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In this work, we present an indoor localization sys-
tem based on Wi-Fi technology and a range-free based
method. The localization method makes use of the main
results obtained reported in our ongoing research ef-
forts [2]. The mobile device, in our case a smartphone,
captures the Received Signal Strength Indicator (RSSI)
of the APs to triangulate the user’s position.

Range-free based methods exploit the relationship be-
tween RSSI and distance. In general, the closer the dis-
tances to AP, the higher the RSSI value (around -30
dB). However, this relationship does not always hold,
since the indoor environment and the radio propaga-
tion channels characteristics can cause unexpected RSSI
fluctuations. These fluctuations translate into noise.
Our approach focuses on reducing the impact of the
noise over the position and tracking estimation of the
target mobile device. Furthermore, it is able to iden-
tify unfeasible displacements misleading the localiza-
tion, such as a huge change on the postion of the target
within a short period of time. In our case, our approach
estimates the current position taking into account pre-
vious estimations.

To reduce noise from RSSI, we implement a particle
filter based indoor localization algorithm. This tech-
nique uses the Bayesian theory to process sequentially
signals that contain noise with the aim of estimating
a time-based system state. Instead of having a single
hypothesis, a particle filter uses many hypotheses (par-
ticles), each with a corresponding importance weight.
The set of particles and the corresponding weights rep-
resent a probability distribution over the space of pos-
sible localizations.

We use the range-free based model proposed in [4],
and expressed by the following equation:

Pr(d) = Pr(d0) − 10 · n · log

(
d

d0

)
(1)

where Pr(d) is the received strength, Pr(d0) is the re-
ceived strength at d0 meters, n is the path loss coeffi-
cient factor and d is the distance between AP and user.
The path-loss coefficient factor expresses the Wi-Fi sig-
nal spread within a given environment.

Some research works [1, 3] conclude that the path-
loss coefficient factor value in indoor environments has
to be in the range from 2 to 4. Most indoor localization
systems performs a calibration process consisting on the
sampling of the RSSI in several known positions and
computing a single value of n for each AP. However, we
have shown that this approach has severe limitations
[2], since the signal propagation channel changes over
time. The value of n must then be adjusted in real-
time given the information of the propagation channel.

From Eq. (1) we can see that RSSI (Pr(d)) and path
loss coefficient factor (n) are inversely proportional. Fig-
ure 1, which plots RSSI and path loss coefficient factor
over time, shows such relationship. An increase on RSSI
results on a lower n. Therefore, if we know the real value
of ni, we can estimate the value of ni+1 based on RSSI
variation. However, this approach is only appropriate
when the user is stopped, since varying n according to
RSSI variation doesn’t produce a change in distance es-
timation.
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Figure 1: RSSI and real n value over time

In order to avoid this, we perform an RSSI capture
following a predefined path in our experimental environ-
ment. From this data, since we know the true distance
to APs, we can compute the exact value of n. Figure 2
plots the correlation between n and distance to one of
the AP. Closest distances to AP (less than 1 meter),
correspond to large values of n. This is due to the fact



that in those positions the RSSI barely varies, conse-
quently the proximity to an AP causes a large increase
of n. In distances between 1 and 4m, the n value de-
creases to less than 2. Thereafter, the n value begins
to increase until reaching a value close to 3. However,
there is not always an increase, which is due to the en-
vironment characteristics and, most especifically, to the
signal occlusion caused by humans.
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Figure 2: Distance vs real n value over time

In summary, the proposed estimation of n can be ex-
pressed by:

ni = ni−1 − (Pr,i − Pr,i−1) · α+ ∆d · β (2)

where Pr,i is the current received strength, Pr,i−1 is the
previous received strength, α is a factor that express
the relationship between RSSI variation and n varia-
tion, ∆d is the distance variation and β is a factor that
express the relationship between distance variation and
n variation. Both α and β are factors that depend on
the smartphone and the environment.

Eq. (2) introduces a new unknown: ∆d. That is, we
need to know the distance between the current position
of the target with respect to the previous sample and,
most specifically, if the user get closer or moved away
from the AP. Since this system is designed for smart-
phones, we can use embedded sensors of this devices to
build a Pedestrian Dead Reckoning System (PDRS) [5]
to estimate this information. Actually, our approach
makes use of such facilities.

Figure 3 depicts the architecture of our indoor local-
ization system. The smartphone captures RSSI from
Wi-Fi platform APs and its embedded sensor readings.
This information is passed to the localization server,
which, first, estimates a path loss coefficient factor value
(equation 2) and, later, obtains the distance prediction
using Eq. (1). The particle filter is subsequently fed
with the predicted distances in order to weight all the
particles and finally predicts the user’s position.

A critical point of our system is to obtain the real first
path loss coefficient factor value. If we fail estimating
this value, the system will accumulate error and, surely,
will not work properly. In order to avoid this, our ap-
proach includes the:

1. 𝑛	estimation

2. Distance estimation

3. Particle filter estimation

Predicted position
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Figure 3: Overall proposal scheme

• Feeding the system with the first true position.

• Use of the m first RSSI captures to properly esti-
mate the value.

The calibration procedure of our localization system
is as follows:

1. Deploy several APs in known positions of the envi-
ronment (at least one in each corner). Therefore,
we need to know the environment dimensions in
order to calculate APs’ coordinates.

2. Walk through a predefined path. This process pro-
vides us the following information (used to train
the models making up the entire system):

• User’s movement habits.

• Relationship between RSSI and n.

• Relationship between distance and n.

Once calibrated, the indoor localization system is able
to locate the user in real-time. Anyway, the system can
continue feedback itself with the real-time localization.
For example, it could detect areas where users cannot
be placed, such as tables or furniture.
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