
Hierarchical Imitation and Reinforcement Learning

Hoang M. Le 1 Nan Jiang 2 Alekh Agarwal 2 Miroslav Dudı́k 2 Yisong Yue 1 Hal Daumé III 3 2

Abstract
We study the problem of learning policies over
long time horizons. We present a framework that
leverages and integrates two key concepts. First,
we utilize hierarchical policy classes that enable
planning over different time scales, i.e., the high
level planner proposes a sequence of subgoals for
the low level planner to achieve. Second, we uti-
lize expert demonstrations within the hierarchical
action space to dramatically reduce cost of explo-
ration. Our framework is flexible and can incor-
porate different combinations of imitation learn-
ing (IL) and reinforcement learning (RL) at dif-
ferent levels of the hierarchy. Using long-horizon
benchmarks, including Montezuma’s Revenge,
we empirically demonstrate that our approach
can learn significantly faster compared to hier-
archical RL, and can be significantly more label-
and sample-efficient compared to flat IL. We also
provide theoretical analysis of the labeling cost
for certain instantiations of our framework.

1. Introduction
Learning good agent behavior from reward signals alone—
the goal of reinforcement learning—is particularly difficult
when the planning horizon is long and rewards are sparse.
One successful method for dealing with such long horizons
is imitation learning (Abbeel & Ng, 2004; Daumé et al.,
2009; Ross et al., 2011; Ho & Ermon, 2016), in which the
agent learns by watching and possibly querying an expert.
One limitation of existing imitation learning approaches is
that they may require a large amount of demonstration data
in long-horizon problems.

The central question we address in this paper is: when ex-
perts are available, how can we most effectively leverage
their feedback? A common strategy to improve sample effi-
ciency in reinforcement learning over long time horizons is
to leverage hierarchical structure (Sutton et al., 1998; 1999;

1California Institute of Technology, Pasadena, CA 2Microsoft
Research, New York, NY 3University of Maryland, College Park,
MD. Correspondence to: Hoang M. Le <hmle@caltech.edu>.

Copyright 2018 by the author(s).

Kulkarni et al., 2016; Dayan & Hinton, 1993; Vezhnevets
et al., 2017; Dietterich, 2000). Our approach leverages hi-
erarchical structure in imitation learning. We study the case
where the underlying problem domain is hierarchical, and
subtasks can be easily elicited from an expert. We are in-
terested in incorporating expert feedback into the learning
process in order to speed up learning (improve sample ef-
ficiency), while at the same time minimizing the teaching
effort from the expert (improve label efficiency).

We begin by formalizing the problem of hierarchical imita-
tion learning (Section 3) in a way that carefully teases apart
the different cost structures that naturally arise when the
expert provides feedback at multiple levels of abstraction.
We then present a hierarchical imitation learning algorithm
that extends the DAgger algorithm (Ross et al., 2011) to
a two-level hierarchical setting (Section 4). The key de-
sign principle here is that interactions with the expert can
be minimized once the agent has successfully learned some
subtasks; we also provide a theoretical analysis on the ben-
efits of having a hierarchy (Section 4.2.1). We next general-
ize this approach to where the horizon for subtasks is suffi-
ciently short, and so the lower level can be learned through
reinforcement learning alone without expert feedback. This
leads to a novel algorithm for combining imitation learn-
ing on top of reinforcement learning (Section 5). Finally,
we show the efficacy of our approaches on a simple but
extremely challenging maze domain, and on Montezuma’s
Revenge (Section 6).1

In the case where no expert feedback is available during
training, our framework reduces to a standard form of hi-
erarchical reinforcement learning (Kulkarni et al., 2016).
We show in our experiments that incorporating a modest
amount of expert feedback can lead to dramatic improve-
ments in performance compared to pure hierarchical RL.

2. Related Work
Imitation Learning. One can broadly dichotomize imita-
tion learning into passive collection of demonstrations (also
known as behavioral cloning) versus active collection of
demonstrations. The former setting (Abbeel & Ng, 2004;

1Link to code and experimental setups available at https:
//sites.google.com/view/hierarchical-il-rl

ar
X

iv
:1

80
3.

00
59

0v
1

 [
cs

.L
G

]
 1

 M
ar

 2
01

8

https://sites.google.com/view/hierarchical-il-rl
https://sites.google.com/view/hierarchical-il-rl

Hierarchical Imitation and Reinforcement Learning

Ziebart et al., 2008; Syed & Schapire, 2008; Ho & Ermon,
2016) assumes that demonstrations are collected in a batch
a priori and the goal of imitation learning is to find a pol-
icy that can mimic the pre-collected demonstrations. The
latter setting (Daumé et al., 2009; Ross et al., 2011; Ross
& Bagnell, 2014; Chang et al., 2015; Sun et al., 2017) as-
sumes an interactive expert that provides demonstrations in
response to actions taken by the current policy. We explore
extension of both approaches into hierarchical settings.

Hierarchical Reinforcement Learning. Several rein-
forcement learning approaches to learning hierarchical
policies have been explored, foremost among them the op-
tions framework (Sutton et al., 1998; 1999; Fruit & Lazaric,
2017). The standard options framework often assumes that
a useful set of options are fully defined a priori, and (semi-
Markov) planning and learning only occurs at the higher
level. In comparison, our agent does not have direct access
to policies that accomplish such subgoals and has to learn
them via expert or reinforcement feedback.

The closest hierarchical RL work to ours is the approach of
Kulkarni et al. (2016), which assumes a similar hierarchical
structure. As mentioned in the introduction, their approach
can be viewed as a special case of our framework where no
expert feedback is available during training.

Combining Reinforcement and Imitation Learning. The
idea of combining imitation learning and reinforcement
learning is not new (Nair et al., 2017; Hester et al., 2018).
However, previous work focuses on flat policy classes that
use imitation learning as a “pre-training” step (e.g., by pre-
populating the replay buffer with demonstrations). In con-
trast, we consider feedback at multiple levels for a hierar-
chical policy class, with different levels potentially receiv-
ing different types of feedback (i.e., imitation at one level
and reinforcement at the other). Somewhat related to our
hierarchical expert supervision is the approach of Andreas
et al. (2017), which assumes access to symbolic descrip-
tions of subgoals, without knowing what those symbols
mean or how to execute them. Sample complexity compari-
son between imitation learning and reinforcement learning
has not been studied much in the literature, perhaps with
the exception of the work of Sun et al. (2017).

3. Hierarchical Formalism
For simplicity, we consider environments with a natural
two-level hierarchy; the HI level corresponds to choosing
subtasks, and the LO level corresponds to executing those
subtasks. For instance, an agent’s overall goal may be to
leave a building. At the HI level, the agent may first choose
the subtask “go to the elevator,” then “take the elevator
down,” and finally “walk out.” Each of these subtasks
needs to be executed at the LO level by actually navigat-

ing the environment, pressing buttons on the elevator, etc.

Subtasks, which we also call subgoals, are denoted as
g ∈ G, and the primitive actions are denoted as a ∈ A.
An agent acts by iteratively choosing a subgoal g, carrying
it out by executing a sequence of actions a until comple-
tion, and then picking a new subgoal. The agent’s choices
can depend on an observed state s ∈ S.2 We assume that
the horizon at the HI level is HHI, i.e., a trajectory uses at
most HHI subgoals, and the horizon at the LO level is HLO,
i.e., after at most HLO primitive actions, the agent either
accomplishes the subgoal or needs to decide on a new sub-
goal. The total number of primitive actions in a trajectory
is thus at most HFULL := HHIHLO.

The hierarchical learning problem is to simultaneously
learn a HI-level policy µ : S → G, called the meta-
controller, as well as the subgoal policies πg : S → A for
each g ∈ G, called subpolicies. The aim of the learner
is to achieve a high reward when its meta-controller and
subpolicies are run together. For each subgoal g, we also
have a (possibly learned) termination function βg : S →
{True,False}, which terminates the execution of πg . The
hierarchical agent behaves as follows:

1: for hHI = 1 . . . HHI do
2: observe state s
3: choose subgoal g ← µ(s)
4: for hLO = 1 . . . HLO do
5: observe state s
6: if βg(s) then break
7: choose action a← πg(s)

The execution of each subpolicy πg generates a LO-level
trajectory τ = (s1, a1, . . . , sH , aH , sH+1) with H ≤
HLO.3 The overall behavior results in a hierarchical tra-
jectory σ = (s1, g1, τ1, s2, g2, τ2, . . .), where the last state
of each LO-level trajectory τh coincides with the next state
sh+1 in σ and with the first state of the next LO-level tra-
jectory τh+1. The subsequence of σ which excludes the
LO-level trajectories τh will be called the HI-level trajec-
tory and denoted τHI := (s1, g1, s2, g2, . . .). Finally, the
full trajectory, τFULL, is the concatenation of all the LO-level
trajectories.

We assume access to an expert, endowed with a meta-
controller µ?, subpolicies π?

g , and termination functions β?
g ,

who can provide one or several types of supervision:

• HierDemo(s): hierarchical demonstration. The ex-
pert executes its hierarchical policy starting from s
and returns the resulting hierarchical trajectory σ? =

2While we use the term state for simplicity, we do not require
the environment to be fully observable or Markovian.

3The trajectory might optionally include a reward signal after
each primitive action, which might either come from the environ-
ment, or be a pseudo-reward as we will see in Section 5.

Hierarchical Imitation and Reinforcement Learning

(s?1, g
?
1 , τ

?
1 , s

?
2, g

?
2 , τ

?
2 , . . .), where s?1 = s.

• LabelHI(τHI): HI-level labeling. The expert provides
a good next subgoal at each state of a given HI-level
trajectory τHI = (s1, g1, s2, g2, . . .), yielding a la-
beled data set {(s1, g?1), (s2, g

?
2), . . . }.

• LabelLO(τ ; g): LO-level labeling. The expert pro-
vides a good next primitive action towards a given
subgoal g at each state of a given LO-level trajectory
τ = (s1, a1, s2, a2, . . .), yielding a labeled data set
{(s1, a?1), (s2, a

?
2), . . . }.

• InspectLO(τ ; g): LO-level inspection. Instead of
annotating every state of a trajectory with a good ac-
tion, the expert only verifies whether a subgoal g was
accomplished, returning either Pass or Fail.

• LabelFULL(τFULL): full labeling. The expert labels
the agent’s full trajectory τFULL = (s1, a1, s2, a2, . . .),
from start to finish, ignoring hierarchical structure,
yielding a labeled data set {(s1, a?1), (s2, a

?
2), . . . }.

• InspectFULL(τFULL): full inspection. The expert
verifies whether the agent’s overall goal was accom-
plished, returning either Pass or Fail.

When the agent learns not only the subpolicies πg , but also
termination functions βg , then LabelLO also returns good
termination values ω? ∈ {True,False} for each state of
τ = (s1, a1 . . .), yielding a data set {(s1, a?1, ω?

1), . . . }.

Although HierDemo and Label can be both generated
by the expert’s hierarchical policy (µ?, {π?

g}), they differ
in the mode of expert interaction. HierDemo returns a
hierarchical trajectory executed by the expert, as required
for passive imitation learning, and thus enables a hierarchi-
cal extension of behavioral cloning (Abbeel & Ng, 2004;
Syed & Schapire, 2008). On the other hand, Label op-
erations provide labels with respect to the learning agent’s
trajectories, as required for interactive imitation learning.
LabelFULL is the standard query used in prior work on
learning flat policies (Daumé et al., 2009; Ross et al., 2011),
and LabelHI and LabelLO are its hierarchical extensions.

Inspect operations are newly introduced in this paper,
and form a cornerstone of our hierarchical interactive pro-
tocol that enables substantial savings in label efficiency.
They can be viewed as “lazy” versions of the correspond-
ing Label operations, requiring less effort. Our underly-
ing assumption is that if the given hierarchical trajectory
σ = {(sh, gh, τh)} agrees with the expert on HI level,
i.e., gh = µ?(sh), and LO-level trajectories pass the in-
spection, i.e., InspectLO(τh; gh) = Pass, then the re-
sulting full trajectory must also pass the full inspection,
InspectFULL(τFULL) = Pass. This means that a hierarchi-
cal policy need not always agree with the expert’s execution
at LO level to succeed in the overall task.

Algorithm 1 Hierarchical Behavioral Cloning

1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: for t = 1, . . . , T do
3: Get a new environment instance with start state s
4: σ? ← HierDemo(s)
5: for all (s?h, g?h, τ?h) ∈ σ? do
6: Append Dg?

h
← Dg?

h
∪ τ?h

7: Append DHI ← {(s?h, g?h)}
8: Train subpolicies πg ← Train(πg,Dg) for all g
9: Train meta-controller µ← Train(µ,DHI)

Besides algorithmic reasons, the motivation for separating
the types of feedback is that different expert queries will
typically require different amount of effort, which we refer
to as cost. We assume the costs of the Label operations
are CL

HI, C
L
LO and CL

FULL, the costs of each Inspect op-
eration are C I

LO and C I
FULL. In many settings, LO-level in-

spection will require significantly less effort than LO-level
labeling, i.e., C I

LO � CL
LO. For instance, identifying if a

robot has successfully navigated to the elevator is presum-
ably much easier than labeling an entire path to the elevator.
One reasonable cost model, natural for the environments
in of our experiments, is to assume that Inspect opera-
tions take time O(1) and work by checking the final state
of the trajectory, whereas Label operations take time pro-
portional to the trajectory length, which isO(HHI),O(HLO)
and O(HHIHLO) for our three Label operations.

4. Hierarchical Imitation Learning
We begin this section by introducing hierarchical behav-
ioral cloning (Algorithm 1), which only needs passive ac-
cess to expert demonstrations. We then introduce hierarchi-
cal DAgger (Algorithm 2), our best-performing algorithm,
and provide theoretical analysis of its cost efficiency com-
pared with the flat (non-hierarchical) approach. The algo-
rithm uses hierarchical behavioral cloning far a warm start,
but then switches to the interactive mode of expert labeling.

4.1. Hierarchical Behavioral Cloning

We consider a natural extension of behavioral cloning to
the hierarchical setting (Algorithm 1). The expert pro-
vides a set of hierarchical demonstrations σ?, each con-
sisting of LO-level trajectories τ?h = {(s?` , a?`)}HLO

`=1 as well
as a HI-level trajectory τ?HI = {(s?h, g?h)}HHI

h=1. We then run
Train (lines 8–9) to find the subpolicies πg that best pre-
dict a?` from s?` , and meta-controller µ that best predicts
g?h from s?h, respectively. Train can generally be any su-
pervised learning subroutine, such as stochastic optimiza-
tion for neural networks or some batch training procedure.
When termination functions βg need to be learned as part
of the hierarchical policy, the labels ω?

g will be provided by

Hierarchical Imitation and Reinforcement Learning

Algorithm 2 Hierarchical DAgger

1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: Run Hierarchical Behavioral Cloning (Algorithm 1)

up to t = Twarm-start
3: for t = Twarm-start + 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize σ ← ∅
6: repeat
7: g ← µ(s)
8: Execute πg , obtain LO-level trajectory τ
9: Append (s, g, τ) to σ

10: s← the last state in τ
11: until end of episode
12: Extract τFULL and τHI from σ
13: if InspectFULL(τFULL) = Fail then
14: D? ← LabelHI(τHI)
15: Process (sh, gh, τh) ∈ σ in sequence as long as

gh agrees with the expert’s choice g?h in D?:
16: if Inspect(τh; gh) = Fail then
17: Append Dgh ← Dgh ∪ LabelLO(τh; gh)
18: break
19: Append DHI ← DHI ∪ D?

20: Update subpolicies πg ← Train(πg,Dg) for all g
21: Update meta-controller µ← Train(µ,DHI)

the expert as part of τ?h = {(s?` , a?` , ω?
`)}.4

4.2. Hierarchical DAgger

While Algorithm 1 leverages expert hierarchical feedback,
the well-known distribution mismatch problem between
learning and execution can still occur when we reduce se-
quential decision making to supervised learning (Daumé
et al., 2009; Ross et al., 2011). Interactive imitation learn-
ing algorithms, such as DAgger (Ross et al., 2011), ad-
dress this issue by having the expert actively provide feed-
back with respect to the agent’s trajectories. However, ex-
isiting interactive algorithms cannot leverage hierarchical
feedback, and typically invoke LabelFULL on the learner’s
trajectory from start to finish.

Labeling the full trajectory (via LabelFULL) can be waste-
ful when the horizon is long and there exists a hierarchi-
cal structure. For example, when the problem decomposes
hierarchically, some subgoals are typically easier to learn
than others, so querying the expert on well-learned sub-
goals is redundant. This motivates Algorithm 2, which
we refer to as Hierarchical DAgger, as it aggregates the
datasets on each level across different learning rounds sim-
ilarly to its flat counterpart. In addition to learning from
LO-level feedback (LabelLO), our algorithm incorporates
additional feedback from InspectLO and LabelHI.

In each episode, the learner executes the hierarchical pol-

4In our hierarchical imitation learning experiments, the termi-
nation functions are all learned. Formally, the termination signal
ωg , can be viewed as part of an augmented action at LO level.

icy, including choosing a subgoal (line 7), executing the
LO-level trajectories, i.e., rolling out the subpolicy πg for
the chosen subgoal, and terminating the execution accord-
ing to βg (line 8). Expert only provides feedback when
the agent fails to execute the entire task, as verified by
InspectFULL (line 13). When InspectFULL fails, the ex-
pert first labels the correct subgoals via LabelHI (line 14),
and only performs LO-level labeling as long as the learner’s
meta-controller chooses the correct subgoal gh (line 15) but
its subpolicy fails (i.e., when InspectLO on line 16 fails).

Intuitively, Hierarchical DAgger allows the agent to learn
new subpolicies along good trajectories, and saves the ex-
pert’s labeling effort when the agent enters irrelevant parts
of the state space. While we require additional operations
InspectLO and InspectFULL, such verification steps are
often less costly than full demonstrations or labeling. Next,
we will formalize this intuition, analyze the labeling cost of
Hierarchical DAgger and compare it to the flat approach.

4.2.1. HIERARCHICAL VERSUS FLAT DAGGER

For theoretical analysis, we assume that the learner aims
to learn the meta-controller policy µ from some policy
class M, and each of the subpolicies πg from some class
ΠLO. For simplicity, we assume thatM and ΠLO are both fi-
nite (but possibly exponentially large). We also assume re-
alizability; i.e, the expert’s policies can be found in the cor-
responding classes: µ? ∈ M, and π?

g ∈ ΠLO, g ∈ G. This
allows us to use the halving algorithm (Shalev-Shwartz
et al., 2012) as the online learner on both levels.

The halving algorithm maintains a version space over poli-
cies, acts by a majority decision, and when it makes a mis-
take, it removes all the erring policies from the version
space. In the hierarchical setting, it therefore makes at most
log |M|mistakes on the HI level, and at most log |ΠLO|mis-
takes when learning each πg . The mistake bounds can be
further used to upper bound the total cost of expert feed-
back in both Hierarchical DAgger and flat DAgger. For flat
DAgger, we consider a flat IL agent endowed with the pol-
icy class ΠFULL = {(µ, {πg}g∈G) : µ ∈M, πg ∈ ΠLO} in
order to enable an apples-to-apples comparison, but that
is oblivious to the hierarchical structure of the problem.
The bounds depend on the cost of performing different
types of operations, as defined at the end of Section 3. For
flat DAgger, we consider a modified version that first calls
InspectFULL, and only requests labels (LabelFULL) if the
inspection fails. The proofs are deferred to Appendix A.

Theorem 1. Given finite classes M and ΠLO and realiz-
able expert policies, the total cost incurred by the expert in
the hierarchical approach by round T is bounded by

TC I
FULL +

(
log2 |M|+ |Gopt| log2 |ΠLO|

)
(CL

HI +HHIC
I
LO)

+
(
|Gopt| log2 |ΠLO|

)
CL

LO, (1)

Hierarchical Imitation and Reinforcement Learning

where Gopt ⊆ G is the set of subgoals actually used by ex-
pert, Gopt := µ?(S).

Theorem 2. Given the full policy class ΠFULL =
{(µ, {πg}g∈G) : µ ∈M, πg ∈ ΠLO} and a realizable ex-
pert policy, the total cost incurred by the expert in the flat
approach by round T is bounded by

TC I
FULL +

(
log2 |M|+ |G| log2 |ΠLO|

)
CL

FULL. (2)

Both bounds have the same leading term, TC I
FULL, the cost

of full inspection, which is incurred every round and can
be viewed as the “cost of monitoring.” In contrast, the re-
maining terms can be viewed as the “cost of learning” in the
two settings, and include terms coming from their respec-
tive mistake bounds. The ratio of the cost of hierarchical
learning to the flat learning is then bounded as

Eq. (1)− TC I
FULL

Eq. (2)− TC I
FULL

≤ CL
HI +HHIC

I
LO + CL

LO

CL
FULL

, (3)

where we applied the upper bound |Gopt| ≤ |G|. The sav-
ings thanks to hierarchy depend on the specific costs. In a
typical setting, we expect the inspection costs to be O(1),
if it suffices to check the final state, whereas labeling costs
scale linearly with the length of the trajectory. The cost
ratio is then ∝ HHI+HLO

HHIHLO
. Thus, we realize most signifi-

cant savings if the horizons on each individual level are
substantially shorter than the overall horizon. In particular,
if HHI = HLO =

√
HFULL, the hierarchical approach re-

duces the overall labeling cost by a factor of
√
HFULL. More

generally, whenever HFULL is large, we reduce the costs of
learning be at least a constant factor—a significant gain if
this is a saving in the effort of a domain expert.

5. Hybrid Imitation–Reinforcement Learning
Hierarchical DAgger was motivated by the idea that it is
generally easier for expert to teach learning agent at the
HI level instead of supervising at the LO level. We further
carry this idea to the reinforcement learning setting, where
we let the agent learn the subpolicies from reinforcement
signal alone. While our approach allows any imitation
learning at the HI level and any reinforcement learning at
the LO level, for concreteness, we present the variant with
DAgger and Q-learning in Algorithm 3.

In Algorithm 3, the agent proceeds by rolling-in with the
learner’s meta-controller (lines 7–8). For each selected
subgoal g, the subpolicy πg selects and executes primitive
actions via the usual ε-greedy rule (lines 11–12), until some
termination condition is met. The agent receives some
pseudo-reward, also known as intrinsic reward (Kulkarni
et al., 2016) (line 13). Upon termination of the subgoal,
agent’s meta-controller µ chooses another subgoal (and so
on). The process continues until the end of the episode,

Algorithm 3 Hierarchical Imitation Learning–Q-Learning

input Function pseudo(s; g) providing the pseudo-reward
input Predicate terminal(s; g) indicating the termination of g
input Annealed exploration probabilities εg > 0, g ∈ G
1: Initialize data buffers DHI ← ∅ and Dg ← ∅, g ∈ G
2: Initialize subgoal Q-functions Qg , g ∈ G
3: for t = 1, . . . , T do
4: Get a new environment instance with start state s
5: Initialize σ ← ∅
6: repeat
7: sHI ← s
8: g ← µ(s)
9: Initialize τ ← ∅

10: repeat
11: a← εg-greedy(Qg, s)
12: Execute a, next state s̃
13: r̃ ← pseudo(s̃; g)
14: Update Qg: a (stochastic) gradient descent step

on a minibatch from Dg

15: Append (s, a, r̃, s̃) to τ
16: s← s̃
17: until terminal(s; g)
18: Append (sHI, g, τ) to σ
19: until end of episode
20: Extract τFULL and τHI from σ
21: if InspectFULL(τFULL) = Fail then
22: D? ← LabelHI(τHI)
23: Process (sh, gh, τh) ∈ σ in sequence as long as

gh agrees with the expert’s choice g?h in D?:
24: Append Dgh ← Dgh ∪ τh

Append DHI ← DHI ∪ D?

25: else
26: Append Dgh ← Dgh ∪ τh for all (sh, gh, τh) ∈ σ
27: Update meta-controller µ← Train(µ,DHI)

where the involvement of the expert begins. Similar to hi-
erarchical DAgger, the expert inspects the overall execution
of the learner (line 21). If InspectFULL returns Fail, then
the expert provides HI-level feedback LabelHI, and the HI-
level data is aggregated for training the meta-controller.

The Q-functions for each subpolicy are updated stochas-
tically from experience-replay data buffers. The key dif-
ference between our hybrid IL-RL approach and the flat or
hierarchical reinforcement learning is how the buffers ac-
cumulate experience. As long as the meta-controller’s sub-
goal g agrees with the expert’s, the agent’s experience of
executing subgoal g will be added to the buffer Dg . On the
other hand, if the meta-controller selects a “bad” subgoal,
the accumulation of experience during the current episode
is terminated.

Unlike Hierarchical DAgger, Algorithm 3 assumes ac-
cess to a real-valued function pseudo(s; g) and a pred-
icate terminal(s; g), where pseudo(s; g) provides
the pseudo-reward in state s when executing g, and
terminal(s; g) indicates the termination (not necessarily
successful) of subgoal g. This setup is similar to prior work
on hierarchical RL (Kulkarni et al., 2016). Concretely,

Hierarchical Imitation and Reinforcement Learning

assume that we have access to the termination predicate
terminal(s; g) as well as the predicate success(s; g)
indicating a successful completion of subgoal g, such that
success(s; g) always implies terminal(s; g). One
natural choice of the pseudo-reward function is as follows:

1 if success(s; g)

−1 if ¬success(s; g) and terminal(s; g)

−κ otherwise,

where κ > 0 is a small penalty to encourage short trajec-
tories. The predicates success and terminal could
be provided by an expert or learnt from supervised or re-
inforcement feedback. In our experiments, we explicitly
provide these predicates to both the IL-RL hybrid as well
as the hierarchical RL, giving them advantage over hier-
archical DAgger, which needs to learn when to terminate
subpolicies.

6. Experiments
We evaluate the performance of our algorithms on two sep-
arate domains: (i) a simple but challenging maze naviga-
tion domain and (ii) the Atari game Montezuma’s Revenge.

6.1. Maze Navigation Domain

Task Overview. Figure 1 (left) displays a snapshot of the
maze navigation domain. In each episode, the agent en-
counters a new instance of the maze from a large collec-
tion of different layouts. Each maze consists of 16 rooms
arranged in a 4-by-4 grid, but the openings between the
rooms vary from instance to instance as does the initial po-
sition of the agent and the target. The agent (white dot)
needs to navigate from one corner of the maze to the tar-
get marked in yellow. Red cells are obstacles (lava walls),
which the agent needs to avoid for survival. The contex-
tual information the agent receives is the pixel-based repre-
sentation, displaying a bird’s-eye view of the environment,
including the partial trail (marked in green) indicating the
locations that the agent has visited.

Due to a large number of random environment instances,
this domain is not solvable with tabular algorithms. Note
that rooms are not always connected, and the locations of
the hallways are not always in the middle of the wall. Prim-
itive actions A include going one step Up, Down, Left or
Right. In addition, each instance of the environment is
designed to ensure that there is a path from initial loca-
tion to target, and the shortest path takes at least 45 steps
(HFULL = 100). The agent is penalized with reward −1 if
it runs into a lava wall, which also terminates the episode.
The agent only receives positive reward upon stepping on
the yellow block.

A hierarchical decomposition of the environment corre-

sponds to four possible subgoals of going to the room im-
mediately to the North, South, West, East, and the fifth
possible subgoal Go To Target (valid only in the room
containing the target). In this setup, HLO ≈ 5 steps, and
HHI ≈ 10–12 steps. The episode is terminated after 100
primitive steps if the agent is unsuccessful. The subpoli-
cies and meta-controller use similar neural network archi-
tectures and only differ in the number of action outputs. We
include the neural network policy descriptions and hyper-
parameters in the appendix.

Hierarchical Imitation Learning. We first compare the
performance of our hierarchical imitation learning algo-
rithms against flat imitation learning. For the maze domain,
success rate is defined as the average rate of successful task
completion over the previous 100 test episodes, on random
environment instances not used for training. The labeling
cost is measured by the number of expert labels, where a
label is either a subgoal or a primitive action generated by
the expert. Thus, the cost of each Label operation is equal
to the length of the labeled trajectory.

Both of our hierarchical imitation learning algorithms out-
perform flat imitation learners (Figure 2, left). Hierarchi-
cal DAgger, in particular, achieves consistently the high-
est success rate, which approaches 100% in less than 1000
episodes. Figure 2 (left) displays the median, as well as the
interval of maximum and minimum success rate observed
over 5 random executions of the algorithms.

The number of expert labels required, however, varies sig-
nificantly between the two hierarchical imitation learning
variants. Figure 2 (middle) displays the same average suc-
cess rate, but as a function of the total number of expert
labels. Hierarchical DAgger achieves significant savings
in expert labels compared to other imitation learning algo-
rithms. These savings are due to more efficient querying
of expert at the LO level (see Section 4.2). In particular,
LO-level labels are not always needed, especially when the
learner finds itself in an irrelevant part of the state space due
to poor subgoal selection at the HI level, as well as after cer-
tain subgoals have been reliably learned. Figure 1 (middle)
shows that hierarchical DAgger requires most of LO-level
labels early during training and requests primarily HI-level
labels after the subgoals have been mastered. As a result,
hierarchical DAgger requires only a fraction of LO-level la-
bels compared to flat DAgger (Figure 2, right).

Hybrid Imitation–Reinforcement Learning. In our hy-
brid experiments, we use deep double Q-learning (DDQN,
Van Hasselt et al., 2016) with prioritized experience replay
(Schaul et al., 2015) as the underlying RL procedure. In
addition to evaluating the performance of Algorithm 3, we
empirically compare its sample complexity against stan-
dard hierarchical RL. We use the same policy classes and
network architectures to learn meta-controller and subpoli-

Hierarchical Imitation and Reinforcement Learning

Figure 1. Maze navigation. (Left) One sampled environment instance, where the agent needs to navigate from bottom left to bottom
right. (Middle) Composition of expert feedback over time for hierarchical DAgger; the number of labels refers to the number of subgoals
or actions provided by the expert for Label operations and the number of Inspect queries. (Right) Success rate of hybrid IL-RL
algorithm and the number of HI-level labels requested as a function of the number of LO-level RL samples.

0 200 400 600 800 1000
Episode (Rounds of Learning)

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Su
cc

es
s

Ra
te

hierarchical DAgger
hierarchical cloning
flat DAgger
flat cloning

0K 10K 20K 30K 40K 50K 60K 70K
Expert Labels at both HI + LO levels

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Su
cc

es
s

Ra
te

hierarchical DAgger
hierarchical cloning
flat DAgger
flat cloning

0K 10K 20K 30K 40K 50K 60K 70K
Expert Labels at LO-level

0%

20%

40%

60%

80%

100%

Av
er

ag
e

Su
cc

es
s

Ra
te

hierarchical DAgger
flat DAgger

Figure 2. Maze navigation: hierarchical versus flat imitation learning. Each episode is followed by a round of training and a round of
testing. The success rate is measured over previous 100 test episodes, labeling effort is measured by the number of expert labels, i.e.,
the number of subgoals or primitive actions generated by the expert. (Left) Success rate per episode. (Middle) Success rate versus the
number of expert labels. (Right) Success rate versus the number of LO-level expert labels.

cies for the hierarchical reinforcement learning baseline (h-
DQN, Kulkarni et al., 2016). The Q-learning procedure for
h-DQN is also enhanced with double learning and priori-
tized experience replay. Note that flat Q-learning does not
learn anything meaningful in either experimental setting,
due to a long planning horizon and sparse rewards (Mnih
et al., 2015).

For the maze domain, each subpolicy learner receives a
pseudo-reward of 1 for each successful execution, corre-
sponding to stepping through the correct door. For ex-
ample, if the subgoal is to go to the next room north, the
pseudo-reward associated with stepping through the north-
ern door is 1 and any other door is assigned a negative
pseudo-reward. We use DAgger (Ross et al., 2011) to learn
the meta-controller at the HI level. Figure 1 (right) shows
the learning progression of our hybrid algorithm, implying
two main observations:

• The number of HI-level labels is higher than ei-
ther hierarchical DAgger or behavioral cloning.
InspectFULL returns Fail often, especially during the
early parts of training. This is primarily due to the

slower learning speed of the reinforcement learners at
the LO level, thus requiring more expert feedback at
the HI level.

• The number of HI-level labels rapidly increases ini-
tially and then flattens out after the learner be-
comes more successful, thanks to the availability of
InspectFULL operation. As the hybrid algorithm
makes progress and the learning agent passes the
InspectFULL operation increasingly often, the algo-
rithm starts saving significantly on expert feedback.

Compared to hierarchical RL, the hybrid algorithm requires
significantly fewer samples at the LO level. We include
this additional comparison (for the maze domain) in the ap-
pendix. Compared to hierarchical DAgger, the number of
expert labels required to reach a certain accuracy is higher,
meaning this is a mode which makes sense if the LO level
expert labels are more expensive than the HI level ones, or
completely infeasible as we will show in our next domain.

Hierarchical Imitation and Reinforcement Learning

0%

20%

40%

60%

80%

100%

Su
cc

es
s R

at
io

0 1000 2000 3000 4000 5000 6000 7000
Episode (HI-level Labels)

0K
100K
200K
300K
400K
500K
600K
700K
800K
900K

LO
-le

ve
l S

am
pl

es Subgoal 1
Subgoal 2 (key)
Subgoal 3
Subgoal 4 (door)

Figure 3. Montezuma’s revenge: hybrid IL-RL versus hierarchical RL. (Left) Screenshot of Montezuma’s Revenge in black-and-white
with color-coded subgoals. (Middle) Learning progression of Algorithm 3 in solving the entire first room of Montezuma’s Revenge;
colors match the subgoal depictions in the left pane. Success ratio is the fraction of times the LO level RL learner achieves its subgoal,
and results are shown for a typical run of the learner. (Right) Learning performance of Algorithm 3 versus hierarchical Q-Learning.

6.2. Hybrid IL-RL versus Hierarchical RL:
Comparison on Montezuma’s Revenge

Task Overview. Montezuma’s Revenge is among the Atari
games that are the most difficult for existing deep reinforce-
ment learning algorithms. Montezuma’s Revenge is a nat-
ural candidate for hierarchical approach, due to the natural
sequential order of subtasks. Figure 3 (left) displays the
environment and an annotated sequence of subgoals. The 4
designated subgoals are: go to bottom of the right stair, get
the key, reverse path to go back to the right stair, then go to
open the door (while avoiding obstacles throughout).

The agent is given a pseudo-reward of 1 for each subgoal
completion. We enforce that the agent can only have a sin-
gle life per episode, thereby preventing the agent from tak-
ing a shortcut after collecting the key (by taking its own
life and re-initializing with a new life at the starting posi-
tion, effectively collapsing the task horizon). Note that for
this setting, the actual game environment is equipped with
2 positive external rewards corresponding to picking up the
key (subgoal 2, reward of 100) and using the key to open
the door (subgoal 4, reward of 300). Optimal execution of
this sequence of subgoals requires more than 200 primitive
actions. Not surprisingly, flat reinforcement learning algo-
rithms frequently achieve a score of 0 on this domain (Mnih
et al., 2015; 2016; Wang et al., 2016).

Hybrid IL-RL versus h-DQN. Similar to the maze do-
main, we use a combination of DAgger at the HI level and
DDQN with prioritized experience replay for reinforce-
ment learner at the LO level. Figure 3 (middle) shows
the learning progression of our hybrid algorithm on Mon-
tezuma’s Revenge. This setting has horizon HHI = 4 at
the HI level, so learning the meta-controller requires rela-
tively few samples. Each episode roughly corresponds to
one LabelHI query. Subpolicies are learnt in the order of
subgoal execution as prescribed by the expert.

The agent is given pseudo-reward of 1 upon successful ex-

ecution of subgoals and -1 upon loss of life. We introduce a
simple modification to Q-learning on the LO level to make
learning more efficient: the accumulation of experience re-
play buffer does not begin until the first time the agents en-
counter positive pseudo-reward. This modification is well-
suited for the considered interaction mode where expert
is giving advice at the HI level (one can imagine the ex-
pert simply indicates when the LO-level learning should be-
gin). This mechanism explains, for example, the temporal
gap between mastering subgoal 3 and commencement of
learning subgoal 4 in Figure 3 (middle). During this pe-
riod, effectively only training of the meta-controller takes
place. This modification ensures the reinforcement learner
encounters at least some positive pseudo-rewards, which
boosts learning in the long horizon settings and should nat-
urally work with any off-policy learning scheme (DQN,
DDQN, Dueling-DQN). Although h-DQN does not rely on
expert feedback, we give the same advantage to h-DQN
learners for a fair comparison. We use the neural network
architecture used by Kulkarni et al. (2016). Note that h-
DQN fails to achieve any reward without this enhancement.

We terminate training of subpolicies when the success rate
exceeds 90%, at which point the subgoal is considered
learned. Subgoal success rate is defined as the percentage
of successful subgoal completions over the previous 100
attemps. This termination of subgoal training is a practi-
cal way to cope with the inherent instability of DQN (see,
for example, learning progression of subgoal 4 in Figure 3,
middle).

Figure 3 (right) compares the average of 5 best runs (out
of 15) of hybrid IL-RL versus the modified h-DQN (also
5 best runs out of 15), together with the min–max perfor-
mance range among the included runs.5 The LO level sam-
ple sizes in this figure are not directly comparable to the

5We chose 5 best out of 15 to gain more resolution in our com-
parison. The results are similar, and in fact the performance gap
is more stark, when all 15 runs are included (see the appendix).

Hierarchical Imitation and Reinforcement Learning

middle panel as the learning progression is displayed for
a typical run, rather than an aggregate over multiple runs.
In all of our experiments, the performance of the imitation
learning component is stable and consistent across many
different trials. However, the performance of the reinforce-
ment learning component varies substantially across trials.
Subgoal 4 (door) is the most difficult to learn due to its
long horizon whereas our reinforcement learning compo-
nent tends to master the first 3 subgoals very quickly, es-
pecially compared to h-DQN. The key advantage of our
algorithm is the ability to accumulate experience for each
subgoal only within the relevant part of the state space,
where the subgoal is part of an optimal trajectory. In con-
trast, h-DQN may pick bad subgoals and the resulting LO-
level samples then “corrupt” the subgoal experience replay
buffers and substantially slow down convergence.6

7. Conclusion and Discussion
We have presented a hierarchical imitation learning frame-
work that exploits two levels of hierarchy to effectively
learn over long time horizons. Our approach is flexible and
can be instantiated to incorporate a mixture of imitation and
reinforcement feedback at different levels of the hierarchy.
Compared to flat imitation learning, our approach enjoys
significantly improved sample complexity, both theoreti-
cally and empirically. Compared to hierarchical reinforce-
ment learning, our approach achieves significantly faster
convergence in practice.

Our approach can be extended in several ways. For in-
stance, one can consider weaker feedback such as pref-
erence or gradient-style feedback (Fürnkranz et al., 2012;
Loftin et al., 2016; Christiano et al., 2017), or a weaker
form of imitation feedback, only saying whether the agent
action is correct or incorrect, corresponding to bandit vari-
ant of imitation learning (Ross et al., 2011).

Our hybrid IL-RL approach relied on the availability of
a subgoal termination predicate indicating when the sub-
goal is achieved. While in many settings such a termina-
tion predicate is relatively easy to specify, in other settings
this predicate needs to be learned. We leave the question
of learning the termination predicate, while learning to act
from reinforcement feedback, open for future research.

Acknowledgments. The majority of this work was done while
HML was an intern at Microsoft Research. HML is also supported
in part by an Amazon AI Fellowship.

6In fact, we further reduced the number of subgoals of h-DQN
to only two initial subgoals, but the agent still largely failed to
learn even the second subgoal (see the appendix for details). This
is in line with the observations of Roderick et al. (2017).

Hierarchical Imitation and Reinforcement Learning

References
Abbeel, Pieter and Ng, Andrew Y. Apprenticeship learning via

inverse reinforcement learning. In ICML, pp. 1. ACM, 2004.

Andreas, Jacob, Klein, Dan, and Levine, Sergey. Modular mul-
titask reinforcement learning with policy sketches. In ICML,
2017.

Chang, Kai-Wei, Krishnamurthy, Akshay, Agarwal, Alekh,
Daume III, Hal, and Langford, John. Learning to search better
than your teacher. In ICML, 2015.

Christiano, Paul F, Leike, Jan, Brown, Tom, Martic, Miljan, Legg,
Shane, and Amodei, Dario. Deep reinforcement learning from
human preferences. In NIPS, 2017.

Daumé, Hal, Langford, John, and Marcu, Daniel. Search-based
structured prediction. Machine learning, 75(3):297–325, 2009.

Dayan, Peter and Hinton, Geoffrey E. Feudal reinforcement learn-
ing. In NIPS, 1993.

Dietterich, Thomas G. Hierarchical reinforcement learning with
the MAXQ value function decomposition. J. Artif. Intell.
Res.(JAIR), 13(1):227–303, 2000.

Fruit, Ronan and Lazaric, Alessandro. Exploration–exploitation
in mdps with options. arXiv preprint arXiv:1703.08667, 2017.

Fürnkranz, Johannes, Hüllermeier, Eyke, Cheng, Weiwei, and
Park, Sang-Hyeun. Preference-based reinforcement learning:
a formal framework and a policy iteration algorithm. Machine
learning, 89(1-2):123–156, 2012.

Hausknecht, Matthew and Stone, Peter. Deep reinforcement
learning in parameterized action space. In ICLR, 2016.

He, Ruijie, Brunskill, Emma, and Roy, Nicholas. Puma: Planning
under uncertainty with macro-actions. In AAAI, 2010.

Hester, Todd, Vecerik, Matej, Pietquin, Olivier, Lanctot, Marc,
Schaul, Tom, Piot, Bilal, Sendonaris, Andrew, Dulac-Arnold,
Gabriel, Osband, Ian, Agapiou, John, et al. Deep q-learning
from demonstrations. In AAAI, 2018.

Ho, Jonathan and Ermon, Stefano. Generative adversarial imita-
tion learning. In NIPS, pp. 4565–4573, 2016.

Kulkarni, Tejas D, Narasimhan, Karthik, Saeedi, Ardavan, and
Tenenbaum, Josh. Hierarchical deep reinforcement learning:
Integrating temporal abstraction and intrinsic motivation. In
NIPS, pp. 3675–3683, 2016.

Loftin, Robert, Peng, Bei, MacGlashan, James, Littman,
Michael L, Taylor, Matthew E, Huang, Jeff, and Roberts,
David L. Learning behaviors via human-delivered discrete
feedback: modeling implicit feedback strategies to speed up
learning. In AAMAS, 2016.

Mnih, Volodymyr, Kavukcuoglu, Koray, Silver, David, Rusu, An-
drei A, Veness, Joel, Bellemare, Marc G, Graves, Alex, Ried-
miller, Martin, Fidjeland, Andreas K, Ostrovski, Georg, et al.
Human-level control through deep reinforcement learning. Na-
ture, 518(7540):529, 2015.

Mnih, Volodymyr, Badia, Adria Puigdomenech, Mirza, Mehdi,
Graves, Alex, Lillicrap, Timothy, Harley, Tim, Silver, David,
and Kavukcuoglu, Koray. Asynchronous methods for deep re-
inforcement learning. In ICML, pp. 1928–1937, 2016.

Nair, Ashvin, McGrew, Bob, Andrychowicz, Marcin, Zaremba,
Wojciech, and Abbeel, Pieter. Overcoming exploration in rein-
forcement learning with demonstrations. In ICRA, 2017.

Roderick, Melrose, Grimm, Christopher, and Tellex, Stefanie.
Deep abstract q-networks. In NIPS Workshop on Hierarchichal
Reinforcement Learning, 2017.

Ross, Stephane and Bagnell, J Andrew. Reinforcement and imita-
tion learning via interactive no-regret learning. arXiv preprint
arXiv:1406.5979, 2014.

Ross, Stéphane, Gordon, Geoffrey J, and Bagnell, Drew. A reduc-
tion of imitation learning and structured prediction to no-regret
online learning. In AISTATS, pp. 627–635, 2011.

Schaul, Tom, Quan, John, Antonoglou, Ioannis, and Sil-
ver, David. Prioritized experience replay. arXiv preprint
arXiv:1511.05952, 2015.

Shalev-Shwartz, Shai et al. Online learning and online convex
optimization. Foundations and Trends R© in Machine Learning,
4(2):107–194, 2012.

Sun, Wen, Venkatraman, Arun, Gordon, Geoffrey J, Boots, By-
ron, and Bagnell, J Andrew. Deeply aggrevated: Differentiable
imitation learning for sequential prediction. arXiv preprint
arXiv:1703.01030, 2017.

Sutton, Richard S, Precup, Doina, and Singh, Satinder P. Intra-
option learning about temporally abstract actions. In ICML,
volume 98, pp. 556–564, 1998.

Sutton, Richard S, Precup, Doina, and Singh, Satinder. Between
mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Syed, Umar and Schapire, Robert E. A game-theoretic approach
to apprenticeship learning. In NIPS, pp. 1449–1456, 2008.

Van Hasselt, Hado, Guez, Arthur, and Silver, David. Deep re-
inforcement learning with double q-learning. In AAAI, vol-
ume 16, pp. 2094–2100, 2016.

Vezhnevets, Alexander Sasha, Osindero, Simon, Schaul,
Tom, Heess, Nicolas, Jaderberg, Max, Silver, David, and
Kavukcuoglu, Koray. Feudal networks for hierarchical rein-
forcement learning. arXiv preprint arXiv:1703.01161, 2017.

Wang, Ziyu, Schaul, Tom, Hessel, Matteo, Hasselt, Hado, Lanc-
tot, Marc, and Freitas, Nando. Dueling network architectures
for deep reinforcement learning. In ICML, pp. 1995–2003,
2016.

Zheng, Stephan, Yue, Yisong, and Lucey, Patrick. Generating
long-term trajectories using deep hierarchical networks. In
NIPS, 2016.

Ziebart, Brian D, Maas, Andrew L, Bagnell, J Andrew, and Dey,
Anind K. Maximum entropy inverse reinforcement learning.
In AAAI, 2008.

Hierarchical Imitation and Reinforcement Learning

A. Proofs
Proof of Theorem 2. The first term TC I

FULL should be ob-
vious as the expert inspects the agent’s overall behavior
in each episode. Whenever something goes wrong in an
episode, the expert labels the whole trajectory, incurring
CL

FULL each time. The remaining work is to bound the
number of episodes where agent makes one or more mis-
takes. This quantity is bounded by the number of total mis-
takes made by the halving algorithm, which is at most the
logarithm of the number of candidate functions (policies),
log |ΠFULL| = log

(
|M||ΠLO||G|

)
= log |M|+|G| log |ΠLO|.

This completes the proof.

Proof of Theorem 1. Similar to the proof of Theorem 2, the
first term TC I

FULL is obvious. The second term corresponds
to the situation where InspectFULL finds issues. Accord-
ing to Algorithm 2, the expert then labels the subgoals and
also inspects whether each subgoal is accomplished suc-
cessfully, which incurs CL

HI + HHIC
I
LO cost each time. The

number of times that this situation happens is bounded by
(a) the number of times that a wrong subgoal is chosen,
plus (b) the number of times that all subgoals are good but
at least one of the subpolicies fails to accomplish the sub-
goal. Situation (a) occurs at most log |M| times. In sit-
uation (b), the subgoals chosen in the episode must come
from Gopt, and for each of these subgoals the halving algo-
rithm makes at most log |ΠLO| mistakes. The last term cor-
responds to cost of LabelLO operations. This only occurs
when the meta-controller chooses a correct subgoal but the
corresponding subpolicy fails. Similar to previous analy-
sis, this situation occurs at most log |ΠLO| for each “good”
subgoal (g ∈ Gopt). This completes the proof.

Table 1. Network Architecture—Maze Domain

1: Convolutional Layer 32 filters, kernel size 3, stride 1
2: Convolutional Layer 32 filters, kernel size 3, stride 1
3: Max Pooling Layer pool size 2

4: Convolutional Layer 64 filters, kernel size 3, stride 1
5: Convolutional Layer 64 filters, kernel size 3, stride 1
6: Max Pooling Layer pool size 2

7: Fully Connected Layer 256 nodes, relu activation
8: Output Layer softmax activation

(dimension 4 for subpolicy,
dimension 5 for meta-controller)

Table 2. Network Architecture—Montezuma’s Revenge

1: Conv. Layer 32 filters, kernel size 8, stride 4, relu
2: Conv. Layer 64 filters, kernel size 4, stride 2, relu
3: Conv. Layer 64 filters, kernel size 3, stride 1, relu
4: Fully Connected 512 nodes, relu,

Layer normal initialization with std 0.01
5: Output Layer linear (dimension 8 for subpolicy,

dimension 4 for meta-controller)

B. Additional Experimental Details
Network architectures from our experiments are in Tables 1
and 2. In the remainder of this appendix we describe addi-
tional experimental results on both domains.

B.1. Montezuma’s Revenge

Although the imitation learning component tends to be sta-
ble and consistent, the samples required by the reinforce-
ment learners can vary between experiments with identical
hyperparameters. In this section, we report additional re-
sults of our hybrid algorithm for the Montezuma’s Revenge
domain.

For the implementation of our hybrid algorithm on the
game Montezuma’s Revenge, we decided to limit the com-
putation to 4 million frames for the LO-level reinforcement
learners (in aggregate across all 4 subpolicies). Out of 15
experiments, 12 out of 15 successfully learn the first 3 sub-
policies, 13 out of 15 successfully learn the first 2 subpoli-
cies. The last subgoal (going from the bottom of the stairs
to open the door) proved to be the most difficult and almost
half of our experiments did not manage to finish learning
the fourth subpolicy within the 4 million frame limit (see
Figure 4). The reason mainly has to do with the longer
horizon of subgoal 4 compared to other three subgoals. Of
course, this is a function of the design of subgoals and one
can always try to shorten the horizon by introducing inter-
mediate subgoals.

However, it is worth pointing out that even as we limit the

Hierarchical Imitation and Reinforcement Learning

Figure 4. Montezuma’s Revenge: hybrid IL-RL versus h-DQN.
Average reward, min and max across 15 trials.

Figure 5. Montezuma’s Revenge: hybrid IL-RL (4 subgoals) ver-
sus h-DQN (2 subgoals). Average reward, min and max across 15
trials; h-DQN only considers the first two subgoals to simplify the
learning task.

h-DQN baseline to only 2 subgoals (up to getting the key),
the h-DQN baseline generally tends to underperform our
proposed hybrid algorithm by a large margin. Even with
the given advantage we confer to our implementation of h-
DQN, all of the h-DQN experiments failed to successfully
master the second subgoal (getting the key). It is instruc-
tive to also examine the sample complexity associated with
getting the key (the first positive external reward). Here the
horizon is sufficiently short to appreciate the difference be-
tween having expert feedback at the HI level versus relying
only on reinforcement learning to train the meta-controller.

The stark difference in learning performance (see Figure 5)
comes from the fact that the HI-level expert advice effec-
tively prevents the LO-level reinforcement learners from
accumulating bad experience, which is frequently the case
for h-DQN. The potential corruption of experience replay
buffer also implies at in our considered setting, learning
with hierarchical DQN is no easier compared to flat DQN
learning. Hierarchical DQN is thus susceptible to collaps-
ing into the flat learning version.

Figure 6. Montezuma’s Revenge: First Subgoal

Figure 7. Montezuma’s Revenge: Second Subgoal

Figure 8. Montezuma’s Revenge: Third Subgoal

Figure 9. Montezuma’s Revenge: Fourth Subgoal

Hierarchical Imitation and Reinforcement Learning

0K 50K 100K 150K 200K 250K 300K 350K 400K 450K
RL Samples at LO-level

0%

20%

40%

60%

80%

100%

Av
er

ag
e

su
cc

es
s

ra
te

Maze - Hybrid RL-IL vs. Modified h-DQN Comparison

0K

50K

100K

150K

200K

250K

300K

350K

400K

H
I-l

ev
el

 la
be

ls
 (

RL
 o

r
IL

)

Hybrid Success Rate
Hybrid HI-level expert labels
h-DQN Success Rate
h-DQN HI-level RL samples

Figure 10. Maze navigation: hybrid IL-RL (full task) versus h-
DQN (with 50% head-start).

Figure 11. Maze navigation. Another random instance of the
maze domain (different from main text). The 17×17 pixel repre-
sentation of the maze is used as input for neural network policies.

B.2. Maze Domain

Similar to the Montezuma’s Revenge domain, hierarchical
deep reinforcement learning (h-DQN) does not work well
for the maze domain. At the HI level, the planning hori-
zon of 10–12 with 4–5 possible subgoals in each step is
prohibitively difficult for the HI-level reinforcement learner
and we were not able to achieve non-zero rewards within
in any of our experiments. To make the comparison, we
attempted to provide additional advantage to the h-DQN
algorithm by giving it some head-start, so we ran h-DQN
with 50% reduction in the horizon, by giving the hierar-
chical learner the optimal execution of the first half of the
trajectory. The resulting success rate is in Figure 10. Note
that the hybrid IL-RL does not get the 50% advantage, but
it still quickly outperforms h-DQN, which flattens out at
30% success rate.

C. Additional Related Work
Imitation Learning. Another dichotomy in imitation
learning, as well as in reinforcement learning, is that of
value-function learning versus policy learning. The for-
mer setting (Abbeel & Ng, 2004; Ziebart et al., 2008) as-
sumes that the optimal (demonstrated) behavior is induced
by maximizing an unknown value function. The goal then
is to learn that value function, which imposes a certain
structure onto the policy class. The latter setting (Daumé
et al., 2009; Ross et al., 2011; Ho & Ermon, 2016) makes
no such structural assumptions and aims to directly fit a
policy whose decisions well imitate the demonstrations.
This latter setting is typically more general but often suf-
fers from higher sample complexity. Our approach is ag-
nostic to this dichotomy and can accommodate both styles
of learning. Some instantiations of our framework allow
for deriving theoretical guarantees, which rely on the policy
learning setting. Sample complexity comparison between
imitation learning and reinforcement learning has not been
studied much in the literature, perhaps with the exception
of the recent analysis of AggreVaTeD (Sun et al., 2017).

Hierarchical Reinforcement Learning. Feudal RL is an-
other hierarchical framework that is similar to how we de-
compose the task hierarchically (Dayan & Hinton, 1993;
Dietterich, 2000; Vezhnevets et al., 2017). In particu-
lar, a feudal system has a manager (similar to our HI-
level learner) and multiple submanagers (similar to our LO-
level learners), and submanagers are given pseudo-rewards
which define the subgoals. Prior work in feudal RL use re-
inforcement learning for both levels; this can require a large
amount of data when one of the levels has a long planning
horizon, which we demonstrate in our experiments. In con-
trast, we propose a more general framework where imita-
tion learners can be used to substitute reinforcement learn-
ers to substantially speed up learning, whenever the right
level of expert feedback is available. Hierarchical policy
classes have been additional studied by He et al. (2010),
Hausknecht & Stone (2016), Zheng et al. (2016), and An-
dreas et al. (2017).

Learning with Weaker Feedback. Our work is motivated
by efficient learning under weak expert feedback. When we
only receive demonstration data at the high level, and must
utilize reinforcement learning at the low level, then our set-
ting can be viewed as an instance of learning under weak
demonstration feedback. The primary other way to elicit
weaker demonstration feedback is with preference-based or
gradient-based learning, studied by Fürnkranz et al. (2012),
Loftin et al. (2016), and Christiano et al. (2017).

