parallelism in
multi-thread applications. On 12-core machines with hyper-
threading, evaluations on typical applications show that we
can scale with the number of cores, achieving up to 16 times
the throughput of standard replicated state machines.

Categories and Subject Descriptors D.1.3 [SOFTWARE]:
Concurrent Programming

General Terms Multi-core, Performance, Replication

Keywords Replicated State Machine, Multi-core, Replica-
tion

1. Introduction
Server applications that power on-line services typically run
on a cluster of multi-core commodity servers. These appli-
cations must leverage an underlying multi-core architecture

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys 2014, April 13 - 16 2014, Amsterdam, Netherlands.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2704-6/14/04$15.00.. . . $15.00.
http://dx.doi.org/10.1145/2592798.2592800

for highly concurrent request processing, but must also of-
ten resort to replication to guard against the failure of com-
modity components. To guarantee consistency, replicas in
the standard replicated state-machine approach [28, 38] start
from the same initial state and process the same set of re-
quests in the same total order deterministically. The concur-
rent execution model of multi-thread server applications no
longer matches this deterministic sequential execution mod-
el assumed by state-machine replication. The fundamental
challenge in replicating highly concurrent multi-thread ap-
plications lies in the tension between determinism and paral-
lelism. Deterministic parallelism [3, 5, 7, 15, 16, 21, 34] has
been a promising research direction, but so far, without ar-
chitectural changes to provide hardware support, determin-
ism is achieved only at the cost of degraded expressiveness
and/or performance. Eve [22] achieves mostly deterministic
parallelism by using a mixer that groups requests into most-
ly non-conflicting batches, so that concurrent executions of
a batch on different replicas are likely to have deterministic
and consistent effects. Eve has built-in mechanisms to detect
divergence, trigger rollback, and resort to serial re-execution
for recovery.

We instead take a different approach to the problem:
rather than forcing all replicas to execute in the same de-
terministic fashion, we achieve replica consistency with an
execute-agree-follow model in our new replication frame-
work called Rex. In this execute-agree-follow model, a pri-
mary replica executes freely, processing requests concurrent-
ly, while recording the non-deterministic decisions in a par-
tially ordered trace. All replicas then run a consensus proto-
col, such as Paxos [29], to agree on the traces, despite repli-
ca failures and primary changes. Finally, secondary repli-
cas follow the agreed-upon trace by making the same non-
deterministic choices in a concurrent replay to reach the
same consistent state as the primary.

We have implemented Rex. To evaluate whether Rex pre-
serves concurrency in request processing under various cir-
cumstances and to understand its overhead, we have further
developed a set of micro-benchmarks and identified sever-
al representative applications, including a global lock ser-
vice, a thumbnail service, a key/value store, a simple file
system, and Google’s LevelDB. Our experiments on 12-core
servers with hyper-threading show that applications on Rex

achieve as much as 16 times the throughput of standard state-
machine replication.

The rest of the paper is organized as follows. Section 2
presents an overview of Rex’s execute-agree-follow model.
Section 3 details how Rex uses replica consensus to agree
on growing traces. Section 4 presents how Rex captures
causal order in traces during execution and allows secondary
replicas to follow by replaying execution while respecting
the causal order. Since Eve is so related to our work, we
devote Section 5 to the discussion of the difference between
Eve and Rex. Section 6 presents experimental results on both
our micro-benchmarks and representative applications. We
survey related work in Section 7 and conclude in Section 8.

2. Overview
Rex assumes an application model that is close to how on-
line service applications are commonly written. In this mod-
el, an application serves incoming client requests with re-
quest handlers. In contrast to standard state-machine repli-
cation, where totally ordered requests are processed sequen-
tially, request handlers in Rex are executed concurrently in
a thread pool using a set of standard synchronization primi-
tives to coordinate their access to shared data. Each handler
executes deterministically, where Rex requires that the or-
dering of synchronization events be the only source of non-
determinism. Rex degrades into state-machine replication if
each request handler uses the same lock to protect the entire
execution.

2.1 Rex vs. State-Machine Replication

Figure 1 compares Rex’s processing steps with those in
state-machine replication. Both use a consensus protocol
such as Paxos as a basic building block. In its simplest
form, the consensus module allows clients to propose values
in consensus instances and notifies clients when a value is
committed in an instance. The consensus protocol ensures
that a value committed is a value that was proposed in that
instance and that no other values are committed in the same
consensus instance, despite possible failure of a minority of
replicas.

State-machine replication uses a consensus-execution
model, where replicas first reach consensus on a sequence
of requests ri (1 consensus stage), and then execute those
requests in this order (2 execution stage).

Rex instead uses an execute-agree-follow model. A Rex
primary executes first by processing requests concurrent-
ly and records fine-grained causal dependencies among re-
quests in a trace tri (1 execute stage). A primary periodi-
cally proposes the up-to-date trace as the value for the next
consensus instance. Even in the presence of multiple prima-
ry replicas, replicas can reach consensus on a sequence of
traces (2 agree stage). Once committed, secondary replicas
faithfully follow the traces to replay the execution as on the
primary (3 follow stage).

Clients
r7 r6 r5

Replicated
State-Machine

①

Consensus Protocol (Paxos)

…… (4, r4) (3, r3) (2, r2)

Primary

r1

State m
ach

in
e ②

Consensus Protocol (Paxos)

…… (4, r4) (3, r3) (2, r2)

Secondary

r1

State m
ach

in
e ②

Clients

Primary Secondary

r8 r7 r6 r5 r4

Consensus Protocol (Paxos)

…… (3, tr3) (2, tr2) (1, tr1)

R
ex

….

r1r2r3

tr3

tr2

tr1

Consensus Protocol (Paxos)

…… …… (3, tr3) (2, tr2)

R
ex

….

r1r2r3
tr1

①

②

③

Rex

Figure 1. State-machine replication vs. Rex.
Rex executes on the primary before a consensus is

reached, whereas consensus precedes execution in state-
machine replication. This has a subtle implication on defin-
ing when the processing of a request is completed and when
the service can respond to clients. In state-machine replica-
tion, request processing starts after reaching a consensus on
that request and thus the primary can respond to clients right
after execution. In Rex, a primary cannot respond to clients
right after finishing processing a request, but must wait un-
til a trace containing the processing of that request and all
its depending events has been committed in a consensus in-
stance (2 consensus). However, the primary does not have
to wait for the completion of the replay on the secondaries.
Execute stage. Rex executes client requests on the primary
before a consensus is reached. During execution, request
handlers on the primary record causal dependencies among a
set of synchronization events. Figure 2 shows one example.
Two threads are working on two different requests, where
lock L is used to coordinate the access to shared data. Lock
and Unlock calls introduce causal dependencies between
the two threads, which are shown as edges. Because each
replica has the same request-handler code, an execution is
uniquely determined by the set of incoming requests with
their assignments to threads, as well as the synchronization
events and their causal order, which collectively constitute
a trace. In a trace, a synchronization event is identified by
its thread id and a local clock that increases for each local
event; a causal order between two synchronization events is
recorded as a directed causal edge that is identified by a pair
of event identifiers. As shown in Figure 2, a causal edge
exists from the Unlock event (t1, 3) to the Lock event

Lock(L)

Thread t1 Thread t2

Unlock(L)

Lock(L)

New Request

c2

c1

1

2

3

4

1

2

3

New Request

Lock(L)

Unlock(L)

Figure 2. Request handlers & synchronization primitives.
(t2, 2), where the Unlock event must precede the Lock
event.

The trace is growing as a Rex primary continuously ex-
ecutes incoming requests. We pick an event in a thread as
a cut point for that thread. The collection of cut points, one
for each thread, defines a cut on a trace. A cut includes al-
l events up to the cut points in the threads, as well as the
causal order among them. A trace trp is considered a prefix
of another trace tr if trp is a cut on tr. A cut is consistent if,
for any causal edge from event e1 to e2 in the trace, e2 be-
ing in the cut implies that e1 is also included in the cut. An
execution reaches only consistent cuts. Figure 2 shows two
cuts c1 and c2, where c1 is consistent, but c2 is inconsistent
because event (t1, 4) is in the cut, but (t2, 3) is not.
Agree stage. Rex replicas reach consensus on a sequence
of traces using the multi-instance Paxos protocol. While re-
quests in different consensus instances are independent in
replicated state-machine, traces in different consensus in-
stances of Rex are not: replicas must reach consensus on
a sequence of growing traces that satisfy the prefix condi-
tion, where a trace committed in instance i is a prefix of
the trace committed in instance i+1. The prefix condition
must also hold during a primary change: a new primary
must first learn what has been committed in previous con-
sensus instances and replay to the trace of the last completed
consensus instance, before it can continue execution to cre-
ate longer traces as proposals to subsequent consensus in-
stances.
Follow stage. In the follow stage, a secondary replica in Rex
follows the execution based on the traces that the replicas
have reached consensus on. When processing requests on a
secondary with respect to a trace, a synchronization event
e is triggered only after the execution of all events causally
ordered before e in the trace. If e in thread t has to wait for
the execution of an event e′ in thread t′, Rex pauses thread t
just before e and registers with t′ to have it signal t after
it executes e′. This way, the executions of corresponding
threads at each secondary follow the same causal order.
Because of differences in thread interleaving, a replay on
a secondary might introduce extra waiting. For example, in
the execution on a primary, thread t1 might get a lock before
t2; during replay, t2 might be scheduled first and get to the
point of acquiring the lock before t1 does. In this case, t2
still has to wait for t1 to respect the same ordering as in the
execution of the primary. Causal dependencies captured in
causal edges decide the level of concurrency in the follow

stage. Unnecessary causal dependencies are removed at the
execute stage for better performance.

2.2 Correctness and Concurrency

The correctness of Rex can be defined as equivalent to a
valid single-machine execution and follows from the follow-
ing three properties: (i) Consensus: all replicas reach a con-
sensus on a sequence of traces, (ii) Determinism: a replica
execution that conforms to the same trace reaches the same
consistent state, and (iii) Prefix: a trace committed in an ear-
lier consensus instance is a prefix of any trace committed in a
later one. The first two properties ensure consistency across
replicas, while the third property ensures that the sequence
of traces constitute cuts on the same valid single machine
execution. How Rex satisfies the consensus and prefix prop-
erties is the subject of Section 3, while Section 4 presents
how Rex achieves the determinism property.

Compared to state-machine replication, where request
processing is serialized, Rex preserves concurrency in re-
quest processing: a primary processes requests concurrent-
ly using Rex’s synchronization primitives, while recording
causal order that matter to the execution; a secondary re-
plays the execution by respecting recorded causal order-
ing and preserves the inherent parallelism of an application.
Rex introduces overhead in both execution of a primary for
recording causal order and execution of secondary replicas
for respecting that order. Our evaluations in Section 6 show
that the overhead is manageable and higher concurrency
leads to significant performance improvement on multi-core
machines.

3. Agreeing on Traces
Rex uses Paxos to ensure the consensus and prefix properties
introduced in Section 2.2. As in state-machine replication,
Rex manages a sequence of consensus instances with the
Paxos protocol [30] so replicas can agree on a trace. Across
instances, Rex must also ensure the prefix property. In this
section, we describe how Rex reaches consensus on a grow-
ing trace.

3.1 Consensus in Rex

Rex uses the multi-instance Paxos protocol that relies on a
failure detection and leader election module to detect replica
failures and elect a new leader (e.g., after suspecting that the
current leader has failed). To become a new leader, a repli-
ca must execute the first phase of the Paxos protocol. When
multiple replicas compete to become the new leader, their
ballot numbers decide the winner. In this phase, the new
leader must learn any proposal that could have been com-
mitted and proposes the same values to ensure consistency.
A leader carries out the second phase to get a proposal com-
mitted in a consensus instance and does so in a round-trip
when a majority of the replicas cooperate.

Beyond standard Paxos, Rex makes two noteworthy de-
sign decisions. First, Rex has at most one active consensus

instance at any time. A primary proposes to an instance only
after it learns that every earlier instance has a proposal com-
mitted. This decision greatly simplifies the design of Rex in
the following three ways. First, Rex does not have to manage
multiple active instances or deal with “holes” where a lat-
er instance reaches an agreement before an earlier instance
does. Second, the decision makes it easy to guarantee the
prefix condition: during primary changes, the new primary
simply learns the trace committed in the last instance, re-
plays that trace, and uses that trace as the starting point for
further execution. Finally, the design enables a simple opti-
mization where a proposal to a new instance can contain not
the full trace, but only the additional information on top of
the committed trace in the previous instance. There is no risk
of mis-interpretation because the base trace has already been
committed.

This simplification does not come at the expense of per-
formance. Normally, when a primary is ready to propose to
instance i + 1, the proposal for instance i has already been
committed. Even when a primary wants to propose to in-
stance i + 1 before a consensus is reached in all previous
instances, the primary can simply piggyback all the not-yet-
committed proposals from previous instances in the proposal
to the new instance: a secondary accepts the proposal for in-
stance i+ 1 only if it accepted the proposal for the previous
instances.

Second, the leader of Rex’s Paxos is co-located on the
primary. The implementation exposes leader changes in the
interface, in addition to the standard Paxos interface, as fol-
lows. Propose(i, p) is used to propose p to instance
i; OnCommitted(i, p) allows Rex to provide a call-
back to be invoked when proposal p is committed in in-
stance i; OnBecomeLeader() is the callback to be in-
voked when the local replica becomes the leader in Paxos;
OnNewLeader(r) is the callback to be invoked when an-
other replica r becomes the new leader.

Normally, a single Rex primary is co-located with the
leader except during transition, processes client requests,
and periodically creates traces as proposals for consensus.
Those traces satisfy the prefix condition naturally as they
are cuts of the same execution. A secondary does not have
to finish replaying before responding to the primary; a sec-
ondary replays only to catch up with the primary in order to
speed up primary changes.

3.2 Reconfiguration

In Rex, leader changes trigger primary changes. A new lead-
er in Paxos becomes the new primary; the old primary down-
grades itself to a secondary when a new leader emerges.
In the (rare) cases where there are multiple leaders, multi-
ple replicas might assume the role of primary. The consen-
sus through Paxos ensures correctness by choosing only one
trace, although executions that are not selected are wasted
and require rollbacks.

Promotion to primary. Our Paxos implementation signals
OnBecomeLeader() when the local replica completes
phase 1 of the Paxos protocol (across all instances) without
encountering a higher ballot number. In that phase, the new
leader must have learned all instances that might have a
proposal committed and will re-execute phase 2 to notify
all replicas about those proposals committed. The replica
learns the trace committed in the last instance, replays that
trace, and then switches from a secondary to a primary. Once
the replica becomes the primary, it starts executing from the
state corresponding to the last committed trace to create new
proposals, thereby ensuring the prefix condition.
Concurrency and inconsistent cut. A new primary must
replay the last committed trace to the end, which is feasible
as long as the trace forms a consistent cut. For performance
reasons, we let the threads log events and causal edges asyn-
chronously. As a result, concurrent thread executions might
log synchronization events and their causal edges in an order
that is different from the execution order, thereby leading to
the possibility of having an inconsistent cut as the trace for
consensus. If an event e gets logged before another event e′

that is causally ordered before e, a secondary would not be
able to replay e fully because it would be blocked waiting
for e′. This is particularly problematic when a secondary is
promoted to primary. In that case, the promotion is forever
blocked. Instead of making each cut consistent, Rex defines
the last consistent cut contained in a trace as the meaning of
the proposal. If the primary changes, then the residual of the
trace after that consistent cut is ignored.
Primary demotion. Our Paxos implementation signals
OnNewLeader(r)whenever it learns a higher ballot num-
ber from some replica r. If the local replica is the primary,
but is no longer a leader, the replica must downgrade itself
to a secondary. Since the primary executes speculatively in
Rex, it must roll back its execution to the point of the last
committed trace. One way to roll back is through check-
pointing, as described next.

3.3 Checkpointing

Rex supports checkpointing (i) to allow a replica to recover
from failures, (ii) to implement rollback on a downgrading
replica, and (iii) to facilitate garbage collection. Although it
is sometimes possible for an application developer to write
application-specific checkpointing logic, Rex resorts to a
general checkpointing framework to alleviate this burden.

Having the primary checkpoint periodically during its ex-
ecution turns out to be undesirable for several reasons. First,
the primary’s current state is speculative and might have
to be rolled back; an extra mechanism is needed to check
whether a checkpoint eventually corresponds to some com-
mitted state. Second, the primary is on the critical path of re-
quest processing, being responsible for taking requests, pro-
cessing them, and creating traces for consensus. Any disrup-
tion to the primary leads directly to service unavailability. In
contrast, thanks to redundancies needed for fault tolerance,

a secondary can take the responsibility of creating check-
points without significant disruptions by coordinating with
the primary.

Checkpointing cannot be done on a state where a request
has not been processed completely because Rex does not
have sufficient information for a replica to continue process-
ing an incomplete request when re-starting from that check-
point. When Rex decides to create a checkpoint, the primary
sets the checkpoint flag, so that all threads will pause be-
fore taking on any new request. Threads working on back-
ground tasks (e.g., compaction in LevelDB) must also pause
(and resume) at a clean starting point. Instead of taking the
checkpoint directly when all threads are paused, the primary
marks this particular cut (as a list of the local virtual clock
values for each thread) and passes the checkpoint request
with the cut information in the proposal for consensus. A
secondary receiving such a request waits until the replay hit-
s the cut points in the checkpoint request and creates a s-
napshot through a checkpointing callback to the application.
Some policy is put in place to decide how often to checkpoint
and which secondary should create a snapshot. Once created,
a secondary continues its replay and copies the checkpoint in
the background to other replicas. When a checkpoint is avail-
able on a replica, any committed trace before the cut points
of that checkpoint is no longer needed and can be garbage
collected.

4. Execute and Follow
Rex leverages record (on the primary in the execute stage)
and replay (on a secondary in follow stage) to achieve the
determinism property as required in Section 2.2. The unique
setting in Rex imposes three requirements that make previ-
ous approaches of record and replay insufficient.

First, Rex demands the ability of mode change from re-
play to live execution, when a secondary is promoted as the
primary. As a result, resources cannot be faked during re-
play, as is often done in previous record and replay systems,
such as R2 [20] and Respec [32]. For example, a record and
replay tool often records the return value of an fopen call
during recording and simply returns the value without exe-
cuting during replay. As the file resource is faked, the sys-
tem cannot switch from replay to live execution after replay-
ing fopen. The subsequent calls (e.g., fread, fwrite,
and fclose) on this resource would fail without actually
executing fopen first.

A second unique requirement in Rex is hybrid execution,
where a resource is concurrently manipulated by API invo-
cations in replay mode and native mode. A secondary repli-
ca may serve read requests in a separate thread pool running
in native mode without involving them in replication. This
is generally not a problem as read requests only read states
without making changes. However, a Lock invocation in-
side a read request handler may change the lock state from
unlocked to locked, which would interfere with the lock in-

1 class RexLock {
2 void Lock() {
3 if (env::local_thread_mode == RECORD) {
4 AcquireLock(real_lock);
5 RecordCausalEdge();
6 } else if (env::local_thread_mode == REPLAY) {
7 WaitCausalEdgesIfNecessary();
8 AcquireLock(real_lock);
9 }

10 }
11 void Unlock() {
12 if (env::local_thread_mode == RECORD)
13 RecordCausalEdge();
14 ReleaseLock(real_lock);
15 }
16 }

Figure 3. Wrapper for Lock and Unlock.
vocation in write request handlers. This effect is called lock
state pollution.

Third, Rex demands online replay [32]: replay perfor-
mance should be comparable to record performance so that a
secondary can catch up to ensure stable system throughput.
This is in contrast to offline replay for scenarios such as de-
bugging. In particular, Rex must enable concurrency during
replay.

No previous record-and-replay systems offer a satisfac-
tory solution for Rex to support all these requirements, al-
though many of the concepts and approaches are useful
to Rex. To support mode change, a replaying replica must
maintain system resources faithfully by re-executing oper-
ations on resources. To allow hybrid execution, we must
carefully avoid lock state pollution from reading threads.
To achieve online replay, trade-offs and optimizations are
adopted. This section first provides an overview of record
and replay and then focuses on the solutions to the chal-
lenges.

4.1 Wrapping Synchronization Primitives

Rex must ensure the same execution ordering of synchro-
nization operations from all threads, such that executions in
follow stage would produce the same effect as in execute
stage. Rex therefore provides wrappers for those synchro-
nization primitives to capture and enforce their order of ex-
ecution, similar to RecPlay [37] and JaRec [19]. A list of
synchronization primitives is shown in Section 6.

Figure 3 is the pseudo code of the Lock and Unlock
wrappers. During recording, the wrapper invokes Record-
CausalEdge (lines 5,13) to capture a causal edge between
two consecutive successful ReleaseLock and Acquire-
Lock calls of real lock; a causal edge remembers the
source and destination events, including the thread iden-
tifiers and the logical clock of the events in the thread.
Before replaying the destination event of a causal edge,
WaitCausalEdgesIfNecessary (line 7) pauses the
current thread until the source event on that edge happen-
s. The WaitCausalEdgesIfNecessary call before
ReleaseLock (line 14) is not neccessary as its source
event AcquireLock must have already happened. Wrap-
pers must also ensure atomicity of an event and its causal

edge logging, which usually requires an additional lock. In
this case, atomicity is already ensured by the mutex lock of
real lock.

The difference between record and replay lies purely in
the working mode of the wrappers, making it easy to switch
from replay to record while being transparent to application-
s. By wrapping synchronization primitives, Rex introduces
enough non-determinism in a programming-friendly way to
allow sufficient concurrency. Rex intentionally avoids pro-
viding programming abstractions that are not record-replay
friendly, such as OS upcalls, and decides against develop-
ing a complete deterministic record and replay tool for ar-
bitrary full-fledged concurrent programs because of the in-
herent complexity and performance overhead, as well as the
unique requirements in Rex.

4.2 Dealing with Challenges

Order replay for mode change. To faithfully maintain re-
sources during mode change, Rex uses order replay [37].
When invoking a sequence of function calls, order replay re-
quires that all resource states and return values of function
calls be the same as long as the invoking order is the same.
All locks in Rex conforms to this requirement, as well as op-
erations over other resources such as disk files because: (i)
the sequence of operations remains the same since concur-
rent operations in multiple threads are protected with locks
and lock invoking order is enforced by wrappers; (ii) opera-
tions are assumed to be synchronous only.
Avoid lock state pollution from hybrid execution. The key
to enable hybrid execution is to circumvent the effect of
lock state pollution from reading threads. Fortunately, lock
state changes from read requests are transient and always
restored by a later Unlock invocation in the same read
request handler. This transient state change is safe for lock
functions that have no return values, except the completion
time is delayed until the read thread releases the lock. For
lock functions that have return values such as TryLock,
the state change may result in different return values. Rex
invokes the lock function repeatedly during replay inside the
wrapper until it gets the same return value as in record.
Tradeoff between record overhead and replay parallelis-
m. With only Lock and Unlock, causal order captured dur-
ing record are simply the total order of all events on the same
lock. Such total ordering turns out to be overly stringent for
mutex locks that support TryLock (and similarly for read-
ers/writer locks and semaphores), and as a result sacrifices
certain parallelism during replay. The left figure in Figure 4
shows an example with three threads. If Rex imposed a total
order on all those events, it would have to record edges (A, B,
C, D). As a result, t3@1 (read in t3 at clock 1) needs to wait
for t2@1, and t2@2 needs to wait for t3@1 during replay;
both are not true causal edges; therefore the wait leads to un-
necessarily reduced parallelism. The right figure shows the
ground-truth causal edges, in which all the TryLock(F)s
have causal order with Lock and Unlock on t1 (edges A,

Lock

1

2

2

Unlock

A

B

TryLock(F)

1

TryLock(F)

TryLock(F)D

C

Lock

1

2

1

2

Unlock

A

TryLock(F)
1

TryLock(F)

TryLock(F)

WX

D
Z

Y

t1 t2 t3 t1 t2 t3

1

Figure 4. Total order vs. partial order. TryLock(F) indi-
cates that the invocation fails to gain the lock.
Y, W, Z, X, D). The execution would be equivalent by pre-
serving all these edges, with higher parallelism during re-
play as t3 and t2 will not wait for each other. To capture
the ground-truth causal edges is however not free. It requires
recording more causal edges and maintaining more informa-
tion in the shared resource. (In this case, six edges will be
recorded instead of four, and as a result, since vertexes in the
graph now have multiple incoming edges, it is now necessary
for the lock to keep the list of “incoming events”, instead of
remembering only the last incoming event.) Rex carefully
balances the tradeoff between the record overhead and the
replay parallelism so that the performance between record
and replay is comparable.
Remove unnecessary causal edges. Rex removes unneces-
sary causal edges to reduce both the trace size and the re-
play cost of examining whether a causal edge is satisfied
or not. Because Rex uses the same number of threads to
serve write requests and timer events on all replicas, causal
ordering within each thread is preserved and therefore can
be safely removed. In addition, Rex removes unnecessary
causal edges if the causal order indicated by an edge can
be implicitly derived from other edges. In the example of
Figure 4, causal edge X is removed because it follows from
causal edge A and the intra-thread causal order in thread t2.
The same applies to causal edge Y.

5. Discussion
The execute-agree-follow model in Rex and the execute-
verify model in Eve [22] represent two different approach-
es to replication on multi-core servers, especially in the as-
sumptions to achieve consistency among replicas and in the
mechanisms for performance.

5.1 Consistency

For consistency, the execute-verify model in Eve assumes
that the application state that “matters” can be marked,
checkpointed, compared, rolled back, and transferred (and
used in a different replica). Replica consistency is then
guaranteed directly in the verification phase where the ap-
plication states on replicas are compared to detect diver-
gence. This is particularly attractive because (i) verifica-

tion offers high assurance of consistency, against different
possible sources of divergence, even including Byzantine
faults and concurrency bugs, and (ii) replicas are allowed
to execute independently. In contrast, the execute-agree-
follow model in Rex assumes that replicas making the same
non-deterministic decisions are consistent and that all non-
deterministic decisions can be captured. In this model, repli-
cas no longer execute independently. Whereas correctness
for the execute-verify model hinges on accurately marking
the states, correctness for the execute-agree-follow model
hinges on capturing all sources of non-determinism com-
pletely.

Our experiences with the six applications described
in Section 6 have indicated that finding locks and non-
deterministic functions is usually easy to do, because most
applications, especially those developed with cross-platform
capabilities in mind, usually wrap different implementation-
s of these functions into uniform interfaces. By replacing
these interfaces with Rex’s synchronization primitives, we
can easily capture all the locks and non-deterministic func-
tions. Data races, however, can be harder to find. Fortunately,
more and more people have realized the hazard of data races
and have begun to take precautions when using data races as
synchronization. In the six applications we have tested, we
have only fixed two benign data races: one is a double-check
lock and the other is a NULL-pointer check, both of which
already regarded as bad practices [42].

Through our own exercises of applying the execute-verify
model to the applications we have examined in Section 6, we
have discovered some subtleties related to this approach. S-
tate marking essentially divides the program state into two
parts; we refer to the unmarked states as the context. Be-
cause rollback and state transfer apply only to the marked
states, it is important to ensure that the marked state, when
rolled back or transferred, is consistent with the current con-
text, possibly on a different replica. Normally, a checkpoint
for an application should contain all the marked state, but
this turns out to be insufficient in this case because loading a
checkpoint to reconstruct the program state often resets the
context appropriately. Rollback and state transfer in Eve re-
quire that the marked state be consistent with the given con-
text after rollback or state transfer; e.g., through regenerating
soft states in the context if needed.

Another subtlety we have encountered is related to back-
ground tasks; one such example is the compaction tasks
in LevelDB [14]. Eve uses the end of processing a re-
quest batch as the point to check state consistency, assum-
ing that the incoming requests are the only triggers to state
changes. The assumption no longer holds with background
tasks. Synchronizing replicas on background tasks to define
consistency-checking points breaks execution independence
and might not always be feasible. Writing a wrapper to mask
the effect of background tasks could always work in theo-

1 class Singleton {
2 static Singleton *ptr_;
3 static Lock lock_;
4 Singleton* GetInstance() {
5 NATIVE EXEC // introduced by Rex
6 if (!ptr_) {
7 AcquireLock(lock_);
8 if (!ptr_) ptr_ = new Singleton();
9 ReleaseLock(lock_);

10 }
11 return ptr_;
12 }
13 }

Figure 5. A double-lock implementation of Singleton
initialization.
ry, but is non-trivial to do. In general, we have found that
handling on-disk state is tricky in the execute-verify model.
Verification in Rex. The idea of verification is powerful and
can benefit Rex as well. In particular, we implemented op-
portunistic validity checking in Rex to detect data races. We
have implemented both result checking and resource-version
checking. Result checking is implemented by logging the re-
turn value on the primary and checking the result on sec-
ondary replicas. Result checking can be late in reporting s-
tate divergences that have occurred earlier but only reflected
in the return value much later. To detect data races earlier,
one could include more states in the trace along with re-
turn values, which would increase the overhead significantly.
Instead, we also implemented resource-version checking as
follows. We add a version number to each resource (e.g., a
lock or a semaphore). Each time the resource is used, its ver-
sion number increases. The primary records version number-
s along with the causal events. While replaying, a secondary
checks the version number of a resource against the one
logged in traces. Thus, Rex detects whether or not a resource
is used in the same order in replicas. (Note that we are sim-
plifying here by assuming total order of events here, actu-
al implementation is more complex because of partial order
optimization as discussed in Section 4.2.) Version checking
is useful as it detects state divergences early and helps pro-
grammers identify the root cause of data races. Those valid-
ity checks are particularly useful when testing Rex-enabled
applications.
Manual exclusion in Rex. Just as Eve can choose to ig-
nore certain insignificant state differences (e.g., IP address-
es) on different replicas, Rex allows developers to exclude
certain portions of the executions out of the agree-follow s-
cope by using a special macro NATIVE EXEC in order to
allow benign data races explicitly. In the scope of NATIVE-
EXEC, Rex stops recording/replaying the synchronization

primitives so that different replicas can execute the code with
different threads, just like in a non-Rex environment. Tak-
ing as an example the Singleton code we found in Lev-
elDB (Figure 5), the initialization of a Singleton object
may execute in any thread (which invokes several lock func-
tion calls). However, the resulting state is the same no matter
which thread initializes this object. We use NATIVE EXEC

to allow different threads initializing the object on different
replicas.

5.2 Performance

For performance, there are three aspects to compare: (i) the
level of parallelism on multi-core servers in normal cases,
(ii) the overhead introduced, and (iii) the probability of ex-
ceptions and the performance under exceptions.

To enable high concurrency on multi-core servers, Eve
introduces a mixer, which packages requests into (largely)
non-conflicting batches that can be executed concurrently.
This is a general and powerful mechanism that does not
depend on application semantics. The level of parallelism
is however bounded by the sizes of such batches in the
workload. There is also the traditional trade-off between
latency and throughput on batching: waiting for a larger
batch increases the level of parallelism, but at the price of
introducing longer latencies.

In contrast, Rex treats faithfulness as an important design
goal by supporting an application model that uses common
synchronization primitives, which is close to how on-line
multi-thread applications are written. Rex therefore supports
parallelism at the same fine granularity as in the original ap-
plication, does not rely on any knowledge about the conflicts
between requests, and does not interfere with the grouping
of requests for processing. Our experiences with real-world
multi-thread applications have confirmed the significance
of faithfulness to performance, especially related to fine-
granularity parallelism. Rex preserves lock granularity by
providing programmers with commonly used Lock/Unlock
APIs. In modern multi-thread server applications, program-
mers usually spend a lot of time trying to minimize lock con-
tentions in order to achieve best scalability. Instead of sim-
ply locking the whole data structure with one big lock, they
use multiple locks to protect different data. In the meantime,
they try to reduce the time a lock is held as much as possi-
ble. They may even redesign data structures so as to reduce
lock contention. For example, KyotoCabinet [27] uses one
lock to protect the meta-data, and 1024 other locks to pro-
tect different key ranges. Releasing locks before perform-
ing time-consuming operations is another widely used tech-
nique. Most of the benchmarks we have used take advantage
of this technique. On the data structure side, LevelDB [14]
uses reference-counting pointers to avoid holding a lock to
prevent the pointer from being deleted. It is through these
clever designs that modern multi-thread server applications
fully leverage the power of multi-core servers. In Rex, we
honor these designs by adapting the Lock/Unlock API and
preserving the lock granularity, thereby faithfully preserv-
ing the scalability of the original application. Locks in the
primary behave exactly like traditional locks. In this way,
optimization techniques that reduce lock contention can al-
so be used in Rex based applications. Whenever desirable,
the idea of a mixer can also be introduced into Rex-enabled

applications because the mechanism is largely orthogonal to
those in Rex.

In the normal case, the overhead introduced by Eve in-
volves running the mixer, tracking state changes in a Merkle
tree, and detecting divergence after each batch. Rex instead
incurs overhead in capturing non-deterministic decision-
s (e.g., those involving synchronization primitives) and in
following those decisions on secondary replicas. Such over-
head has been shown to be reasonable in our evaluations
(Section 6). Eve has to roll back for a sequential re-execution
whenever state divergence is detected. Eve optimistically as-
sumes that divergence from non-determinism does not hap-
pen often. Eve’s optimism comes from its use of a mixer
that repackages requests into mostly non-conflicting batch-
es. The quality of its mixer is critical to its performance. The
mixer must have the knowledge on when the processing of
two requests introduces conflicts. False positives and false
negatives from the mixer both have negative impact on the
performance of Eve. In contrast, for Rex, a rollback is need-
ed only when a primary is falsely suspected and replaced
by a new one: in this case, the uncommitted portion of the
traces on that server has to be rolled back. Compared to Eve,
which has to support fine-granularity partial rollbacks, full-
machine rollback is sufficient for Rex: the weaker require-
ment makes checkpointing and rollback in Rex simpler.

6. Experience and Evaluation
In this section, we discuss the details of the API and share
our experiences with Rex. We further use a combination of
real-world applications and micro-benchmarks to evaluate
the following aspects of Rex:

• How well does Rex scale with the number of cores?
• What is the impact to performance if lock granularity is

not preserved?
• How do queries (read requests) perform under different

semantics?
• How well does Rex cope with checkpointing, primary

changes, and replica recovery?

6.1 Building Applications with Rex

We have implemented Rex with about 30,000 lines of C++
code, in which 17,500 lines are for implementing Paxos
and common libraries for RPC, logging, and so on. The
rest is almost equally divided into the implementation of
the wrappers for synchronization primitives, of the runtime
support for replay, and test cases. The API of Rex is shown
in Figure 6.

A programmer builds an application by inheriting the
RexRSM and RexRequest classes. The processing log-
ic for a request is encoded in an Execute function as a
request handler. The RexRSM class implements initializa-
tion and the functions used for checkpointing. During ini-
tialization, the application can add background tasks such

1 class RexLock;
2 class RexReadWriteLock;
3 class RexCond;
4 class RexRequest {
5 virtual int Execute(RexRSM * rsm);
6 virtual ostream& Marshall(ostream& os);
7 virtual istream& UnMarshall(istream& is);
8 ...
9 };

10 class RexRSM {
11 virtual bool Start(int numThread);
12 virtual int WriteCheckPoint(ostream& os);
13 virtual int ReadCheckPoint(istream& is);
14 ...
15 int AddTimer(Callback cb, int interval);
16 };

Figure 6. Programming API in Rex.
as garbage collection using the AddTimer method, which
implicitly creates a background thread. Multiple instances
of request handlers and background tasks might be executed
concurrently, using built-in Rex synchronization primitives
to coordinate. Built-in synchronization primitives in Rex in-
clude RexLock, RexReadWriteLock, and RexCond.

Adapting a service application to Rex requires two step-
s: wrapping the service interface API with RexRSM and
RexRequest, and replacing the synchronization primitives
with those in Rex. Both are straightforward and we have
written only 300-500 lines of code for each of the applica-
tions. Table 1 shows the type of locks used in some of the
applications we built. The effort lies mostly in writing the
functions for checkpointing, which may not have counter-
parts in the original applications (as they may not have been
designed to support checkpointing).
Debugging data races. Rex provides a set of mechanisms
to detect data races and help programmers fix data races (see
Section 5). We have found those mechanisms effective when
building applications.

We have identified a benign data race related to single-
ton initialization as shown in Figure 5. If a different thread
creates the singleton when executing on a secondary replica,
compared to what happened on the primary, the secondary
can no longer “follow” the trace created by the primary. Af-
ter enabling resource version checking in Rex, the secondary
throws an exception when a “wrong” thread tries to acquire
the lock and initialize the singleton. Along with the excep-
tion, Rex reports the name and the version of the lock, the
expected thread, and the actual thread who is accessing the
lock. As a result, we quickly narrow down the cause of the
problem and fix it with the NATIVE EXEC macro.

We found another benign data race in LevelDB [14],
where an in-memory table is written to disk regularly. A
timer routine checks the pointer to the table periodically and
triggers an I/O function to dump the table if the pointer is
not NULL. Although the pointer is guarded by a lock, the
timer does not acquire the lock when checking whether the
lock is NULL. Instead, it acquires in the I/O function to
ensure the table is not modified during the disk write. As
a result, the timer would behave differently on replicas if the

Application Synchronization Primitives
Thumbnail Server Lock
File System Lock
Lock Server ReadWriteLock
LevelDB Lock, Cond
Memcached Lock, Cond
Kyoto Cabinet Lock, Cond, ReadWriteLock

Table 1. Synchronization primitives used.
pointer checking returns different results. Though the root
cause of the problem is the unguarded read, the problem
is exposed only when the I/O function tries to acquire the
lock. By extracting and visualizing the causal edges from the
transmitted trace from the primary, and comparing against
the current in-memory state, we find that the I/O function
was unexpectedly triggered on the secondary because of this
unguarded read. Because the pointer is checked infrequently,
we fix the problem by acquiring the lock before reading the
pointer.

6.2 Experimental Setup

Our experiments are conducted on 12-core machines with
hyper-threading, 72 GB memory, 3 SCSI disks with RAID5
support, and interconnected via 40 Gbps network. We run
applications on a group of three replicas to tolerate one
fail-stop failure, with enough clients submitting requests so
that the machines are fully loaded. Requests are batched to
reduce the communication cost between the clients and the
primary.

6.3 Real-world Application Performance

We have built or ported a set of real-world applications on
top of Rex. For each application, we first optimize them to
achieve best scalability and then port them to Rex.

Thumbnail server is an existing application that man-
ages picture thumbnails. It maintains an in-memory hash
table to store meta-data and an in-memory cache to store
thumbnails, as well as a set of locks to protect these data
structures. In each request, it computes the thumbnail of a
picture and obtains locks to update data structures related to
the thumbnail.

Lock server is a distributed lock service similar to Chub-
by [10]. It was previously built on top of a replicated state-
machine library. Similar to the report on Chubby [10], we
create a workload with 90% of the requests as “leases re-
new” of locked files and the rest as “create” or “update” op-
erations on locked files. File sizes vary from 100 bytes to 5k
bytes.

In the file system experiment, we measure the perfor-
mance of synchronized random read/write on 64 files of size
128MB. Each request either reads or writes 16 KB of data.
The read/write ratio is 1:4.

LevelDB [14] is a fast key-value store library that pro-
vides an ordered mapping from string keys to string values.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 1 2 4 8 16 24 32
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000
th

ro
ug

hp
ut

nu
m

be
r

of
 e

ve
nt

s

number of threads

native
Rex
RSM

waited events

(a) Thumbnail Server

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1 2 4 8 16 24 32
 0

 100

 200

 300

 400

 500

 600

 700

th
ro

ug
hp

ut
 (

th
ou

sa
nd

s)

nu
m

be
r

of
 e

ve
nt

s
(t

ho
us

an
ds

)

number of threads

native
Rex
RSM

waited events

(b) Lock Server

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 24 32
 0

 10

 20

 30

 40

 50

 60

 70

th
ro

ug
hp

ut
 (

th
ou

sa
nd

s)

nu
m

be
r

of
 e

ve
nt

s
(t

ho
us

an
ds

)

number of threads

native
Rex
RSM

waited events

(c) LevelDB

 0

 500

 1000

 1500

 2000

 2500

 3000

 1 2 4 8 16 24 32
 0

 5

 10

 15

 20

 25

 30

 35

th
ro

ug
hp

ut
 (

th
ou

sa
nd

s)

nu
m

be
r

of
 e

ve
nt

s
(t

ho
us

an
ds

)

number of threads

native
Rex
RSM

waited events

(d) Kyoto Cabinet

 0

 200

 400

 600

 800

 1000

 1200

 1 2 4 8 16 24 32
 0

 50

 100

 150

 200

 250

 300

 350

th
ro

ug
hp

ut

nu
m

be
r

of
 e

ve
nt

s

number of threads

native
Rex
RSM

waited events

(e) File System

 0

 20

 40

 60

 80

 100

 120

 140

 1 2 4 8 16 24 32
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

n
u
m

b
e
r

o
f

e
v
e
n
ts

 (
th

o
u
sa

n
d
s)

number of threads

native
Rex
RSM

waited events

(f) Memcached

Figure 7. Throughput of real-world applications.

The database is divided into 256 slices with one lock for each
slice.

Kyoto Cabinet’s HashDB [27] is a lightweight hash
database library whose key space is divided into 1024 slices
with each slice protected by a readers-writer lock.

Memcached [18] is another in-memory key-value store
for object caching. We build replicated storage services
on top of Level DB, Kyoto Cabinet and Memcached by
wrapping the libraries they provide and then replacing the
synchronization primitives by their Rex counterparts. The
benchmark used is a dataset with 1 million entries where
each operation has a 16-byte key and a 100-byte value as
commonly used in key-value stores.

We have measured each application with different work-
load configurations, but we report only the ones described
previously because of space limit. Performance measured
under other configurations yields the same conclusions.

Each application runs in three modes: a native mode
where the application runs on a single server without repli-
cation, an RSM mode where the application runs on repli-
cated state-machine, and a Rex mode where the application
is replicated with Rex. In Rex mode, for fairness, we apply
flow control on the primary so it waits for secondary repli-
cas. The throughput is therefore the lower of the throughput
on the primary and on the secondaries. It turns out that ex-
ecution and recording on the primary is not the bottleneck,
incurring only within 5% overhead compared to the native
mode. The end-to-end throughput in Rex mode essentially is
bounded by the throughput for replay. We vary the number
of threads and record the throughput for each application in
each mode. The results are shown in Figure 7.

All applications except Memcached scale well as we in-
crease the number of worker threads. Memcached contains
three frequently used global locks (slabs lock, cache lock,
and status lock). The application does not scale well even
in native mode, because the regions guarded by the locks
are large, therefore introducing heavy lock contention. Rex
clearly does not work well in this case.

The scalability of Rex is highly related to the scalability
of an application itself in native mode. The thumbnail server
is computation intensive and shows perfect scalability until
the number of threads exceeds the number of CPU cores.
The lock server scales well until the number of CPU cores
is reached. Both LevelDB and Kyoto Cabinet scale to about
8 cores. LevelDB is slightly better thanks to its use of light-
weight mutex locks instead of the readers/writer locks of Ky-
oto Cabinet. In the file system experiment, batched requests
allow the underlying disk driver to optimize disk accesses.
Therefore, concurrent execution increases the throughput.

We see up to 25% overhead compared to the native ver-
sion, but the increased concurrency more than compensates
for this overhead. To understand the main source of the over-
head, we also count the number of all causal events, the
number of actually recorded causal edges, and the number
of causal events that a secondary waits on during replay. The
waited events legend shown in Figure 7 presents the number
of synchronization events per second that cause threads to
wait for others at secondary replicas. It strongly corresponds
to the performance gap between native and Rex: the high-
er the value is, the wider the gap. We also see 58% to 99%
reduction of causal edges with the optimization to remove
unnecessary causal edges described in Section 4.2. Overal-

l, we see 3 to 16 times throughput on Rex compared to the
serialized execution in traditional replicated state-machine.

The log shipped from the primary to the secondary repli-
cas contains client requests, as well as the synchronization
events recorded by Rex. Each synchronization event adds
around 16 bytes to the trace. Synchronization events add 0
to 70% to the size of the logs; the exact number varies with
applications and the number of threads used. This overhead
is never the bottleneck of the whole system in our experi-
ments.

6.4 Lock Contention and Lock Granularity

 6

 7

 8

 9

 10

 11

 12

 13

 0.001 0.01 0.05 0.1

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

contention probability

10%
60%
80%

100%

(a) Lock granularity

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 0.001 0.01 0.05 0.1 0.2 0.5 1

th
ro

u
g
h
p
u
t

(t
h
o
u
sa

n
d
s)

contention probability

native
Rex

(b) Lock contention

Figure 8. Impact of different lock granularities and lock
contention probabilities.

In order to understand the impact to the performance if
lock granularity is not preserved, e.g., with the request han-
dler granularity, we compose a micro-benchmark to study
the performance with different lock granularities and lock
contention probabilities.

In the benchmark, each request performs computation
for approximately 10 milliseconds, with part of them done
within a lock. By controlling the percentage of computation
done in the lock, we can simulate applications with different
lock granularities. The lock is randomly picked from a pool
of l locks. By changing the parameter l, we control the
probability p of lock contention, where p = 1/l. These
experiments are conducted on 16-core machines.

Figure 8(a) presents the throughput of Rex for four differ-
ent lock granularities, as we vary the lock contention prob-
ability. We show the performance of four settings, in which
10%, 60%, 80% and 100% of the computation is done in
locks. The X-axis indicates the conflict probability of the
locks. We can see that different lock granularities do not
have much impact on throughput when conflict probability
is smaller than 0.05, because there are still enough indepen-
dent requests to keep all the 16 cores busy. However, as the
conflict probability grows to 0.1, the throughput drops by al-
most a half in the case where 100% computation is done in
locks, while there is almost no performance degradation at
all in the case of 10%. This experiment demonstrates the im-
portance to minimize lock granularity in server applications.
Rex honors these optimization efforts and preserves as much
parallelism as the application can offer. Relying on mixers to
batch requests into independent groups, and treating each re-
quest as a unit of parallelism as Eve [22] does, is exactly the
case where 100% of the computation is done within locks,

given there is neither false positive nor false negative in the
mixers.

Figure 8(b) further presents the performance degradation
as we vary the lock contention probability p from 0.001 to
1, with 10% of computation done in locks. The throughput
with Rex is compared against that from the native run of
the benchmark. We can see that the gap between native and
Rex is consistently around 10-20% when the lock contention
probability is below 0.5. When the probability is greater than
0.5, the throughput drops quickly for both the native run and
Rex’s run. In all cases, Rex preserves the parallelism from
the native run.

6.5 Query Performance and its Impact

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16 24 32

th
ro

u
g
h
p
u
t

(m
ill

io
n
s)

number of updating threads

update
query

(a) Query on secondary

 0

 0.5

 1

 1.5

 2

 2.5

 1 2 4 8 16 24 32

th
ro

u
g
h
p
u
t

(m
ill

io
n
s)

number of updating threads

update
query

(b) Query on primary

Figure 9. Performance with different query semantics.

In Rex, read-only requests (queries) can be treated as up-
date requests and go through the same replication protocol.
In this case, the read requests will have the same semantics
as in a non-replicated system. The read requests in the ex-
periments shown in Figure 7 are executed in this way.

In addition, Rex supports executing read requests direct-
ly on primary or secondary replicas without going through
the replication protocol, as discussed in Section 4. The se-
mantics offered to query requests in this case differ depend-
ing on where the requests are executed: a read request on
a secondary is executed on a committed but possibly out-
dated state, whereas a request on a primary might be exe-
cuted speculatively on a yet-to-be committed state. This is
because a Rex primary executes before consensus, whereas
a secondary executes after consensus.

In this experiment, we use the lock server application to
analyze the performance implications of these two different
query semantics. We use 24 threads for processing query re-
quests (to keep all cores busy), while varying the number of
threads for processing update requests from 1 to 32. Inter-
estingly, query-primary and query-secondary exhibit differ-
ent behavior, as shown in Figure 9. In both cases, the update
throughput increases as the number of threads for update re-
quests increases. However, the query throughput manages to
stay mostly flat in Figure 7 (a) (for query-secondary), while
noticeably decreasing in Figure 7 (b) (for query-primary) as
the update throughput goes up more significantly. As thread-
s on a secondary sometimes wait on synchronization events,
there is a higher chance that a reader thread can grab that
lock, compared with that on the primary, resulting in higher
query throughput.

6.6 Checkpointing and Primary Changes

0

1

2

3

4

5

1 11 21 31 41 51 61 71 81 91 101 111 121 131

th
ro

u
gh

p
u

t
(t

h
o

u
sa

n
d

s)

Timeline (sec)

CheckPointing

New primary started

A replica start to rejoinPrimary fail

Back to normal

Figure 10. Failover of thumbnail server.

We have so far focused on normal-case performance.
In this experiment, we aim at understanding the impact of
potential disruptions, such as checkpointing and primary
changes. We take the thumbnail server as the benchmark. We
first create two checkpoints at an interval of 50 seconds and
then kill the primary replica at the 71st second, restarting it
20 seconds later. Figure 10 shows the throughput fluctuation.

We measure the result of a stress test in which all C-
PUs are saturated. Because of our aggressive flow control,
any abnormal operation can lead to significant performance
variation. This does not have to be the case in practice: a
secondary can try to catch up over time without affecting the
overall performance as long as it is not promoted to the pri-
mary. We can see that during checkpointing the throughput
drops for about 2 seconds and then recovers. At the point
when the primary fails, the throughput drops to zero and re-
covers after five seconds when the new primary takes over.
The old primary replica is then back as a new secondary
and starts learning the committed traces that it has missed,
causing the throughput to drop for about 30 seconds because
of our aggressive flow control. If the system were not ful-
ly loaded, other replicas could proceed without waiting for
the newly joining replica, thus avoiding such performance
impact. However, in a stress test setting, a new replica may
never catch up if others do not wait. After all replicas are
back, the throughput is back to normal.

7. Related Work
Rex uses Paxos [29, 30] as its underlying consensus proto-
col, which has become a standard practice [11, 24] in dis-
tributed systems. However, the Rex approach can also be ap-
plied to other replication protocols, such as primary/backup
replication [1] and its variations (e.g., chain replication [39]).

Lamport points out in the Generalized Paxos proto-
col [31] that defining an execution of a set of requests does
not require totally ordering them. It suffices to determine
the order in which every pair of conflicting requests are ex-
ecuted. The proposal does not address any practical issues
of checking whether requests are conflicting, but simply as-
sumes that such information is available. Similar to Gener-
alized Paxos, Generic Broadcast [36] orders the delivery of

messages only if needed, based on the semantics of mes-
sages provided by programmers.

Gaios [9] shows how to build a high performance data
store using the Paxos-based replicated state machine ap-
proach. Gaios’ disk-efficient request processing satisfies
both the in-order requirement for consistency as well as the
disk’s inherent need for concurrent requests. Remus [13]
achieves high availability by frequently propagating the
checkpoints of a virtual machine to another. Eve [22] is
closely related to Rex; detailed comparisons with Eve ap-
pear in Section 5. CBASE [25] leverages a user-defined
parallelizer module, similar to the mixer in Eve, to identi-
fy the dependencies between requests. It then executes the
independent requests in parallel on different replicas. Unlike
Eve, it assumes a perfect parallelizer module. The LSA algo-
rithm proposed by Basile et al. [4] ensures replica consisten-
cy by enforcing the order of synchronization operations on
replicas, but it does not consider the complications related to
leader changes, as well as the resulting mode changes. HP’s
NonStop Advanced Architecture [8] captures synchroniza-
tion events and replicates them to processes on the same ma-
chine. Hybrid Transactional Replication (HTR) [23] repli-
cates transactions between machines using a hybrid mode
of transactional replication and state machine replication. It
improves replication performance by switching between the
two modes for different workloads.

To capture and preserve partial order among requests,
Rex leverages previous work of faithful record and replay of
multi-thread programs. An incomplete sample of such work
includes RecPlay [37], JaRec [19], ReVirt [17], R2 [20],
PRES [35], ODR [2], SCRIBE [26], Respec [32] and its
follow-on work [40, 41], and many others [12, 33]. How-
ever, mode change, hybrid execution, and online replay are
the unique requirements that drive the design of Rex. Most
of the previous work (e.g., Revirt, PRES, and ODR) target
offline debugging and forensics, hence do not take these re-
quirements into consideration. For example, PRES reduces
recording overhead by making the replay take the extra over-
head of searching for the identical executions, which is a rea-
sonable tradeoff for offline debugging, but undesirable for
the scenario of Rex. Although Respec is also designed for
online replay, its implementation only allows replicas on the
same machine because of its use of multi-thread fork, while
Rex’s replay happens on different secondary servers.

Deterministic parallel execution is another promising di-
rection and can be done with new OS abstractions (e.g.,
Determinator [3] and dOs [7]), by runtime libraries (e.g.,
Kendo [34]) with compiler support (e.g., CoreDet [5]), or
with hardware support (e.g., DMP [15], Calvin [21], and R-
CDC [16]). With deterministic execution, traditional state-
machine replication can be applied directly to multi-core en-
vironments. However, without architectural changes to pro-
vide hardware support, determinism is achieved at the cost of
degraded expressiveness and/or performance. For instance,

Determinator allows only race-free synchronization primi-
tives natively such as fork, join as well as barrier, and sup-
ports others using emulation; Kendo supports deterministic
lock/unlock using deterministic logical time, which may sac-
rifice performance. Overall, the overhead of such solutions
(CoreDet, dOS, and Determinator) is not yet low enough for
production environments [6].

8. Concluding Remarks
The prevalence of the multi-core architecture has created a
serious performance gap between a native multi-thread ap-
plication and its replicated state-machine counterpart. Rex
closes this gap using a carefully designed execute-agree-
follow approach. By defining a set of simple user-friendly
APIs and by building on a well-known consensus protocol,
we hope that Rex will contribute to a new replication foun-
dation that is appropriate for the multi-core era, replacing the
classic state-machine replication approach.

Acknowledgement
We are particularly grateful to our shepherd Lorenzo Alvisi
for his valuable feedbacks and to the reviewers for their in-
sightful comments. We would also like to thank Sean M-
cDirmid for his suggestions that helped improve the paper.

References
[1] P. A. Alsberg and J. D. Day. A principle for resilient sharing of

distributed resources. In Proceedings of the 2nd international
conference on software engineering, ICSE ’76, pages 562–
570. IEEE, 1976.

[2] G. Altekar and I. Stoica. ODR: output-deterministic replay
for multicore debugging. In Proceedings of the 22nd ACM
symposium on operating systems principles, SOSP ’09, pages
193–206. ACM, 2009.

[3] A. Aviram, S.-C. Weng, S. Hu, and B. Ford. Efficient system-
enforced deterministic parallelism. In Proceedings of the
9th USENIX symposium on operating systems design and
implementation, OSDI’10, pages 1–16. USENIX, 2010.

[4] C. Basile, Z. Kalbarczyk, and R. K. Iyer. Active replication
of multithreaded applications. IEEE transactions on parallel
and distributed systems, 17(5):448–465, 2006.

[5] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Gross-
man. CoreDet: a compiler and runtime system for determin-
istic multithreaded execution. In Proceedings of the 15th in-
ternational conference on architectural support for program-
ming languages and operating systems, ASPLOS ’10, pages
53–64. ACM, 2010.

[6] T. Bergan, J. Devietti, N. Hunt, and L. Ceze. The deterministic
execution hammer: how well does it actually pound nails? In
Proceedings of the 2nd workshop on determinism and correct-
ness in parallel programming, WODET ’11, pages 448–465.
ACM, 2011.

[7] T. Bergan, N. Hunt, L. Ceze, and S. D. Gribble. Deterministic
process groups in dOs. In Proceedings of the 9th USENIX
symposium on operating systems design and implementation,
OSDI’10, pages 1–16. USENIX, 2010.

[8] D. Bernick, B. Bruckert, P. D. Vigna, D. Garcia, R. Jardine,
J. Klecka, and J. Smullen. NonStop advanced architecture. In
Proceedings of the 35th international conference on depend-
able systems and networks, DSN ’05, pages 12–21. IEEE,
2005.

[9] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and
P. Li. Paxos replicated state machines as the basis of a high-
performance data store. In Proceedings of the 8th USENIX
symposium on networked systems design and implementation,
NSDI’11, pages 11–11. USENIX, 2011.

[10] M. Burrows. The Chubby lock service for loosely-coupled
distributed systems. In Proceedings of the 7th USENIX sym-
posium on operating systems design and implementation, OS-
DI ’06, pages 335–350. USENIX, 2006.

[11] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made
live: an engineering perspective. In Proceedings of the 26th
annual ACM symposium on principles of distributed comput-
ing, PODC ’07, pages 398–407. ACM, 2007.

[12] H. Cui, J. Wu, J. Gallagher, H. Guo, and J. Yang. Efficient
deterministic multithreading through schedule relaxation. In
Proceedings of the 23rd ACM symposium on operating sys-
tems principles, SOSP ’11, pages 337–351. ACM, 2011.

[13] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,
and A. Warfield. Remus: high availability via asynchronous
virtual machine replication. In Proceedings of the 5th USENIX
symposium on networked systems design and implementation,
NSDI’08, pages 161–174. USENIX, 2008.

[14] J. Dean and S. Ghemawat. LevelDB: A fast and lightweight
key/value database library by Google., 2011. http://
code.google.com/p/leveldb.

[15] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP: de-
terministic shared memory multiprocessing. In Proceedings
of the 14th international conference on architectural support
for programming languages and operating systems, ASPLOS
’09, pages 85–96. ACM, 2009.

[16] J. Devietti, J. Nelson, T. Bergan, L. Ceze, and D. Grossman.
RCDC: a relaxed consistency deterministic computer. In Pro-
ceedings of the 16th international conference on architectural
support for programming languages and operating systems,
ASPLOS ’11, pages 67–78. ACM, 2011.

[17] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. ReVirt: enabling intrusion analysis through virtual-
machine logging and replay. In Proceedings of the 5th
USENIX symposium on operating systems design and imple-
mentation, OSDI ’02, pages 211–224. ACM, 2002.

[18] B. Fitzpatrick. memcached - a distributed memory object
caching system, 2011. http://memcached.org/.

[19] A. Georges, M. Christiaens, M. Ronsse, and K. De Boss-
chere. JaRec: a portable record/replay environment for multi-
threaded Java applications. Software: practice and experi-
ence, 34:523–547, 2004.

[20] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu, M. F.
Kaashoek, and Z. Zhang. R2: an application-level kernel
for record and replay. In Proceedings of the 8th USENIX
symposium on operating systems design and implementation,
OSDI’08, pages 193–208. USENIX, 2008.

[21] D. R. Hower, P. Dudnik, M. D. Hill, and D. A. Wood. Calvin:
deterministic or not? Free will to choose. In Proceedings of
the 2011 IEEE 17th international symposium on high per-
formance computer architecture, HPCA ’11, pages 333–334.
IEEE, 2011.

[22] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and
M. Dahlin. All about Eve: execute-verify replication for multi-
core servers. In Proceedings of the 10th USENIX symposium
on operating systems design and implementation, OSDI’12,
pages 237–250. USENIX, 2012.

[23] T. Kobus, M. Kokociński, and P. T. Wojciechowski. Hybrid
replication: state-machine-based and deferred-update replica-
tion schemes combined. In Proceedings of the 33rd interna-
tional conference on distributed computing systems, ICDCS
’13, pages 286–296. IEEE, 2013.

[24] J. Kończak, N. Santos, T. Żurkowski, P. T. Wojciechowski,
and A. Schiper. JPaxos: state machine replication based on
the Paxos protocol. Technical report, EPFL, 2011.

[25] R. Kotla and M. Dahlin. High throughput Byzantine fault
tolerance. In Proceedings of the 34th international conference
on dependable systems and networks, DSN ’04, pages 575–.
IEEE, 2004.

[26] O. Laadan, N. Viennot, and J. Nieh. Transparent, lightweight
application execution replay on commodity multiprocessor
operating systems. In Proceedings of the 2010 internation-
al conference on measurement and modeling of computer sys-
tems, SIGMETRICS ’10, pages 155–166. ACM, 2010.

[27] F. Labs. Kyoto Cabinet: a straightforward implementation of
DBM. http://www.fallabs.com/kyotocabinet/.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558–
565, 1978.

[29] L. Lamport. The part-time parliament. ACM transaction on
computer systems, 16(2):133–169, 1998.

[30] L. Lamport. Paxos made simple. ACM SIGACT news,
32(4):18–25, 2001.

[31] L. Lamport. Generalized consensus and Paxos. Technical
Report MSR-TR-2005-33, Microsoft, 2005.

[32] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, P. M.
Chen, and J. Flinn. Respec: efficient online multiprocessor re-
play via speculation and external determinism. In Proceedings
of the 15th international conference on architectural support

for programming languages and operating systems, ASPLOS
’10, pages 77–90. ACM, 2010.

[33] T. Liu, C. Curtsinger, and E. D. Berger. Dthreads: efficient
deterministic multithreading. In Proceedings of the 23rd ACM
symposium on operating systems principles, SOSP ’11, pages
327–336. ACM, 2011.

[34] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: efficient
deterministic multithreading in software. In Proceedings of
the 14th international conference on architectural support
for programming languages and operating systems, ASPLOS
’09, pages 97–108. ACM, 2009.

[35] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee, and
S. Lu. PRES: probabilistic replay with execution sketching on
multiprocessors. In Proceedings of the 22nd ACM symposium
on operating systems principles, SOSP ’09, pages 177–192.
ACM, 2009.

[36] F. Pedone and A. Schiper. Generic broadcast. In Proceedings
of the 13th international symposium on distributed computing,
DISC ’99, pages 94–106. Springer Verlag, 1999.

[37] M. Ronsse and K. De Bosschere. RecPlay: a fully integrated
practical record/replay system. ACM transaction on computer
systems, 17(2):133–152, 1999.

[38] F. B. Schneider. Implementing fault-tolerant services using
the state machine approach: a tutorial. ACM computer survey,
22(4):299–319, 1990.

[39] R. van Renesse and F. B. Schneider. Chain replication for
supporting high throughput and availability. In Proceedings
of the 6th USENIX symposium on operating systems design
and implementation, OSDI’04, pages 7–7. USENIX, 2004.

[40] K. Veeraraghavan, P. M. Chen, J. Flinn, and S. Narayanasamy.
Detecting and surviving data races using complementary
schedules. In Proceedings of the 23rd ACM symposium on op-
erating systems principles, SOSP ’11, pages 369–384. ACM,
2011.

[41] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang, P. M. Chen,
J. Flinn, and S. Narayanasamy. DoublePlay: parallelizing se-
quential logging and replay. In Proceedings of the 16th in-
ternational conference on architectural support for program-
ming languages and operating systems, ASPLOS ’11, pages
15–26. ACM, 2011.

[42] W. Xiong, S. Park, J. Zhang, Y. Zhou, and Z. Ma. Ad-
hoc synchronization considered harmful. In Proceedings of
the 9th USENIX conference on operating systems design and
implementation, OSDI’10, pages 1–8. USENIX, 2010.

