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ABSTRACT
Capacity improvement is one of the principal challenges in
wireless networking. We present a link-layer protocol called
Slotted Seeded Channel Hopping, or SSCH, that increases
the capacity of an IEEE 802.11 network by utilizing fre-
quency diversity. SSCH can be implemented in software over
an IEEE 802.11-compliant wireless card. Each node using
SSCH switches across channels in such a manner that nodes
desiring to communicate overlap, while disjoint communica-
tions mostly do not overlap, and hence do not interfere with
each other. To achieve this, SSCH uses a novel scheme for
distributed rendezvous and synchronization. Simulation re-
sults show that SSCH significantly increases network capac-
ity in several multi-hop and single-hop wireless networking
scenarios.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols

General Terms
Algorithms, Performance

Keywords
ad-hoc wireless networks, channel assignment, frequency di-
versity, pseudo-randomness, scheduling, medium access con-
trol

1. INTRODUCTION
The problem of supporting multiple senders and receivers

in wireless networks has received significant attention in the
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past decade. One domain where this communication pattern
naturally arises is fixed wireless multi-hop networks, such as
community networks [1, 4, 6, 23]. Increasing the capacity of
such wireless networks has been the focus of much recent re-
search (e.g., [14,20,27]). A natural approach to increase the
network capacity is to use frequency diversity [9, 31]. Com-
modity wireless networking hardware commonly supports a
number of orthogonal channels, and distributing the com-
munication across channels permits multiple simultaneous
communication flows.

Channelization was added to the IEEE 802.11 standard
to increase the capacity of infrastructure networks — neigh-
boring access points are tuned to different channels so traffic
to and from these access points does not interfere [9]. Non-
infrastructure (i.e., ad-hoc) networks have thus far been un-
able to capture the benefits of channelization. The current
practice in ad-hoc networks is for all nodes to use the same
channel, irrespective of whether the nodes are within com-
munication range of each other [4, 6].

In this paper, we propose a new protocol, Slotted Seeded
Channel Hopping (SSCH), that extends the benefits of chan-
nelization to ad-hoc networks. Logically, SSCH operates at
the link layer, but it can be implemented in software over
an IEEE 802.11-compliant wireless Network Interface Card
(NIC). The SSCH layer in a node handles three aspects of
channel hopping (i) implementing the node’s channel hop-
ping schedule and scheduling packets within each channel,
(ii) transmitting the channel hopping schedule to neighbor-
ing nodes, and (iii) updating the node’s channel hopping
schedule to adapt to changing traffic patterns. SSCH is a
distributed protocol for coordinating channel switching de-
cisions, but one that only sends a single type of message,
a broadcast packet containing that node’s current channel
hopping schedule. Our simulation results show that SSCH
yields a significant capacity improvement in ad-hoc wireless
networks, including both single-hop and multi-hop scenar-
ios.

The primary research contributions of our paper can be
summarized as follows:

• We present a new protocol that increases the capac-
ity of IEEE 802.11 ad-hoc networks by exploiting fre-
quency diversity. This extends the benefits of channel-
ization to ad-hoc networks. The protocol is suitable for
a multi-hop environment, does not require changes to
the IEEE 802.11 standard, and does not require mul-
tiple radios.



• We introduce a novel technique, optimistic synchro-
nization, for distributed rendezvous and synchroniza-
tion. This technique allows control traffic to be dis-
tributed across all channels, and thus avoids control
channel saturation, a bottleneck identified in prior work
on exploiting frequency diversity [31].

• We introduce a second novel technique to achieve good
performance for multi-hop communication flows. The
partial synchronization technique allows a forwarding
node to partially synchronize with a source node and
partially synchronize with a destination node. This
synchronization pattern allows the load for a single
multi-hop flow to be distributed across multiple chan-
nels.

The rest of this paper is organized as follows: we pro-
vide background and motivate the problem in Section 2. In
Section 3 we describe SSCH in detail, and in Section 4 we
analyze its performance. We discuss design alternatives in
Section 5, and we consider related work in Section 6. Fi-
nally, we discuss future work in Section 7, and conclude in
Section 8.

2. BACKGROUND AND MOTIVATION
In this paper, we will limit our discussion to the widely-

deployed IEEE 802.11 Distributed Coordination Function
(DCF) protocol [8]. We begin by reviewing some relevant
details of this protocol. IEEE 802.11 recommends the use of
a Request To Send (RTS) and Clear To Send (CTS) mech-
anism to control access to the medium. A sender desiring
to transmit a packet must first sense the medium free for a
DCF interframe space (DIFS). The sender then broadcasts
an RTS packet seeking to reserve the medium. If the in-
tended receiver hears the RTS packet, the receiver sends a
CTS packet. The CTS reserves the medium in the neighbor-
hood of the receiver, and neighbors do not attempt to send
a packet for the duration of the reservation. In the event of
a collision or failed RTS, the node performs an exponential
backoff. For additional details, we refer the reader to [8].

The IEEE 802.11 standard divides the available frequency
into orthogonal (non-overlapping) channels. IEEE 802.11b
has 11 channels in the 2.4 GHz spectrum, 3 of which are or-
thogonal, and IEEE 802.11a has 13 orthogonal channels in
the 5 GHz spectrum. Packet transmissions on these orthog-
onal channels do not interfere if the communicating nodes
on them are reasonably separated (at least 12 inches apart
for common hardware [9]).

Using only a single channel limits the capacity of a wire-
less network. For example, consider the scenario in Figure 1
where there are 6 nodes within communication range of each
other, all the nodes are on the same channel, and 3 of the
nodes have packets to send to distinct receivers. Due to in-
terference on the single channel, only one of them, in this
case node 3, can be active. In contrast, if all 3 orthogo-
nal channels are used, all the transmissions can take place
simultaneously on distinct channels. SSCH captures the ad-
ditional capacity provided by these orthogonal channels.

We imposed three constraints on ourselves in the design
of SSCH:

• SSCH should require only a single radio per node.
Some of the previous work on exploiting frequency
diversity has proposed that each node be equipped
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Figure 1: Only one of the three packets can be trans-
mitted when all the nodes are on the same channel.

with multiple radios [9,33]. Multiple radios draw more
power, and energy consumption continues to be a sig-
nificant constraint in mobile networking scenarios. By
requiring only a single standards-compliant NIC per
node, SSCH faces fewer deployability hurdles than schemes
with additional hardware requirements.

• SSCH should use an unmodified IEEE 802.11 proto-
col (including RTS/CTS) when not switching chan-
nels. Requiring standards-compliant hardware allows
for easier deployment of this technology.

• SSCH should not cause a logical partition, which we de-
fine to occur when two nodes in communication range
are unable to communicate. Because SSCH switches
each NIC across frequency channels, different NICs
may be on different channels most of the time. De-
spite this, any two nodes in communication range will
overlap on a channel with moderate frequency (e.g.,
at least 10 ms out of every half second) and discovery
is accomplished during this time. The mathematical
properties of SSCH guarantee that this overlap always
occurs.

SSCH exploits frequency diversity using an approach we
call optimistic synchronization. SSCH is designed to make
the common case be that nodes are aware of each other’s
channel hopping schedules, yet SSCH allows any node to
change its channel hopping schedule at any time. If node
A has traffic to send to another node B, and A knows B’s
hopping schedule, A will probably be able to quickly send to
B by changing its own schedule. In the uncommon case that
A does not know B’s schedule, or A has out-of-date informa-
tion about B, then the traffic incurs a latency penalty while
A discovers B’s new schedule. The SSCH design achieves
this good common case behavior when SSCH is used with
a workload where traffic patterns change (i.e., new flows
are started) less often than hopping schedule updates are
propagated. Because hopping schedule update propagation
requires only tens of milliseconds, this is a good workload
assumption for many wireless networking scenarios. Our
performance evaluation in Section 4 gives absolute numbers
for these qualitative claims.

SSCH is designed to work in a single-hop or multi-hop
environment, and therefore SSCH must support multi-hop
flows. We introduce the partial synchronization technique
to allow one node B to follow a channel hopping schedule



that overlaps half the time with another node A, and half
the time with a third node C; this is necessary for node B to
efficiently forward traffic from node A to node C. Although
it is trivially possible for node B to have a channel hopping
schedule that is an interleaving of A and C’s schedules, this
leaves open how B will represent its schedule when a fourth
node desires to synchronize with B. The design for channel
hopping that we describe in Section 3.3 resolves this issue.

3. SSCH
SSCH switches each radio across multiple channels so that

multiple flows within interfering range of each other can si-
multaneously occur on orthogonal channels. This results in
significantly increased network capacity when the network
traffic pattern consists of such flows.

SSCH is a distributed protocol, suitable for deployment in
a multi-hop wireless network. It does not require synchro-
nization or leader election. Nodes do attempt to synchro-
nize, but lack of synchronization results in at most a mild
reduction in throughput.

SSCH defines a slot to be the time spent on a single chan-
nel. We choose a slot duration of 10 ms to amortize the over-
head of channel switching. At 54 Mbps (the maximum data
rate in IEEE 802.11a), 10 ms is equivalent to 35 maximum-
length packet transmissions. A longer slot duration would
have further decreased the overhead of channel switching,
but would have increased the delay that packets encounter
during some forwarding operations. The channel schedule is
the list of channels that the node plans to switch to in sub-
sequent slots and the time at which it plans to make each
switch. Each node maintains a list of the channel schedules
for all other nodes it is aware of – this information is al-
lowed to be out-of-date, but the common case will be that
it is accurate. The good performance exhibited by SSCH
(Section 4) validates this claim.

We develop the SSCH protocol by first describing its as-
sumptions about the underlying hardware and Medium Ac-
cess Control (MAC) protocol (Section 3.1). We then de-
scribe the packet transmission attempts that are made by
each node within a slot, and we refer to this as the packet
schedule (Section 3.2). We then define the policy for updat-
ing the channel schedule and for propagating the channel
schedule to other nodes (Section 3.3). We then describe the
mathematical properties that guided SSCH’s design (Sec-
tion 3.4). Finally, we discuss implementation considerations
for SSCH (Section 3.5).

3.1 Hardware and MAC Assumptions
We assume that all nodes are using IEEE 802.11a – SSCH

could also be used with other MACs in the IEEE 802.11
family, but this evaluation is beyond the scope of our pa-
per. IEEE 802.11a supports 13 orthogonal channels, and we
assume no co-channel interference, a reasonable assumption
for physically separated nodes [9]. We expect wireless cards
to be capable of switching across channels. As we discuss in
more detail at the beginning of Section 4, recent work has re-
duced this switching delay to approximately 80 µs ( [3,17]).
We assume that each wireless card contains only a single
half-duplex single-channel transceiver.

We require that NICs with a buffered packet wait after
switching for the maximum length of a packet transmission
before attempting to reserve the medium. This prevents hid-
den terminal problems from occurring just after switching.

This requirement about the hardware is not necessary if the
NIC packet buffer can be cleared whenever the channel is
switched.

3.2 Packet Scheduling
SSCH maintains packets in per-neighbor FIFO queues.

Using FIFO queues maintains standard higher-layer assump-
tions about in-order delivery. The per-neighbor FIFO queues
are maintained in a priority queue ordered by perceived
neighbor reachability. At the beginning of a slot, packet
transmissions are attempted in a round-robin manner among
all flows. If a packet transmission to a particular neighbor
fails, the corresponding flow is reduced in priority until a pe-
riod of time equal to one half of a slot duration has elapsed –
this limits the bandwidth wasted on flows targeted at nodes
that are currently on a different channel to at most two
packets per slot whenever a flow to a reachable node also
exists. Packets are only drawn from the flows that have not
been reduced in priority unless only reduced priority flows
are available.

Because nodes using SSCH will often be on different chan-
nels, broadcast packets transmitted in any one slot are likely
to reach only some of the nodes within physical communi-
cation range. The SSCH layer handles this issue through
repeated link-layer retransmission of broadcast packets en-
queued by higher layers. Although broadcast packets sent
this way may reach a different set of nodes than if all nodes
had been on the same channel, we have not found this to
present a difficulty to protocols employing broadcast packets
— in Section 4 we show that as few as 6 transmissions allows
DSR (a protocol that relies heavily on broadcasts) to func-
tion well. This behavior is not surprising because broadcast
packets are known to be less reliable than unicast packets,
and so protocols employing them are already robust to their
occasional loss. However, the SSCH retransmission strategy
may not be compatible with all uses of broadcast, such as
its use to do synchronization [15]. Also, deploying SSCH in
an environment with a different number of channels might
require the choice of 6 transmissions to be revisited. Finally,
although retransmission increases the bandwidth consumed
by broadcast packets, SSCH still delivers significant capacity
improvement in the traffic scenarios we studied (Section 4).

An SSCH node with a packet to send may discover that
a neighbor is not present on a given channel when no CTS
is received in response to a transmitted RTS. However, the
node may very well be present on another channel, in which
case SSCH should still deliver the packet. To handle this,
we initially retain the packet in the packet queue. Packets
are dropped only when SSCH gives up on all packets to a
given destination, and this dropping of an entire flow occurs
only when we have failed to transmit a packet to the destina-
tion node for an entire cycle through the channel schedule.
We will explain the meaning of a cycle through the channel
schedule in Section 3.3, but with our chosen parameter set-
tings the timeout is 530 ms. After a flow has been garbage
collected, new packets with the same destination inserted in
the queue are assigned to a new flow, and attempted in the
normal manner.

This packet scheduling policy is simple to implement, and
yields good performance in the common case that node sched-
ules are known, and information about node availability is
accurate. A potential drawback is that a node crash (or
other failure event) can lead to a number of wasted RTSs



to the failed node. When added across channels, the num-
ber may exceed the IEEE 802.11 recommended limit of 7
retransmission attempts. In Section 4, we quantify the cost
of such failures and show that it is small.

3.3 Channel Scheduling
We begin our description of channel scheduling by de-

scribing the data structure used to represent the channel
schedule. We then describe the policy nodes use to act on
their own channel schedule, the mechanism to communi-
cate channel schedules to other nodes, and finally the policy
nodes implement for updating or changing their own channel
schedule.

The channel schedule must capture a given node’s plans
for channel hopping in the future, and there is obvious over-
head to representing this as a very long list. Instead, we
compactly represent the channel schedule as a current chan-
nel and a rule for updating the channel – in particular, as a
set of 4 (channel, seed) pairs. Our experimental results show
that 4 pairs suffice to give good performance (Section 4). We
represent the (channel, seed) pair as (xi, ai). The channel
xi is represented as an integer in the range [0, 12] (13 possi-
bilities), and the seed ai is represented as an integer in the
range [1, 12]. Each node iterates through all of the channels
in the current schedule, switching to the channel designated
in the schedule in each new slot. The node then increments
each of the channels in its schedule using the seed,

xi ← (xi + ai) mod 13

and repeats the process.
We introduce one additional slot to prevent logical parti-

tions. After the node has iterated through every channel on
each of its 4 slots, it switches to a parity slot whose chan-
nel assignment is given by xparity = a1. The term parity
slot is derived from the analogy to the parity bits appended
at the end of a string in some error correcting codes. The
mathematical justification for this design is given in Sec-
tion 3.4. We use the term cycle to refer to the 530 ms iter-
ation through all the slots, including the parity slot.

In Figure 2, we illustrate possible channel schedules for
two nodes in the case of 2 slots and 3 channels. In the Fig-
ure, node A and node B are synchronized in one of their
two slots (they have identical (channel, seed) pairs), and
they also overlap during the parity slot. The field of the
channel schedule that determines the channel during each
slot is shown in bold. Each time a slot reappears, the chan-
nel is updated using the seed. For example, node A’s slot 1
initially has (channel, seed) = (1,2). The next time slot 1
is entered, the channel is updated by adding the seed to it
mod 3 (mod 3 because in this example, there are 3 channels).
The resulting channel is given by (1 + 2) mod 3 = 0.

Nodes switch from one slot to the next according to a fixed
schedule (every 10 ms in our current parameter settings).
However, the decision to switch channels may occur while a
node is transmitting or receiving a packet. In this case we
delay the switch until after the transmission and ACK (or
lack thereof) have occurred.

Nodes learn each other’s schedules by periodically broad-
casting their channel schedule and offset within this cycle.
We use the IEEE 802.11 Long Control Frame Header format
(see Section 3.5) to embed both the schedule and the node’s
current offset. The SSCH layer at each node schedules one
of these packets for broadcast once per slot.

X
Node goes to Channel X 

in this slot.

Y
Parity Slot.  Node goes to Channel Y, 

and then repeats the cycle.

A: 0 0 2 1 2 121

(x1, a1)

(x2, a2)

(1, 2)

(2, 1)

(1, 2)

(2, 1)

(0, 2)

(0, 1)

(0, 2)

(0, 1)

(2, 2)

(1, 1)

(2, 2)

(1, 1)

Slot: 11 1 1222 Parity

(1, 2)

(2, 1)

(1, 2)

(2, 1)

B: 0 1 2 2 2 101

(x1, a1)

(x2, a2)

(1, 2)

(0, 1)

(1, 2)

(0, 1)

(0, 2)

(1, 1)

(0, 2)

(1, 1)

(2, 2)

(2, 1)

(2, 2)

(2, 1)

Slot: 11 1 1222 Parity

(1, 2)

(2, 1)

(1, 2)

(2, 1)

Figure 2: Channel hopping schedules for two nodes
with 3 channels and 2 slots. Node A always overlaps
with Node B in slot 1 and the parity slot. The field
of the channel schedule that determines the channel
during each slot is shown in bold.

Nodes also update their knowledge of other nodes’ sched-
ules by trying to communicate and failing. Whenever a node
sends an RTS to another node, and that node fails to re-
spond even though it was believed to be in this slot, the
node sending the RTS updates the channel schedule for the
other node to reflect that it does not currently know the
node’s schedule in this slot.

We now turn to the question of how a given node changes
its own schedule. Schedules are updated in two ways: each
node attempts to maintain that its slots start and stop at
roughly the same time as other nodes, and that its chan-
nel schedule overlaps with nodes for which it has packets
to send. We embed the information needed for this syn-
chronization within the Long Control Frame Header as well.
Using this information, a simple averaging scheme such as
described by Elson et al [15] can be applied to achieve the
loose synchronization required for good performance (Sec-
tion 4 shows that a 100 µs skew in clock times leads to less
than a 2% decrease in capacity).

At a high level, each node achieves overlap with nodes for
which it has traffic straightforwardly, by changing part of its
own schedule to match that of the other nodes. However, a
number of minor decisions must be made correctly in order
to achieve this high level goal.

Nodes recompute their channel schedule right before they
enqueue the packet announcing this schedule in the NIC
(and so at least once per slot). In a naive approach, this
node could examine its packet queue, and select the (chan-
nel, seed) pairs that lead to the best opportunity to send
the largest number of packets. However, this ignores the
interest this node has in receiving packets, and in avoiding
congested channels. An example of the kind of problem that
might arise if one ignores the interest in receiving packets is
given in Figure 3. Here, A synchronized with B, and then
B synchronized with C in such a way that A was no longer
synchronized with B. This could have been avoided if B had
used its other slot to synchronize with C, as it would have
if it considered its interest in receiving packets.



time

Node A

Node B

Node C

(A1, A2)

(B1, B2)

(C1, C2)

t1

A B

(A1, B2)

B C

(A1, B2)

(B1, C2)

t2

Figure 3: The problem with a naive synchronization
scheme. Node A has two slots, with (channel, seed)
pairs represented by A1 and A2; nodes B and C are
similarly depicted. At time t1, node A synchronizes
with node B. Node B synchronizes with node C at
time t2, after which A and B are no longer synchro-
nized.

To account for this node’s interest in receiving packets,
we maintain per-slot counters for the number of packets re-
ceived during the previous time the slot was active (ignor-
ing broadcast packets). Any slot that received more than
10 packets during the previous iteration through that slot
is labeled a receiving slot; if all slots are receiving slots, any
one is allowed to be changed. If some slots are receiving
slots and some are not, only the (channel, seed) pair on a
non-receiving slot is allowed to be changed for the purpose
of synchronizing with nodes we want to send to.

To account for channel congestion, we compare the (chan-
nel, seed) pairs of all the nodes that sent us packets in a given
slot with the (channel, seed) pairs of all the other nodes in
our list of channel schedules. If the number of other nodes
synchronized to the same (channel, seed) pair is more than
twice as many as this node communicated with in the pre-
vious occurrence of the slot, we attempt to de-synchronize
from these other nodes. De-synchronization just involves
choosing a new (channel, seed) pair for this slot. In our
experiments, this de-synchronization mechanism was both
necessary and sufficient to prevent the nodes from all con-
verging to the same set of (channel, seed) pairs.

The final constraints we add moderate the pace of change
in schedule information. Each node only considers updating
the (channel, seed) pair for the next slot, never for slots
further in the future. If the previous set of criteria suggest
updating some slot other than the next slot, we delay that
decision. Given these constraints, picking the best possible
(channel, seed) pair simply requires considering the choice
that synchronizes with the set of nodes for which we have
the largest number of queued packets. Additionally, the
(channel, seed) pair for the first slot is only allowed to be
updated during the parity slot – this helps to prevent logical
partition, as will be explained in more detail in Section 3.4.

This strategy naturally supports nodes acting as sources,
sinks, or forwarders. A source node will find that it can as-
sign all of its slots to support sends. A sink node will find
that it rarely changes its slot assignment, and hence nodes
sending to it can easily stay synchronized. A forwarding
node will find that some of its slots are used primarily for
receiving; after re-assigning the channel and seed in a slot
to support sending, the slots that did not change are more
likely to receive packets, and hence to stabilize on their cur-
rent channel and seed as receiving slots for the duration of

the current traffic patterns. Our simulation results (Sec-
tion 4) support this conclusion. We refer to the technique
of enabling this synchronization pattern as partial synchro-
nization.

3.4 Mathematical Properties of SSCH
Our discussion of the mathematical properties of SSCH

will initially focus on the static case. The behavior of SSCH
when channel schedules are not changing assures us that in
a steady-state flow setting, nodes will rendezvous appropri-
ately, in a sense that we make precise below. We will then
expand our discussion to include the dynamics of channel
scheduling in an environment where flows are starting and
stopping.

The channel scheduling mechanism has three simultane-
ous design goals: allowing nodes to be synchronized in a
slot, infrequent overlap between nodes that do not have data
to send to each other, and ensuring that all nodes come
into contact occasionally (to avoid a logical partition). To
achieve these goals, we rely on a very simple mathematical
technique, addition modulo a prime number.

Consider two nodes that want to be synchronized in a
given slot. If they have identical (channel, seed) pairs for
this slot, then clearly they will remain synchronized in future
iterations (using the static assumption). Now consider two
nodes that are not synchronized because they have differ-
ent seeds. A simple calculation shows that these two nodes
will overlap exactly one out of every 13 iterations in this
slot (recall that 13 is the number of channels). This is the
behavior we want from these nodes: they overlap regularly
enough that they can exchange their channel schedules, but
they are mostly on different channels, and so do not interfere
with each other’s transmissions.

Now consider the rare case that two nodes share identical
seeds in every slot, but different channels accompany each
seed – this has at most a 1 in 134 ≈ 28, 000 chance of oc-
curring for randomly chosen (channel, seed) pairs. In this
case, the nodes will march in lock-step through the same
set of channels in each slot, never overlapping. This would
be problematic, and it is this situation that the parity slot
prevents. To justify this claim, we consider two distinct sit-
uations. If both nodes enter their parity slot at the same
time, then they overlap there because the parity channel is
equal to the seed for the first slot for both nodes. With
our chosen parameter settings of 10 ms per slot, 4 slots,
and 13 channels, this overlap occurs once every 530 ms and
lasts for 10ms. If their parity slots do not occur at the same
time, then the first node’s parity slot offers a fixed target for
the slot in which the second node is changing channels, and
again, the two nodes will overlap. This overlap occurs once
every 7 seconds. Although both these cases will be rare, the
SSCH time synchronization mechanism allows us to ignore
the second case entirely – a relative clock skew of 5 ms or
less is sufficient to guarantee that two parity slots overlap
in time.

Now considering the dynamic case (and assuming clock
synchronization to within 5 ms), we note that nodes are
not permitted to change the seed for the first of their four
slots except during a parity slot. Therefore they will always
overlap in either the first slot or the parity slot, and hence
will always be able to exchange channel schedules within a
moderate time interval.

The use of addition modulo a prime to construct channel



hopping schedules does not restrict SSCH to scenarios where
the number of channels is a prime number. If one desired
to use SSCH with a wireless technology where the number
of channels is not a prime, one could straightforwardly use
a larger prime as the range of xi, and then map down to
the actual number of channels using a modulus reduction.
Though the mapping would have some bias to certain chan-
nels, the bias could be made arbitrarily small by choosing a
sufficiently large prime.

A final point about the use of addition modulo a prime
is that SSCH can be modified to require fewer bits to rep-
resent a node’s schedule by reducing the number of choices
for a seed. The only penalty to this reduction is increasing
the protocol’s reliance on the parity slot for avoiding logical
partitions.

3.5 Implementation Considerations
When simulating SSCH in QualNet [5], we made two tech-

nical choices that seem to be relatively uncommon based on
our reading of the literature. The first technical choice re-
lates to how we added SSCH to an existing system, and the
second relates to a little-utilized part of the IEEE 802.11
specification.

In order to implement SSCH, we had to implement new
packet queuing and retransmission strategies. To avoid re-
quiring modifications to the hardware (in QualNet, the hard-
ware model) or the network stack, SSCH buffers packets
below the network layer, but above the NIC device driver.
To maintain control over transmission attempts, we config-
ure the NIC to buffer at most one packet at a time, and to
attempt exactly one RTS for each packet before returning
to the SSCH layer. By observing NIC-level counters before
and after every attempted packet transmission, we are able
to determine whether a CTS was heard for the packet, and
if so, whether the packet was successfully transmitted and
acknowledged. All the necessary parameters to do this are
exposed by the hardware model we used in QualNet. This
also prevents head-of-line blocking from interfering with our
desire to implement the SSCH transmission strategy.

For efficiency reasons, we choose to use the IEEE 802.11
Long Control Frame Header format to broadcast channel
schedules and current offsets, rather than using a full broad-
cast data packet. The most common control frames in IEEE
802.11 (RTS, CTS, and ACK) use the alternative short for-
mat. The long format was included in the IEEE 802.11
standard to support inter-operability with legacy 1-Mbps
and 2-Mbps DSSS systems [8]. The format contains 6 un-
used bytes; we use 4 to embed the 4 (channel, seed) pairs,
and another 2 to embed the offset within the cycle (i.e., how
far the node has progressed through the 530 ms cycle).

Lastly, we comment that the beaconing mechanism used
in IEEE 802.11 ad-hoc mode for associating with a Basic
Service Set (BSS) works unchanged in the presence of SSCH.
A newly-arrived node can associate to a BSS as soon as it
overlaps in the same channel with any already-arrived node.

4. SYSTEM EVALUATION
We simulate SSCH in QualNet and compare its perfor-

mance with the commonly used single-channel IEEE 802.11a
protocol. In Section 4.1, we present microbenchmarks quan-
tifying the different SSCH overheads. In Section 4.2, we
present macrobenchmarks on the performance of SSCH with
a large number of nodes in a single hop environment. In Sec-

tion 4.3, we extend the macrobenchmark evaluation to en-
compass mobility and multi-hop routing. Our results show
that SSCH incurs very low overhead, and significantly out-
performs IEEE 802.11a in a multiple flow environment.

Our simulation environment comprises a varying number
of nodes in a 200m×200m area. All nodes in a single simula-
tion run use the same MAC, either SSCH or IEEE 802.11a.
We set all nodes to operate at the same raw data rate, 54
Mbps. We assume 13 usable channels in the 5 GHz band.
SSCH is configured to use 4 seeds, and each slot duration is
10 ms. All seeds are randomly chosen at the beginning of
each simulation run. The macrobenchmarks in Sections 4.2
and 4.3 are averages from 5 independent simulation runs,
while the microbenchmarks in Section 4.1 are drawn from a
single simulation run.

We primarily measure throughput under a traffic load of
maximum rate UDP flows. In particular, we use Constant
Bit Rate (CBR) flows of 512 byte packets sent every 50 µs.
This data rate is more than the sustainable throughput of
IEEE 802.11a operating at 54 Mbps.

For all our simulations, we modified QualNet to use a
channel switch delay of 80 µs. This choice was based on re-
cent work in solid state electronics on reducing the settling
time of the Voltage Control Oscillator (VCO) [7]. Switching
the channel of a wireless card requires changing the input
voltage of the VCO, which operates in a Phase Locked Loop
(PLL) to achieve the desired output frequency. The delay
in channel switching is due to this settling time. The speci-
fication of Maxim IEEE 802.11b Transceivers [3] shows this
delay to be 150 µs. A more recent work [17] shows that this
delay can be reduced to 40-80 µs for IEEE 802.11a cards.

4.1 Microbenchmarks
We present microbenchmarks measuring the overhead of

SSCH in several different scenarios. In Section 4.1.1, we
measure the overhead during the successful initiation of a
CBR flow. In Section 4.1.2, we measure the overhead on an
existing session of failing to initiate a parallel CBR flow. In
Section 4.1.3, we measure the overhead of supporting two
flows simultaneously. In Section 4.1.4, we measure the over-
head of continuing to attempt transmissions to a mobile
node that has moved out of range. These scenarios cover
many of the different dynamic events that a MAC must ap-
propriately handle: a flow starting while a node is present,
a flow starting while a node is absent, simultaneous flows
where both nodes are present, simultaneous flows where one
node moves out of range, etc. Finally, the scenario in Sec-
tion 4.1.5 measures the overhead of SSCH with respect to a
different kind of event, clock skew.

4.1.1 Overhead of Switching and Synchronizing
In this experiment, we measured the overhead of success-

fully initiating a CBR flow between two nodes within com-
munication range of each other. The first node initiates the
flow just after the parity slot. This incurs a worst-case delay
in synchronization, because the first of the four slots will not
be synchronized until 530 ms later.

Figure 4 shows the moving average over 20 ms of the
throughput at the receiver node. The sender quickly syn-
chronizes with the receiver on three of the four slots, as
it should, and on the fourth slot after 530 ms. The fig-
ure shows the throughput while synchronizing (oscillating
around 3/4 of the raw bandwidth), and the time required
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Figure 4: Switching and Synchronizing Overhead:
Node 1 starts a maximum rate UDP flow to Node
2. We show the throughput for both SSCH and
IEEE 802.11a.

to synchronize. After synchronizing, the channel switch-
ing and other protocol overheads of SSCH lead to only a
400 Kbps penalty in the steady-state throughput relative to
IEEE 802.11a. This penalty conforms to our intuition about
the overheads in SSCH: a node spends 80 µs every 10 ms
switching channels (80 µs/10 ms = .008), and then must
wait for the duration of a single packet to avoid colliding
with pre-existing packet transmissions in the new channel
(1 packet/35 packets = .028). Adding these two overheads
together leads to an expected cumulative overhead of 3.6%,
which is in close agreement with the measured overhead of
(400 Kbps/12 Mbps) = 3.3%.

Note that the throughput reaches a maximum of only 13
Mbps, although the raw data rate is 54 Mbps. This low uti-
lization can be explained by the IEEE 802.11a requirement
that the RTS/CTS packets be sent at the lowest supported
data rate, 6 Mbps, along with other overheads [18].

4.1.2 Overhead of an Absent Node
SSCH requires more re-transmissions than IEEE 802.11

to prevent logical partitions. These retransmissions waste
bandwidth that could have been dedicated to a node that
was present on the channel. To quantify this overhead, we
initiated a CBR flow between two nodes, allowed the system
to quiesce, and then initiated a send from the first node to
a non-existent node. Figure 5 shows the moving average
over 80 ms of the throughput. The Figure shows that the
sender takes 530 ms to timeout on the non-existent node.
During this time the throughput drops by 550 Kbps, which
is a small fraction (4.6%) of the total throughput.

4.1.3 Overhead of a Parallel Session
Our next experiment quantifies the ability of SSCH to

fairly share bandwidth between two flows, and to quickly
achieve this fair sharing. To measure this we start with
Node 1 sending a maximum rate UDP flow to Node 2. At
21.5 seconds, Node 1 starts a second maximum rate UDP
flow to Node 3. Figure 6 presents the moving average over
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Figure 5: Overhead of an Absent Node: Node 1 is
sending a maximum rate UDP flow to Node 2. Node
1 then attempts to send a packet to a non-existent
node.
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Figure 6: Overhead of a Parallel Session: Node 1
is sending a maximum rate UDP flow to Node 2.
Node 1 then starts a second flow to Node 3.

140 ms of the throughput achieved by both receivers. The
bandwidth is split between the receivers nearly perfectly,
and with no decrease in net throughput.

4.1.4 Overhead of Mobility
We now analyze the effect of mobility at a micro-level on

the performance of SSCH. Ideally, SSCH should be able to
detect a link breakage due to movement of a node, and sub-
sequently re-synchronize to other neighbors. We show that
SSCH can indeed handle this scenario with an experiment
comprising 3 nodes and 2 flows, and in Figure 7 we present
the moving average over 280 ms of each flow’s throughput.

Node 1 is initially sending a maximum rate UDP flow to
Node 2. Node 1 initiates a second UDP flow to Node 3 at
around 20.5 seconds. This bandwidth is then shared be-
tween both the flows (as in the experiment of Section 4.1.3)
until 30 seconds, when Node 3 moves out of the communi-
cation range of Node 1. Our experiment configures Node 1
to continue to attempt to send to Node 3 until 43 seconds,
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Figure 7: Overhead of Mobility: Node 1 is sending a
maximum rate UDP flow to Node 2. Node 1 starts
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Figure 8: Overhead of Clock Skew: Throughput be-
tween two nodes using SSCH as a function of clock
skew.

and during this time it continues to consume a small amount
of bandwidth. In contrast, the experiment in Section 4.1.2
measured the overhead of enqueueing a single packet to an
absent node. When the flow to Node 3 finally stops, Node
2’s received throughput increases back to its initial rate.

4.1.5 Overhead of Clock Drift
As we described in Section 3.3, SSCH tries to synchronize

slot begin and end times, though it is also designed to be
robust to clock skew. In this experiment, we quantify the
robustness of SSCH to moderate clock skew. We measure
the throughput between two nodes after artificially intro-
ducing a clock skew between them, and disabling the SSCH
synchronization scheme for slot begin and end times. We
vary the clock skew from 1 ns (10−6 ms) to 1 ms such that
the sender is always ahead of the receiver by this value, and
present the results in Figure 8. Note the log scale on the
x-axis.

The throughput achieved between the two nodes is not
significantly affected by a clock skew of less than 10 µs.

These practical values of clock skew are extremely small to
impact the performance of SSCH. The drop in throughput is
more for larger clock skews, although the throughput is still
acceptable at 10.5 Mbps when the skew value is an extremely
high 1 ms.

These results provide justification for the design choice we
made of not requiring nodes to switch synchronously across
slots, as described in Section 3.3. For example, a node will
delay switching to receive an ACK, or to send a data packet
if its channel reservation is successful. In the 100 node ex-
periment described in Section 4.3.2, we measured the skew
in channel switching times for a traffic pattern of 50 flows
to be approximately 20 µs. Figure 8 shows that this is a
negligible amount.

4.2 Macrobenchmarks: Single-hop Case
We now present simulation results showing SSCH’s ability

to achieve and sustain a consistently high throughput for a
traffic pattern consisting of multiple flows. We first evaluate
this using steady state UDP flows. We then extend our
evaluation to consider a dynamic traffic scenario where UDP
flows both start and stop. Finally, we study the performance
of TCP over SSCH.

4.2.1 Disjoint Flows
We first look at the number of disjoint flows that can be

supported by SSCH. All nodes in this experiment are in
communication range of each other, and therefore two flows
are considered disjoint if they do not share either endpoint.
Ideally, SSCH should utilize the available bandwidth on all
the channels on increasing the number of disjoint flows in the
system. We evaluate this by varying the number of nodes
in the network from 2 to 30 and introducing a flow between
disjoint pairs of nodes — the number of flows varies from 1
to 15.

Figure 9 shows the per-flow throughput, and Figure 10
shows the total system throughput. IEEE 802.11a performs
marginally better when there is just one flow in the network.
When there is more than one flow, SSCH significantly out-
performs IEEE 802.11a.

An increase in the number of flows decreases the per-flow
throughput for both SSCH and IEEE 802.11a. However, the
drop for IEEE 802.11a is much more significant. The drop
for IEEE 802.11a is easily explained by Figure 10, which
shows that the overall system throughput for IEEE 802.11a
is approximately constant.

It may seem surprising that the SSCH system throughput
has not stabilized at 13 times the throughput of a single
flow by the time there are 13 flows. However, this can be
attributed to SSCH’s use of randomness to distribute flows
across channels. These random choices do not lead to a
perfectly balanced allocation, and therefore there is still un-
used spectrum even when there are 13 flows in the system,
as shown by the continuing positive slope of the curve in
Figure 9.

4.2.2 Non-disjoint Flows
We now consider the case when the flows in the network

are not disjoint – nodes participate as both sources and
sinks, and in multiple flows. This scenario stresses SSCH’s
ability to efficiently support sharing among simultaneous
flows that have a common endpoint. Each node in the net-
work starts a maximum rate UDP flow with one other ran-
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Figure 9: Disjoint Flows: The per-flow throughput
on increasing the number of flows.
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Figure 10: Disjoint Flows: The system throughput
on increasing the number of flows.

domly chosen node in the network. We vary the number of
nodes (and thus flows) from 2 to 20. As in the previous ex-
periment, all nodes are within communication range of each
other. We present the per-flow and system throughput for
SSCH and IEEE 802.11a in Figures 11 and 12 respectively.
The curves are not monotonic because variation in the ran-
dom choices leads to some receivers being recipients in multi-
ple flows (and hence bottlenecks). This lack of monotonicity
persisted even after averaging over 5 simulation runs. As in
the disjoint flow experiment, SSCH performs slightly worse
in the case of a single flow, but much better in the case of a
large number of flows.

4.2.3 Effect of Flow Duration
SSCH introduces a delay when flows start because nodes

must synchronize. This overhead is more significant for
shorter flows. We evaluate this overhead for maximum rate
UDP flows with different flow lengths. In the first experi-
ment the flow duration is chosen randomly between 20 and
30 ms, while for the second experiment it is between 0.5 and
1 second. In both the experiments, each node starts a flow
with a randomly selected node, discards all packets at the
end of the designated sending window, pauses for a second
at the end of the flow, and then starts another flow with
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Figure 11: Non-disjoint Flows: The per-flow
throughput on increasing the number of flows.
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Figure 12: Non-disjoint Flows: The system through-
put on increasing the number of flows.

a new randomly selected node. The decision to discard en-
queued packets at the end of the flow duration is designed to
model a time-sensitive application. This process continues
for 30 seconds. We run these experiments for both SSCH
and IEEE 802.11a, and vary the number of nodes from 2 to
16.

Figure 13 presents the ratio of the average throughput
over SSCH to the average throughput over IEEE 802.11a.
For small numbers of sufficiently short-lived flows, IEEE
802.11a offers superior performance; short flows do indeed
suffer from a more pronounced synchronization overhead.
However, as soon as there are more than 4 simultaneous
flows in the network, the ability of SSCH to spread trans-
missions across multiple channels leads to a higher total
throughput than IEEE 802.11a in both the short and long
flow scenarios.

4.2.4 TCP Performance over SSCH
We now study the behavior of TCP over SSCH. SSCH

allows a node to stay synchronized to multiple nodes over
different slots. However, this might cause significant jitter in
packet delivery times, which could adversely affect TCP. To
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Figure 14: TCP over SSCH: Steady-state TCP
throughput when varying the number of non-
disjoint flows.

evaluate this concern quantitatively, we run an experiment
where we vary the number of nodes in the network from
2 to 9, such that all nodes are in communication range of
one another. We then start an infinite-size file transfer over
FTP from each node to a randomly selected other node.
This choice to use non-disjoint flows is designed to stress the
SSCH implementation by requiring nodes to be synchronized
as either senders or receivers with multiple other nodes. In
Figure 14 we present the resulting cumulative steady-state
TCP throughput over all the flows in the network.

Figure 14 shows that the TCP throughput for a small
number of flows is lower for SSCH than the throughput over
IEEE 802.11a. However, as the number of flows increases,
SSCH does achieve a higher system throughput. Although
TCP over SSCH does provide higher aggregate throughput
than over IEEE 802.11a, the performance improvement is
not nearly as good as for UDP flows. This shows that jitter
due to SSCH does have an impact on the performance of
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Figure 15: Multi-hop Chain Network: Variation in
throughput as chain length increases.

TCP. A more detailed analysis of the interaction between
TCP and SSCH, and modifications to support better inter-
actions between TCP and SSCH, is a subject we plan to
address in our future work.

4.3 Macrobenchmarks: Multi-hop Case and
Mobility

We now evaluate SSCH’s performance when combined
with multi-hop flows and mobile nodes. We first analyze
the behavior of SSCH in a multi-hop chain network. We
then consider large scale multi-hop networks, both with and
without mobility. As part of this analysis, we study the
interaction between SSCH and MANET routing protocols.

4.3.1 Performance in a Multi-hop Chain Network
IEEE 802.11 is known to encounter significant perfor-

mance problems in a multi-hop network [34]. For example, if
all nodes are on the same channel, the RTS/CTS mechanism
allows at most one hop in an A− B− C− D chain to be ac-
tive at any given time. SSCH reduces the throughput drop
due to this behavior by allowing nodes to communicate on
different channels. To examine this, we evaluate both SSCH
and IEEE 802.11a in a multi-hop chain network.

We vary the number of nodes, which are all in communi-
cation range, from 2 to 18. We initiate a single flow that
encounters every node in the network. Although more than
4 nodes transmitting within interference range of each other
would be unlikely to arise from multi-hop routing of a single
flow, it could easily arise in a general distributed application.
Figure 15 shows the maximum throughput as the number of
nodes in the chain is varied. We see that there is not much
difference between SSCH and IEEE 802.11a for flows with
few hops. As the number of hops increases, SSCH performs
much better than IEEE 802.11a since it distributes the com-
munication on each hop across all the available channels.

4.3.2 Performance in a Multi-hop Mesh Network
We now analyze the performance of SSCH in a large scale

multi-hop network without mobility. We place 100 nodes
uniformly in a 200×200 m area, and set each node to trans-
mit with a power of 21 dBm. The Dynamic Source Routing
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Figure 16: Mulithop Mesh Network of 100 Nodes:
The per-flow throughput on varying the number of
flows in the network.

(DSR) [22] protocol is used to discover the source route be-
tween different source-destination pairs. These source routes
are then input to a static variant of DSR that does not per-
form discovery or maintain routes. We vary the number
of maximum rate UDP flows from 10 to 50. We generate
source-destination pairs by choosing randomly, and reject-
ing pairs that are within a single hop of each other.

We present the per-flow throughput in Figure 16. Increas-
ing the number of flows leads to greater contention, and the
average throughput of both SSCH and IEEE 802.11a drops.
For every considered number of flows, SSCH provides signif-
icantly higher throughput than IEEE 802.11a. For 50 flows,
the inefficiencies of sharing a single channel are sufficiently
pronounced that SSCH yields more than a factor of 15 ca-
pacity improvement.

4.3.3 Impact of Channel Switching on
MANET Routing Protocols

Previous work on multi-channel MACs has often over-
looked the effect of channel switching on routing protocols.
Most of the proposed protocols for MANETs rely heavily
on broadcasts (e.g., DSR [22] and AODV [28]). However,
neighbors using a multi-channel MAC could be on different
channels, which could cause broadcasts to reach significantly
fewer neighbors than in a single-channel MAC. SSCH ad-
dresses this concern using a broadcast retransmission strat-
egy discussed in Section 3.2.

We study the behavior of DSR [22] over SSCH in the same
experimental setup used in Section 4.3.2, with 100 nodes in
a 200 m×200 m area. However, we reduce the transmission
power of each node to 16 dBm to force routes to increase
in length (and hence to stress DSR over SSCH). We select
10 source-destination pairs at random, and we use DSR to
discover routes between them. In Figure 17 we compare the
performance of DSR over SSCH, when varying the SSCH
broadcast transmission count parameter (the number of con-
secutive slots in which each broadcast packet is sent once).

Figure 17 shows that the performance of DSR over SSCH
improves with an increase in the broadcast transmission
count. The DSR Route Request packets see more neighbors
when SSCH broadcasts them over a greater number of slots.
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Figure 17: Impact of SSCH on Unmodified MANET
Routing Protocols: The average time to discover a
route and the average route length for 10 randomly
chosen routes in a 100 node network using DSR over
SSCH.

This increases the likelihood of discovering shorter routes,
and the speed with which routes are discovered. However,
there seems to be little additional benefit to increasing the
broadcast parameter to a value greater than 6. We attribute
the slight bumpiness in the curves to the stochastic nature
of DSR, and its reliance on broadcasts.

Comparing SSCH to IEEE 802.11a, we see that the SSCH
discovers routes that are comparable in length. However, the
average route discovery time for SSCH is much higher than
for IEEE 802.11a. Because each slot is 10 ms in length,
broadcasts are only retransmitted once every 10 ms, and
this leads to a significantly longer time to discover a route
to a given destination node. We believe that this latency
is a fundamental difficulty in using a reactive protocol such
as DSR with SSCH. We plan to explore the interaction of
other proactive and hybrid routing protocols with SSCH in
the future.

4.3.4 Performance in Multi-hop Mobile Networks
We now study the impact of mobility in a network using

DSR over IEEE 802.11a and SSCH. In this experiment, we
place 100 nodes randomly in a square and select 10 flows.
Each node transmits packets at 21 dBm. Node movement
is determined using the Random Waypoint model. In this
model, each node has a predefined minimum and maximum
speed. Nodes select a random point in the simulation area,
and move towards it with a speed chosen randomly from the
interval. After reaching its destination, a node rests for a
period chosen from a uniform distribution between 0 and 10
seconds. It then chooses a new destination and repeats the
procedure. In our experiments, we fix the minimum speed
at 0.01 m/s and vary the maximum speed from 0.2 to 1.0
m/s. Although we have studied SSCH at higher speeds,
the results are not significantly different. We performed
this experiment using two different areas for the nodes, a
200m × 200m area and a 300m × 300m area. We refer to
the smaller area as the dense network, and the larger area
as the sparse network – the average path is 0.5 hops longer
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Figure 18: Dense Multi-hop Mobile Network: The
per-flow throughput and the average route length
for 10 flows in a 100 node network in a 200m× 200m
area, using DSR over both SSCH and IEEE 802.11a.

in the sparse network. For all these experiments, we set the
SSCH broadcast transmission count parameter to 6.

Figure 18 shows that in a dense network, SSCH yields
much greater throughput than IEEE 802.11a even when
there is mobility. Although DSR discovers shorter routes
over IEEE 802.11a, the ability of SSCH to distribute traffic
on a greater number of channels leads to much higher overall
throughput. Figure 19 evaluates the same benchmarks in a
sparse network. The results show that the per-flow through-
put decreases in a sparse network for both SSCH and IEEE
802.11a. This is because the route lengths are greater, and
it takes more time to repair routes. However, the same qual-
itative comparison continues to hold: SSCH causes DSR to
discover longer routes, but still leads to an overall capacity
improvement.

DSR discovers longer routes over SSCH than over IEEE
802.11a because broadcast packets sent over SSCH may not
reach a node’s entire neighbor set. Furthermore, some opti-
mizations of DSR, such as promiscuous mode operation of
nodes, are not as effective in a multi-channel MAC such as
SSCH. Thus, although the throughput of mobile nodes us-
ing DSR over SSCH is much better than their throughput
over IEEE 802.11a, we conclude that a routing protocol that
takes the channel switching behavior of SSCH into account
will likely lead to even better performance.

5. DISCUSSION
In this Section we discuss alternative designs for SSCH

within the constraints that we enumerated in Section 2. We
will discuss prior work related to SSCH in detail in Section 6.

SSCH distributes the rendezvous and control traffic across
all the channels. One straightforward alternative scheme,
which still only requires one radio, is to use one of the chan-
nels as a control channel, and all the other channels as data
channels (e.g., [21]). Each node must then somehow split its
time between the control channel and the data channels.

Such a scheme will have difficulty in preventing the con-
trol channel from becoming a bottleneck. Suppose that two
nodes exchange RTS/CTS on the control channel, and then
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Figure 19: Sparse Multi-hop Mobile Network: The
per-flow throughput and the average route length
for 10 flows in a 100 node network in a 300m× 300m
area, using DSR over both SSCH and IEEE 802.11a.

switch to a data channel to do transmission. Unless all other
nodes were also on the control channel during the RTS/CTS
exchange, these two nodes will still need to do an RTS/CTS
on this channel in order to avoid the hidden terminal prob-
lem. The two nodes should wait to even do the RTS/CTS
until after an entire packet transmission interval has elapsed,
because another pair of nodes might have also switched to
this channel, orchestrating that decision on the control chan-
nel during a time that the first pair of nodes were not on
the control channel. In order to amortize this startup cost,
the nodes should have several packets to send to each other.
However, while any one node remains on a data channel,
any other node that desires to send it a packet must remain
idle on the control channel waiting for the node it desires to
reach to re-appear. If the idle node on the control channel
chooses not to wait, and instead switches to a data channel
with another node for which it has traffic, it may repeatedly
fail to rendezvous with the first node, leading to a significant
imbalance in throughput and possibly a logical partition.

The problems with a dedicated control channel may be
solvable, but it is clear that a straightforward approach with
un-synchronized rendezvous presents several difficulties. If
one instead tried to synchronize rendezvous on the control
channel, the control channel could again become a bottle-
neck simply because many nodes simultaneously desire to
schedule packets on that channel.

6. RELATED WORK
We divide the prior work relevant to SSCH into three

categories: prior uses of pseudo-random number generators
in wireless networking, channel switching for reasons other
than capacity improvement, and alternative approaches to
exploiting frequency diversity. In the first category, we find
that pseudo-random number generators have been used for
a variety of tasks in wireless networking. For example, the
SEEDEX protocol [29] uses pseudo-random generators to
avoid RTS/CTS exchanges in a wireless network. Nodes
build a schedule for sending and listening on a network, and
publish their seeds to all the neighbors. A node will attempt



a transmission only when all its neighbors (including the
receiver) are in a listening state. Assuming relatively con-
stant wireless transmission ranges, this protocol also helps
in overcoming the hidden and exposed terminal problem.
The TSMA protocol [11,12] is a channel access scheme pro-
posed as an alternative to ALOHA and TDMA, for time-
slotted multihop wireless networks. TSMA aims to achieve
the guarantees of TDMA without incurring the overhead of
transmitting large schedules in a mobile environment. Each
node is bootstrapped with a fixed seed that determines its
transmission schedule. The schedules are constructed using
polynomials over Galois fields (which have pseudo-random
properties), and the construction guarantees that each node
will overlap with only a single other node within a certain
time frame. The length of the schedule depends on the num-
ber of nodes and the degree of the network. Porting these
schedules to a multichannel scenario, where the number of
channels is fixed, remains an open problem, and even such a
porting would not meet the SSCH goal of supporting traffic-
driven overlap. Redi et al. [13] use a pseudo-random gen-
erator to derive listening schedules for battery-constrained
devices. Each device’s seed is known to a base station, which
can then schedule transmissions for the infrequent moments
when the battery-constrained device is awake. Although
pseudo-random generators have been used for a number of
tasks (as this survey of the literature makes clear), to the
best of our knowledge, SSCH is the first protocol to use
a pseudo-random generator to construct a channel hopping
schedule.

The second category of prior work is channel switching
for reasons other than capacity improvement. MultiNet [10]
is the main piece of work that we are aware of in this cate-
gory. MultiNet allows a NIC to periodically hop between
two channels, enabling a single wireless NIC to connect
to two logically distinct networks, such as an AP network
and an ad-hoc network. MultiNet is designed to provide
new functionality: simultaneous connectivity to distinct net-
works using a single NIC. In contrast, SSCH is designed to
yield capacity improvement within a single ad-hoc network.

The third category of prior work we define encompasses
all prior approaches to increasing network capacity by ex-
ploiting frequency diversity. This is a significant body of
work. The first division we make in this body of work is
between research that assumes a single NIC capable of com-
municating on a single channel at any given instance in time,
and research that assumes more powerful radio technology,
such as multiple NICs [9,30] or NICs capable of listening on
many channels simultaneously [21,26], even if they can only
communicate on one. Our work falls in to the former cate-
gory; the SSCH architecture can be deployed over a single
standards-compliant NIC supporting fast channel switching.

Dynamic Channel Assignment (DCA) [33] and Multi-radio
Unification Protocol (MUP) [9] are both technologies that
use multiple radios (in both cases, two radios) to take advan-
tage of multiple orthogonal channels. DCA uses one radio
on a control channel, and the other radio switches across all
the other channels sending data. Arbitration for channels
is embedded in the RTS and CTS messages, and is exe-
cuted on the control channel. Although this scheme may
fully utilize the data channel, it does so at the cost of us-
ing an entire radio just for control. MUP uses both radios
for data and control transmissions. Radios are assigned to
orthogonal channels, and a packet is sent on the radio with

better channel characteristics. This scheme gives good per-
formance in many scenarios. However, it still only allows the
use of as many channels as there are radios on each physi-
cal node. From our perspective, the key drawback to both
DCA and MUP is simply that they require the use of mul-
tiple radios. Recently, commercial products have appeared
that claim the ability to place multiple radios on a single
NIC [2]. It is still not known whether these products will
ever achieve as many radios on a NIC as there are available
channels, nor what their power consumption will be.

A straightforward way to view the different potential gains
of SSCH compared to a true multiple radio design is to con-
sider two distinct sources of bottleneck in a single-radio,
single-channel system: the saturation of the channel, and
the saturation of any particular radio. Conceptually, SSCH
significantly increases the channel bandwidth, without in-
creasing the bandwidth of any individual radio. In contrast,
a true multiple radio design increases both. A specific ex-
ample of this difference is that a node using MUP (a true
multiple radio design) can simultaneously send and receive
packets on separate channels, while a node using SSCH can
only perform one of these operations at a time.

We next turn our attention to work assuming more pow-
erful radio technology than is currently technologically fea-
sible. HRMA [35] is designed for frequency hopping spread
spectrum (FHSS) wireless cards. Time is divided into slots,
each one of which corresponds to a small fraction of the time
required to send a packet, and the wireless NIC is on a dif-
ferent frequency during each slot. All nodes are required
to maintain synchronized clocks, where the synchronization
is at the granularity of slot times that are much shorter
than the duration of a packet. Each slot is subdivided in to
four segments of time for four different possible communica-
tions: HOP-RESERVED/RTS/CTS/DATA. The first three
segments of time are assumed to be small in comparison with
the amount of time spent sending a segment of the packet
during the DATA time interval. To the best of our knowl-
edge, a FHSS wireless card that supports this type of MAC
protocol at high data rates is not commercially available.

Another line of related work assumes technology by which
nodes can concurrently listen on all channels. For example,
Nasipuri et al [26] and Jain et al [21] assume wireless NICs
that can receive packets on all channels simultaneously, and
where the channel for transmission can be chosen arbitrarily.
In these schemes, nodes maintain a list of free channels, and
either the sending or receiving node chooses a channel with
the least interference for its data transfer. Wireless NICs do
not currently support listening on arbitrarily many channels,
and we do not assume the availability of such technology in
the design of SSCH.

We finally consider prior work that only assumes the pres-
ence of a single NIC with a single half-duplex transceiver.
The only other approach that we are aware of to exploit-
ing frequency diversity under this assumption is Multichan-
nel MAC (MMAC) [31]. Like SSCH, MMAC attempts to
improve capacity by arranging for nodes to simultaneously
communicate on orthogonal channels. Briefly, MMAC oper-
ates as follows: nodes using MMAC periodically switch to a
common control channel, negotiate their channel selections,
and then switch to the negotiated channel, where they con-
tend for the channel as in IEEE 802.11. This scheme raises
several concerns that SSCH attempts to overcome. First,
MMAC extends IEEE 802.11 Power Save Mode (PSM) for



ad-hoc networks. This implies a relatively stringent reliance
on clock synchronization, which is particularly hard to pro-
vide in multi-hop wireless networks [19]. In contrast, SSCH
does not require tight clock synchronization because SSCH
does not have a common control channel or a dedicated
neighbor discovery interval. Secondly, synchronization traf-
fic in MMAC can be a significant fraction of the system traf-
fic, and the common synchronization channel can become
a bottleneck on system throughput. SSCH addresses this
concern by distributing synchronization and control traf-
fic across all the available channels. A third concern with
MMAC is that it can lead to packet delays of hundreds of
milliseconds for even a single hop. MMAC switches channels
every 100 ms, so a node with packets for two different desti-
nations will have to wait at least 100 ms to send traffic to one
of them whenever the two destinations decide to use different
channels. In contrast, SSCH performs well while switching
channels every 10 ms. A fourth concern with MMAC is
that it does not specify how to support broadcasts, which
are required by most MANET routing protocols (e.g., DSR).
SSCH addresses this using a broadcast retransmission strat-
egy that we experimentally validated to be compatible with
DSR.

Although this survey does not cover all related work, it
does characterize the current state of the field. At the level
of detail in this section, prior work such as CHMA [32] is
similar to HRMA [35], and MAC-SCC [25] and the MAC
protocols implicit in the work of Li et al [24] and Fitzek et
al [16] are similar to DCA [33]. However, a final related
channel hopping technology that is worth mentioning is the
definition of FHSS channels in the IEEE 802.11 [8] specifica-
tion. At first glance, it may seem redundant that SSCH does
channel hopping across logical channels, each one of which
(per the IEEE 802.11 specification) may be employing fre-
quency hopping across distinct frequencies at the physical
later. The IEEE 802.11 specification justifies this physi-
cal layer frequency hopping with the scenario of providing
support for multiple Basic Service Sets (BSS’s) that can co-
incide geographically without coinciding on the same logical
channel. In contrast, SSCH does channel hopping so that
any two nodes can coincide as much or as little of the time
as they desire. This is also at the heart of the difference
between SSCH and past work on channel-hopping proto-
cols where nodes overlap a fixed fraction of the time [12] –
the degree of overlap between any two nodes using SSCH is
traffic-dependent.

7. FUTURE RESEARCH
SSCH is a promising technology. In our future work,

we plan to investigate how SSCH will perform when imple-
mented over actual hardware, and is subject to the normal
environmental vagaries of wireless networks, such as unpre-
dictable variations in signal strength. As part of this im-
plementation effort, we also plan to evaluate how metrics
reflecting environmental conditions, such as ETX [14], can
be integrated into SSCH.

Our results in Section 4.3.3 show that running existing
routing protocols over SSCH can incur a large route discov-
ery time and an increase in the route length. In the future,
we plan to more thoroughly evaluate routing over SSCH (as
opposed to classical single channel routing), and to explore
SSCH’s interaction with a wider variety of proactive and
hybrid routing protocols.

There are at least four additional topics that would also
need to be addressed before SSCH can be deployed. One
is interoperability with nodes that are not running SSCH.
Another is the evaluation of power consumption under this
scheme. We have not attempted to evaluate the energy cost
of switching channels, nor have we attempted to enable a
power-saving strategy such as in the IEEE 802.11 specifica-
tion for access-point mode. A third topic of investigation is
the evaluation of SSCH in conjunction with auto-rate adap-
tation mechanisms. A fourth topic is a more detailed eval-
uation of the interplay between SSCH and TCP.

8. CONCLUSION
We have presented SSCH, a new protocol that extends the

benefits of channelization to ad-hoc networks. This protocol
is compatible with the IEEE 802.11 standard, and is suitable
for a multi-hop environment. SSCH achieves these gains
using a novel approach called optimistic synchronization.
We expect this approach to be useful in additional settings
beyond channel hopping.

We have shown through extensive simulation that SSCH
yields significant capacity improvement in a variety of single-
hop and multi-hop wireless scenarios. In the future, we look
forward to exploring SSCH in more detail using an imple-
mentation over actual hardware.
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