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Abstract

We consider the problem of creating secure and resource-
efficient blockchain networks i.e., enable a group of mu-
tually distrusting participants to efficiently share state and
then agree on an append-only history of valid operations
on that shared state. This paper proposes a new approach
to build such blockchain networks. Our key observation is
that an append-only, tamper-resistant ledger (when used
as a communication medium for messages sent by partici-
pants in a blockchain network) offers a powerful primitive
to build a simple, flexible, and efficient consensus proto-
col, which in turn serves as a solid foundation for building
secure and resource-efficient blockchain networks.

A key ingredient in our approach is the abstraction of
a blockchain service provider (BSP), which oversees creat-
ing and updating an append-only, tamper-resistant ledger,
and a new distributed protocol called Caesar consensus,
which leverages the BSP’s interface to enable members
of a blockchain network to reach consensus on the BSP’s
ledger—even when the BSP or a threshold number of
members misbehave arbitrarily. By design, the BSP is un-
trusted, so it can run on any untrusted infrastructure and
can be optimized for better performance without affecting
end-to-end security. We implement our proposal in a sys-
tem called VOLT. Our experimental evaluation suggests
that VOLT incurs low resource costs and provides better
performance compared to alternate approaches.

1 Introduction

Blockchain technology—which underpins popular cryp-
tocurrencies such as Bitcoin [69] and Ethereum [85]—
has been touted to dramatically transform common busi-
ness processes in many areas such as finance [86], health
care [47], and the public sector [77]. The fundamental ap-
peal of blockchain is its promise to enable verifiable, low-
cost, and trustworthy business processes without involv-
ing expensive, trusted intermediaries, which are rampant
in the aforementioned business areas. A key mechanism
behind this technology is an append-only, tamper-resistant
ledger shared by all participants in a blockchain network.

However, most blockchains fail to deliver this promise
fully: they fall short in security, privacy, performance,
or cost. For example, the security of public blockchain
systems such as Bitcoin and Ethereum relies on game-
theoretic and incentive-based mechanisms (e.g., mining
based on proof-of-work) because they operate in a permis-
sionless membership model where anyone can participate

in the system. Furthermore, they are slow and expensive
(due to mining) for many business applications (§2.2).

This has led to blockchains in a permissioned envi-
ronment such as the cloud [6, 7], where participation
is restricted to entities of a business process. Some of
these solutions employ public blockchain protocols such
as Ethereum, but for such systems, strong security re-
quires deploying enormous computational resources for
mining [44, 71]. Others propose systems such as Hy-
perledger [5], Tendermint [24], and Ripple [79], which
use variants of Byzantine fault-tolerance (BFT) proto-
cols [28, 32, 55] for consensus in a blockchain network.

Such BFT-based approaches are resource efficient
compared to mining-based systems as they do not employ
mining. However, members in such blockchains must
trust the full implementation of the BFT protocol as well
infrastructure where it is deployed. Furthermore, given
the monolithic nature of these protocols, they are hard to
optimize without risking subtle bugs.

We address these problems with a system called VOLT,
which is the first system to enable secure and resource-
efficient blockchain networks in a permissioned member-
ship model such that the bulk of the work can be safely run
on untrusted infrastructure. To achieve this, VOLT advo-
cates a new architecture for blockchain networks, which
introduces the concept of a blockchain service provider
(BSP) and a novel distributed protocol called Caesar con-
sensus' that, unlike a traditional consensus protocol, is run
by member nodes participating in a blockchain network
along with the BSP.

In vOLT, the BSP oversees the task of creating and
updating a append-only, tamper-resistant ledger (where
entries are governed by a state machine defined by the
members of the blockchain network). Despite the BSP
handling critical work, member nodes use Caesar consen-
sus to detect misbehavior by the BSP, recover from misbe-
havior, and to reach consensus on the ledger. Caesar con-
sensus does all these through end-to-end checks on proper-
ties of the BSP, by building atop prior works in untrusted
storage [27, 41, 59, 62, 76], BFT systems [28, 32, 55, 60],
and accountability [45, 46, §89].

A key observation in Caesar consensus is that member

'We name it after Julius Caesar, a dictator who ran the Roman Republic
until he was assassinated by the Senate. Similarly, the BSP orchestrates
our consensus protocol until the member nodes of a network replace it.
We recognize naming conflicts with a system in another area [68].



nodes of a blockchain network can leverage the append-
only, tamper-resistant ledger maintained by the BSP to
reach agreement on a prefix of the ledger, by writing
special messages of a single type on the ledger itself. This
mechanism leads to a simple consensus algorithm for
permissioned blockchain networks. Furthermore, those
special messages are recorded on the ledger and processed
by members in a network, so member nodes can use them
to enforce a flexible class of policies to determine which
prefix of the ledger is agreed-upon by the network. As an
example, the blockchain network can enforce consistency
levels ranging from strong to eventual, and fault models
(for member nodes) from crash to Byzantine (§3.4,§8),
while keeping the BSP oblivious to these policies.

The above is in stark contrast with the aforementioned
BFT-based systems where nodes reach consensus on a
set of transactions (using a protocol such as PBFT [28])
before writing them to a tamper-resistant ledger, thus em-
bedding the consensus policy a priori into the system.
Additionally, in VOLT, if the BSP or any malicious mem-
ber node commits a safety violation and exposes it to
an honest member node, it can eventually be blamed as
malicious behavior by the BSP. Such a blame is crypto-
graphically verifiable by other honest member nodes, and
it does not require any threshold assumption.

Finally, this paper makes the following contributions.

* We propose a new foundation—a blockchain service
provider and Caesar consensus—for designing per-
missioned blockchain networks.

* We architect a trustworthy BSP through a modular
design that makes it easy to optimize the BSP for
better performance and security.

* We implement VOLT using Azure service fabric, a
framework for building distributed systems.

* Our experimental evaluation shows that VOLT achieves
several thousands of transactions per second per ledger
for a realistic blockchain application (which is 190 x
higher than an Ethereum-based baseline).

2 Setup, motivation, and goals

This section describes the high-level goals of VOLT and
provides background on blockchain technology.

2.1 Goals

The principal goal of VOLT is to enable an emerging class
of applications that employ blockchains to re-architect
critical business processes [77, 86]. Examples include
clearing and settlement [35], supply chain management [34],
health care [13], asset registries [51], etc. We call such
applications secure multi-party collaborations (SMCs).

In a nutshell, they involve mutually distrusting entities
sharing state and then agreeing on a history of operations

on that shared state. Given the mission-critical nature of
these applications, we wish to build a system that:

* Ensures that all mutations to shared state are crypto-
graphically verifiable by all participants in the system.

* Makes it computationally hard to tamper with the
history of operations on shared state, or the state itself.

» Keeps the shared state and the operations on it private.
* Tolerates malice from participants in the system.

2.2 Blockchain technology

In principle, blockchain technology can support SMC,
since, at its core, it makes a group of mutually distrusting
parties maintain a shared ledger. We now elaborate this
by focusing on two popular blockchain systems.

Bitcoin [69] is a cryptocurrency where users are identi-
fied by public keys in a digital signature scheme, and users
transact using their private keys [12]. Bitcoin records
all transactions in a blockchain, which is an append-
only, cryptographically chained sequence of blocks. The
blockchain is maintained by miners in a decentralized
network, and they agree on the current state of blockchain
via mining: miners solve computational puzzles to append
new blocks to the chain [8]. Thus, Bitcoin creates a trust-
worthy ledger using a novel combination of puzzles and
incentives [43, 70, 74]. Ethereum [85] extends Bitcoin’s
programmability?: users can store stateful computations
on the blockchain. They can then mutate the state of such
computations by submitting transactions, which are also
stored in the same blockchain. Such a model enables
building general applications atop blockchain.

Difficulties. It is well known that enterprises cannot di-
rectly use public blockchains for SMC, since they scale
poorly [25, 36]. As an example, the maximum throughput
of Bitcoin is only 7 transactions/second [1]. There are
proposals to address the throughput limitations of pub-
lic blockchains [14, 39, 53]. However, the blockchain is
still secured via mining and incentives, which can lead
to surprising attacks [38, 40, 50, 61, 72]. For example,
Luu et al. [61] show that rational miners have incentives
to skip verifying expensive transactions in new blocks.
Additionally, public blockchains are expensive. For ex-
ample, it costs $0.18x 10°/KB of storage on Ethereum.?
This has led to blockchains in a permissioned setting [5—
7, 24, 79], but as Section 1 discusses, they are either
resource-inefficient or require trusting the full implemen-
tation as well as infrastructure where they are deployed.

2.3 Our approach: VOLT

We take an alternate approach. We propose the notion
of a blockchain service provider (BSP) as well as a new

2Each Bitcoin transaction includes a script that miners execute [12, 80].
31t costs 20,000 gas/256 bits [85]; the gas price is ~ 10~¢ ETH [3, 4].



distributed protocol, called Caesar consensus, which lever-

Initialization and setup. When a VOLT blockchain net-

ages the BSP and the cryptographic properties of a blockchain, work is initialized, member nodes collectively define rules
to enable enterprises to create secure and efficient blockchain that govern the network. This includes the current list of

networks (§3). Additionally, through a modular design
for the BSP, we show how to harden the BSP for better
performance and security (§4).

3 voLT: BSP and Caesar consensus

We first provide an overview of VOLT. We then describe
details of the BSP and Caesar consensus. We finally dis-
cuss accountability properties of the BSP.

3.1 Overview of VOLT

VOLT targets permissioned blockchains, which limit par-
ticipation to entities involved in a business application.*
Figure 1 depicts VOLT’s high level architecture, which
shows two types of entities: the BSP and member nodes.
The BSP can naturally be offered as a service on any
untrusted infrastructure including the cloud by a cloud
provider such as Amazon AWS and Microsoft Azure.
Alternatively, the BSP can be instantiated in a decentral-
ized manner on member nodes (§8). Regardless, the BSP
is fully untrusted. Member nodes on the other hand are
owned and operated by the participating entities in the
blockchain network.
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FIGURE 1—High level architecture of VOLT. Member nodes
interact with the BSP using a VOLT library, which makes calls
to a well-defined interface exposed by the BSP, to submit trans-
actions and to learn the current state of the blockchain network.
The dotted arrows represent optional communication channels.

Each member node uses the VOLT library to interact
with the BSP i.e., to submit transactions and to learn
the current state of the blockchain network. The VOLT
library also implements the Caesar consensus protocol,
without requiring any cooperation from the BSP beyond
its interface (§3.4). For simplicity, we assume that only
member nodes submit transactions.’

4Many enterprise applications of blockchain fundamentally involve
entities with well-known identities.
31t is easy to extend VOLT where members specify an authentication

participants, initial state of the network, and rules to au-
thenticate and validate transactions. The latter two are
encoded in a blockchain state machine (BSM),® which
includes code executed by the network to process trans-
actions. The next subsection discusses blockchain state
machines and the programming model VOLT supports as
well as where this initialization information is recorded.

Threat model. We make the following assumptions. We
assume that the BSP and member nodes obey standard
cryptographic hardness assumptions. We assume that the
BSP’s public key in a digital signature scheme is known
to all member nodes, and that all member nodes in a
blockchain network know the public keys of other mem-
bers. We assume that the BSP and member nodes could
arbitrarily deviate from their protocol—in particular, that
they could be controlled by the same global adversary
(we refine this assumption further in Section 3.4).

We assume that the network could be adversarial by
dropping, reordering, and duplicating messages. However,
we assume that correct entities (i.e., those that follow their
prescribed protocol) in the system can eventually commu-
nicate with other correct entities. We also assume that the
network is eventually synchronous for liveness [42].

3.2 Verifiable ledgers and programming model

A core ingredient in a VOLT network is the blockchain
data structure from decentralized cryptocurrencies (§2.2).
We generalize this data structure and call it a verifiable
outsourced ledger (VOL).

Each blockchain network in VOLT is associated with
a VOL. A VOL is an append-only chain of blocks where
each block consists of two components: a metadata block
and a data block. A metadata block is a triple: (id, prev, h)
where id is the identity of the blockchain network repre-
sented by the VOL, prev is a cryptographic hash of the
predecessor block (or null if no predecessor exists), and
h is a cryptographic hash of the corresponding data block,
which contains a list of transactions.

We make a simple extension: Each entry in a VOL is
accompanied by a set of digital signatures (called receipts)
signed by the private key of the BSP (§4). (We discuss
details of these receipts in the next section.) Also, as
in decentralized cryptocurrencies, entries in a VOL are
governed by a program, which we call a blockchain state
machine (BSM). The BSM of a blockchain network is
stored at the first block (called the genesis block) in the

policy that defines who can submit transactions (e.g., accept transac-
tions from external users if they are authorized by one of the member
nodes), and have the BSP enforce it.

6We assume a static membership list and blockchain state machine for
each network. Section 8 discusses how to evolve them.
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FIGURE 2—Overview of a VOL, which is an append-only data
structure, similar to blockchain in decentralized cryptocurren-
cies (e.g., each block contains transactions and embeds a cryp-
tographic hash H of its predecessor). In VOLT, a VOL also acts
as a mechanism for disseminating a blockchain network’s meta-
data (e.g., the first block in a VOL stores rules that govern the
blockchain network it represents). Each entry in a VOL is also
accompanied by a set of signatures using the BSP’s private key.

VOL associated with the network. We now discuss VOLT’s
programming model to express BSMs.

Programming model. VOLT supports a programming
model akin to Ethereum’s smart contracts for express-
ing blockchain state machines ¥. ¥ consists of (U, ¥y),
where W is the internal state of a BSM and W.. is the code
that mutates W by processing a state machine command
(i.e., a blockchain transaction). ¥, is expected to be sin-
gle threaded and deterministic. It however gets to invoke
VOLT-provided cryptographic libraries (to perform digital
signature checks, hashing, etc.), and it gets access to a
simple key-value store to persist its internal state.”

3.3 Blockchain service provider (BSP)

The BSP uses a VOL to represent a blockchain network
i.e., it records the initial state of the network and all trans-
actions processed by the network on the same VOL. The
BSP exposes the following three operations to member
nodes: Setup, Transact, and Sync.

Interface. Setup takes information necessary to initial-
ize a new blockchain network—Dblockchain state machine,
list of member nodes, etc. It returns a new genesis block
to the calling member node, which contains the setup
information as well as the identity for the blockchain net-
work just created. The genesis block is signed by the BSP
so that the calling member node can distribute it to other
member nodes and that they can verify the authenticity of
the block using the BSP’s public key.

Transact accepts the identity of a blockchain net-
work and a signed transaction, which is a command that
mutates the internal state of the blockchain network. The
BSP validates the transaction using the blockchain code

7We leave it as future work to enforce these requirements on ¥, via
program verifiers such as Dafny [2, 57] and to support existing smart
contract languages such as Solidity [10].

associated with the blockchain network, and appends it
to the VOL associated with the blockchain network. For
higher throughput, the BSP batches a configurable num-
ber of transactions in a single block.

Sync accepts the identity of the blockchain network
and returns the VOL associated with the blockchain net-
work. For better performance, Sync accepts an additional
parameter that enables the member nodes to specify parts
of the VOL that they have already downloaded, so that the
BSP can simply return subsequent additions to the VOL.

Implementation. The above interface is straightforward
to implement with a stateful process. Section 4 presents a
modular design for the BSP.

3.4 Caesar consensus

While the BSP takes care of maintaining a VOL, all hon-
est members must have a consistent view of the VOL
i.e., they must all see the same set of blocks in the same
order. We refer to this special form of agreement Caesar
consensus. Unlike traditional consensus, our protocol in-
volves not only n member nodes, but also the BSP, which
is mostly correct and highly resourceful. It is not a general
consensus either, but specifically for reaching agreement
on an append-only, tamper-resistant ledger. It leverages
the BSP to enable honest members to reach agreement
as well as ensure that a “committed” prefix of a VOL is
preserved—even if the BSP misbehaves arbitrarily.

We start by describing the normal-case Caesar consen-
sus protocol, and then show how to configure our protocol
to handle a wide range of fault models and consistency
semantics. In particular, we show how to configure the
protocol so that it can be mapped to a standard Byzantine
fault tolerance (BFT) protocol such as PBFT [28].

Normal-case protocol. A key differentiating aspect of
our Caesar consensus protocol is that it leverages the VOL
abstraction, where the actual ledger is stored on the BSP
and locally on each member node. As a result, the normal
case of our protocol is deceptively simple. It just involves
a special heartbeat transaction (m, g, k), where m is the
identity of a member node (i.e., its public key), g is the
height® of the VOL validated by the member node, 4 is
the cryptographic hash of the metadata block at height
g, and o is a digital signature using m. The VOL at the
current height is deemed valid iff

* The VOL is “well-formed”: there must be a sequence
of blocks where the first one is the genesis block and
every subsequent block points cryptographically to
the previous one.

» Every transaction included in each block is valid ac-
cording to the associated blockchain state machine.

8The height of a VOL is the height of the last block in the VOL, which
is its distance away from the genesis block of the VOL.



» For each heartbeat transaction (m, g, k), included in a
block of the VOL, the cryptographic hash . matches
the hash of the chain at height g.

In the normal case of our Caesar consensus, each
member node m executes the following steps periodically:

1. Call the BSP’s Sync API to learn the latest additions
to the VOL, the current height g, and the crypto-
graphic hash (%) of the metadata block at height g.

2. Check if the VOL remains valid with the latest ad-
ditions, as described earlier. If the VOL is no longer
valid, the BSP is considered compromised and results
in a failover (§3.5).

3. Create a signed heartbeat transaction (m, g, h),,. Post
the transaction to the BSP using the Transact APL

4. Compute the committed prefix of the VOL (i.e., com-
mitted height g’) by processing heartbeat transactions
of other member nodes included in the VOL, accord-
ing to a policy. We elaborate this next.

The normal-case Caesar consensus protocol essen-
tially uses heartbeat transactions as messages typically ex-
changed in a consensus protocol. Doing so brings several
benefits. The protocol leverages the existing Transact
API and the VOL, and is therefore straightforward to
implement. More importantly, because all the heartbeat
transactions are recorded in the VOL, we can easily in-
stantiate different types of consensus (under different fail-
ure assumptions) by defining only the condition under
which a prefix of the VOL is considered committed. For
example, a member node might trust secure execution
environments [78, 92] at other member nodes, so it might
be satisfied with a crash-only failure assumption and con-
sider a transaction t committed as soon as it sees heartbeat
transactions validating ¢ from a majority of members.

In fact, these policies can be configured on a per-
member and per-transaction basis based on their respec-
tive risk and performance profiles. As an example, for a
low-value transaction, a member node might be willing to
consider it committed as soon as it gets logged in the VOL
(so that it can respond immediately), but it brings a risk:
such a transaction can disappear in the (unlikely) event
that the BSP is compromised. For a high-value transac-
tion, a member node might instead require that every other
member node validate the transaction and then specify
that they have done so via a heartbeat transaction, which
might increase latency. This additional flexibility is nev-
ertheless practically valuable and even critical in some
business applications of blockchains.

It is worth noting that the standard practice (as typ-
ically used in permissioned blockchains such as Hyper-
ledger [5]) requires member nodes to run a Byzantine
fault tolerance (BFT) protocol on proposed transactions

before committing them to a ledger. Such a design cannot
accommodate the type of flexibility Caesar consensus of-
fers because the policy is hardwired upfront in the BFT
protocol in those approaches. Executing BFT outside of a
ledger also adds complexity, which must be trusted.

Achieving Byzantine fault tolerance. BFT protocols
such as PBFT [28] tolerate up to f Byzantine faults with
n = 3f + 1 replicas [28]. The normal-case protocol in-
volves a primary initiating the protocol with a pre-prepare
message, followed by two rounds of multicast, one with
prepare messages and another with commit messages,
before committing a proposal. A replica must receive
messages from at least 2f + 1 replicas (including itself)
in each round before proceeding. Correctness hinges on
the fact that there exists at least one correct replica at the
intersection of any two sets of 2f + 1 replicas.

We can configure Caesar consensus with n = 3f + 1
member nodes to tolerate up to f Byzantine faults. We
can then map the heartbeat transactions on a valid VOL to
messages in PBFT, as follows. A block b on the VOL at
height g is equivalent to a primary in PBFT multicasting
a pre-prepare message for value b in the consensus
instance for height g. A heartbeat transaction (m, g, 1)
with g,, > g serves the purpose of a prepare message
from member node m for value b at height g because it
implicitly echoes this decision in the VOL.

Let g, be the lowest height at which there exist heart-
beat transactions (m, g, h), with g, > g, > g from
2f + 1 member nodes. At this point, block b at height g is
considered prepared. A heartbeat transaction (m, g, 1)
with g, > g, serves the purpose of a commit message
from member node m for value b at height g because it
implicitly echoes a prepare message from 2f + 1 mem-
ber nodes. Let g. be the lowest height at which there exist
heartbeat transactions (m, g, h), with g¢ > gn > g
from 2f + 1 member nodes m. At this point, block b at
height g is considered committed.

For simplicity, we present the mapping to BFT from
the perspective of a single consensus instance in BFT i.e.,
in our mapping, each height on the VOL corresponds to
a consensus instance in BFT. However, each heartbeat
transaction actually participates in many consensus in-
stances simultaneously, since each heartbeat transaction
validates a linearly-expanding prefix. So if the VOL has a
block prepared (or committed) at height g, then all blocks
at height less than g are already prepared (or commit-
ted). Therefore, given the current VOL at a certain height,
there exists a highest prepared (or committed) height g,
at which a block is prepared (or committed) at any height
g < g. We refer to this height as the current prepared (or
committed) point. Figure 3 depicts an example.
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FIGURE 3—Overview of Caesar consensus. We use 7'(m;, B;) to
denote a heartbeat transaction from a member node m; for block
B; (§3.4). Suppose there are four member nodes and they use
BFT with f=1. Observe that 2f + 1 members (i.e., m;, ma, m3)
have sent heartbeat transactions for block B3 or By, thus all
blocks prior to and including B3 are prepared. To find the
committed block with the heighest height, members run the
same algorithm assuming that the VOL ends at the highest
prepared height. This ensures that at least 2f + 1 members have
witnessed the block at the highest prepared height. Thus, all
blocks up to and including B; are committed.

3.5 The role and accountability of the BSP

Recall that the BSP is often instantiated in a cloud, which
is resourceful and hardened in terms of reliability, avail-
ability, and security. Thus, when the BSP is correct, Cae-
sar consensus executes efficiently.

We also make the BSP accountable, as in the general
accountability frameworks [45, 46, 89]. In our case, this
task is simpler due to the structure of a VOL (§3.2). We
also want to ensure that faulty member nodes cannot
frame the BSP when the BSP is correct. We consider
accountability in terms of safety, fairness, and liveness.

The BSP can violate a safety guarantee e.g., by cre-
ating a fork in a VOL by assigning two different blocks
to the same height. (It can also create an ill-formed VOL,
which is trivial to detect.) The existence of any such fork
signed by the BSP provides sufficient evidence to blame
the BSP because no member nodes can forge the BSP’s
signature. Also, observe that member nodes in VOLT can-
not create a fork as long as the BSP is correct.

In addition to safety violations, the BSP can also vi-
olate fairness or liveness e.g., by unfairly dropping or
delaying transactions from certain member nodes, or by
preventing transactions from being added to the VOL.
Doing so could also help evade safety-violation detec-
tion by trying to maintain forked views among correct
member nodes. For fairness, a member node with trouble
getting its transactions accepted by the BSP can broadcast
its transactions to all other member nodes who can then
piggyback them with their transactions. Thus, unless the
BSP drops transactions from all correct member nodes
(which turns a fairness violation to a liveness violation),
any discrimination against a correct member node will
eventually be detected by correct member nodes.

It is hard to detect liveness violations without addi-
tional synchrony assumptions. Any member node expe-
riencing unreasonably long delays for getting its transac-
tion accepted (even after a broadcast) can file a signed

complaint with other member nodes. If f + 1 members
complain, the BSP is malicious, since at least one of those
complaints is by a correct member node.

Changing the BSP. When the BSP is considered com-
promised with cryptographically verifiable blames, mem-
ber nodes can replace the BSP with a new one. However,
in practice, this a rare event if the BSP is hosted on a
reputable cloud provider. To switch to a new BSP, there
are several options. The new BSP could be predetermined
when the blockchain network is set up, be introduced
by a trusted authority when needed, or be selected in a
consensus protocol run by the member nodes. Note that
the committed state of a ledger must be preserved when
transferring to a new BSP.

When member nodes use the above BFT setup, we can
simply use BFT’s view change protocol. We sketch how
we adapt view changes in our context, and leave the full
description and correctness proof to a technical report due
to space constraints. We first associate a view number with
each BSP, which is included in every heartbeat transaction.
A new BSP will always have a higher view number that
its predecessor, and in Caesar consensus, member nodes
stop sending heartbeat transactions in older views (i.e., to
an old BSP) after getting a view change message with a
higher view number.

During a view change, the new BSP starts by gather-
ing local state (i.e., a copy of VOL) from 2f + 1 member
nodes. Since the previous BSP might have been com-
promised, VOLs from the member nodes might not be
consistent (where consistency is defined below), the new
BSP must construct a consistent VOL.

Definition 3.1. Two VOLs ¢ and ¢’ are consistent iff, for
0 < i < min(g., g ), block i on ¢ is the same as block i
on ¢’. Here, g. and g, are the heights of ¢ and ¢’.

Constructing a consistent VOL. Let g, be the high-
est prepared point of valid VOLs from a set C of 2f + 1
member nodes. The new BSP then chooses the VOL up to
height g,,, which we now show is correct. First, the VOL
constructed by the BSP is consistent with every valid VOL
received because each block up to g, is prepared, and is
therefore validated by a set C’ of 2f + 1 member nodes
via heartbeat transactions. Thus, there will not be two
conflicting blocks at the same height such that both are
prepared because a correct member node in the intersec-
tion of C and C’ would have validated both. Second, every
committed block in the prior network will be included in
the VOL constructed by the BSP. This is because, by defi-
nition, any committed block b must have been prepared at
a set of C” of 2f + 1 member nodes. Furthermore, there
exists at least one correct member node in the intersection
of C and C”, so block b must be before g,,.



4 Architecting a trustworthy BSP

This section discusses how to architect the BSP so that
it is mostly trustworthy.® Our approach is to decompose
the functionality of the BSP into modular, well-defined
components, each with narrow responsibilities and inter-
faces. Such a modular design makes it possible to harden
each component of the BSP separately for performance
and security, with different mechanisms.

The BSP’s functionality includes: storage of blocks,
processing transactions using W, to construct new blocks,
and chaining them to construct a blockchain. We now
discuss a separate component for each of these responsi-
bilities as well as a coordinator that ties them together.

4.1 Verifiable store with receipts (S)

The first component of our BSP is a storage system that
relies on a well-known substrate in most untrusted storage
systems [41, 59, 62]: a storage system where data items
are named by their cryptographic hashes. This enables
verifiability i.e., a client of such a system can locally
check if it got correct data from the system by comparing
the name of the data with the cryptographic hash of the
returned data. S stores both data blocks and metadata
blocks of a VOL.!°

Additionally, S provides a storage receipt when some-
one stores a blob of data in it. The purpose of a stor-
age receipt is to enable S to convey—over an untrusted
channel—to entities (that may trust S for availability
and liveness) that S is responsible for storing a data
item. S owns a key pair of a digital signature scheme,
(PK;, SK),"! and it exports the following interface.

* Deposit(Blob b): stores b in S and returns a tuple
(h, o), where h = H(b) and o = Signature(SKj, b).

* Retrieve(Hash h): returns b such that h = H(b)

4.2 Chaining service (C)

C is responsible for creating new VOLs as well as for
maintaining a linear history of blocks of a VOL, stored
in S. Perhaps surprisingly, we find that C only needs
to maintain a constant amount of state to accomplish
these two tasks, making it easier for a cloud provider to
implement C correctly. C holds keys of a digital signature
scheme (PK,, SK.). It exposes the following operations
(Figure 4 depicts the corresponding pseudocode).

* Init: assigns an identity for the blockchain network.

* Chain: appends a new block stored at S to a previ-

°Tf a cloud provider offers the BSP as a commercial cloud service (e.g.,
Azure BaaS [7], IBM blockchain [6]), then the cloud provider has
interest to make sure its cloud service is trustworthy.

10An alternate design: S issues storage receipts only for the tail of a

VOL. But this requires S to understand the structure of a VOL).

TWe assume that other entities relying on S already know PKj.

1 def Init(Hash h, Receipt s):

2 if verifyReceipt(PK_s, h, s) == false:

3 return "Storage receipt check failed"

4 id = random() # random 128-bit number

5 if state[id] != null:

6 return "Internal error; retry"

7

8 state[id] := (id, h, null, s)

9 return (state[id], signature(SK_c, state[id]))

11 def Chain(Guid id, Hash h, Receipt s, Receipt r):
12 if state[id] == null:

13 return "Uninitialized VOL"

14

15 if verifyReceipt(PK_s, state[id], r) == false:
16 return "Storage receipt check failed"

17 if verifyReceipt(PK_s, h, s) == false:

18 return "Storage receipt check failed"

20 state[id] = (id, h, H(state[id]), s, r)
21 return (state[id], signature(SK_c, state[id]))

FIGURE 4—Pseudocode for VOLT’s chaining service (C) inter-
nals. Init initializes a new VOL and assigns a random identity,
which C remembers in the state map. Chain appends a new
block to an already initialized VOL. Note that C relies on S’s
receipts to ensure that it does not append a block not already
stored by S. Of course, if S’s signing key is compromised, C
can end up appending a block not stored by S.

ously initialized VOL.

If C does not lose the state map (Figure 4) and SK,,
then it maintains the no-fork property: for every metadata
block m produced by C, there exists at most one metadata
block m’ such that predecessor(m’) = H(m), where
predecessor returns the second field in a metadata block
triple (§3.2).

4.3 State transition service (7).

T is responsible for executing blockchain code to pro-
cessing transactions. It holds keys of a digital signature
scheme (PK;,, SK;), and it exposes the following APL.

e Init(Guid id, Blob b): accepts the identity of a
VOL and a blob containing blockchain code and initial
state, and setups environment to process transactions.

e CreateBlock(Guid id, list<Transaction> 1):
validates each transaction in / using ¥, and generates
a new block along with a computation receipt signed
by SK;. The computation receipt contains a signature
on the accepted transactions as well as the hash of the
prior list of transactions processed by 7.

4.4 Coordinator (R)

‘R implements the BSP’s interface (§3.3). It consists of
a Web server that receives HTTP requests from member
nodes, coordinates various components of the BSP, and
responds back to member nodes. R is different from the
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FIGURE 5—Life of a transaction in VOLT. (D The coordinator
(R) batches transactions and sends them to the state transition
service (7). @ T responds to R with a block B. Q) R stores B
on the verifiable store with receipts (S), which issues a storage
receipt. @ R sends the storage receipt to the chaining service,
which appends B to a VOL and creates a new metadata block.

other services in that its correctness does not affect the
BSP’s correctness. It can only affect liveness. Figure 5
depicts how R implements Transact.

4.5 Discussion

We now discuss rationale for our design. 7’s computation
receipt constructs a cryptographically chained sequence of
transactions grouped into blocks. However, 7 runs code
submitted by member nodes, so any exploitable bug in
that code can potentially output a computation receipt that
creates a fork in a VOL. Of course, Caesar consensus will
detect such safety violations. But, it is prudent from the
perspective of the cloud operator running the BSP to avoid
such safety violations. R can prevent such violations, but
we ask: is there a smaller component that can ensure the
BSP never creates a fork? Our answer is the chaining
service. We focus on designing a minimal component so
the BSP can ensure safety with a small trusted computing
base (TCB).

S Implementation

We implement the BSP in 4,800 lines of C# and the VOLT
library in 1,500 lines of Python. We build the BSP atop
Azure service fabric as it simplifies creating reliable cloud
services. We architect each component of the BSP (§4)
as a microservice, so the fabric runtime takes care of
isolating these microservices, recovering from failures,
and load balancing across a cluster of machines. The mi-
croservice that implements verifiable store with receipts
(S) uses Azure DocumentDB, which is a NoSQL key-
value store (akin to Amazon DynamoDB) to persist its
state reliably. Also, the coordinator microservice exposes
the BSP’s interface (§3.3) to member nodes as REST
APIs. Finally, our prototype uses SHA-256 for a hash
function, and RSA for digital signatures.

Partitioned ledgers. Our design focuses on how to ini-
tialize and update a single VOL. An inherent bottleneck is
that an application’s throughput is limited by the number

of entries the BSP can append to single VOL per second.
We mitigate this problem by employing the well-studied
partitioning technique, which naturally extends to our con-
text. In particular, applications in VOLT create multiple
VOLs where each VOL is responsible for a shard of the
application state. Thus, two transactions that do not mu-
tate the same shard of the application state can be handled
in parallel without having to serialize them.

This raises the question: how do member nodes achieve
a consistent view of multiple VOLs? Each heartbeat trans-
action is now a vector of entries, with an entry for each
VOL. But, the rest of Caesar consensus works as before.
Also, for simplicity, VOLT uses a separate VOL to store
all the heartbeat transactions of a blockchain network.'?

6 Experimental evaluation

Our experimental evaluation answers the following ques-
tions. First, what is the concrete performance of VOLT?
Second, how long does it take for blocks to commit un-
der Caesar consensus? Third, what are the resource costs
imposed on participants of a VOLT blockchain network?

Experimental setup. We deploy the BSP on a cluster
of ten machines on Microsoft Azure cloud, each with the
following configuration: Windows Server 2016 running
on Azure Standard_F2s VMs (i.e., an Intel Xeon E5-2673
v3 processor, 2 cores, 4 GB RAM, and 8 GB local storage).
In our experiments, we reserve 250 GB for storage and
10,000 request units per second on Azure’s DocumentDB
for S, which allows a few thousand operations per second,
with medium-sized (i.e., a few KBs) blobs.

6.1 Benchmark applications
We implement two applications to evaluate VOLT.

(1) Centrally-issued cryptocurrency. The first appli-
cation is a realistic application atop blockchains. It is a
simple cryptocurrency where coins are issued by trusted
entities, which is similar in spirit to applications in prior
works [24, 37]. In this application, member nodes are
financial institutions with the ability to mint coins. This
easily extends to other digitally-issued assets [86].

The internal state of the blockchain state machine, W,
includes the list of public keys that can issue currency, and
account balances of users identified by public keys. The
blockchain code, ¥, processes two types of transactions.
Member nodes can create currency by creating an issue
transaction, which provides coins to a user, and then a user
can spend coins by creating a spend transaction, which
transfers coins from one public key to another. To prevent
an adversary from replaying transactions, we employ a
standard technique: transactions include monotonically
increasing per-user sequence numbers.

12This could reduce the overall parallelism, but we expect that heartbeat
transactions are sent less frequently compared to other transactions.
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FIGURE 6—Transaction processing throughput of VOLT and
Ethereum for two benchmark applications. VOLT does not rely
on mining, so its throughput is orders of magnitude higher, but
is comparable to BFT-based approaches.

(2) Counter. U for this application is simply a 64-bit
integer, which is incremented during each transaction.

6.2 Performance of the BSP

To understand the performance of the BSP, we create
blockchain networks initialized with the above applica-
tions. Our primary performance metrics include through-
put (in transactions per second) and latency (in seconds)
as experienced by member nodes.

Throughput. To measure VOLT’s throughput for pro-
cessing transactions, we use a client process that sub-
mits transactions to a given blockchain network using the
BSP’s Transact API: the client process creates multiple
threads where each thread acts as a member node and sub-
mits transactions in a closed loop. We then measure the
number of transactions processed per second by the BSP
and the latency for each transaction from the perspective
of the client process. We configure the BSP to batch 100
transactions into each data block of a VOL (we report the
effect of varying batch sizes below). To determine BSP’s
peak throughput, we progressively increase the number
of threads in the client process. In our experiments, the
client process submits at least 10,000 transactions. As
a baseline, we implement our benchmark applications
in Solidity [10], and deploy a private Ethereum network
using Azure Blockchain as a Service (BaaS) [7].

Figure 6 depicts our results. We must take this com-
parison to Ethereum with a grain of salt, since Ethereum
and VOLT are based on completely different mechanisms.
However, VOLT’s throughput is several orders of magni-
tude higher than the throughput of Ethereum. The primary
computational costs in VOLT include validating transac-
tions to construct a block, reliably storing a block in S,
generating storage receipts, and sequencing blocks into
a VOL using C. On the other hand, Ethereum must also
solve computational puzzles in addition to doing most of
the above tasks. Finally, note we present the performance
of a single VOL on a 20-core cluster. The throughput
increases nearly linearly with multiple VOLSs operating in
parallel, with more cores and storage resources allocated
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FIGURE 7—Throughput of VOLT’s Transact with varying
batch sizes. We find that at VOLT achieves peak throughput with
batch sizes between 100-1000. Beyond 1000 transactions in a
block (not depicted), throughput benefits due to batching reduce.

to the BSP. We can improve the throughput of a single
VOL with faster signatures [20]. Nevertheless, our current
BSP scales to realistic workloads [36].

Throughput with varying batch sizes. To understand
the effect of the number of transactions inside a data block
(i.e., a batch size) on the throughput of the BSP, we run
experiments where we vary the batch sizes from 1 to
1,000 in powers of 10. Figure 7 depicts our results.

We make two observations. First, increasing the batch
size reduces the per-transaction overheads of the BSP.
Thus, the throughput of the BSP increases with the batch
size. Second, we find that the BSP’s throughput is bottle-
necked by signature operations it executes. Even though
our two benchmark programs have vastly different execu-
tion times (e.g., the currency application executes a sig-
nature check whereas the counter application executes a
simple increment), the overall throughput at smaller batch
sizes is similar for both applications. As we increase batch
sizes beyond 100, the difference in throughput is visible.

Latency. We also measure the latency of Transact as
well as Setup for both benchmark applications as ex-
perienced by a member node. Note that this does not
represent commit latencies for a transaction; we report
commit latencies in the next subsection.

To measure the Setup latency, we run an experiment
in which a client process executes Setup in a closed loop
at least 10,000 times. The client then picks one of those
networks and submit transactions in a closed loop. We
configure the BSP to batch 100 transactions in a single
data block. We measure latency of these operations as
experienced by the client process using wall-clock time.
(We run the client process in the same datacenter as the
BSP to avoid the wide-area latency from dominating the
BSP’s latency.) Figure 8 reports average latencies. As ex-
pected, VOLT’s operations achieve sub-second latencies
(Setup does not involve batching, but it must compile
blockchain code). The Transact latencies can be low-
ered with smaller batch sizes, at the cost of reducing the
BSP’s throughput (Figure 7).



operation Counter Currency
Setup 0.13s 0.15s
Transact 0.06 s 0.24s

FIGURE 8—Latency of Setup and Transact under VOLT for
the two benchmark applications.

6.3 Commit latency in Caesar consensus

VOLT’s commit latency—time it takes for a transaction
processed by the BSP to be committed via Caesar con-
sensus (§3.4)—depends on various parameters: number
of member nodes, frequency with which member nodes
synchronize with the BSP using Sync and send heartbeat
transactions, failure modes of participants, etc. To keep
the effects of these parameters easy to understand, we
fix the number of member nodes to be 4, and create a
blockchain network initialized with the Counter applica-
tion (we set the batch size for the network to be 1).
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FIGURE 9—Commit points under different failure modes as
well as uncommitted blockchain height over time under VOLT’s

Caesar consensus (see the text for details).

We then have each member node execute the Caesar
consensus protocol every epoch, which we set to 5, 10
and 15 seconds in our experiments.'> We also have one
of the member nodes submit a transaction every second.

We run these experiments for 10 minutes and at the
end of each epoch, each member nodes outputs com-
mit points. Since VOLT allows flexible policies to deter-
mine commit points, we compute commit points for both
Byzantine and crash failure modes. Figure 9 depicts our
results when the time epoch is 10 seconds (the results for
other experiments are similar). As we expect, every 10
seconds, member nodes sync and send heartbeats, so the
commit point under crash failures is roughly 10 blocks
away from the uncommitted height since we add a block
to the VOL every second. Since the Byzantine failure
model requires two phases to commit, commit points are
10 blocks away from that of the crash failure mode.

13We choose these time epochs based on Ethereum’s default block-
generation frequency, which is 15 seconds.
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CPU costs

generate heartbeat (1 VOL) 4.0 ms
generate heartbeat (2 VOLs) 7.3 ms
generate heartbeat (4 VOLs) 18 ms
verify heartbeat (1 VOL) 0.15 ms
verify heartbeat (2 VOLs) 0.17 ms
verify heartbeat (4 VOLs) 0.20 ms
sync VOL (100 blocks, batch=100) 141s
sync VOL (200 blocks, batch=100) 3.14s
sync VOL (400 blocks, batch=100) 7.22s
validate VOL (100 blocks, batch=100) 09s
validate VOL (200 blocks, batch=100) 1.7s
validate VOL (400 blocks, batch=100) 33s
Storage costs

metadata block 1043 bytes
data block (batch=100) 7495 bytes
Network costs

send heartbeat (1 VOL) 638 bytes
send heartbeat (2 VOLs) 741 bytes
send heartbeat (4 VOLs) 947 bytes

FIGURE 10—Resource costs of members in a VOLT network
for the counter application.

6.4 Resource costs on participants

Resource costs that member nodes of a VOLT network
incur depends on various parameters: how often member
nodes participate in Caesar consensus, how many trans-
actions are submitted to the network, etc. We thus run a
set of microbenchmarks where we measure the CPU, stor-
age, and network costs of actions that member nodes take.
Figure 10 summarizes our results. As we expect, member
nodes spend little CPU-time (even with our Python code)
and storage costs (even when they store the entire VOL
and validate it). Heartbeats use JSON encoding, which
has a fixed overhead that does not increase significantly
as we add more VOLs to a blockchain network.

7 Related work

We discuss closely related works in Sections 1 and 2. We
now discuss other related works. (Bonneau et al. [22]
provide an excellent survey of many of these works.)

Permissionless blockchains. Following the rise of cryp-
tocurrencies [69, 85], most works on blockchains focus
on a permissionless membership model, allowing anyone
to participate. Since Sybil attacks are easy to mount in
this model, consensus requires incentives (provided in
the form of a cryptocurrency by the protocol) in addition
to proof-of-work [14, 39, 53] (or alternate models such
as proof-of-stake [18, 19, 52, 90], or proof-of-elapsed-
time [9], or randomness [66]). As a result, the security
guarantees of these systems are based on incentives and
game theory. Compared to these works, VOLT targets en-
terprise applications where entities have well-known iden-
tities and do not require an open, permissionless model.



Untrusted storage. A line of work with a strong influ-
ence on VOLT is untrusted storage [23, 27, 41, 59, 62,
76, 81], which use hash chains to prevent untrusted par-
ticipants in the system from tampering with operation
histories. These systems target high availability and low
latency (e.g., they limit client-to-client coordination), so
they only provide weaker consistency guarantees such
as variants of fork consistency [65]. Since VOLT targets
mission-critical applications with financial implications
(§2), VOLT prefers stronger safety and higher through-
put over low latency and high availability. Thus VOLT
enforces linearizability, with threshold assumptions on
member nodes (which might be realistic in our context).

While these systems use hash chains to implement
various storage interfaces such as file systems [59], key-
value stores [41, 62, 76, 81], VOLT is more general since
it exposes the abstraction of a VOL, which it uses to
store a general-purpose state machine (i.e., a BSM) and
transactions. Cachin proposes a similar abstraction atop a
ledger, but retains the weaker fork-linearizability [26].

VOLT enforces linearizability via Caesar consensus,
which relies on a mechanism similar to heartbeats in
SUNDR [59] and beacons in Depot [62]. In SUNDR and
Depot, these messages are used to detect forks upon which
nodes reconcile histories and to enforce freshness guaran-
tees. However, two clients can have views of the system
that are inconsistent with each another at the same time.
Whereas, VOLT’s member nodes declare a transaction as
committed only when they are guaranteed to be preserved
even with a BSP failover (§3). Thus, any two honest mem-
ber nodes will always have a consistent view of a VOL at
all times. Finally, we investigate how to architect the BSP
for a smaller TCB, which is not covered by these systems.
A2M [30] and Trinc [58] explore small trusted primitives
for building trustworthy distributed systems, similar to
our chaining service, but they do not propose end-to-end
checks as in Caesar consensus.

BFT. Following PBFT [28], there is a long line of work
to improve performance [48, 55, 56, 63], robustness [29,
33], confidentiality [87, 88], and fault models [15] of
BFT protocols. But, these protocols and systems were
developed for replicating mission-critical services in data-
centers. If we apply them to blockchains, they face trust
choices similar to Hyperledger (§1). Due to commercial
interest in blockchains, there are several recent works that
improve on these existing BFT protocols in the context of
blockchains, but still retain the deployment model. Sleepy
consensus [75] loosens the definition of a correct node,
providing consensus guarantees even if a node is only
online sporadically. Miller et al. [67] describe a new BFT
protocol that makes progress in adversarial network con-
ditions such as the Internet. Stellar [64] proposes a new
Byzantine agreement protocol that works in a federated
model, but it includes a more complicated trust relation-
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ships among participants since it studies a federation of
multiple Byzantine fault-tolerant systems.

Other substrates. Several works [11, 91] propose using
secure hardware for trusted data injection into blockchain
systems. VOLT can naturally incorporate these ideas. Vir-
tual chain [73] proposes a layer atop blockchains (like
Caesar consensus), but only provides fork* consistency.
Many works [16, 21, 31, 84] propose techniques to re-
duce equivocation by entities that generate hash chains to
the security of a public blockchain. This mechanism can
replace Caesar consensus, but it requires members to trust
public blockchains. We can however leverage it to limit
the BSP’s misbehavior when member nodes are offline.
Finally, CoSi [83] enables a group of entities to create
succinct signatures on a given statement. It can be used
in VOLT to compress heartbeat messages. However, it
requires increased coordination between member nodes
and the BSP to generate a signature. Furthermore, the BSP
must know how many signatures it has to collect and what
policies member nodes follow to commit transactions. All
of these are oblivious to the BSP in our current design.
Thus the use of CoSi increases the complexity of the BSP.

8 Discussion

Flexibility. Our prototype implements the BSP abstrac-
tion in the cloud, but it can also be deployed in a decen-
tralized manner on the infrastructure of member nodes.
The BSP is still untrusted (by design), so it reduces the
amount of trusted code in a blockchain system compared
to systems such as Hyperledger [5] and Tendermint [24].
Additionally, while we describe an instantiation of Cae-
sar consensus that provides guarantees assuming Byzan-
tine members, our approach generalizes to other failure
models (e.g., crashes) and consistency semantics (e.g.,
eventual consistency [82]). This is possible since VOLT
records all heartbeats in a ledger (§3.4).

Evolving the BSP, membership, and state machines.
Member nodes in VOLT only rely BSP’s interface, so the
BSP can change the underlying implementation anytime,
without any approval from member nodes.

For each network, VOLT assumes a static membership
list and a blockchain state machine. In principle, VOLT can
allow member nodes to update them: we can treat them as
additional state agreed-upon in a network. We posit that
member nodes can reach consensus on such state updates
using a protocol similar to Caesar consensus, without
having to significantly change the BSP.'*

Fairness. A key concern in blockchain systems is fair-
ness, which requires that malicious entities should not be
able to censor transactions of certain users. Permissionless

14Member nodes can use policies to prevent malicious participants from
misusing such state updates e.g., adding a new member node requires
approval from a quorum of existing members.



blockchains use incentives and transaction fees to achieve
(weak) fairness properties. VOLT’s BSP can employ se-
cure enclaves for 7 so that it does not see transactions
in plaintext, making it hard for the BSP to discriminate
against certain transactions. Note however this is not a
panacea: While we can try to hide the transaction data
and some metadata (via enclaves or cryptographic meth-
ods [17, 54]), the BSP can always filter transactions based
on any metatdata that can be inferred via collusion with
malicious member nodes, a point made by Herlihy and
Moir [49] who also propose a scheme to improve fairness
in permissioned blockchains via accountability [46, 89].
VOLT can incorporate these ideas (§3.5).

Lock-in. While VOLT’s implementation relies on a BSP
(which may be operated by a cloud provider) for perfor-
mance (§3), it is only an optimization. Indeed, the BSP’s
interface exposes a tamper-resistant ledger that can be val-
idated in a decentralized manner (using code submitted
by members of a blockchain network). Furthermore, the
VOL itself is amenable to porting to a new BSP or any
other permissioned blockchain system (§3.4).

9 Conclusion

This paper studies the problem of designing a permis-
sioned blockchain for enterprise applications. We lever-
age the cryptographic properties of a tamper-resistant
ledger to design a simple and resource-efficient consensus
mechanism. The result is a permissioned blockchain sys-
tem that includes the benefits of decentralization, while
leveraging untrusted infrastructure.
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