
1

Higher-order Type-level Programming in Haskell

CSONGOR KISS, Imperial College London, United Kingdom

SUSAN EISENBACH, Imperial College London, United Kingdom

TONY FIELD, Imperial College London, United Kingdom

SIMON PEYTON JONES,Microsoft Research, United Kingdom

Type family applications in Haskell must be fully saturated. This means that all type-level functions have

to be first-order, leading to code that is both messy and longwinded. In this paper we detail an extension to

GHC that removes this restriction. We augment Haskell’s existing type arrow, →, with an unmatchable arrow,
↠, that supports partial application of type families without compromising soundness. A soundness proof is

provided. We show how the techniques described can lead to substantial code-size reduction (circa 80%) in

the type-level logic of commonly-used type-level libraries whilst simultaneously improving code quality and

readability.

CCS Concepts: • Software and its engineering→ General programming languages; • Social and pro-
fessional topics→ History of programming languages;

Additional Key Words and Phrases: Type-level programming, Type families, Higher-order functions

ACM Reference Format:
Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones. 2019. Higher-order Type-level Program-

ming in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 1 (March 2019), 24 pages.

1 INTRODUCTION
Associated type families [Chakravarty et al. 2005] is one of the most widely-used of GHC’s exten-

sions to Haskell; in one study, type families was the third most-used extension (after overloaded

strings and flexible instances) [Tondwalkar 2018]. In the example below, the type class Db classifies
types, a, that can be converted into some primitive database type, DbType a, via a conversion

function toDb. A type family instance is also shown which states that a type Username will be
represented by some database type DbText.

class Db a where
type family DbType a
toDb :: a → DbType a

instance Db Username where
type DbType Username = DbText
toDb = (...) -- The mapping function instance for Username (unspecified)

Despite their widespread use, type families come with a draconian restriction: they must be fully

saturated. That is, a type family can only appear applied to all its arguments, never partially applied.

We can have types like T Maybe, whereMaybe ::⋆→ ⋆ and T :: (⋆→ ⋆) → ⋆; and class constraints

Authors’ addresses: Csongor Kiss, Department of Computing, Imperial College London, 180 Queen’s Gate, London, SW7

1AZ, United Kingdom, cak14@imperial.ac.uk; Susan Eisenbach, Computing, Imperial College London, 180 Queen’s Gate,

London, SW7 1AZ, United Kingdom, susan@imperial.ac.uk; Tony Field, Computing, Imperial College London, 180 Queen’s

Gate, London, SW7 1AZ, United Kingdom, ajf@imperial.ac.uk; Simon Peyton Jones, Microsoft Research, 21 Station Road,

Cambridge, CB1 2FB, United Kingdom, simonpj@microsoft.com.

2019. This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive

Version of Record was published in Proceedings of the ACM on Programming Languages.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:2 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

like Monad IO, where IO ::⋆→ ⋆ and Monad :: (⋆→ ⋆) → Constraint. But the type S DbType is
not allowed, regardless of S, because DbType is not saturated.
In the context of a higher order functional language, this is most unfortunate. Higher order

functions are ubiquitous in term level programming, to support modularity and reduce duplication;

for example, we define sum and product over lists by instantiating a generic foldr function.
Why can’t we do the same for type functions? Because doing so would compromise both type

soundness and efficient and predictable type inference. So we are between a rock and a hard place.

In this paper we show how to resolve this conflict by lifting the unsaturated type family restriction,

so that we can, for the first time, perform higher-order programming at the type level in Haskell. Our

extension brings the expressive power of Haskell’s type language closer to the term language, and

takes another important step towards bringing full-spectrum dependent types to Haskell [Weirich

et al. 2017]. We make the following specific contributions:

• Our key innovation, in Section 3, is a new “non-matchable” arrow kind for type families (↠)

that distinguishes type constructors (like Maybe or Monad) from type families (like DbType).
Originally suggested in [Eisenberg and Weirich 2012], this simple extension unlocks sound

abstraction over partial applications of type families. In fact, we go further, and support

matchability polymorphism (Section 3.3).

• To ensure that the resulting system is indeed sound, we present a statically-typed interme-

diate language, based closely on that already used in GHC, that supports full matchability

polymorphism (Section 4). We prove type substitution and consistency lemmas and show

that preservation and progress, and hence soundness, follow.

• Our system is no toy: we have implemented it in the Glasgow Haskell Compiler, GHC, as we

describe in Section 5. We do not present formal results about type inference, but the changes

to GHC’s type inference engine are modest, and backward-compatible.

• We evaluate the new extension in Section 6, showing how it can describe universal notions

of data structure traversal that can substantially reduce the volume of ‘boilerplate’ code in

type-level programs. When applied to the generic-lens library [Kiss et al. 2018], the type-level
code is around 80% shorter than the original first-order equivalent; it is also higher level and

easier to reason about.

We discuss related work in Section 7.

2 TYPE FAMILIES AND TYPE-LEVEL PROGRAMMING IN HASKELL
Type family instances introduce new equality axioms and these are used in type inference. For

example, the type instance declaration for Db above says that (DbType Username) and DbText are
equal types. So, if x ::Username and f ::DbText → IO () then a call f (toDb x) is well typed because
(toDb x) returns a DbType UserName and f expects an argument of type DbText; the types match

as they are defined to be the same.

GHC supports both open and closed type families, and for open families they can be stand-alone

or associated with a class. Happily, the details of these variations are not important for this paper.

2.1 Type constructors and type families
In Haskell with type families there are three sorts of type constants:

• A type constructor is declared by a data or newtype declaration.
• A type family is declared by a type declaration inside a class, as in DbType above. (In full

Haskell a type family can also be declared with a top-level type family declaration.)

• A type synonym is declared by a top-level type declaration.
Here are some examples of type constructors and synonyms:

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:3

data Maybe a = Nothing | Just a -- Type constructor

data Either a b = Left a | Right b -- Type constructor

type String = [Char] -- Type synonym

The difference between type constructors and type families in types is similar to that between data
constructors and functions in terms. The type (Maybe Int) is passive, and does not reduce, just like

the term (Just True). But the type (DbType Username) can reduce to DbText, just as the function
call not True can reduce to False.

2.2 Injectivity and generativity
Type constructors and families differ in two distinct ways: generativity and injectivity.

Definition (Injectivity). f is injective ⇐⇒ f a ∼ f b =⇒ a ∼ b.

Definition (Generativity). f and g are generative ⇐⇒ f a ∼ g b =⇒ f ∼ g.

Definition (Matchability). f is matchable ⇐⇒ f is both injective and generative.

Type constructors, like Maybe, are both injective and generative; that is, they are matchable [Eisen-
berg 2016]. For example, suppose we know in some context that Maybe Int is equal to Maybe a,
then we can conclude (by injectivity) that a must be equal to Int. The intuition here is that there is

no other way to build the type Maybe Int other than to apply Maybe to Int (the type Maybe Int is
canonical). In short Maybe is injective.

Similarly, if we know in some context that Maybe Int and f Int are equal, then we can conclude

(by generativity) that f must be equal to Maybe.
What about type families? In contrast, they are neither injective nor generative1! For example,

suppose that the database representation of Email in the example above is also DbText:

instance Db Email where
type instance DbType Email = DbText
toDb = (...)

DbType is clearly not injective, as we have defined DbType Email and DbType Username to be equal
(they both reduce to DbText).

2.3 Decomposing type applications
Injectivity and generativity have a profound influence on (a) type inference and (b) type soundness.

We consider each in turn.

2.3.1 Inference. Consider the call (f x), where f :: Monad m ⇒ m a → m a, and x :: F Int for
some type family F . Is the call well-typed? We must instantiate f with suitable types tm and ta, and
then we need to satisfy the “wanted” equality (see Section 5.1) tm ta ∼ F Int, where (∼) means type

equality. How can we do that? You might think that tm=F and ta=Int would work, and so it might.

But suppose F Int reduces to Maybe Bool; then tm=Maybe and ta=Bool would also work. Worse, if

F Int reduces to Bool then the program is ill-typed.

So, during type inference, GHC never decomposes “wanted” equalities headed by a type family,

like tm ta ∼ F Int. But given a wanted equality like tm ta ∼ Maybe Int GHC does (and must)

decompose it into two simpler wanted equalities tm ∼ Maybe and ta ∼ Int.

1
Haskell aficionados will know that the user can declare a type family to be injective. But they cannot be generative, so

from the perspective of this paper declaring injectivity adds nothing and we do not consider it further.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:4 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

2.3.2 Soundness. Is this function well typed, where F is a type family?

bad :: (F a ∼ F b) ⇒ a → b
bad x = x

To justify the definition bad x = x, we would need to prove the equality (a ∼ b). Can we prove it

from (F a ∼ F b)? That deduction would only be valid if F were injective. Type families are not

in general injective, and it would be unsound to accept it. For example, if F Char and F Bool both
reduce to the same thing then the call bad ’x’ :: Bool would (erroneously) convert a Char to a Bool
– by returning it unchanged!

To summarise, decomposing “wanted” equalities is sound, but leads to incomplete type inference;

while decomposing “given” equalities is unsound. Accordingly, GHC only decomposes matchable

equalities, i.e. those involving type constructors. (Reminder: type constructors were defined in

Section 2.1.)

2.4 The pain of saturation
Now consider this variant of bad:

good :: ∀ (f ::⋆→ ⋆) a b. (f a ∼ f b) ⇒ a → b
good x = x

Can we decompose the given equality (f a ∼ f b) and hence justify the definition? GHC says “yes”.

But that is only sound if f is generative. So the question becomes: how can we be sure that the type
variable f will only be instantiated to generative types?

GHC’s answer is simple: type families must always appear saturated (that is, applied to all their

arguments), and hence all well-formed types are generative. In effect this restricts us to first-order
functional programming at the type level. A type-level function like DbType is not first class: it can
only appear applied to its argument.

This is a painful restriction: at the term level, higher order functions (such as map and foldr) are
one of the keys to modularity and re-use.

2.5 Use case: HLists
To illustrate the pain of being stuck in a first-order world, we will look at heterogeneous lists [Kise-

lyov et al. 2004], which are widely used for implementing lists of objects of arbitrary type.

Here is how a heterogeneous list type, HList say, can be defined as a GADT:

data HList (xs :: [⋆]) where
Nil :: HList ’[]
(:>) :: a → HList as → HList (a ’: as)

Using HList we can define a heterogeneous list of the attributes of a user, like this:

type User = ’[Username, Password, Email,Date]

chris :: HList User
chris = Username "cc" :> Password "ahoy!" :> Email "cc@sm.com" :> Date 8 3 1492 :> Nil

The type (HList User) is indexed by User , a type-level list of the types of the four attributes. Now
suppose we have a Db instance of each of the attributes Username, Password, Email, and Date and
we want to convert chris to its database representation by applying toDb to each field, like this:

dbChris :: HList T1
dbChris = mapToDb chris

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:5

mapToDb :: C2 ⇒ HList as → HList T2
mapToDb Nil = Nil
mapToDb (a :> as) = toDb a :> mapToDb as

where T1, T2 , and C2 are place-holders for types we have yet to fill in. The code is obvious enough;

what is tricky is the types. What can we write for the place-holders? Let us start with T2 . The
functionmapToDb applies toDb to each element of the list, so if the argument has typeHList [a, b, c]
then the result must have type HList [DbType a,DbType b,DbType c]. So mapToDb must have a

type looking like this:

mapToDb :: C2 ⇒ HList as → HList (Map DbType as)

The easy bit is Map, the type-level version of map; its definition is in Section 3.1. But the real

problem is that DbType appears unsaturated which, as we have discussed, is simply not allowed in

GHC.

We can make progress by writing a version of Map that is specialised to DbType, like this

type family MapDbType (xs :: [⋆]) :: [⋆] where
MapDbType ’[] = ’[]

MapDbType (x : xs) = DbType x :MapDbType xs

dbChris :: HList (MapDbType User)
mapToDb :: C2 ⇒ HList as → HList (MapDbType as)

NowDbType appears saturated. There is one more missing piece: what is C2? The functionmapToDb
applies toDb to each element of the list, so it needs a (Db t) constraint for each type t in the argument

list. Fortunately, GHC lets us compute constraints too, like this:

type family All (c ::⋆→ Constraint) (as :: [⋆]) :: Constraint where
All c ’[] = ()

All c (x ’ : xs) = (c x,All c xs)

mapToDb :: All Db as ⇒ HList as → HList (MapDbType as)

With these types, the code works. But there is a tremendous amount of boilerplate! All we are

really doing is mapping a function down a list, both at the term level and the type level. Rather than

hand-writing functions mapToDb and MapDbType, it would be far, far better to write something

more like this (we’ll complete the definition shortly):

dbChris :: HList (Map DbType User)
dbChris = hMap toDb chris

hMap :: C ⇒ T → HList as → HList (Map f as)
hMap f Nil = Nil
hMap f (a :> as) = f a :> hMap f as

for some C and T , where hMap and Map are defined once and for all in libraries, rather than

replicated by every client. Can we do that? Yes, we can.

3 THE SOLUTION: UNSATURATED TYPE FAMILIES
We can now introduce our key innovation: the unmatchable function arrow. As we have seen, the

trouble with unsaturated type families stems from the assumption that higher-order type variables

stand for generative and injective type functions. Furthermore, type constructors, such as Maybe,

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:6 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

have the same kind as type families, such as DbType, yet the latter has to be avoided when resolving

equality constraints.

Our solution is to distinguish type constructors from type families in the kind system. To achieve

this we borrow the notation proposed by [Eisenberg and Weirich 2012] in the singletons library.
That is, we distinguish the arrow of type constructors (matchable) from that of type families

(unmatchable) and use two different symbols: (→), i.e. Haskell’s existing function arrow for the

former, and (↠) for the latter. Recall from Section 2.2 that matchability corresponds to functions

that are both generative and injective.
As an example, the kind of Maybe remains ⋆→ ⋆, but DbType now has kind ⋆↠ ⋆. Matchable

applications can be decomposed, whereas unmatchable applications cannot.

Let us now revisit the function good from Section 2. In the equality constraint f a ∼ f b both f a
and f b are matchable application forms, so this function still type checks. However, an attempt to

instantiate f with DbType during type inference will now result in a kind error: f must have kind

⋆→ ⋆, but DbType has ⋆↠ ⋆: their arrows don’t match. On the other hand, if we modify good
and attempt to abstract over unmatchable type functions instead:

goodTry :: ∀ (f ::⋆↠ ⋆) a b. (f a ∼ f b) ⇒ a → b
goodTry x = x

we get a type error. This is because we cannot decompose unmatchable applications: a ∼ b is

not derivable from f a ∼ f b because f here is defined to be unmatchable (its kind is a ↠ b).
By separating matchable and unmatchable applications we have prevented the type system from

constructing type equalities that break soundness.

3.1 HLists revisited
Let us now return to the HList challenge in Section 2.4. The Map function used in the type of

dbChris maps an unmatchable type function over a list of types. We can now define a type family

to do this by requiring the function being mapped to be unmatchable:

type family Map (f :: a ↠ b) (xs :: [a]) :: [b] where
Map ’[] = ’[]

Map f (x ’ : xs) = f x ’ : Map f xs

This allows us to writeMap DbType as which is what we needed formapToDb. However, it prevents
us from writingMap Maybe as becauseMaybe is injective: its kind is⋆→ ⋆, not⋆↠ ⋆. This may

seem unfortunate, but we can fix that too (Section 3.3).

We can now complete hMap’s type which had the form C ⇒ T → HList as → HList (Map f as).
Let us start with T . To make hMap completely general we have to abstract over the type family f
and type class c that governs the function being mapped. For example, in dbChris above, f will be

DbType and c will be Db. Each type f is applied to must be an instance of c and that means T must

be a rank-2 type: (∀ a. c a ⇒ a → f a).
What about C? Every element of the HList must be an instance of c, but we already have a type

family, All, that computes this constraint. So, as with Map, C is simply All c as. Thus, we arrive at:

hMap :: All c as ⇒ (∀ a. c a ⇒ a → f a) → HList as → HList (Map f as)

In our implementation, GHC can infer the kinds of all the type variables, but it is instructive to see

the same type signature, this time showing the bindings for c, f and as, and their kinds:

hMap :: ∀ (c ::⋆→ Constraint) (f ::⋆↠ ⋆) (as :: [⋆]).
All c as ⇒ (∀ a. c a ⇒ a → f a) → HList as → HList (Map f as)

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:7

Here, we can see that f has an unmatchable function kind (⋆↠ ⋆), although this will be inferred

anyway by virtue of the type of Map.

3.2 Visible type application
We need one additional fix to the definition of dbChris sketched in Section 2.4 above: we must pass

c and f to hMap as explicit type parameters, thus:

dbChris :: HList (Map DbType User)
dbChris = hMap @Db @DbType toDb chris

The arguments “ @Db” and “ @DbType” explicitly instantiate c and f in hMap’s type, respectively.
What on earth is going on here? Let us begin with a simpler example; suppose theDb class contained
one more function, size:

class Db a where
type family DbType a
toDb :: a → DbType a
size :: DbType a → Int

and we want to typecheck a call (size txt) where txt :: DbText. The function size has type

size :: ∀ a. Db a ⇒ DbType a → Int

To typecheck the call (size txt) the type inference engine must determine what type should

instantiate a; that choice will fix which Db dictionary is passed to size, which in turn determines

what (size txt) computes. But there may be many possible instantiations for a! For example,

perhaps DbType Username and DbType Email are both DbText. We say that size has an ambiguous
type because there is no unique way to infer a unique type instantiation from information about

the argument and result types.

Functions with an ambiguous type can still be extremely useful, but to call such a function the

programmer must supply the instantiation explicitly. In this example the programmer could write

(size @Username txt) or (size @Email txt) to specify which instantiation they want. The “ @Email”
argument is called a visible type argument, and the language extension that supports visible type

arguments is called visible type application [Eisenberg et al. 2016].

Using visible type application, the programmer is always allowed to supply such type arguments

(e.g. reverse @Bool [True, False]), but if a function has an ambiguous type we must supply them.

Returning to hMap, it certainly has an ambiguous type (because f appears only under a call to a

type family Map), so we must supply f . There is similar problem with c, which appears only in the

constraint of the type. Hence the two type arguments in the call to hMap in dbChris above.
All of this applies equally to the recursive call in hMap’s own definition, so we must write:

hMap Nil = Nil
hMap g (x :> xs) = g x :> hMap @c @f g xs

The alert reader will notice that, in both cases, we supplied only two of the three type arguments to

hMap; that is, we explicitly instantiated c and f , but not as. It would be perfectly legal to supply a

type argument for as as well, but it is not necessary, because it is not ambiguous. Moreover, it is

slightly tiresome to specify: in hMap’s definition we would have to write

hMap g (x :> xs) = g x :> hMap @c @f @(Tail as) g xs

where Tail is a type family that takes the tail of a type-level list.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:8 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

3.3 Matchability polymorphism
Modifying the argument kind ofMap allowed us to apply type families to the elements of the HList.
However, what we gained on the swings, we lost on the roundabouts: Map Maybe User is a kind
error due to the matchable arrow kind ofMaybe. Ideally, we would like to be able to apply functions
like Map to both type constructors and type families without having to duplicate Map’s definition.
At first you might think that we need subtyping, but instead we turn to polymorphism. Rather

than having two separate arrows, we can use a single arrow (→m), parameterised by itsmatchability.

Its matchabilitym can be instantiated by M or U , for matchable and unmatchable respectively. The

two arrows→ and↠ now become synonyms for the two possible instantiations of →:

type (→) = →M

type (↠) = →U

Now we can abstract over matchability to define a matchability-polymorphic version of Map:

type family Map (f :: a →m b) (xs :: [a]) :: [b] where
Map ’[] = ’[]

Map f (x ’: xs) = f x ’:Map f xs

The kind of Map thus becomes

Map :: ∀ (m ::Matchability) (a →m b) ↠ [a] ↠ [b]

Similarly, hMap’s type can be generalised to accept both type families and type constructors:

hMap :: ∀ {m ::Matchability } (c ::⋆→ Constraint) (f ::⋆ →m ⋆) as.
All as c ⇒ (∀ a. c a ⇒ a → f a) → HList as → HList (Map f as)

Note: the curly braces around m ::Matchability mean that it is an invisible argument; the visible-

type-application mechanism does not apply to these invisible quantifiers. Otherwise, a call would

have to look like hmap @U @Db @DbType..., with a tiresome extra explicit type argument @U 2
.

M and U are ordinary data constructors

data Matchability = M | U

made available at the type level by GHC’s DataKinds extension [Yorgey et al. 2012a].

It’s not just type families that can abstract over matchabilities, but type constructors too. A

popular technique in the Haskell folklore is to parameterise a data type by some functor, thereby

fixing the general shape of the type while decorating the values in interesting ways. For example:

data T f = MkT (f Int) (f Bool)

By picking f to be Maybe, we get a version of T where each field is optional. By setting it to [],

each field can store multiple values. By making T matchability-polymorphic and allowing type f to

be instantiated with type families, we unlock whole new ways of doing abstraction:

data T (f ::⋆ →m ⋆) = MkT (f Int) (f Bool)

Here, T ’s kind becomes T :: ∀ m. ⋆ →m ⋆ so we can parameterise T either by a type constructor

or a type family. For example, given the type family Id:

type family Id a where
Id x = x

2
This is tiresome because the instantiation of m can always be inferred from the instantiation of f . Invisible quantification
will soon be allowed by GHC, as described in a current proposal https://github.com/ghc-proposals/ghc-proposals/pull/99.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

https://github.com/ghc-proposals/ghc-proposals/pull/99

Higher-order Type-level Programming in Haskell 1:9

we can have a version of T where the fields are simply Int and Bool (i.e. T Id), Maybe Int and
Maybe Bool (i.e. T Maybe), or the database primitives DbType Int and DbType Bool, (i.e. T DbType).

4 FCM : SYSTEM FC WITH MATCHABILITY POLYMORPHISM
We now formalise our system as an extension of System FC , a small, explicitly-typed lambda

calculus (à la Church) that is used as the intermediate language of GHC. Our system, FCM , extends

FC with matchability polymorphism in types and kinds. Our main contribution is allowing partial

application of type families, and showing that the desired progress and preservation properties of

FC are preserved by this change.

4.1 Syntax
The syntax of FCM is shown in Figure 1 with the modifications to FC highlighted. The syntax of

matchabilities is shown separately in Figure 2. M stands for matchable, U stands for unmatchable,

andm represents a matchability meta-variable (for matchability polymorphism).

The λx :τ .e and Λa :κ .e terms are the traditional term and type abstraction forms of the polymor-

phic lambda calculus, with respective term application e1 e2 and type application e τ . To support
matchability polymorphism, we extend terms with abstraction over matchabilities via Λm.e , with
corresponding application form e ν . This allows terms to abstract over polymorphic type functions.

For example, the translation of hMap (Section 3.1) has the form f = Λm. Λc. Λf . Λas.

4.2 Typing rules
The expression typing rules for FCMare shown in Figure 3. The matchability abstraction and

application rules are given by E_MAbs and E_MApp respectively.

Kinds include the base kind⋆, arrow kinds parameterised by their matchabilities, andmatchability

quantification. Types with matchability polymorphic arrow kinds can be instantiated by the τ ν
application form. The corresponding typing rules are shown in Figure 4.

System FC syntactically distinguishes type family applications (which are fully saturated) from

other type applications. We remove this distinction, which means that both type family and type

constructor applications are represented by the τ1 τ2 form. The corresponding typing rule in Figure 4

is Ty_App, which is now polymorphic in the matchability of τ1’s kind.
Figure 5 shows the valid context extensions. Note that type constructors’ kinds can also quantify

over matchability variables.

4.3 Coercions
One of the main innovations of System FC is the use of coercions, or type equalities. A coercion

ϕ = τ ∼ σ represents (homogeneous) type equality between τ and σ . Coercions can be abstracted

over with λc :ϕ .e and applied as e γ . We extend the syntax of coercions with the corresponding

congruence rules for matchability application and matchability abstraction.

Non-syntactic equalities, such as those introduced by type family equations, pose a challenge

in compilation, as they make it difficult to do sanity checks on the intermediate representation.

Coercions solve this problem by reifying the type equality derivations and encoding them into the

terms themselves. What this means is that the only way to convert an expression e of type τ1 into
type τ2 is by providing an explicit witness (a coercion) γ of the type equality τ1 ∼ τ2 and explicitly

casting e by γ , viz. e ▷ γ . The corresponding typing rule is E_Cast in Figure 3.

Figure 6 displays the formation rules for coercions. They are a syntactic reification of the

equivalence relationship (with corresponding reflexivity (Co_Refl), symmetry (Co_Sym), and

transitivity (Co_Trans) rules) with congruence. This way, type checking in FC is syntactic, as

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:10 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Metavariables:

x term a,b type c coercion
C axiom Fn n-ary type family m matchability

e,u ::= expressions

| x variables

| λx :τ . e | e1 e2 abstraction/application

| Λa :κ . e | e τ type abstraction/application

| λc :ϕ . e | e γ coercion abstraction/application

| Λm. e | e ν matchability abstraction/application

| e ▷ γ cast

κ ::= kinds

| ⋆ base kind

| κ1 →
ν κ2 arrow kind

| ∀m.κ matchability polymorphism

τ ,σ ::= types

| a variables

| τ → σ abstraction

| ϕ ⇒ τ coercion abstraction

| τ1 τ2 type application

| τ ν matchability application

| ∀a :κ . τ type polymorphism

| ∀m. τ matchability polymorphism

| H type constants

H ::= type constants

| T type constructors

| F type families

ϕ ::= τ ∼ σ propositions (coercion kinds)

γ ::= coercions

| c variables

| refl τ | sym γ | trans γ1 γ2 equivalence

| γ1 → γ2 arrow type congruence

| ϕ ⇒ γ coercion arrow type congruence

| γ1 γ2 type application congruence

| γ ν matchability application congruence

| ∀a :κ .γ polytype congruence

| ∀m.γ matchability polytype congruence

| C(m ,γ) axiom application

| left γ | right γ decomposition

| γ @τ type instantiation

| γ @ν matchability instantiation

Fig. 1. Syntax of FCM with matchability extensions highlighted.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:11

µ ::= concrete matchabilities

| M Matchable

| U Unmatchable

ν ::= matchabilities

|m variables

| µ concrete matchabilities

Fig. 2. Matchabilities.

Γ ⊢ e : τ

⊢ Γ x :τ ∈ Γ

Γ ⊢ x :τ
E_Var

Γ,x :τ ⊢ e :σ

Γ ⊢ λx :τ .e :τ → σ
E_Abs

Γ ⊢ e1 :τ → σ Γ ⊢ e2 :τ

Γ ⊢ e1 e2 :σ
E_App

Γ,a :κ ⊢ e :τ Γ ⊢k κ

Γ ⊢ Λa :κ .e :∀a :κ .τ E_TAbs

Γ ⊢ e :∀a :κ .σ Γ ⊢ty τ :κ

Γ ⊢ e τ :σ [τ/a]
E_TApp

Γ,m ⊢ e :τ

Γ ⊢ Λm.e :∀m.τ E_MAbs

Γ ⊢ e :∀m.τ
Γ ⊢ e ν :τ [ν/m]

E_MApp

Γ, c : ϕ ⊢ e : τ

Γ ⊢ λc : ϕ .e : ϕ ⇒ τ
E_CAbs

Γ ⊢ e : ϕ ⇒ τ Γ ⊢co γ : ϕ

Γ ⊢ e γ : τ
E_CApp

Γ ⊢ e : τ1 Γ ⊢co γ : τ1 ∼ τ2

Γ ⊢ e ▷ γ : τ2
E_Cast

Fig. 3. Expression typing

all the derivations are encoded in the terms via casts. For example, in order to use a coercion

γ : Bool ∼ a to prove that e : a resolves to e : Bool, we explicitly cast e via e ▷ sym γ .
Coercions can be decomposed, which is crucial for type inference. The left and right coercions

in Figure 6 split apart an equality between application forms into their constituent parts, as shown

in Co_Left and Co_Right respectively. Since both type family applications and type constructor

applications are represented by the τ1 τ2 form, we augment these rules by the additional premise

that the function must have a matchable kind. This is in order to ensure consistency (Section 4.5.2).

What happens if we omit the highlighted premise? Presumably we can derive a bogus equality.

To see how, consider the translation of the goodTry function from Section 3:

goodTry = Λ(f :⋆↠ ⋆) (a :⋆) (b :⋆).
λ(co : f a ∼ f b). λ(x : a). (x ▷ right co)

The return type of goodTry is b, but it just returns its argument, which is of type a. Thus, we need
to find evidence that a can be cast into b. Decomposing the assumed co coercion using right, we
get a coercion of type a ∼ b. Now, assuming the top-level environment contains the following

axioms:

axiom db1 :: DbType Username ∼ DbText
axiom db2 :: DbType Email ∼ DbText

then we can compose these coercions using transitivity, and symmetry of db2:

trans db1 (sym db2) :: DbType Username ∼ DbType Email

The problem happens when we now instantiate the arguments to goodTry by f := DbType, a :=
Username, b := Email, co := trans db1 (sym db2). This will produce the coercion

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:12 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Γ ⊢ty τ : κ

a : κ ∈ Γ

Γ ⊢ty a : κ
Ty_Var

T : κ ∈ Γ

Γ ⊢ty T : κ
Ty_Data

Fn : κ ∈ Γ

Γ ⊢ty Fn : κ
Ty_Fun

Γ ⊢ty τ1 : κ1 →
ν κ2 Γ ⊢ty τ2 : κ1

Γ ⊢ty τ1 τ2 : κ2
Ty_App

Γ ⊢ty τ : ∀m.κ Γ ⊢m ν

Γ ⊢ty τ ν : κ[ν/m]
Ty_MApp

Γ ⊢ty σ ,τ :⋆

Γ ⊢ty σ → τ :⋆
Ty_Arrow

Γ ⊢ty τ : ⋆ Γ ⊢ty σ1,σ2 :κ

Γ ⊢ty σ1 ∼ σ2 ⇒ τ :⋆
Ty_CArrow

Γ,a :κ ⊢ty τ : ⋆ Γ ⊢k κ

Γ ⊢ty ∀a :κ . τ :⋆ Ty_All

Γ,m ⊢ty τ :⋆

Γ ⊢ty ∀m. τ :⋆Ty_All_M

Γ ⊢m ν

m ∈ Γ

Γ ⊢m m
M_Var

Γ ⊢m M
M_Matchable

Γ ⊢m U
M_Unmatchable

Γ ⊢k κ

Γ ⊢k ⋆
K_Star

Γ ⊢k κ1 Γ ⊢k κ2 Γ ⊢m ν

Γ ⊢k κ1 →
ν κ2

K_Arrow

Γ,m ⊢k κ

Γ ⊢k ∀m.κK_All_M

Fig. 4. Type kinding

Γ ::= ∅ | Γ,bnd

bnd ::= binders

| x : τ term variable

| a : κ type variable

| c : ϕ coercion variable

| m matchability variable

| T : ∀m.κ →M ⋆ data type

| Fn : ∀m. κn →U κ n-ary type family

| C(m ,a : κ) : ϕ axioms

Fig. 5. Contexts

right (trans db1 (sym db2)) : Username ∼ Email

which is clearly inconsistent.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:13

By enforcing the matchable arrow kind the coercion in goodTry becomes ill-formed, because co
relates functions of unmatchable kinds and so cannot be decomposed by right.

Finally, the coercion language includes axioms (such as db1 and db2 above), of the formC(m,τ : κ) :
ϕ. Such axioms are introduced by type family equations. Axiom applications are written in a first-

order way to emphasise that they are always to be saturated. This is not a limitation, however.

Every type family equation introduces a new axiom, and the arguments of a type family application

determine which axiom to use. This means that we can only pick the matching axiom once the type

family is fully saturated. This is not surprising, as we wouldn’t expect a partially applied function

to reduce.

4.4 Operational semantics
The operational semantics of FCM is unchanged from that of System FC , with the exception of a

standard beta rule for matchability abstraction: (Λm.e)ν −→ e[ν/m]. We therefore omit further

details, but we show the necessary substitution lemmas which are needed for preservation.

4.5 Metatheory
We now show that our system enjoys the usual metatheoretic properties such as progress and

preservation. The main difference from System FC is that type variables can now be instantiated

with unsaturated applications of type families, and we need to ensure that type safety is not violated

by lifting this restriction. Since coercion axioms give rise to a non-trivial equational theory, we

must ensure that the coercion relation is consistent with respect to the top-level axioms.

We discuss sufficient requirements for top-level contexts to be consistent, and show how the

typing judgments can be guarded against deriving inconsistent conclusions – both are key for the

progress theorem.

4.5.1 Preservation. Our extension of the operational semantics is uninteresting, so the preservation

proof is standard [Sulzmann et al. 2007]. The steps in the operational semantics preserve the types,

so the only thing we need to ensure is that, in the case of β-reductions, the substitutions are type
preserving.

The following lemmas state that coercion derivations are preserved by type, matchability, and

coercion substitution, and they can be proved by induction on the height of the derivations.

Lemma (Matchability substitution in kinds). If Γ1,m, Γ2 ⊢k κ and Γ1 ⊢m ν

then Γ1, Γ2[ν/m] ⊢k κ[ν/m]

Lemma (Type substitution in coercions). If Γ1, (a :κ), Γ2 ⊢co γ1 :τ1 ∼ τ2 and Γ1 ⊢ty τ :κ

then Γ1, Γ2[τ/a] ⊢co γ1[τ/a] :τ1[τ/a] ∼ τ2[τ/a]

Lemma (Matchability substitution in coercions). If Γ1,m, Γ2 ⊢co γ1 :τ1 ∼ τ2 and Γ1 ⊢m ν

then Γ1, Γ2[ν/m] ⊢co γ1[ν/m] :τ1[ν/m] ∼ τ2[ν/m]

Lemma (Coercion substitution in coercions). If Γ1, (c :ϕ1), Γ2 ⊢co γ1 :ϕ2 and Γ1 ⊢co γ2 :ϕ1

then Γ1, Γ2[γ2/c] ⊢co γ1[γ2/c] :ϕ2

Similar substitution lemmas can be proved for terms. Given a top-level environment Σ, the preser-
vation theorem follows:

Theorem (Preservation). If Σ ⊢tm e1 :τ and e1 −→ e2 then Σ ⊢tm e2 :τ

The top-level environment Σ contains only type family signatures, type constructor signatures,

and coercion axioms.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:14 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Γ ⊢co γ : ϕ

Γ ⊢ty τ : κ

Γ ⊢co refl τ : τ ∼ τ
Co_Refl

Γ ⊢co γ : σ ∼ τ

Γ ⊢co sym γ : τ ∼ σ
Co_Sym

Γ ⊢co γ1 : τ1 ∼ τ2 Γ ⊢co γ2 : τ2 ∼ τ3

Γ ⊢co trans γ1 γ2 : τ1 ∼ τ3
Co_Trans

c : τ ∼ σ ∈ Γ

Γ ⊢co c : τ ∼ σ
Co_Var

Γ ⊢co γ1 :τ1 ∼ σ1 Γ ⊢co γ2 :τ2 ∼ σ2

Γ ⊢co γ1 → γ2 : (τ1 → σ1) ∼ (τ2 → σ2)
Co_Arrow

Γ ⊢co γ :τ ∼ σ

Γ ⊢co ϕ ⇒ γ : (ϕ ⇒ τ) ∼ (ϕ ⇒ σ)
Co_CArrow

Γ ⊢ty σ1,σ2 :κ1 →
ν κ2 Γ ⊢ty τ1,τ2 :κ1

Γ ⊢co γ1 : σ1 ∼ σ2 Γ ⊢co γ2 : τ1 ∼ τ2

Γ ⊢co γ1 γ2 :σ1 τ1 ∼ σ2 τ2
Co_App

Γ,a :κ ⊢ty τ ,σ :⋆

Γ,a :κ ⊢co γ : τ ∼ σ

Γ ⊢co ∀a :κ .γ : ∀a :κ . τ ∼ ∀a :κ . σ Co_Abs

Γ ⊢ty τ1,τ2 :∀m.κ Γ ⊢co γ :τ1 ∼ τ2

Γ ⊢co γ ν :τ1 ν ∼ τ2 ν
Co_MApp

Γ,m ⊢ty τ ,σ :⋆

Γ,m ⊢co γ : τ ∼ σ

Γ ⊢co ∀m.γ : ∀m. τ ∼ ∀m. σ Co_MAbs

Γ ⊢ty σ1,σ2 :κ1 →
M κ2

Γ ⊢co γ : σ1 τ1 ∼ σ2 τ2

Γ ⊢co left γ : σ1 ∼ σ2
Co_Left

Γ ⊢ty σ1,σ2 :κ1 →
M κ2

Γ ⊢co γ : σ1 τ1 ∼ σ2 τ2

Γ ⊢co right γ : τ1 ∼ τ2
Co_Right

Γ ⊢co γ : ∀a : κ .τ1 ∼ ∀a : κ .σ1
Γ ⊢co τ : κ

Γ ⊢co γ @τ : τ1[τ/a] ∼ σ1[τ/a]
Co_Inst

Γ ⊢co γ : ∀m.τ ∼ ∀m.σ
Γ ⊢co γ @ν : τ [ν/m] ∼ σ [ν/m]

Co_MInst

C(m,a : κ) : τ1 ∼ τ2 ∈ Γ
for each γi ∈ γ ,
Γ ⊢co γi :σ1i ∼ σ2i

Γ ⊢ty σ1i ,σ2i :κi [ν/m]

Γ ⊢co C(ν ,γ) : τ1[ν/m][σ1/a] ∼ τ2[ν/m][σ2/a]
Co_Axiom

Fig. 6. Formation rules for coercions

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:15

4.5.2 Progress. The progress proof also follows previous work, but it requires that the top-level

environment is consistent. That is, all derivable coercions preserve the head forms of types. In other

words, it is not possible to derive bogus equalities like Char ∼ Bool. Ensuring that this assumption

holds is our primary concern here.

Definition (Value type). A type τ is a value type in an environment Γ iff
• Γ ⊢ty τ :⋆

• τ is of the form T m σ1 or (σ1 → σ2) or (ϕ1 ⇒ σ1) or (∀a :κ . σ1) or (∀m. σ1)
Notably, type family applications are not value types.

Definition (Consistency). A context Γ is consistent iff
• If Γ ⊢co γ :T m σ1 ∼ τ and τ is a value type, then τ = T m σ2
• If Γ ⊢co γ :σ1 → σ2 ∼ τ and τ is a value type, then τ = σ3 → σ4
• If Γ ⊢co γ :ϕ1 ⇒ σ1 ∼ τ and τ is a value type, then τ = ϕ2 ⇒ σ2
• If Γ ⊢co γ : (∀a :κ . σ1) ∼ τ and τ is a value type, then τ = (∀a :κ . σ2)
• If Γ ⊢co γ : (∀m. σ1) ∼ τ and τ is a value type, then τ = (∀m. σ2)

That is, we require that all coercion derivations preserve the outermost constructors. Consistency

might be imperiled by two factors: bogus axioms in the top-level environment (such as Char ∼ Bool),
and inconsistent coercion derivations. The latter might happen if we try to decompose a non-

injective function application.

To summarise, consistency is a property of not just the top-level environment, but the coercion

judgements too. We consider each in turn.

4.5.3 Consistency of top-level environment. Type family axioms introduce arbitrary equalities. To

ensure they are consistent, we need to place restrictions on the equations. We require the following

conditions:

(1) All axioms are of the form c :∀m. Fn m τ :κn ∼ σ . The type patterns τ :κn must mention no

type families, and all type variables must be distinct. Furthermore, all variablesm must appear

free in at least one of the kinds κ of the patterns. Lastly, all type applications in patterns must

be headed by matchable type functions.

(2) There is no overlap between axioms: given Fn m τn , there exists at most one axiom C such

that C(m,τn) :Fn m τn ∼ σ .

The restrictions on patterns is standard. An unusual feature of type families is that they can

match on unknown type constructor applications. For example:

type family Match f
type instance Match (f a) = a

The restriction that type applications must be headed by matchable functions means that f cannot

be a type family.

As in previous work[Weirich et al. 2011], type families can be interpreted as a parallel reduction

relation, which, when restricted in the way described above, can be shown to be locally confluent.

Then, by assuming termination of the rewrite system, we appeal to Newman’s lemma to show

confluence of the rewrite system.

4.5.4 Consistency of coercion judgements. A crucial difference from System FC is that type variables

can be instantiated to unsaturated type families. The Co_Right rule in Figure 6 ensures that

functions of unmatchable kinds and so cannot be decomposed by right.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:16 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Lemma (Coercion judgement consistency). If the axioms in Σ define a confluent rewriting
system, then Σ is consistent.

The proof requires showing that the coercion judgements preserve head forms. This can be done

by induction on the height of the derivations. The Co_Refl and Co_Sym rules are straightforward.

In Co_Trans, we appeal to the induction hypotheses. Co_Var is vacuously true, because we’re in

the top-level environment where no coercion variables are bound. The congruence rules Co_App,

Co_MApp, Co_Abs, and Co_MAbs are similarly straightforward. Co_Left and Co_Right require

that the constructors are matchable, thus they have the necessary generativity and injectivity

properties. For Co_Inst and Co_Inst_M, we appeal to the respective substitution lemmas.

Now, assuming that the top-level environment Σ is consistent, the progress theorem follows:

Theorem (Progress). If Σ ⊢tm e1 :τ , then e1 is either a value, or there is some e2, such that e1 −→ e2.

5 TYPE INFERENCE
We now turn to type inference. Unlike FCM , source Haskell is an implicitly typed language, which

means that (most) type annotations are optional, as they can be readily inferred by a compiler. Type

inference is the process of elaborating Haskell code into the explicitly typed FCM .

Haskell is a descendant of the Hindley-Milner family, but its type system has been extended

over time with features that traditional unification algorithms have difficulty coping with. Notable

examples are type families, which introduce non-syntactic type equalities, and GADTs, which

involve local equality assumptions.

The good news is that GHC’s type inference engine already accommodates type polymorphism,

kind polymorphism, and levity polymorphism, so so adding matchability polymorphism comes

almost for free
3
.

We have a fork of GHC that implements a new language extension, UnsaturatedFamilies, which
supports all the features described in this paper, including their interaction with GADTs, data

families, pattern synonyms, etc which we have not described at all. Our language design is

backward-compatible, so that all existing Haskell programs continue to work, even when the

UnsaturatedFamilies extension is enabled.

Moreover, our prototype is sufficiently robust to bootstrap GHC itself and compile a large suite

of libraries. All the examples in this paper are accepted by our prototype.

In this section we review some highlights of our implementation experience.

5.1 Constraint-solving
GHC uses a powerful constraint-based type inference algorithm called OutsideIn(X) [Vytiniotis

et al. 2011]. The algorithm is conceptually simple: it generates constraints from the source language,

then solves these constraints. In our case, the constraints are type equalities, and the solutions are

encoded into coercions witnessing the equalities (Section 4.3). Constraints come in two flavours:

given, and wanted. 4 For example, consider this definition

bar :: f ∼ Id ⇒ f Bool
bar = False

where Id is the identity type family (Section 3.3). The assumption f ∼ Id is a given constraint, which
can be used to solve the wanted constraint Bool ∼ f Bool, which arises from matching the type of

bar’s body with bar’s declared type. The first step is inferring the kind of f . Since it is used in an

application f Bool, it must have an arrow kind. For its matchability, the constraint solver invents a

3
As always, “for free” simply means ”already paid for”.

4
GHC’s implementation also has a notion of “derived” constraints, but we do not discuss them here.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:17

fresh unification variable α , thus f ::⋆→α ⋆. Unifying the kind of f with that of Id produces the

substitution α := U . Therefore in this example, we can infer that f ’s kind is ⋆↠ ⋆.
All this fits in beautifully with GHC’s existing mechanism.

5.2 Generalising over matchability
Consider this type signature:

class Functor f where
fmap :: (a → b) → f a → f b

What kind should we infer for f ? The most general answer is this:

class Functor (f ::⋆ →m ⋆) where
fmap :: (a → b) → f a → f b

That is, Functor becomes matchability-polymorphic, with kind

Functor :: ∀ (m ::Matchability). (⋆ →m ⋆) → Constraint

Thatmight be what the programmer intended, but it is a perplexing kind to show to the programmer.

Moreover, if matchability polymorphism becomes pervasive, more types will become ambiguous,

so silent matchability polymorphism is not necessarily a good thing, even if the programmer never

saw it.

So our choice is this: when automatically generalising the kind of a type, or the type of a

term, we never generalise over a matchability variable. Instead of generalising, we “default” any

unconstrained matchability variables to M , which is the choice for all types in legacy Haskell. So

Functor will get the more familiar kind

Functor :: (⋆→ ⋆) → Constraint

If the programmer wants matchability polymorphism, they must declare it – and GHC has perfectly

adequate mechanisms to allow them to do so.

This design choice replicates a similar choice in the realm of levity polymorphism [Eisenberg and

Peyton Jones 2017], where it has proven to be robust.

6 UNSATURATED TYPE FAMILIES IN PRACTICE: A CASE STUDY
One of the original inspirations for this paper was the generic-lens library [Kiss et al. 2018] code,

which is designed to decrease boilerplate code. As an example, we can use it to make queries such

as “increase all the values of type Int by 10 in this data structure”:

over (types @Int) (+10) (Left (0, False, Just 20))

resulting in Left (10, False, Just 30). Specifying how to locate all the Int values by hand would be a

menial task, and the library can work it out for us.

Here we show how unsaturated type families can be used to reduce the volume of boilerplate

code in the implementation of the library itself. We combine our extension with some of Haskell’s

unique features to devise a powerful type-level generic programming framework.
The payoff is substantial: using unsaturated type families allows us to reduce the size of the

type-level code in the library by a factor of five. Moreover, the code is much higher-level and it is

now easier to see what the various data structure traversals do. A key additional benefit is that

they remain correct even if the underlying generic representation were to be extended with new

constructors.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:18 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

6.1 The old way
The generic-lens library uses type-level programming to perform a compile-time traversal over the
shape of the data type, and generates optimised code that only accesses the pertinent parts of a

data structure at runtime.

To achieve this, the library defines several queries over a generic structure that is available at

the type-level. As an example, HasCtor ctor f uses the Haskell ‘generics’ library [Magalhães et al.

2010] to traverse a generic tree f and return ’True if the type contains a constructor named ctor ,
’False otherwise:

type family HasCtor (ctor :: Symbol) f :: Bool where
HasCtor ctor (M (’MetaCons ctor)) = ’True
HasCtor ctor (M f) = HasCtor ctor f
HasCtor ctor (f :+: g) = HasCtor ctor f | | HasCtor ctor g
HasCtor ctor = ’False

Note that this uses non-linear patterns to check that the constructor symbol being searched for

(ctor) is matched within the tree.

It is not essential to understand the details of the generics library, but we give a brief summary.

The sum (:+:) represents the choice between two constructors, and product (:×:) represents the

fields inside a given constructor. For types with more than two constructors, the :+: type can be

nested (similarly for products). A field of type a inside a constructor is marked as K a. Empty

constructors (such as the empty list) are turned into U . Additionally, this generic representation

contains metadata (names of data types, constructors, and optionally field names) about the nodes.

These representation types can automatically be derived for any algebraic data type, and the rest is

taken care of by the generic-lens library.
Another query function in generic-lens is HasField, which returns ’True if and only if f contains

a field named field (recall that record types in Haskell have named fields):

type family HasField (field :: Symbol) f :: Bool where
HasField field (M (’MetaSel (’Just field))) = ’True
HasField field (M (’MetaSel)) = ’False
HasField field (M f) = HasField field f
HasField field (l :×: r) = HasField field l | | HasField field r
HasField field (l :+: r) = HasField field l | | HasField field r
HasField field (K) = ’False
HasField field U = ’False

There are many more type families along these lines, each traversing the generic tree to extract

some information of interest.

We can see that both HasCtor and HasField are rather sizeable. After all, they handle all cases

one-by-one, and recurse when appropriate. What’s worse, they are almost identical, the only

difference being the termination conditions. It is somewhat ironic that a library which was designed

to eliminate boilerplate code itself contains a lot of boilerplate!

6.2 The new way
We now show how the UnsaturatedTypeFamilies extension can be used to define a type-level

generic programming framework to describe traversals in a more concise manner. We then show

how to implement type families such as those above as one-liners.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:19

The Scrap Your Boilerplate (SYB) [Lämmel and Peyton Jones 2003] library uses type equality

tests to identify the relevant parts of data structures. We borrow this strategy and use the same

interface for our type-level generic programming framework.

Our first combinator is a type family Everywhere, which takes a type function of kind b ↠ b,
and applies it to every element of kind b in some structure st.

type family Everywhere (f :: b ↠ b) (st :: a) :: a where
Everywhere (f :: b ↠ b) (st :: b) = f st
Everywhere (f :: b ↠ b) (st x :: a) = (Everywhere f st) (Everywhere f x)
Everywhere (f :: b ↠ b) (st :: a) = st

Everywhere is already very powerful. For example, we can replicate the query from above
5
:

Everywhere (Add 10) (’Left ’(0, ’False, ’Just 20))
> ’Left ’(10, ’False, ’Just 30)

How was this so easy? We made use of some of Haskell’s unique type system features. These are:

Non-parametricity Type families can inspect the kinds their arguments when the kind is

polymorphic. That is, the first equation only matches when the domain of the function f is

the same kind as the structure st. In this case, it applies the function and terminates.

Application decomposition The second pattern of the second equation is st x. This only
matches when the input structure is a type application. This means that it will match ’Just 30,
but not ’False, for example. In this case, Everywhere recurses into both sides, then reconstructs
the application. We note that only matchable type constructor applications will match this

pattern.

Note that the third equation matches anything not covered by the first two, by virtue of

overlapping equations.

Remark: Application decomposition in the type system is precisely the reason why type families

had to be fully saturated in the past.

The second combinator, Gmap, is similar to Everywhere in that it applies a function f to all

elements of a given kind b in some structure of kind a. However, instead of leaving the new value

in place in the structure, it returns the results in a list. As such, it can also change the kind of the

elements into some result kind r .

type family Gmap (f :: b ↠ r) (st :: a) :: [r] where
Gmap (f :: a ↠ r) (st :: a) = ’[f st]
Gmap (f :: a ↠ r) (st x :: b) = Gmap f st ++ Gmap f x
Gmap (f :: a ↠ r) (st :: b) = ’[]

Both Gmap and Everywhere are higher-order: they take functions, in this case unsaturated type

families, as arguments. Using Gmap, we define an auxiliary function Listify that collects all types

of kind k into a list.

type family Listify k (st :: a) :: [k] where
Listify k st = Gmap (Id :: k ↠ k) st

Listify simply maps the identity type family Id, but instantiated to the kind k ↠ k. This means

that Gmap will only pick up the types whose kinds are k, and ignore the others in the resulting

list. (Notice that k is given as an argument to Listify, and used in its return kind: indeed, the type

5
In this case, we use the type-level equivalents of the constructors, which are available thanks to promotion [Yorgey et al.

2012b]

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:20 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

system is dependently kinded, with the ⋆ ::⋆ axiom [Weirich et al. 2013].) For example, we can

query all the names (types of kind Symbol) that appear in the definiton of the Maybe type by:

> ghci> : kind Listify Symbol (Rep (Maybe Int))
> = ’["Maybe", "Nothing", "Just"]

With our generic framework now in place, we can finally revisit the HasField and HasCtor functions.

type family HasCtor2 ctor f where
HasCtor2 ctor f = Foldl (| |) ’False (Gmap (== (’MetaCons ctor)) f)

We map the function (== ’MetaCons ctor) over the structure. This implicitly selects only values of

kind Meta, and returns ’True for the constructors called ctor . We then fold the result with the (| |)

function, defaulting to False in case the type had no constructors – in that case Gmap will return

an empty list. This results in ’True if any of the constructors were called ctor . Foldl is simply the

value-level foldl function lifted to the type-level:

type family Foldl (f :: b ↠ a ↠ b) (z :: b) (xs :: [a]) :: b where
Foldl f z ’[] = z
Foldl f z (x ’ : xs) = Foldl f (f z x) xs

Similarly, HasField can also be implemented as a one-liner type family:

type family HasField2 field f where
HasField2 field f = Foldl (| |) ’False (Gmap (== (’MetaSel (’Just field))) f)

To conclude, we have seen how a large class of type-level traversal schemes can be unified into

a small set of combinators. In other dependently typed programming languages, this problem is

traditionally solved by defining operations on a closed universe that can be interpreted into a

type [Altenkirch et al. 2006]. This is required because ⋆ is not inductively defined.

Instead, type families in Haskell allow pattern matching on syntactic properties of elements

of ⋆. Namely, matching on application forms of unknown type constructors together with non-

parametricity allowed us to write recursive definitions such as Everywhere and Gmap over all types,
without having to assume a recursion principle for the underlying set.

7 RELATEDWORK
Type families were first introduced into Haskell as associated type families [Chakravarty et al.

2005] and several extensions have since been added, most notably closed and injective type fami-

lies [Eisenberg et al. 2014; Stolarek et al. 2015]. From the perspective of this paper the key point

is that instance declarations introduce axioms (Section 4.3) regardless, and the only differences

between the different family types is additional typing information that accrues from the family’s

definition, e.g. associated class constraints and argument injectivity. None of these impact our

implementation.

7.1 Previous work on System FC

In Weirich et al. [2011] the coercion decomposition rules are changed to work only between known

type constructors. Instead of the left and right rule, which work on any equalities of the form

f a ∼ g b, a restricted nth rule is introduced, which projects out the equality of the “n”th argument

of T a ∼ T b, where T is an injective type constant. While this system allows unsaturated type

functions, it weakens type inference by not allowing generative decomposition of given equalities.

Haskell’s template metaprogramming facilities [Sheard and Peyton Jones 2002] have been used to

generate each possible partial application of a given type family Eisenberg and Stolarek [2014]. This

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:21

uses defunctionalisation [Reynolds 1972], a well established technique for translating higher-order

programs into a first-order setting. The defunctionalisation symbols are distinguished in the kind

system, which served as direct inspiration for our work. We improve the ergonomics by extending

the type system with first-class support for unsaturated type families.

7.2 Dependent Haskell
The various type system extensions as seen in GHC have been moving Haskell closer and closer

to supporting full-spectrum dependent types. Dependent Haskell will allow ordinary term-level

functions in types [Weirich et al. 2017]. However, getting there poses a unique challenge: backwards

compatibility. Programs that compile today should also compile in Dependent Haskell and type

inference should not be compromised.

Type inference in the context of dependent types has been investigated in Gundry [2013]. This

maintains a phase distinction between terms and types, with a notion of shared functions that are

usable in both settings. Shared functions must be fully saturated to maintain the desired injectivity

and generativity properties.

This restriction is lifted in Eisenberg [2016] by distinguishing between matchable and unmatch-

able functions, as in [Eisenberg and Stolarek 2014]. Our work is a step towards that goal, as we

describe the feature in the context of type families and System FC , so it is readily applicable to

GHC today. Our treatment of matchability polymorphism is novel, which leads to more predictable

type inference than the subsumption relationship proposed in [Eisenberg 2016].

7.3 Full-spectrum dependently typed languages
In languages like Agda [Norell 2007] and Idris [Brady 2013] that support full-spectrum dependent

types, partial application of type functions is standard practice. These systems do not assume

injectivity of unknown constructors, so avoid the problem of unsound decomposition. In fact, type

constructor injectivity is generally problematic in the presence of classical axioms such as the law

of excluded middle, so even known type constructors are not injective in proof systems [Hur 2010].

8 CONCLUSIONS AND FUTUREWORK
Our implementation of unsaturated type families, which is an extension to GHC, is non-invasive

in the sense that it requires no significant change of GHC’s existing constraint solving algorithm.

Existing programs that compile under GHC also compile with our extension. As a demonstration

of the robustness of our implementation, our fork of GHC can bootstrap itself, and all the examples

in this paper are valid type-checked programs.

Dependent Haskell [Weirich et al. 2017] will blur the line between value-level and type-level

programming, as arbitrary terms can then appear in types. Matchability is an important piece of the

Dependent Haskell puzzle, and much of the development here can be re-purposed in that context.

Certain ergonomic features were not implemented as part of this work, in anticipation of them

becoming redundant in Dependent Haskell.

Our approach to type-level generic programming is somewhat unique to Haskell as it involves the

interaction of several of Haskell’s type system features that are not present in other dependently-

typed languages, namely non-parametricity and the fact that application decomposition is possible

on polymorphic type constructors.

8.1 Type lambdas
Type lambdas are not yet supported and introducing them will be non-trivial, as they open up the

possibility of unification problems where the solution can have binding structure. Higher-order

unification, in general, is undecidable [Huet 1973].

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

1:22 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Many systems implement a decidable subset, such as Miller’s pattern fragment [Miller 1992],

where higher-order metavariables must be applied to distinct bound variables. This can be improved

upon and matchability information can help here. As an example, suppose we want to express that

the composition of two functors is itself a functor:

instance (Functor f , Functor g) ⇒ Functor (λx → f (g x)) where
fmap :: (a → b) → f (g a) → f (g b)

Notice that in the lambda, the bound variable x appears in a matchable position, because both f
and g are matchable. Now suppose we call fmap with a function of type a → b, and an argument

of type Maybe [a]. Which instance should be picked? We need to solve for β in the equality:

β a ∼ Maybe [a]

The solution is β := λx → Maybe [x], which unifies with our instance above. What if the function

had type [a] → [b] instead?

γ [a] ∼ Maybe [a]

This can be solved by assigning γ :=Maybe, so the instance for Maybe can be picked.

Note that supporting this will require a modified notion of generativity where the arguments to

type functions have to match, viz. f a ∼ g a ⇒ f ∼ g.

8.2 Matchability inference
The matchability defaulting strategy described in Section 5 is incomplete: there are some well-typed

programs that it doesn’t accept. Consider the following:

nested :: a b ∼ c Id ⇒ b Bool
nested = False

What should the inferred matchabilities of a, b, and c be? Defaulting all of them to be matchable

enables the decomposition of the equality, and by doing so we learn that b ∼ Id. However, we just
defaulted the kind of b to be matchable. This does not threaten type safety, but it means that the

caller needs to instantiate b with a matchable type that is equal to Id. Of course, no such type exists,

so the function can never be called!

We can, of course, fix the above problem by manually declaring b’s kind:

nested :: ∀ (b ::⋆↠ ⋆). a b ∼ c Id ⇒ b Bool

but this seems unfortunate. Could we do better?

The issue is that defaulting everything is too eager. For example, if we were to default only a and
b to matchable then we would enable new interactions in the constraint solver, namely deducing

that b ∼ Id and thus b is unmatchable.

With this in mind we have flirted with a more elaborate inference algorithm that recognises that

b’s matchability is constrained by that of a and c, and defers defaulting b until a and c are resolved.
This type of situation might be quite rare in practice, so the complexity of a complete inference

algorithm might not pay its way. Of course, this is just speculation, and time will tell whether the

simple method is sufficient, or overly restrictive. The good news is that if it turns out to be the

latter, type inference can be extended in a backwards-compatible way, because a more sophisticated

algorithm would just accept more programs.

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

Higher-order Type-level Programming in Haskell 1:23

REFERENCES
Thorsten Altenkirch, Conor McBride, and Peter Morris. 2006. Generic programming with dependent types. In International

Spring School on Datatype-Generic Programming. Springer, 209–257.
Edwin Brady. 2013. Idris, a general-purpose dependently typed programming language: Design and implementation.

J. Funct. Prog. 23 (2013).
Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton Jones. 2005. Associated Type Synonyms. In International

Conference on Functional Programming (ICFP ’05). ACM.

Richard A Eisenberg. 2016. Dependent types in haskell: Theory and practice. arXiv preprint arXiv:1610.07978 (2016).
Richard A Eisenberg and Simon Peyton Jones. 2017. Levity polymorphism. In ACM SIGPLAN Notices, Vol. 52. ACM, 525–539.

Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions to Type Families in Haskell. In ACM SIGPLAN Haskell
Symposium.

Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Peyton Jones, and Stephanie Weirich. 2014. Closed Type Families with

Overlapping Equations. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’14). ACM, New York, NY, USA, 671–683. https://doi.org/10.1145/2535838.2535856

Richard A. Eisenberg and Stephanie Weirich. 2012. Dependently Typed Programming with Singletons. In ACM SIGPLAN
Haskell Symposium. ACM.

Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. 2016. Visible Type Application. In ESOP.
Adam Gundry. 2013. Type Inference, Haskell and Dependent Types. Ph.D. Dissertation. University of Strathclyde.

Gerard P Huet. 1973. The undecidability of unification in third order logic. Information and Control 22, 3 (1973), 257–267.
Chung-Kil Hur. 2010. Agda with the excluded middle is inconsistent? https://coq-club.inria.narkive.com/iDuSeltD/

agda-with-the-excluded-middle-is-inconsistent. Accessed: 2019-03-01.

Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. 2004. Strongly typed heterogeneous collections. In Proc. 2004 ACM
SIGPLAN Workshop on Haskell (Haskell ’04). ACM, 96–107.

Csongor Kiss, Matthew Pickering, and Nicolas Wu. 2018. Generic Deriving of Generic Traversals. In International Conference
on Functional Programming (ICFP ’18). ACM. arXiv:arXiv:1805.06798

Ralf Lämmel and Simon Peyton Jones. 2003. Scrap Your Boilerplate: A Practical Design Pattern for Generic Programming. In

Types in Languages Design and Implementation. ACM Press, New York, NY, USA, 26–37. https://doi.org/10.1145/640136.

604179

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. 2010. A Generic Deriving Mechanism for Haskell.

In Proceedings of the Third ACM Haskell Symposium on Haskell (Haskell ’10). ACM, New York, NY, USA, 37–48. https:

//doi.org/10.1145/1863523.1863529

Dale Miller. 1992. Unification under a mixed prefix. Journal of symbolic computation 14, 4 (1992), 321–358.

Ulf Norell. 2007. Towards a practical programming language based on dependent type theory. Ph.D. Dissertation. Department

of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.

John Reynolds. 1972. Definitional Interpreters for Higher-Order Programming Languages. In ACM Annual Conference.
Tim Sheard and Simon Peyton Jones. 2002. Template meta-programming for Haskell. In Proc. 2002 ACM SIGPLAN workshop

on Haskell (Haskell ’02). ACM, 1–16.

Jan Stolarek, Simon Peyton Jones, and Richard A. Eisenberg. 2015. Injective Type Families for Haskell. In Proceedings of the
2015 ACM SIGPLAN Symposium on Haskell (Haskell ’15). ACM, New York, NY, USA, 118–128. https://doi.org/10.1145/

2804302.2804314

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and Kevin Donnelly. 2007. System F with type equality

coercions. In Types in languages design and implementation (TLDI ’07). ACM.

Anish Tondwalkar. 2018. Popularity of Haskell Extensions. https://gist.github.com/atondwal/

ee869b951b5cf9b6653f7deda0b7dbd8. Accessed: 2019-02-24.

Dimitrios Vytiniotis, Simon Peyton Jones, Tom Schrijvers, and Martin Sulzmann. 2011. OutsideIn(X): Modular Type

Inference with Local Assumptions. Journal of Functional Programming 21, 4-5 (Sept. 2011).

Stephanie Weirich, Justin Hsu, and Richard A. Eisenberg. 2013. System FC with Explicit Kind Equality. In International
Conference on Functional Programming (ICFP ’13). ACM.

Stephanie Weirich, Antoine Voizard, Pedro Henrique Azevedo de Amorim, and Richard A. Eisenberg. 2017. A Specification

for Dependent Types in Haskell. Proc. ACM Program. Lang. 1, ICFP, Article 31 (Aug. 2017), 29 pages. https://doi.org/10.

1145/3110275

Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton Jones, and Steve Zdancewic. 2011. Generative type abstraction and

type-level computation. In POPL. ACM.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012a. Giving Haskell a promotion. In Types in Language Design and Implementation (TLDI ’12). ACM.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones, Dimitrios Vytiniotis, and José Pedro Magalhães.

2012b. Giving Haskell a Promotion. In Proceedings of the 8th ACM SIGPLAN Workshop on Types in Language Design and

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

https://doi.org/10.1145/2535838.2535856
https://coq-club.inria.narkive.com/iDuSeltD/agda-with-the-excluded-middle-is-inconsistent
https://coq-club.inria.narkive.com/iDuSeltD/agda-with-the-excluded-middle-is-inconsistent
http://arxiv.org/abs/arXiv:1805.06798
https://doi.org/10.1145/640136.604179
https://doi.org/10.1145/640136.604179
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/1863523.1863529
https://doi.org/10.1145/2804302.2804314
https://doi.org/10.1145/2804302.2804314
https://gist.github.com/atondwal/ee869b951b5cf9b6653f7deda0b7dbd8
https://gist.github.com/atondwal/ee869b951b5cf9b6653f7deda0b7dbd8
https://doi.org/10.1145/3110275
https://doi.org/10.1145/3110275

1:24 Csongor Kiss, Susan Eisenbach, Tony Field, and Simon Peyton Jones

Implementation (TLDI ’12). ACM, New York, NY, USA, 53–66. https://doi.org/10.1145/2103786.2103795

Proc. ACM Program. Lang., Vol. 1, No. ICFP, Article 1. Publication date: March 2019.

https://doi.org/10.1145/2103786.2103795

	Abstract
	1 Introduction
	2 Type families and type-level programming in Haskell
	2.1 Type constructors and type families
	2.2 Injectivity and generativity
	2.3 Decomposing type applications
	2.4 The pain of saturation
	2.5 Use case: HLists

	3 The solution: unsaturated type families
	3.1 HLists revisited
	3.2 Visible type application
	3.3 Matchability polymorphism

	4 FCM: System FC with matchability polymorphism
	4.1 Syntax
	4.2 Typing rules
	4.3 Coercions
	4.4 Operational semantics
	4.5 Metatheory

	5 Type inference
	5.1 Constraint-solving
	5.2 Generalising over matchability

	6 Unsaturated type families in practice: a case study
	6.1 The old way
	6.2 The new way

	7 Related work
	7.1 Previous work on System FC
	7.2 Dependent Haskell
	7.3 Full-spectrum dependently typed languages

	8 Conclusions and future work
	8.1 Type lambdas
	8.2 Matchability inference

	References

