
Combinatorial Pure Exploration of
Multi-Armed Bandits

Shouyuan Chen1∗ Tian Lin2 Irwin King1 Michael R. Lyu1 Wei Chen3

1The Chinese University of Hong Kong 2Tsinghua University 3Microsoft Research Asia
1{sychen,king,lyu}@cse.cuhk.edu.hk 2lint10@mails.tsinghua.edu.cn 3weic@microsoft.com

Abstract

We study the combinatorial pure exploration (CPE) problem in the stochastic multi-armed
bandit setting, where a learner explores a set of arms with the objective of identifying
the optimal member of a decision class, which is a collection of subsets of arms with
certain combinatorial structures such as size-K subsets, matchings, spanning trees or paths,
etc. The CPE problem represents a rich class of pure exploration tasks which covers not
only many existing models but also novel cases where the object of interest has a non-
trivial combinatorial structure. In this paper, we provide a series of results for the general
CPE problem. We present general learning algorithms which work for all decision classes
that admit offline maximization oracles in both fixed confidence and fixed budget settings.
We prove problem-dependent upper bounds of our algorithms. Our analysis exploits the
combinatorial structures of the decision classes and introduces a new analytic tool. We also
establish a general problem-dependent lower bound for the CPE problem. Our results show
that the proposed algorithms achieve the optimal sample complexity (within logarithmic
factors) for many decision classes. In addition, applying our results back to the problems
of top-K arms identification and multiple bandit best arms identification, we recover the
best available upper bounds up to constant factors and partially resolve a conjecture on the
lower bounds.

1 Introduction
Multi-armed bandit (MAB) is a predominant model for characterizing the tradeoff between explo-
ration and exploitation in decision-making problems. Although this is an intrinsic tradeoff in many
tasks, some application domains prefer a dedicated exploration procedure in which the goal is to
identify an optimal object among a collection of candidates and the reward or loss incurred during
exploration is irrelevant. In light of these applications, the related learning problem, called pure ex-
ploration in MABs, has received much attention. Recent advances in pure exploration MABs have
found potential applications in many domains including crowdsourcing, communication network
and online advertising.

In many of these application domains, a recurring problem is to identify the optimal object with
certain combinatorial structure. For example, a crowdsourcing application may want to find the best
assignment from workers to tasks such that overall productivity of workers is maximized. A network
routing system during the initialization phase may try to build a spanning tree that minimizes the
delay of links, or attempts to identify the shortest path between two sites. An online advertising
system may be interested in finding the best matching between ads and display slots. The literature
of pure exploration MAB problems lacks a framework that encompasses these kinds of problems
where the object of interest has a non-trivial combinatorial structure. Our paper contributes such
a framework which accounts for general combinatorial structures, and develops a series of results,
including algorithms, upper bounds and lower bounds for the framework.

In this paper, we formulate the combinatorial pure exploration (CPE) problem for stochastic multi-
armed bandits. In the CPE problem, a learner has a fixed set of arms and each arm is associated with
an unknown reward distribution. The learner is also given a collection of sets of arms called decision
class, which corresponds to a collection of certain combinatorial structures. During the exploration
period, in each round the learner chooses an arm to play and observes a random reward sampled from
∗This work was done when the first two authors were interns at Microsoft Research Asia.

1

the associated distribution. The objective is when the exploration period ends, the learner outputs a
member of the decision class that she believes to be optimal, in the sense that the sum of expected
rewards of all arms in the output set is maximized among all members in the decision class.

The CPE framework represents a rich class of pure exploration problems. The conventional pure ex-
ploration problem in MAB, whose objective is to find the single best arm, clearly fits into this frame-
work, in which the decision class is the collection of all singletons. This framework also naturally
encompasses several recent extensions, including the problem of finding the topK arms (henceforth
TOPK) [18, 19, 8, 20, 31] and the multi-bandit problem of finding the best arms simultaneously
from several disjoint sets of arms (henceforth MB) [12, 8]. Further, this framework covers many
more interesting cases where the decision classes correspond to collections of non-trivial combina-
torial structures. For example, suppose that the arms represent the edges in a graph. Then a decision
class could be the set of all paths between two vertices, all spanning trees or all matchings of the
graph. And, in these cases, the objectives of CPE become identifying the optimal paths, spanning
trees and matchings through bandit explorations, respectively. To our knowledge, there are no results
available in the literature for these pure exploration tasks.

The CPE framework raises several interesting challenges to the design and analysis of pure explo-
ration algorithms. One challenge is that, instead of solving each type of CPE task in an ad-hoc way,
one requires a unified algorithm and analysis that support different decision classes. Another chal-
lenge stems from the combinatorial nature of CPE, namely that the optimal set may contain some
arms with very small expected rewards (e.g., it is possible that a maximum matching contains the
edge with the smallest weight); hence, arms cannot be eliminated simply based on their own re-
wards in the learning algorithm or ignored in the analysis. This differs from many existing approach
of pure exploration MABs. Therefore, the design and analysis of algorithms for CPE demands novel
techniques which take both rewards and combinatorial structures into account.

Our results. In this paper, we propose two novel learning algorithms for general CPE problem: one
for the fixed confidence setting and one for the fixed budget setting. Both algorithms support a wide
range of decision classes in a unified way. In the fixed confidence setting, we present Combinatorial
Lower-Upper Confidence Bound (CLUCB) algorithm. The CLUCB algorithm does not need to know
the definition of the decision class, as long as it has access to the decision class through a maximiza-
tion oracle. We upper bound the number of samples used by CLUCB. This sample complexity bound
depends on both the expected rewards and the structure of decision class. Our analysis relies on a
novel combinatorial construction called exchange class, which may be of independent interest for
other combinatorial optimization problems. Specializing our result to TOPK and MB, we recover
the best available sample complexity bounds [19, 13, 20] up to constant factors. While for other de-
cision classes in general, our result establishes the first sample complexity upper bound. We further
show that CLUCB can be easily extended to the fixed budget setting and PAC learning setting and
we provide related theoretical guarantees in the supplementary material.

Moreover, we establish a problem-dependent sample complexity lower bound for the CPE problem.
Our lower bound shows that the sample complexity of the proposed CLUCB algorithm is optimal
(to within logarithmic factors) for many decision classes, including TOPK, MB and the decision
classes derived from matroids (e.g., spanning tree). Therefore our upper and lower bounds provide
a nearly full characterization of the sample complexity of these CPE problems. For more general
decision classes, our results show that the upper and lower bounds are within a relatively benign
factor. To the best of our knowledge, there are no problem-dependent lower bounds known for pure
exploration MABs besides the case of identifying the single best arm [24, 1]. We also notice that
our result resolves the conjecture of Bubeck et al. [8] on the problem-dependent sample complexity
lower bounds of TOPK and MB problems, for the cases of Gaussian reward distributions.

In the fixed budget setting, we present a parameter-free algorithm called Combinatorial Successive
Accept Reject (CSAR) algorithm. We prove a probability of error bound of the CSAR algorithm. This
bound can be shown to be equivalent to the sample complexity bound of CLUCB within logarithmic
factors, although the two algorithms are based on quite different techniques. Our analysis of CSAR
re-uses exchange classes as tools. This suggests that exchange classes may be useful for analyzing
similar problems. In addition, when applying the algorithm to back TOPK and MB, our bound
recovers the best known result in the fixed budget setting due to Bubeck et al. [8] up to constant
factors.

2

2 Problem Formulation
In this section, we formally define the CPE problem. Suppose that there are n arms and the arms
are numbered 1, 2, . . . , n. Assume that each arm e ∈ [n] is associated with a reward distribution
ϕe. Let w =

(
w(1), . . . , w(n)

)T
denote the vector of expected rewards, where each entry w(e) =

EX∼ϕe [X] denotes the expected reward of arm e. Following standard assumptions of stochastic
MABs, we assume that all reward distributions have R-sub-Gaussian tails for some known constant
R > 0. Formally, if X is a random variable drawn from ϕe for some e ∈ [n], then, for all t ∈ R,
one has E

[
exp(tX − tE[X])

]
≤ exp(R2t2/2). It is known that the family of R-sub-Gaussian tail

distributions encompasses all distributions that are supported on [0, R] as well as many unbounded
distributions such as Gaussian distributions with variance R2 (see e.g., [27, 28]).

We define a decision classM⊆ 2[n] as a collection of sets of arms. LetM∗ = arg maxM∈M w(M)
denote the optimal member of the decision classMwhich maximizes the sum of expected rewards1.
A learner’s objective is to identify M∗ fromM by playing the following game with the stochastic
environment. At the beginning of the game, the decision class M is revealed to the learner while
the reward distributions {ϕe}e∈[n] are unknown to her. Then, the learner plays the game over a
sequence of rounds; in each round t, she pulls an arm pt ∈ [n] and observes a reward sampled
from the associated reward distribution ϕpt . The game continues until certain stopping condition is
satisfied. After the game finishes, the learner need to output a set Out ∈M.

We consider two different stopping conditions of the game, which are known as fixed confidence
setting and fixed budget setting in the literature. In the fixed confidence setting, the learner can stop
the game at any round. She need to guarantee that Pr[Out = M∗] ≥ 1 − δ for a given confidence
parameter δ. The learner’s performance is evaluated by her sample complexity, i.e., the number of
pulls used by the learner. In the fixed budget setting, the game stops after a fixed number T of rounds,
where T is given before the game starts. The learner tries to minimize the probability of error, which
is formally Pr[Out 6= M∗], within T rounds. In this setting, her performance is measured by the
probability of error.

3 Algorithm, Exchange Class and Sample Complexity
In this section, we present Combinatorial Lower-Upper Confidence Bound (CLUCB) algorithm, a
learning algorithm for the CPE problem in the fixed confidence setting, and analyze its sample com-
plexity. En route to our sample complexity bound, we introduce the notions of exchange classes and
the widths of decision classes, which play an important role in the analysis and sample complexity
bound. Furthermore, the CLUCB algorithm can be extended to the fixed budget and PAC learning
settings, the discussion of which is included in the supplementary material (Appendix B).

Oracle. We allow the CLUCB algorithm to access a maximization oracle. A maximization oracle
takes a weight vector v ∈ Rn as input and finds an optimal set from a given decision classM with
respect to the weight vector v. Formally, we call a function Oracle: Rn →M a maximization oracle
forM if, for all v ∈ Rn, we have Oracle(v) ∈ arg maxM∈M v(M). It is clear that a wide range
of decision classes admit such maximization oracles, including decision classes corresponding to
collections of matchings, paths or bases of matroids (see later for concrete examples). Besides the
access to the oracle, CLUCB does not need any additional knowledge of the decision classM.

Algorithm. Now we describe the details of CLUCB, as shown in Algorithm 1. During its execution,
the CLUCB algorithm maintains empirical mean w̄t(e) and confidence radius radt(e) for each arm
e ∈ [n] and each round t. The construction of confidence radius ensures that |w(e) − w̄t(e)| ≤
radt(e) holds with high probability for each arm e ∈ [n] and each round t > 0. CLUCB begins
with an initialization phase in which each arm is pulled once. Then, at round t ≥ n, CLUCB uses
the following procedure to choose an arm to play. First, CLUCB calls the oracle which finds the
set Mt = Oracle(w̄t). The set Mt is the “best” set with respect to the empirical means w̄t. Then,
CLUCB explores possible refinements of Mt. In particular, CLUCB uses the confidence radius to
compute an adjusted expectation vector w̃t in the following way: for each arm e ∈ Mt, w̃t(e) is
equal to to the lower confidence bound w̃t(e) = w̄t(e)− radt(e); and for each arm e 6∈Mt, w̃t(e) is
equal to the upper confidence bound w̃t(e) = w̄t(e) + radt(e). Intuitively, the adjusted expectation
vector w̃t penalizes arms belonging to the current set Mt and encourages exploring arms out of

1We define v(S) ,
∑

i∈S v(i) for any vector v ∈ Rn and any set S ⊆ [n]. In addition, for convenience,
we will assume that M∗ is unique.

3

Algorithm 1 CLUCB: Combinatorial Lower-Upper Confidence Bound
Require: Confidence δ ∈ (0, 1); Maximization oracle: Oracle(·) : Rn →M

Initialize: Play each arm e ∈ [n] once. Initialize empirical means w̄n and set Tn(e)← 1 for all e.
1: for t = n, n+ 1, . . . do
2: Mt ← Oracle(w̄t)
3: Compute confidence radius radt(e) for all e ∈ [n] . radt(e) is defined later in Theorem 1
4: for e = 1, . . . , n do
5: if e ∈Mt then w̃t(e)← w̄t(e)− radt(e)
6: else w̃t(e)← w̄t(e) + radt(e)

7: M̃t ← Oracle(w̃t)

8: if w̃t(M̃t) = w̃t(Mt) then
9: Out←Mt

10: return Out
11: pt ← arg maxe∈(M̃t\Mt)∪(Mt\M̃t)

radt(e) . break ties arbitrarily
12: Pull arm pt and observe the reward
13: Update empirical means w̄t+1 using the observed reward
14: Update number of pulls: Tt+1(pt)← Tt(pt) + 1 and Tt+1(e)← Tt(e) for all e 6= pt

Mt. CLUCB then calls the oracle using the adjusted expectation vector w̃t as input to compute a
refined set M̃t = Oracle(w̃t). If w̃t(M̃t) = w̃t(Mt) then CLUCB stops and returns Out = Mt.
Otherwise, CLUCB pulls the arm that belongs to the symmetric difference between Mt and M̃t and
has the largest confidence radius (intuitively the largest uncertainty). This ends the t-th round of
CLUCB. We note that CLUCB generalizes and unifies the ideas of several different fixed confidence
algorithms dedicated to the TOPK and MB problems in the literature [19, 13, 20].
3.1 Sample complexity
Now we establish a problem-dependent sample complexity bound of the CLUCB algorithm. To for-
mally state our result, we need to introduce several notions.

Gap. We begin with defining a natural hardness measure of the CPE problem. For each arm e ∈ [n],
we define its gap ∆e as

∆e =

{
w(M∗)−maxM∈M:e∈M w(M) if e 6∈M∗,
w(M∗)−maxM∈M:e 6∈M w(M) if e ∈M∗,

(1)

where we adopt the convention that the maximum value of an empty set is −∞. We also define the
hardness H as the sum of inverse squared gaps

H =
∑
e∈[n]

∆−2
e . (2)

We see that, for each arm e 6∈ M∗, the gap ∆e represents the sub-optimality of the best set that
includes arm e; and, for each arm e ∈M∗, the gap ∆e is the sub-optimality of the best set that does
not include arm e. This naturally generalizes and unifies previous definitions of gaps [1, 12, 18, 8].

Exchange class and the width of a decision class. A notable challenge of our analysis stems from
the generality of CLUCB which, as we have seen, supports a wide range of decision classes M.
Indeed, previous algorithms for special cases including TOPK and MB require a separate analysis
for each individual type of problem. Such strategy is intractable for our setting and we need a unified
analysis for all decision classes. Our solution to this challenge is a novel combinatorial construction
called exchange class, which is used as a proxy for the structure of the decision class. Intuitively,
an exchange class B for a decision class M can be seen as a collection of “patches” (borrowing
concepts from source code management) such that, for any two different sets M,M ′ ∈M, one can
transform M to M ′ by applying a series of patches of B; and each application of a patch yields a
valid member ofM. These patches are later used by our analysis to build gadgets that interpolate
between different members of the decision class and serve to bridge key quantities. Furthermore, the
maximum patch size of B will play an important role in our sample complexity bound.

Now we formally define the exchange class. We begin with the definition of exchange sets, which
formalize the aforementioned “patches”. We define an exchange set b as an ordered pair of disjoint
sets b = (b+, b−) where b+ ∩ b− = ∅ and b+, b− ⊆ [n]. Then, we define operator ⊕ such that, for
any set M ⊆ [n] and any exchange set b = (b+, b−), we have M ⊕ b , M\b− ∪ b+. Similarly, we
also define operator 	 such that M 	 b ,M\b+ ∪ b−.

4

We call a collection of exchange sets B an exchange class forM if B satisfies the following property.
For any M,M ′ ∈ M such that M 6= M ′ and for any e ∈ (M\M ′), there exists an exchange set
(b+, b−) ∈ B which satisfies five constraints: (a) e ∈ b−, (b) b+ ⊆ M ′\M , (c) b− ⊆ M\M ′, (d)
(M ⊕ b) ∈M and (e) (M ′ 	 b) ∈M.

Intuitively, constraints (b) and (c) resemble the concept of patches in the sense that b+ contains
only the “new” elements from M ′ and b− contains only the “old” elements of M ; constraints (d)
and (e) allow one to transform M one step closer to M ′ by applying a patch b ∈ B to yield (M ⊕
b) ∈ M (and similarly for M ′ 	 b). These transformations are the basic building blocks in our
analysis. Furthermore, as we will see later in our examples, for many decision classes, there are
exchange classes representing natural combinatorial structures, e.g., augmenting paths and cycles of
matchings.

In our analysis, the key quantity of exchange class is called width, which is defined as the size of the
largest exchange set as follows

width(B) = max
(b+,b−)∈B

|b+|+ |b−|. (3)

Let Exchange(M) denote the family of all possible exchange classes forM. We define the width
of a decision classM as the width of the thinnest exchange class

width(M) = min
B∈Exchange(M)

width(B). (4)

Sample complexity. Our main result of this section is a problem-dependent sample complexity
bound of the CLUCB algorithm which show that, with high probability, CLUCB returns the optimal
set M∗ and uses at most Õ

(
width(M)2H

)
samples.

Theorem 1. Given any δ ∈ (0, 1), any decision classM⊆ 2[n] and any expected rewardsw ∈ Rn.
Assume that the reward distribution ϕe for each arm e ∈ [n] has meanw(e) with anR-sub-Gaussian

tail. Let M∗ = arg maxM∈M w(M) denote the optimal set. Set radt(e) = R
√

2 log
(

4nt3

δ

)
/Tt(e)

for all t > 0 and e ∈ [n]. Then, with probability at least 1− δ, the CLUCB algorithm (Algorithm 1)
returns the optimal set Out = M∗ and

T ≤ O
(
R2 width(M)2H log

(
nR2H/δ

))
, (5)

where T denotes the number of samples used by Algorithm 1, H is defined in Eq. (2) and width(M)
is defined in Eq. (4).

3.2 Examples of decision classes
Now we investigate several concrete types of decision classes, which correspond to different CPE
tasks. We analyze the width of these decision classes and apply Theorem 1 to obtain the sample
complexity bounds. A detailed analysis and the constructions of exchange classes can be found in
the supplementary material (Appendix F). We begin with the problems of top-K arm identification
(TOPK) and multi-bandit best arms identification (MB).

Example 1 (TOPK and MB). For any K ∈ [n], the problem of finding the top K arms with the
largest expected reward can be modeled by decision classMTOPK(K) = {M ⊆ [n] |

∣∣M ∣∣ = K}.
Let A = {A1, . . . , Am} be a partition of [n]. The problem of identifying the best arms from each
group of arms A1, . . . , Am can be modeled by decision class MMB(A) = {M ⊆ [n] | ∀i ∈
[m], |M ∩ Ai| = 1}. Note that maximization oracles for these two decision classes are trivially the
functions of returning the top k arms or the best arms of each group.

Then we have width(MTOPK(K)) ≤ 2 and width(MMB(A)) ≤ 2 (see Fact 2 and 3 in the sup-
plementary material) and therefore the sample complexity of CLUCB for solving TOPK and MB is
O
(
H log(nH/δ)

)
, which matches previous results in the fixed confidence setting [19, 13, 20] up to

constant factors.

Next we consider the problem of identifying the maximum matching and the problem of finding
the shortest path (by negating the rewards), in a setting where arms correspond to edges. For these
problems, Theorem 1 establishes the first known sample complexity bound.

5

Example 2 (Matchings and Paths). LetG(V,E) be a graph with n edges and assume there is a one-
to-one mapping between edgesE and arms [n]. Suppose thatG is a bipartite graph. LetMMATCH(G)

correspond to the set of all matchings in G. Then we have width(MMATCH(G)) ≤ |V | (In fact, we
construct an exchange class corresponding to the collection of augmenting cycles and augmenting
paths of G; see Fact 4).

Next suppose that G is a directed acyclic graph and let s, t ∈ V be two vertices. LetMPATH(G,s,t)

correspond to the set of all paths from s to t. Then we have width(MPATH(G,s,t)) ≤ |V | (In fact,
we construct an exchange class corresponding to the collection of disjoint pairs of paths; see
Fact 5). Therefore the sample complexity bounds of CLUCB for decision classes MMATCH(G) and
MPATH(G,s,t) are O

(
|V |2H log(nH/δ)

)
.

Last, we investigate the general problem of identifying the maximum-weight basis of a matroid.
Again, Theorem 1 is the first sample complexity upper bound for this type of pure exploration tasks.

Example 3 (Matroids). Let T = (E, I) be a finite matroid, where E is a set of size n (called
ground set) and I is a family of subsets of E (called independent sets) which satisfies the axioms of
matroids (see Footnote 3 in Appendix F). Assume that there is a one-to-one mapping between E and
[n]. Recall that a basis of matroid T is a maximal independent set. Let MMATROID(T) correspond
to the set of all bases of T . Then we have width(MMATROID(T)) ≤ 2 (derived from strong basis
exchange property of matroids; see Fact 1) and the sample complexity of CLUCB forMMATROID(T)

is O
(
H log(nH/δ)

)
.

The last example MMATROID(T) is a general type of decision class which encompasses many pure
exploration tasks including TOPK and MB as special cases, where TOPK corresponds to uniform
matroids of rank K and MB corresponds to partition matroids. It is easy to see thatMMATROID(T)

also covers the decision class that contains all spanning trees of a graph. On the other hand, it has
been established that matchings and paths cannot be formulated as matroids since they are matroid
intersections [26].

4 Lower Bound
In this section, we present a problem-dependent lower bound on the sample complexity of the CPE
problem. To state our results, we first define the notion of δ-correct algorithm as follows. For any
δ ∈ (0, 1), we call an algorithm A a δ-correct algorithm if, for any expected reward w ∈ Rn, the
probability of error of A is at most δ, i.e., Pr[M∗ 6= Out] ≤ δ, where Out is the output of A.

We show that, for any decision classM and any expected rewards w, a δ-correct algorithm A must
use at least Ω

(
H log(1/δ)

)
samples in expectation.

Theorem 2. Fix any decision class M ⊆ 2[n] and any vector w ∈ Rn. Suppose that, for each
arm e ∈ [n], the reward distribution ϕe is given by ϕe = N (w(e), 1), where we let N (µ, σ2)
denote Gaussian distribution with mean µ and variance σ2. Then, for any δ ∈ (0, e−16/4) and any
δ-correct algorithm A, we have

E[T] ≥ 1

16
H log

(
1

4δ

)
, (6)

where T denote the number of total samples used by algorithm A and H is defined in Eq. (2).

In Example 1 and Example 3, we have seen that the sample complexity of CLUCB is
O(H log(nH/δ)) for pure exploration tasks including TOPK, MB and more generally the CPE
tasks with decision classes derived from matroids, i.e., MMATROID(T) (including spanning trees).
Hence, our upper and lower bound show that the CLUCB algorithm achieves the optimal sample
complexity within logarithmic factors for these pure exploration tasks. In addition, we remark that
Theorem 2 resolves the conjecture of Bubeck et al. [8] that the lower bounds of sample complexity
of TOPK and MB problems are Ω

(
H log(1/δ)

)
, for the cases of Gaussian reward distributions.

On the other hand, for general decision classes with non-constant widths, we see that there is a gap of
Θ̃(width(M)2) between the upper bound Eq. (5) and the lower bound Eq. (6). Notice that we have
width(M) ≤ n for any decision classM and therefore the gap is relatively benign. Our lower bound
also suggests that the dependency on H of the sample complexity of CLUCB cannot be improved up
to logarithmic factors. Furthermore, we conjecture that the sample complexity lower bound might
inherently depend on the size of exchange sets. In the supplementary material (Appendix C.2), we

6

provide evidences on this conjecture which is a lower bound on the sample complexity of exploration
of the exchange sets.

5 Fixed Budget Algorithm
In this section, we present Combinatorial Successive Accept Reject (CSAR) algorithm, which is a
parameter-free learning algorithm for the CPE problem in the fixed budget setting. Then, we upper
bound the probability of error CSAR in terms of gaps and width(M).

Constrained oracle. The CSAR algorithm requires access to a constrained oracle, which is a func-
tion denoted as COracle : Rn × 2[n] × 2[n] →M∪ {⊥} and satisfies

COracle(v, A,B) =

{
arg maxM∈MA,B

v(M) ifMA,B 6= ∅
⊥ ifMA,B = ∅,

(7)

where we define MA,B = {M ∈ M | A ⊆ M,B ∩M = ∅} as the collection of feasible sets
and ⊥ is a null symbol. Hence we see that COracle(v, A,B) returns an optimal set that includes all
elements of A while excluding all elements of B; and if there are no feasible sets, the constrained
oracle COracle(v, A,B) returns the null symbol ⊥. In the supplementary material (Appendix G),
we show that constrained oracles are equivalent to maximization oracles up to a transformation on
the weight vector. In addition, similar to CLUCB, CSAR does not need any additional knowledge of
M other than accesses to a constrained oracle forM.

Algorithm. The idea of the CSAR algorithm is as follows. The CSAR algorithm divides the budget
of T rounds into n phases. In the end of each phase, CSAR either accepts or rejects a single arm. If
an arm is accepted, then it is included into the final output. Conversely, if an arm is rejected, then it
is excluded from the final output. The arms that are neither accepted nor rejected are sampled for an
equal number of times in the next phase.

Now we describe the procedure of the CSAR algorithm for choosing an arm to accept/reject. Let
At denote the set of accepted arms before phase t and let Bt denote the set of rejected arms before
phase t. We call an arm e to be active if e 6∈ At ∪ Bt. In the beginning of phase t, CSAR samples
each active arm for T̃t − T̃t−1 times, where the definition of T̃t is given in Algorithm 2. Next,
CSAR calls the constrained oracle to compute an optimal setMt with respect to the empirical means
w̄t, accepted arms At and rejected arms Bt, i.e., Mt = COracle(w̄t, At, Bt). It is clear that the
output of COracle(w̄t, At, Bt) is independent from the input w̄t(e) for any e ∈ At ∪Bt. Then, for
each active arm e, CSAR estimates the “empirical gap” of e in the following way. If e ∈ Mt, then
CSAR computes an optimal set M̃t,e that does not include e, i.e., M̃t,e = COracle(w̄t, At, Bt ∪
{e}). Conversely, if e 6∈ Mt, then CSAR computes an optimal M̃t,e which includes e, i.e., M̃t,e =

COracle(w̄t, At∪{e}, Bt). Then, the empirical gap of e is calculated as w̄t(Mt)−w̄t(M̃t,e). Finally,
CSAR chooses the arm pt which has the largest empirical gap. If pt ∈ Mt then pt is accepted,
otherwise pt is rejected. The pseudo-code CSAR is shown in Algorithm 2. We note that CSAR can
be considered as a generalization of the ideas of the two versions of SAR algorithm due to Bubeck
et al. [8], which are designed specifically for the TOPK and MB problems respectively.

5.1 Probability of error
In the following theorem, we bound the probability of error of the CSAR algorithm.
Theorem 3. Given any T > n, any decision class M ⊆ 2[n] and any expected rewards w ∈
Rn. Assume that the reward distribution ϕe for each arm e ∈ [n] has mean w(e) with an R-sub-
Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n (defined in Eq. (1)) such that
∆(1) ≤∆(n). Define H2 , maxi∈[n] i∆

−2
(i) . Then, the CSAR algorithm uses at most T

samples and outputs a solution Out ∈M∪ {⊥} such that

Pr[Out 6= M∗] ≤ n2 exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
, (8)

where ˜log(n) ,
∑n
i=1 i

−1, M∗ = arg maxM∈M w(M) and width(M) is defined in Eq. (4).
One can verify that H2 is equivalent to H up to a logarithmic factor: H2 ≤ H ≤ log(2n)H2 (see
[1]). Therefore, by setting the probability of error (the RHS of Eq. (8)) to a constant, one can see
that CSAR requires a budget of T = Õ(width(M)2H) samples. This is equivalent to the sample
complexity bound of CLUCB up to logarithmic factors. In addition, applying Theorem 3 back to
TOPK and MB, our bound matches the previous fixed budget algorithm due to Bubeck et al. [8].

7

Algorithm 2 CSAR: Combinatorial Successive Accept Reject
Require: Budget: T > 0; Constrained oracle: COracle : Rn × 2[n] × 2[n] →M∪ {⊥}.
1: Define ˜log(n) ,

∑n
i=1

1
i

2: T̃0 ← 0, A1 ← ∅, B1 ← ∅
3: for t = 1, . . . , n do
4: T̃t ←

⌈
T−n

˜log(n)(n−t+1)

⌉
5: Pull each arm e ∈ [n]\(At ∪Bt) for T̃t − T̃t−1 times
6: Update the empirical means w̄t for each arm e ∈ [n]\(At ∪Bt) . set w̄t(e) = 0, ∀e ∈ At ∪Bt

7: Mt ← COracle(w̄t, At, Bt)
8: if Mt = ⊥ then
9: fail: set Out← ⊥ and return Out

10: for each e ∈ [n]\(At ∪Bt) do
11: if e ∈Mt then M̃t,e ← COracle(w̄t, At, Bt ∪ {e})
12: else M̃t,e ← COracle(w̄t, At ∪ {e}, Bt)

13: pt ← arg maxe∈[n]\(At∪Bt)
w̄t(Mt)− w̄t(M̃t,e) . define w̄t(⊥) = −∞; break ties arbitrarily

14: if pt ∈Mt then
15: At+1 ← At ∪ {pt}, Bt+1 ← Bt

16: else
17: At+1 ← At, Bt+1 ← Bt ∪ {pt}
18: Out← An+1

19: return Out

6 Related Work
The multi-armed bandit problem has been extensively studied in both stochastic and adversarial
settings [22, 3, 2]. We refer readers to [5] for a survey on recent advances. Many work in MABs focus
on minimizing the cumulative regret, which is an objective known to be fundamentally different
from the objective of pure exploration MABs [6]. Among these work, a recent line of research
considers a generalized setting called combinatorial bandits in which a set of arms (satisfying certain
combinatorial constraints) are played on each round [9, 17, 25, 7, 10, 14, 23, 21]. Note that the
objective of these work is to minimize the cumulative regret, which differs from ours.

In the literature of pure exploration MABs, the classical problem of identifying the single best arm
has been well-studied in both fixed confidence and fixed budget settings [24, 11, 6, 1, 13, 15, 16].
A flurry of recent work extend this classical problem to TOPK and MB problems and obtain algo-
rithms with upper bounds [18, 12, 13, 19, 8, 20, 31] and worst-case lower bounds of TOPK [19, 31].
Our framework encompasses these two problems as special cases and covers a much larger class of
combinatorial pure exploration problems, which have not been addressed in current literature. Ap-
plying our results back to TOPK and MB, our upper bounds match best available problem-dependent
bounds up to constant factors [13, 19, 8] in both fixed confidence and fixed budget settings; and our
lower bound is the first proven problem-dependent lower bound for these two problems, which are
conjectured earlier by Bubeck et al. [8].

7 Conclusion
In this paper, we proposed a general framework called combinatorial pure exploration (CPE) that
can handle pure exploration tasks for many complex bandit problems with combinatorial constraints,
and have potential applications in various domains. We have shown a number of results for the
framework, including two novel learning algorithms, their related upper bounds and a novel lower
bound. The proposed algorithms support a wide range of decision classes in a unifying way and our
analysis introduced a novel tool called exchange class, which may be of independent interest. Our
upper and lower bounds characterize the complexity of the CPE problem: the sample complexity of
our algorithm is optimal (up to a logarithmic factor) for the decision classes derived from matroids
(including TOPK and MB), while for general decision classes, our upper and lower bounds are
within a relatively benign factor.

Acknowledgments. The work described in this paper was partially supported by the National Grand
Fundamental Research 973 Program of China (No. 2014CB340401 and No. 2014CB340405), the
Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.
CUHK 413212 and CUHK 415113), and Microsoft Research Asia Regional Seed Fund in Big Data
Research (Grant No. FY13-RES-SPONSOR-036).

8

References
[1] J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In COLT, 2010.
[2] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit problem. Machine

learning, 47(2-3):235–256, 2002.
[3] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic multiarmed bandit problem.

SIAM Journal on Computing, 32(1):48–77, 2002.
[4] C. Berge. Two theorems in graph theory. PNAS, 1957.
[5] S. Bubeck and N. Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit

problems. Foundations and Trends in Machine Learning, 5:1–122, 2012.
[6] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in finitely-armed and continuous-armed bandits.

Theoretical Computer Science, 412:1832–1852, 2010.
[7] S. Bubeck, N. Cesa-bianchi, S. M. Kakade, S. Mannor, N. Srebro, and R. C. Williamson. Towards mini-

max policies for online linear optimization with bandit feedback. In COLT, 2012.
[8] S. Bubeck, T. Wang, and N. Viswanathan. Multiple identifications in multi-armed bandits. In ICML,

pages 258–265, 2013.
[9] N. Cesa-Bianchi and G. Lugosi. Combinatorial bandits. JCSS, 78(5):1404–1422, 2012.

[10] W. Chen, Y. Wang, and Y. Yuan. Combinatorial multi-armed bandit: General framework and applications.
In ICML, pages 151–159, 2013.

[11] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions for the multi-armed
bandit and reinforcement learning problems. JMLR, 2006.

[12] V. Gabillon, M. Ghavamzadeh, A. Lazaric, and S. Bubeck. Multi-bandit best arm identification. In NIPS.
2011.

[13] V. Gabillon, M. Ghavamzadeh, and A. Lazaric. Best arm identification: A unified approach to fixed budget
and fixed confidence. In NIPS, 2012.

[14] A. Gopalan, S. Mannor, and Y. Mansour. Thompson sampling for complex online problems. In ICML,
pages 100–108, 2014.

[15] K. Jamieson and R. Nowak. Best-arm identification algorithms for multi-armed bandits in the fixed
confidence setting. In Information Sciences and Systems (CISS), pages 1–6. IEEE, 2014.

[16] K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck. lil’UCB: An optimal exploration algorithm for
multi-armed bandits. COLT, 2014.

[17] S. Kale, L. Reyzin, and R. E. Schapire. Non-stochastic bandit slate problems. In NIPS, 2010.
[18] S. Kalyanakrishnan and P. Stone. Efficient selection of multiple bandit arms: Theory and practice. In

ICML, pages 511–518, 2010.
[19] S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone. PAC subset selection in stochastic multi-armed

bandits. In ICML, pages 655–662, 2012.
[20] E. Kaufmann and S. Kalyanakrishnan. Information complexity in bandit subset selection. In COLT, 2013.
[21] B. Kveton, Z. Wen, A. Ashkan, H. Eydgahi, and B. Eriksson. Matroid bandits: Fast combinatorial opti-

mization with learning. In UAI, 2014.
[22] T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules. Advances in applied mathe-

matics, 6(1):4–22, 1985.
[23] T. Lin, B. Abrahao, R. Kleinberg, J. Lui, and W. Chen. Combinatorial partial monitoring game with linear

feedback and its application. In ICML, 2014.
[24] S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit problem.

The Journal of Machine Learning Research, 5:623–648, 2004.
[25] G. Neu, A. György, and C. Szepesvári. The online loop-free stochastic shortest-path problem. In COLT,

pages 231–243, 2010.
[26] J. G. Oxley. Matroid theory. Oxford university press, 2006.
[27] D. Pollard. Asymptopia. Manuscript, Yale University, Dept. of Statist., New Haven, Connecticut, 2000.
[28] O. Rivasplata. Subgaussian random variables: An expository note. 2012.
[29] S. M. Ross. Stochastic processes, volume 2. John Wiley & Sons New York, 1996.
[30] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies with rocketfuel. ACM SIGCOMM

Computer Communication Review, 32(4):133–145, 2002.
[31] Y. Zhou, X. Chen, and J. Li. Optimal PAC multiple arm identification with applications to crowdsourcing.

In ICML, 2014.

9

Organization

This supplementary material is organized as follows. First, we provide the deferred proofs of The-
orem 1 (Appendix A). Then, we present two simple extensions of CLUCB: one to the fixed budget
setting and one to the PAC learning setting; and provide related analysis (Appendix B). Next, we
provide the deferred proof of our lower bound (Theorem 2) in Appendix C. In Appendix D, we
provide the deferred proof of Theorem 3. We also analyze the uniform allocation algorithm as a
simple benchmark in Appendix E. Afterwards, we provide the deferred discussion and construc-
tions of example decision classes and exchange classes in Appendix F. In Appendix G, we prove
the equivalence between the constrained oracles and maximization oracles. Finally, we present some
preliminary experimental results in Appendix H.

A Analysis of CLUCB (Theorem 1)

In this section, we analyze the sample complexity of CLUCB and prove Theorem 1.

Notations. Fix some decision classM⊆ 2[n] and fix some expected reward vectorw ∈ Rn. Recall
that M∗ = arg maxM∈M w(M) is the optimal set. Since we assume that M∗ is unique, one can
verify that, for every e ∈ [n], the gap defined in Eq. (1) is positive, i.e., ∆e > 0.

We will also need some additional notations for our analysis. For any set a ⊆ [n], let χa ∈ {0, 1}n
denote the incidence vector of set a ⊆ [n], i.e., χa(e) = 1 if and only if e ∈ a. For an exchange
set b = (b+, b−), we define χb , χb+ − χb− as the incidence vector of b. We notice that χb ∈
{−1, 0, 1}n.

For each round t, we define vector radt =
(

radt(1), . . . , radt(n)
)T

and recall that w̄t ∈ Rn is the
empirical mean rewards of arms up to round t.

Let u ∈ Rn and v ∈ Rn be two vectors. Let 〈u,v〉 denote the inner product of u and v. We
define u ◦ v ,

(
u(1) · v(1), . . . , u(n) · v(n)

)T
as the element-wise product of u and v. For any

s ∈ R, we also define us ,
(
u(1)s, . . . , u(n)s)T as the element-wise exponentiation of u. We let

|u| =
(
|u(1)|, . . . , |u(n)|

)T
denote the element-wise absolute value of u.

Finally, let us recall that for any exchange class b = (b+, b−) and any set M ⊆ [n], we have defined
M ⊕ b = M\b− ∪ b+ and M 	 b = M\b+ ∪ b−.

A.1 Preparatory Lemmas

Let us begin with a simple lemma that characterizes the incidence vectors of exchange sets.
Lemma 1. Let M1 ⊆ [n] be a set. Let b = (b+, b−) be an exchange set such that b− ⊆ M1 and
b+ ∩M1 = ∅. Define M2 = M1 ⊕ b. Then, we have

χM1
+ χb = χM2

.

In addition, we have M1 = M2 	 b.

Proof. Recall that M2 = M1\b− ∪ b+ and b+ ∩ b− = ∅. Therefore we see that M2\M1 = b+ and
M1\M2 = b−. We can decompose χM1

as χM1
= χM1\M2

+ χM1∩M2
. Hence, we have

χM1
+ χb = χM1\M2

+ χM1∩M2
+ χb+ − χb−

= χM1∩M2
+ χM2\M1

= χM2
.

Using the definition of operator 	, one can verify that M1 = M2 	 b.

The next lemma serves as a basic tool derived from exchange classes, which allows us to interpo-
late between different members of a decision classM. Moreover, it characterizes the relationship
between gaps and exchange sets. In Figure 1, we illustrate the intuitions of the interpolations char-
acterized in Lemma 2.

10

M M'

b-
b+

(a)

M M'

M⊕b
⊕b M'⊖b

⊖b

(b)

Figure 1: Illustration of Lemma 2: (a) A Venn diagram for the relationships among M,M ′, b−
and b+. Note that e ∈ b− ∪ b+. (b) An illustration for the relationships among M , M ′, M ⊕ b and
M ′ 	 b. We recall that M ⊕ b = M\b− ∪ b+ and M ′ 	 b = M ′\b+ ∪ b−. We use dotted line to
represent an application of Lemma 2 between two sets.

Lemma 2 (Interpolation Lemma). LetM ⊆ 2[n] and let B be an exchange class forM. Then, for
any two different membersM,M ′ ofM and any e ∈ (M\M ′)∪ (M ′\M), there exists an exchange
set b = (b+, b−) ∈ B which satisfies five constraints: (a) e ∈ (b+ ∪ b−), (b) b− ⊆ (M\M ′), (c)
b+ ⊆ (M ′\M), (d) (M ⊕ b) ∈ M and (e) (M ′ 	 b) ∈ M. Moreover, if M ′ = M∗, then we have
〈w,χb〉 ≥ ∆e, where ∆e is the gap defined in Eq. (1).

Proof. We decompose our proof into two cases.

Case (1): e ∈M\M ′.
By the definition of exchange class, we know that there exists b = (b+, b−) ∈ B which satisfies that
e ∈ b−, b− ⊆ (M\M ′), b+ ⊆ (M ′\M), (M ⊕ b) ∈ M and (M ′ 	 b) ∈ M. Therefore the five
constraints are satisfied.

Next, if M ′ = M∗, we see that e 6∈ M∗. Let us consider the set M1 = arg maxS∈M : e∈S w(S).
Note that, by the definition of gaps (Eq. (1)), one has w(M∗) − w(M1) = ∆e. Now we define
M0 = M∗	b. Note that we already haveM∗	b ∈M. By combining this with the fact that e ∈M0,
we see thatw(M0) ≤ maxS∈M : e∈S w(S) = w(M1). Therefore, we obtain thatw(M∗)−w(M0) ≥
w(M∗)−w(M1) = ∆e. Notice that the left-hand side of the former inequality can be rewritten using
Lemma 1 as follows

w(M∗)− w(M0) =
〈
w,χM∗

〉
−
〈
w,χM0

〉
=
〈
w,χM∗ − χM0

〉
= 〈w,χb〉 .

Therefore, we obtain 〈w,χb〉 ≥ ∆e.

Case (2): e ∈M ′\M .

Using the definition of exchange class, we see that there exists c = (c+, c−) ∈ B such that e ∈ c−,
c− ⊆ (M ′\M), c+ ⊆ (M\M ′), (M ′ ⊕ c) ∈M and (M 	 c) ∈M.

We construct b = (b+, b−) by setting b+ = c− and b− = c+. Notice that, by the construction of
b, we have M ⊕ b = M 	 c and M ′ 	 b = M ′ ⊕ c. Therefore, it is clear that b satisfies the five
constraints of the lemma.

Now, suppose that M ′ = M∗. In this case, we have e ∈ M∗. Consider the set M3 =
arg maxS∈M : e 6∈S w(S). By definition of ∆e, we see that w(M∗)− w(M3) = ∆e. Now we define
M2 = M∗ 	 b and notice that M2 ∈ M. By combining with the fact that e 6∈ M2, we obtain that
w(M2) ≤ maxS∈M : e 6∈S = w(M3). Hence, we have w(M∗)−w(M2) ≥ w(M∗)−w(M3) = ∆e.
Similar to Case (1), applying Lemma 1 again, we have

〈w,χb〉 = w(M∗)− w(M2) ≥ ∆e.

Next we state two basic lemmas that help us to convert set-theoretical arguments to linear algebraic
arguments.
Lemma 3. Let M,M ′ ⊆ [n] be two sets. Let radt be an n-dimensional vector with nonnegative
entries. Then, we have

max
e∈(M\M ′)∪(M ′\M)

radt(e) =
∥∥radt ◦ |χM ′ − χM |

∥∥
∞.

11

Proof. Notice that χM ′ − χM = χM ′\M − χM\M ′ . In addition, since (M ′\M) ∩ (M\M ′) = ∅,
we have χM ′\M ◦ χM\M ′ = 0n. Also notice that χM ′\M − χM\M ′ ∈ {−1, 0, 1}n. Therefore, we
have

|χM ′\M − χM\M ′ | = (χM ′\M − χM\M ′)2

= χ2
M ′\M + χ2

M\M ′ − 2χM ′\M ◦ χM\M ′
= χM ′\M + χM\M ′

= χ(M ′\M)∪(M\M ′),

where the third equation follows from the fact that χM\M ′ ∈ {0, 1}n and χM ′\M ∈ {0, 1}n. The
lemma follows immediately from the fact that radt(e) ≥ 0 and χ(M\M ′)∪(M ′\M) ∈ {0, 1}n.

Lemma 4. Let a, b, c ∈ Rn be three vectors. Then, we have 〈a, b ◦ c〉 = 〈a ◦ b, c〉.

Proof. We have

〈a, b ◦ c〉 =

n∑
i=1

a(i)
(
b(i)c(i)

)
=

n∑
i=1

(
a(i)b(i)

)
c(i) = 〈a ◦ b, c〉 .

The next lemma characterizes the property of w̃t which is defined in the CLUCB algorithm.

Lemma 5. Let Mt, w̃t and radt be defined in Algorithm 1 and Theorem 1. Let M ′ ∈ M be an
arbitrary member of decision class. We have

w̃t(M
′)− w̃t(Mt) =

〈
w̃t,χM ′ − χMt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, |χM ′ − χMt

|
〉
.

Proof. We begin with proving the first part. It is easy to verify that w̃t = w̄t+radt ◦ (1n−2χMt
).

Then, we have〈
w̃t,χM ′ − χMt

〉
=
〈
w̄t + radt ◦ (1n − 2χMt

), χM ′ − χMt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, (1n − 2χMt

) ◦ (χM ′ − χMt
)
〉

(9)

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,χM ′ − χMt

− 2χMt
◦ χM ′ + 2χ2

Mt

〉
=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,χ

2
M ′ − χ2

Mt
− 2χMt

◦ χM ′ + 2χ2
Mt

〉
(10)

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt, (χM ′ − χMt

)2
〉

=
〈
w̄t,χM ′ − χMt

〉
+
〈
radt,

∣∣χM ′ − χMt

∣∣〉 , (11)

where Eq. (9) follows from Lemma 4; Eq. (10) holds since χM ′ ∈ {0, 1}n and χMt
∈ {0, 1}n and

therefore χM ′ = χ2
M ′ and χMt

= χ2
Mt

; and Eq. (11) follows since χM ′ − χMt
∈ {−1, 0, 1}n.

A.2 Confidence Intervals

First, we recall a standard concentration inequality of sub-Gaussian random variables.

Lemma 6 (Hoeffding’s inequality). Let X1, . . . , Xn be n independent random variables such
that, for each i ∈ [n], random variable Xi − E[Xi] is R-sub-Gaussian distributed, i.e., ∀t ∈
R, E[exp(tXi − tE[Xi])] ≤ exp(R2t2/2). Let X̄ = 1

n

∑n
i=1Xi denote the average of these

random variables. Then, for any λ > 0, we have

Pr
[∣∣X̄ − E[X̄]

∣∣ ≥ λ] ≤ 2 exp

(
−nλ

2

2R2

)
.

12

Proof. For all i ∈ [n], we define vi = Xi − E[Xi]. We also define S =
∑n
i=1 vi and ε = nλ.

Therefore, for any t > 0, we have

Pr[S ≥ ε] = Pr[tS ≥ tε]
(a)
≤ E[exp(tS)]

exp(tε)
=

E[exp(
∑n
i=1 tvi)]

exp(tε)

(b)
=

∏n
i=1 E[exp(tvi)]

exp(tε)
≤
∏n
i=1 exp

(
R2t2/2

)
exp(tε)

= exp(nR2t2/2− tε),

where (a) follows from Markov’s inequality and (b) holds since v1, . . . , vn are independent. Now
minimizing over t > 0, we get

Pr[S ≥ ε] ≤ inf
t>0

exp(nR2t2/2− tε) = exp(−ε2/2nR2) = exp(−nλ2/2R2).

Similarly, one can show that Pr[S ≤ −ε] ≤ exp(−nλ2/2R2). Hence, the lemma follows from a
union bound.

Next, for all t > 0, we define random event ξt as follows

ξt =
{
∀i ∈ [n], |w(i)− w̄t(i)| < radt(i)

}
. (12)

We notice that random event ξt characterizes the event that the confidence bounds of all arms are
valid at round t.

If the confidence bounds are valid, we can generalize Eq. (12) to inner products as follows.

Lemma 7. Given any t > 0, assume that event ξt as defined in Eq. (12) occurs. Then, for any vector
a ∈ Rn, we have ∣∣ 〈w,a〉 − 〈w̄t,a〉

∣∣ < 〈radt, |a|〉 .

Proof. Suppose that ξt occurs. Then, we have∣∣ 〈w,a〉 − 〈w̄t,a〉
∣∣ =

∣∣ 〈w − w̄t,a〉
∣∣

=

∣∣∣∣∣
n∑
i=1

(
w(i)− w̄t(i)

)
a(i)

∣∣∣∣∣
≤

n∑
i=1

∣∣w(i)− w̄t(i)
∣∣|a(i)|

<

n∑
i=1

radt(i) · |a(i)| (13)

= 〈radt, |a|〉 ,

where Eq. (13) follows the definition of event ξt in Eq. (12) and the assumption that it occurs.

Next, we construct the high probability confidence intervals for the fixed confidence setting.

Lemma 8. Suppose that the reward distribution ϕe is aR-sub-Gaussian distribution for all e ∈ [n].
And if, for all t > 0 and all e ∈ [n], the confidence radius radt(e) is given by

radt(e) = R

√
2 log

(
4nt3

δ

)
Tt(e)

,

where Tt(e) is the number of samples of arm e up to round t. Then, we have

Pr

[∞⋂
t=1

ξt

]
≥ 1− δ.

13

Proof. Fix any t > 0 and e ∈ [n]. Note that ϕe is aR-sub-Gaussian tail distribution with mean w(e)
and w̄t(e) is the empirical mean of ϕe from Tt(e) samples. Then, we have

Pr

∣∣w̄t(e)− w(e)
∣∣ ≥ R

√
2 log

(
4nt3

δ

)
Tt(e)

 =

t−1∑
s=1

Pr

∣∣w̄t(e)− w(e)
∣∣ ≥ R

√
2 log

(
4nt3

δ

)
s

, Tt(e) = s

(14)

≤
t−1∑
s=1

δ

2nt3
(15)

≤ δ

2nt2
,

where Eq. (14) follows from the fact that 1 ≤ Tt(e) ≤ t− 1 and Eq. (15) follows from Hoeffding’s
inequality (Lemma 6). By a union bound over all e ∈ [n], we see that Pr[ξt] ≥ 1 − δ

2t2 . Using a
union bound again over all t > 0, we have

Pr

[∞⋂
t=1

ξt

]
≥ 1−

∞∑
t=1

Pr[¬ξt]

≥ 1−
∞∑
t=1

δ

2t2

= 1− π2

12
δ ≥ 1− δ.

A.3 Main Lemmas

Now we state our key technical lemmas. In these lemmas, we shall use Lemma 2 to construct gadgets
that interpolate between different members of a decision class. The first lemma shows that, if the
confidence intervals are valid, then CLUCB always returns the correct answer when it stops.
Lemma 9. Given any t > n, assume that event ξt (defined in Eq. (12)) occurs. Then, if Algorithm 1
terminates at round t, we have Mt = M∗.

Proof. Suppose that Mt 6= M∗. By the assumption that M∗ is the unique optimal set, we have
w(M∗) > w(Mt). Rewriting this inequality, we obtain that

〈
w,χM∗

〉
>
〈
w,χMt

〉
.

Let B be an exchange class forM. Applying Lemma 2 by setting M = Mt and M ′ = M∗, we see
that there exists b = (b+, b−) ∈ B such that (Mt ⊕ b) ∈M and 〈w,χb〉 > 0.

Now define M ′t = Mt ⊕ b. Recall that M̃t = arg maxM∈M w̃t(M) and therefore w̃t(M̃t) ≥
w̃t(M

′
t). Hence, we have

w̃t(M̃t)− w̃t(Mt) ≥ w̃t(M ′t)− w̃t(Mt)

=
〈
w̄t,χM ′t − χMt

〉
+
〈
radt, |χM ′ − χMt

|
〉

(16)

≥
〈
w,χM ′t − χMt

〉
(17)

= 〈w,χb〉 > 0, (18)

where Eq. (16) follows from Lemma 5; and Eq. (17) follows the assumption that event ξt occurs and
Lemma 7.

Therefore Eq. (18) shows that w̃t(M̃t) > w̃t(Mt). However, this contradicts to the stopping condi-
tion of CLUCB: w̃t(M̃t) = w̃t(Mt) and the assumption that the algorithm terminates on round t.

The next lemma shows that if the confidence interval of an arm is sufficiently small, then this arm
will not be played by the algorithm. In the proof, we construct a number of gadgets using Lemma 2.
We illustrate the relationships among the gadgets in Figure 2.

14

Mt

Mt'

Mt'⊕b

Mt
~⊖c

⊕b
M*

(a) Gadgets M ′t and M ′t ⊕ b for Case (1)

Mt
~

M*

Mt⊕b
~

⊕b

(b) Gadget M̃t ⊕ b for Case (2)

Figure 2: An illustration of the relationship among the gadgets used the proof of Lemma 10; We use
dotted line to represent an application of Lemma 2 between two sets.

Lemma 10. Given any t > 0 and suppose that event ξt (defined in Eq. (12)) occurs. For any e ∈ [n],
if radt(e) <

∆e

3 width(M) , then, arm e will not be pulled on round t, i.e., pt 6= e.

Proof. We prove by contradiction. Therefore we shall assume the opposite that pt = e in the rest of
the proof.

First let us fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′). Note that width(B) =

width(M). By Lemma 2, there exists an exchange set c = (c+, c−) ∈ B such that e ∈ (c+ ∪ c−),
c− ⊆ (Mt\M̃t), c+ ⊆ (M̃t\Mt), (Mt ⊕ c) ∈M and (M̃t 	 c) ∈M.

Now, we decompose our proof into two cases.

Case (1): (e ∈M∗ ∧ e ∈ c+) ∨ (e 6∈M∗ ∧ e ∈ c−).

First we construct a gadget M ′t = M̃t 	 c and recall that M ′t ∈ M. By the definitions of 	 and ⊕,
we see that M̃t = M ′t ⊕ c.
We claim that M ′t 6= M∗. The assumption of Case (1) means that either (a) e ∈ M∗ and e ∈ c+; or
(b) e 6∈ M∗ and e ∈ c− holds. Suppose that e ∈ M∗ and e ∈ c+. Then, we see that e 6∈ M ′t and
hence M ′t 6= M∗. On the other hand, if e 6∈ M∗ and e ∈ c−, then e ∈ M ′t which also means that
M ′t 6= M∗. Therefore we have M ′t 6= M∗ in either cases.

Next, we apply Lemma 2 by setting M = M ′t and M ′ = M∗. We see that there exists an exchange
set b ∈ B such that, e ∈ (b+ ∪ b−), (M ′t ⊕ b) ∈M and 〈w,χb〉 ≥ ∆e > 0. We will also use M ′t ⊕ b
as a gadget.

Now, we define vectors d = χM̃t
− χMt

, d1 = χM ′t − χMt
and d2 = χM ′t⊕b − χMt

. By the
definition of M ′t and Lemma 1, we see that d1 = d− χc and d2 = d1 + χb = d− χc + χb.

Then, we claim that ‖radt ◦ (d− χc)‖∞ < ∆e

3 width(B) . To prove this claim, we first appeal to
standard set-algebraic manipulations. We obtain

Mt\M ′t = Mt\(M̃t 	 c)
= Mt\(M̃t\c+ ∪ c−)

= Mt\(M̃t\c+) ∩ (Mt\c−)

= (Mt ∩ c+) ∪ (Mt\M̃t) ∩ (Mt\c−)

= (Mt\M̃t) ∩ (Mt\c−) (19)

⊆Mt\M̃t, (20)

where Eq. (19) follows from c+ ⊆ M̃t\Mt and therefore c+ ∩Mt = ∅. Similarly, we can derive
M ′t\Mt as follows

M ′t\Mt = (M̃t 	 c)\Mt = (M̃t\c+ ∪ c−)\Mt

=
(
(M̃t\c+)\Mt

)
∪ (c−\Mt)

= M̃t\c+\Mt (21)

15

⊆ M̃t\Mt, (22)

where Eq. (21) follows from c− ⊆ Mt\M̃t and hence c−\Mt = ∅. By combining Eq. (20) and
Eq. (22), we see that

(
(Mt\M ′t)∪(M ′t\Mt)

)
⊆
(
(Mt\M̃t)∪(M̃t\Mt)

)
. Then, applying Lemma 3,

we obtain

‖radt ◦ (d− χc)‖∞ =
∥∥∥radt ◦ (χM ′t − χMt

)
∥∥∥
∞

= max
i∈(Mt\M ′t)∪(M ′t\Mt)

radt(i)

≤ max
i∈(Mt\M̃t)∪(M̃t\Mt)

radt(i)

= radt(e) (23)

<
∆e

3 width(B)
, (24)

where Eq. (23) follows from the assumption that pt = e.

Next we claim that ‖radt ◦ χc‖∞ < ∆e

3 width(B) . Recall that, by the definition of c, we have c+ ⊆
(M̃t\Mt) and c− ⊆ (Mt\M̃t). Hence c+ ∪ c− ⊆ (M̃t\Mt) ∪ (Mt\M̃t). Since χc ∈ {−1, 0, 1}n,
we see that

‖radt ◦ χc‖∞ = max
i∈c+∪c−

radt(i)

≤ max
i∈(M̃t\Mt)∪(Mt\M̃t)

radt(i)

= radt(e) <
∆e

3 width(B)
. (25)

From Eq. (25), we derive

〈radt, |χc|〉 =
〈
radt,χ

2
c

〉
(26)

= 〈radt ◦ χc,χc〉 (27)
≤ ‖radt ◦ χc‖∞ ‖χc‖1 (28)

<
∆e

3 width(B)
‖χc‖1 (29)

≤ ∆e

3
, (30)

where Eq. (26) hold since χc ∈ {−1, 0, 1}n; Eq. (27) follows form Lemma 4; Eq. (28) follows from
Hölder’s inequality; Eq. (29) follows from Eq. (25); and Eq. (30) holds since ‖χc‖1 = |c+|+ |c−| ≤
width(B) where the inequality is due to c ∈ B .

Next, we claim that d ◦ χc = |χc|. Recall that χc = χc+ − χc− and d = χM̃t
− χMt

=

χM̃t\Mt
− χMt\M̃t

. We also notice that c+ ⊆ (M̃t\Mt) and c− ⊆ (Mt\M̃t). This implies that
c+ ∩ (Mt\M̃t) = ∅ and c− ∩ (M̃t\Mt) = ∅. Therefore, we have

d ◦ χc = (χM̃t\Mt
− χMt\M̃t

) ◦ (χc+ − χc−)

= χM̃t\Mt
◦ χc+ + χMt\M̃t

◦ χc− − χM̃t\Mt
◦ χc− − χMt\M̃t

◦ χc+
= χM̃t\Mt

◦ χc+ + χMt\M̃t
◦ χc−

= χc+ + χc− = |χc|.

where the second equality holds since c+ ∩ (Mt\M̃t) = ∅ and c− ∩ (M̃t\Mt) = ∅; and the last
equality holds since c+ ∩ c− = ∅.
Now, we bound quantity 〈radt, |d2|〉 − 〈radt, |d|〉 as follows

〈radt, |d2|〉 − 〈radt, |d|〉 = 〈radt, |d2| − |d|〉 =
〈
radt,d

2
2 − d

2
〉

(31)

=
〈
radt, (d− χc + χb)

2 − d2
〉

16

=
〈
radt,χ

2
b + χ2

c − 2χb ◦ χc − 2d ◦ χc + 2d ◦ χb
〉

=
〈
radt,χ

2
b − χ2

c + 2χb ◦ (d− χc)
〉

(32)

= 〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 〈radt,χb ◦ (d− χc)〉
= 〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 〈radt ◦ (d− χc),χb〉 (33)
≥ 〈radt, |χb|〉 − 〈radt, |χc|〉 − 2 ‖radt ◦ (d− χc)‖∞ ‖χb‖1 (34)

> 〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3 width(B)
‖χb‖1 (35)

≥ 〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3
, (36)

where Eq. (31) holds since d ∈ {−1, 0, 1}n and d2 ∈ {−1, 0, 1}n; Eq. (32) follows from the claim
that d ◦ χc = |χc| = χ2

c ; Eq. (33) and Eq. (34) follow from Lemma 4 and Hölder’s inequality;
Eq. (35) follows from Eq. (24); and Eq. (36) holds since b ∈ B and ‖χb‖1 = |b+|+|b−| ≤ width(B).

Applying Lemma 5 by setting M ′ = M̃t, we have

〈w̄t,d〉+ 〈radt, |d|〉 =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

= w̃t(M̃t)− w̃t(Mt)

≥ w̃t(M ′t ⊕ b)− w̃t(Mt) (37)

=
〈
w̄t,χM ′t⊕b − χMt

〉
+
〈
radt, |χM ′t⊕b − χMt

|
〉

= 〈w̄t,d2〉+ 〈radt, |d2|〉
= 〈w̄t,d〉 − 〈w̄t,χc〉+ 〈w̄t,χb〉+ 〈radt, |d2|〉 , (38)

where Eq. (37) follows from the fact that w̃t(M̃t) = maxM∈M w̃t(M); and Eq. (38) follows from
the fact that d2 = d− χc + χb. Rearranging the above inequality, we obtain

〈w̄t,χc〉 ≥ 〈w̄t,χb〉+ 〈radt, |d2|〉 − 〈radt, |d|〉

≥ 〈w̄t,χb〉+ 〈radt, |χb|〉 − 〈radt, |χc|〉 −
2∆e

3
(39)

> 〈w,χb〉 − 〈radt, |χc|〉 −
2∆e

3
(40)

> 〈w,χb〉 −
∆e

3
− 2∆e

3
(41)

= 〈w,χb〉 −∆e ≥ 0, (42)

where Eq. (39) uses Eq. (36); Eq. (40) follows from the assumption that event ξt occurs and
Lemma 7; and Eq. (41) holds due to Eq. (30).

We have shown that 〈w̄t,χc〉 > 0. Now we can bound w̄t(M ′t) as follows

w̄t(M
′
t) =

〈
w̄t,χM ′t

〉
=
〈
w̄t,χMt

+ χc
〉

=
〈
w̄t,χMt

〉
+ 〈w̄t,χc〉 >

〈
w̄t,χMt

〉
= w̄t(Mt).

However, the definition of Mt ensures that w̄t(Mt) = maxM∈M w̄t(M), which implies that
w̄t(Mt) ≥ w̄t(M ′t). This is a contradiction, and therefore we have pt 6= e for this case.

Case (2): (e ∈M∗ ∧ e ∈ c−) ∨ (e 6∈M∗ ∧ e ∈ c+).

First, we claim that M̃t 6= M∗. Suppose that e ∈ M∗ and e ∈ c−. Then, we see that e 6∈ M̃t, which
implies that M̃t 6= M∗. On the other hand, suppose that e 6∈ M∗ and e ∈ c+, then e ∈ M̃t, which
also implies that M̃t 6= M∗. Therefore we have M̃t 6= M∗ in either cases.

Hence, by Lemma 2, there exists an exchange set b = (b+, b−) ∈ B such that e ∈ (b+ ∪ b−), b− ⊆
(M̃t\M∗), b+ ⊆ (M∗\M̃t) and (M̃t ⊕ b) ∈ M. Lemma 2 also indicates that 〈w,χb〉 ≥ ∆e > 0.
We will use M̃t ⊕ b as a gadget for this case. Note that the exchange set b defined here is different
from the exchange set b used in Case (1).

Next, we define vectors d = χM̃t
−χMt

and d1 = χM̃t⊕b −χMt
. Notice that Lemma 1 gives that

d1 = d+ χb.

17

Then, we apply Lemma 3 by setting M = Mt and M ′ = M̃t. This shows that

‖radt ◦ d‖∞ ≤ max
i:(M̃t\Mt)∪(Mt\M̃t)

radt(i) = radt(e) <
∆e

3 width(B)
, (43)

where the last inequality follows from the assumption that radt(e) <
∆e

3 width(B) .

Now, we bound quantity 〈w̄t,d1〉+ 〈radt, |d1|〉 − 〈w̄t,d〉 − 〈radt, |d|〉 as follows

〈w̄t,d1〉+ 〈radt, |d1|〉 − 〈w̄t,d〉 − 〈radt, |d|〉 = 〈w̄t,χb〉+ 〈radt, |d1| − |d|〉
= 〈w̄t,χb〉+

〈
radt,d

2
1 − d

2
〉

(44)

= 〈w̄t,χb〉+
〈
radt, 2d ◦ χb + χ2

b

〉
(45)

= 〈w̄t,χb〉+
〈
radt,χ

2
b

〉
+ 2 〈radt ◦ d,χb〉

(46)
≥ 〈w,χb〉+ 2 〈radt ◦ d,χb〉 (47)
≥ 〈w,χb〉 − 2 ‖radt ◦ d‖∞ ‖χb‖1 (48)

> 〈w,χb〉 −
2∆e

3
(49)

> 0, (50)

where Eq. (44) follows from the fact that d1 ∈ {−1, 0, 1}n and d ∈ {−1, 0, 1}n; Eq. (45) holds
since d1 = d + χb; Eq. (46) follows from Lemma 4; Eq. (47) follows from the assumption that ξt
occurs and Lemma 7; Eq. (48) follows from Hölder’s inequality; Eq. (49) is due to Eq. (43); and
Eq. (50) follows from 〈w,χb〉 ≥ ∆e > 0.

Therefore, we have proven that

〈w̄t,d〉+ 〈radt, |d|〉 < 〈w̄t,d1〉+ 〈radt, |d1|〉 . (51)

However, we have

〈w̄t,d〉+ 〈radt, |d|〉 =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

= w̃t(M̃t)− w̃t(Mt) (52)

≥ w̃t(M̃t ⊕ b)− w̃t(Mt) (53)

=
〈
w̄t,χM̃t⊕b − χMt

〉
+
〈
radt, |χM̃t⊕b − χMt

|
〉

= 〈w̄t,d1〉+ 〈radt, |d1|〉 , (54)

where Eq. (52) follows from Lemma 5; and Eq. (53) follows from the fact that w̃t(M̃t) =
maxM∈M w̃t(M). This contradicts to Eq. (51) and therefore pt 6= e.

A.4 Proof of Theorem 1

Theorem 1 is now a straightforward corollary of Lemma 9 and Lemma 10. For the reader’s conve-
nience, we first restate Theorem 1 in the following.

Theorem 1. Given any δ ∈ (0, 1), any decision classM⊆ 2[n] and any expected rewardsw ∈ Rn.
Assume that the reward distribution ϕe for each arm e ∈ [n] has meanw(e) with anR-sub-Gaussian

tail. Let M∗ = arg maxM∈M w(M) denote the optimal set. Set radt(e) = R
√

2 log
(

4nt3

δ

)
/Tt(e)

for all t > 0 and e ∈ [n]. Then, with probability at least 1− δ, the CLUCB algorithm (Algorithm 1)
returns the optimal set Out = M∗ and

T ≤ O
(
R2 width(M)2H log

(
nR2H/δ

))
, (5)

where T denotes the number of samples used by Algorithm 1, H is defined in Eq. (2) and width(M)
is defined in Eq. (4).

Proof. Lemma 8 indicates that the event ξ ,
⋂∞
t=1 ξt occurs with probability at least 1 − δ. In the

rest of the proof, we shall assume that this event holds.

18

By Lemma 9 and the assumption on ξ, we see that Out = M∗. Next, we focus on bounding the total
number T of samples.

Fix any arm e ∈ [n]. Let T (e) denote the total number of pull of arm e ∈ [n]. Let te be the last
round which arm e is pulled, which means that pte = e. It is easy to see that Tte(e) = T (e)− 1. By
Lemma 10, we see that radte(e) ≥ ∆e

3 width(M) . Using the definition of radte , we have

∆e

3 width(M)
≤ R

√
2 log (4nt3e/δ)

T (e)− 1
≤ R

√
2 log (4nT 3/δ)

T (e)− 1
. (55)

By solving Eq. (55) for T (e), we obtain

T (e) ≤ 18 width(M)2R2

∆2
e

log(4nT 3/δ) + 1. (56)

Now we define H̃ = max
{

width(M)2R2H, 1
}

. In the rest of the proof, we show that

T ≤ 499H̃ log
(

4nH̃/δ
)

+ 2n. (57)

Notice that the theorem follows immediately from Eq. (57).

If n ≥ 1
2T , then we see that T ≤ 2n and therefore Eq. (57) holds immediately. Next we assume that

n < 1
2T . Since T > n, we can write

T = CH̃ log
(

4nH̃/δ
)

+ n, for some C > 0. (58)

If C ≤ 499, then it is clear that Eq. (57) holds. Suppose, on the contrary, that C > 499. Notice that
T =

∑
e∈[n] T (e). By summing up Eq. (56) for all e ∈ [n], we have

T ≤ n+
∑
e∈[n]

18 width(M)2R2

∆2
e

log(4nT 3/δ)

≤ n+ 18H̃ log(4nT 3/δ)

= n+ 18H̃ log(4n/δ) + 54H̃ log(T)

≤ n+ 18H̃ log(4n/δ) + 54H̃ log
(

2CH̃ log
(

4nH̃/δ
))

(59)

= n+ 18H̃ log(4n/δ) + 54H̃ log (2C) + 54H̃ log(H̃) + 54H̃ log log
(

4nH̃/δ
)

≤ n+ 18H̃ log(4nH̃/δ) + 54H̃ log (2C) log(4nH̃/δ) + 54H̃ log(4nH̃/δ) + 54H̃ log(4nH̃/δ)
(60)

= n+ (126 + 54 log(2C))H̃ log(4nH̃/δ)

< n+ CH̃ log(4nH̃/δ) (61)
= T, (62)

where Eq. (59) follows from Eq. (58) and the assumption that n < 1
2T ; Eq. (60) follows from the

fact that H̃ ≥ 1 and δ < 1; Eq. (61) follows since 126 + 54 log(2C) < C for all C > 499; and
Eq. (62) is due to Eq. (58). Now we see that Eq. (62) is a contradiction. Therefore we obtain that
C ≤ 499 and we have proved Eq. (57).

B Extensions of CLUCB

CLUCB is a general and flexible learning algorithm for the CPE problem. In this section, we present
two extensions to CLUCB that allow it to work in the fixed budget setting and PAC learning setting.

19

B.1 Fixed Budget Setting

We can extend the CLUCB algorithm to the fixed budget setting using two simple modifications:
(1) requiring CLUCB to terminate after T rounds; and (2) using a different construction of confi-
dence intervals. The first modification ensures that CLUCB uses at most T samples, which meets
the requirement of the fixed budget setting. And the second modification bounds the probability that
the confidence intervals are valid for all arms in T rounds. The following theorem shows that the
probability of error of the modified CLUCB is bounded by O

(
Tn exp

(
−T

width(M)2H

))
.

Theorem 4. Use the same notations as in Theorem 1. Given T > n and parameter α > 0, set the
confidence radius radt(e) = R

√
α

Tt(e)
for all arms e ∈ [n] and all t > 0. Run CLUCB algorithm

for at most T rounds. Then, for 0 ≤ α ≤ 1
9 (T − n)

(
R2 width(M)2H

)−1
, we have

Pr
[
Out 6= M∗

]
≤ 2Tn exp (−α/2) . (63)

In particular, the right-hand side of Eq. (63) equals to O
(
Tn exp

(
−T

width(M)2H

))
when parameter

α = O(TH−1 width(M)−2).

Theorem 4 shows that the modified CLUCB algorithm in the fixed budget setting requires the knowl-
edge of quantity H in order to achieve the optimal performance. However H is usually unknown.
Therefore, although its probability of error guarantee matches the parameter-free CSAR algorithm
up to logarithmic factors, this modified algorithm is considered weaker than CSAR. Nevertheless,
Theorem 4 shows that CLUCB can solve CPE in both fixed confidence and fixed budget settings and
more importantly this theorem provides additional insights on the behavior CLUCB.

B.2 PAC Learning

Now we consider a setting where the learner is only required to report an approximately optimal set
of arms. More specifically, we consider the notion of (ε, δ)-PAC algorithm. Formally, an algorithm
A is called an (ε, δ)-PAC algorithm if its output Out ∈M satisfies Pr

[
w(M∗)−w(Out) > ε

]
≤ δ.

We show that a simple modification on the CLUCB algorithm gives an (ε, δ)-PAC algorithm, with
guarantees similar to Theorem 1. In fact, the only modification needed is to change the stopping
condition from w̃t(M̃t) = w̃t(Mt) to w̃t(M̃t) − w̃t(Mt) ≤ ε on line 11 of Algorithm 1. We let
CLUCB-PAC denote the modified algorithm. In the following theorem, we show that CLUCB-PAC is
indeed an (ε, δ)-PAC algorithm and has a sample complexity similar to CLUCB.

Theorem 5. Use the same notations as in Theorem 1. Fix δ ∈ (0, 1) and ε ≥ 0. Then, with probabil-
ity at least 1− δ, the output Out ∈ M of CLUCB-PAC satisfies w(M∗)− w(Out) ≤ ε. In addition,
the number of samples T used by the algorithm satisfies

T ≤ O

R2
∑
e∈[n]

min

{
width(M)2

∆2
e

,
K2

ε2

}
log

R2

δ

∑
e∈[n]

min

{
width(M)2

∆2
e

,
K2

ε2

} , (64)

where K = maxM∈M |M | is the size of the largest member of decision class.

We see that if ε = 0, the sample complexity Eq. (64) of CLUCB-PAC equals to that of CLUCB.
Moreover, the sample complexity of CLUCB-PAC decreases when ε increases.

There are several PAC learning algorithms dedicated for the TOPK problem in the literature with
different guarantees [19, 31, 13]. Zhou et al. [31] proposed an (ε, δ)-PAC algorithm for the TOPK
problem with a problem-independent sample complexity bound of O(K

2n
ε2 + Kn log(1/δ)

ε2).2 If we ig-
nore logarithmic factors, then the sample complexity bound of CLUCB-PAC for the TOPK problem
is better than theirs since

∑
e∈[n] min{∆−2

e ,K2ε−2} ≤ nK2ε−2. On the other hand, the algorithms

2We notice that the definition of Zhou et al. [31] allow an (ε′, δ)-PAC algorithm to produce an output with
average sub-optimality of ε′. This is equivalent to our definition of (ε, δ)-PAC algorithm with ε = Kε′ for the
TOPK problem. In this paper, we translate their guarantees to our definition of PAC algorithm.

20

of Kalyanakrishnan et al. [19], Gabillon et al. [13] and Kaufmann and Kalyanakrishnan [20] guar-
antee to find K arms such that each of them is better than the K-th optimal arm within a factor of
ε with probability 1 − δ. Unless ε = 0, their guarantee is different from ours which concerns the
optimality of the sum of K arms.

B.3 Proof of Extension Results

B.3.1 Fixed Budget Setting (Theorem 4)

In this part, we analyze the probability of error of the modified CLUCB algorithm in the fixed budget
setting and prove Theorem 4. First, we prove a lemma which characterizes the confidence intervals
constructed in Theorem 4.
Lemma 11. Fix parameter α > 0 and the number of rounds T > 0. Assume that the reward
distribution ϕe is a R-sub-Gaussian distribution for all e ∈ [n]. Let the confidence radius radt(e)

of arm e ∈ [n] and round t > 0 be radt(e) = R
√

α
Tt(e)

. Then, we have

Pr

[
T⋂
t=1

ξt

]
≥ 1− 2nT exp (−α/2) ,

where ξt is the random event defined in Eq. (12).

Proof. For any t > 0 and e ∈ [n], using Hoeffding’s inequality, we have

Pr
[∣∣w̄t(e)− w(e)

∣∣ ≥ radt(e)
]
≤ 2 exp(−α/2).

By a union bound over all arms e ∈ [n], we see that Pr[ξt] ≥ 1−2n exp(−α/2). The lemma follows
immediately by using union bound again over all round t ∈ [T].

Theorem 4 can be obtained from the key lemmas (Lemma 9 and Lemma 10) and Lemma 11.

Proof of Theorem 4. Define random event ξ =
⋂T
t=1 ξt. By Lemma 11, we see that Pr[ξ] ≥ 1 −

2nT exp(−α/2). In the rest of the proof, we assume that ξ happens.

Let T ∗ denote the round that the algorithm stops. We claim that the algorithm stops before the budget
is exhausted, i.e., T ∗ < T . If the claim is true, then the algorithm stops since it meets the stopping
condition on round T ∗. Hence w̃t(M̃T∗) = w̃t(MT∗) and Out = MT∗ . By assumption on ξ and
Lemma 9, we know that MT∗ = M∗. Therefore the theorem follows immediately from this claim
and the bound of Pr[ξ].

Next, we show that this claim is true. Let T (e) denote the total number of pulls of arm e ∈ [n].
Let te be the last round that arm e is pulled. Hence Tte(e) = Te − 1. By Lemma 10, we see that
radte(e) ≥ ∆

3 width(B) . Now plugging in the definition of radte(e), we have

∆

3 width(B)
≤ radte(e)

= R

√
α

Tte(e)
= R

√
α

T (e)− 1
.

Hence we have

Te ≤
9R2 width(B)2

∆2
e

· α+ 1. (65)

By summing up Eq. (65) for all e ∈ [n], we have

T ∗ =
∑
e∈[n]

Te ≤ α · 9R2 width(B)2

∑
e∈[n]

∆−2
e

+ n < T,

where we have used the assumption that α < 1
9 (T − n) ·

(
R2 width(B)2

(∑
e∈[n] ∆−2

e

))−1

.

21

B.3.2 PAC Learning (Theorem 5)

First, we prove a (ε, δ)-PAC counterpart of Lemma 9.

Lemma 12. If CLUCB-PAC stops on round t and suppose that event ξt occurs. Then, we have
w(M∗)− w(Out) ≤ ε.

Proof. By definition, we know that Out = Mt. Notice that the stopping condition of CLUCB-PAC
ensures that w̃t(M̃t)− w̃t(Mt) ≤ ε. Therefore, we have

ε ≥ w̃t(M̃t)− w̃t(Mt)

≥ w̃t(M∗)− w̃t(Mt) (66)

=
〈
w̄t,χM∗ − χMt

〉
+
〈
radt, |χM∗ − χMt

|
〉

(67)

≥
〈
w,χM∗ − χMt

〉
(68)

= w(M∗)− w(Mt),

where Eq. (66) follows from the definition that w̃t(M̃t) = maxM∈M w̃t(M); Eq. (67) follows from
Lemma 5; Eq. (68) follows from the assumption that ξt occurs and Lemma 7.

The next lemma generalizes Lemma 10. It shows that on event ξt each arm e ∈ [n] will not be played
on round t if radt(e) < max

{
∆e

3 width(M) ,
ε

2K

}
.

Lemma 13. Let K = maxM∈M |M |. For any arm e ∈ [n] and any round t > n after initialization,

if radt(e) < max
{

∆e

3 width(M) ,
ε

2K

}
and random event ξt occurs, then arm e will not be played on

round t, i.e., pt 6= e.

Proof. If radt(e) <
∆e

3 width(M) , then we can apply Lemma 10 which immediately gives that pt 6= e.

Hence, we only need to prove the case that ∆e

3 width(M) ≤ radt(e) <
ε

2K .

Now suppose that pt = e. By the choice of pt, we know that for each i ∈ (Mt\M̃t)∪ (M̃t\Mt), we
have radt(i) ≤ radt(e) <

ε
2K . By summing up this inequality for all i ∈ (Mt\M̃t)∪ (M̃t\Mt), we

have

ε >
∑

i∈(Mt\M̃t)∪(M̃t\Mt)

radt(i) (69)

=
〈
radt,

∣∣χMt
− χM̃t

∣∣〉 , (70)

where Eq. (69) follows from the fact that |(Mt\M̃t)∪(M̃t\Mt)| ≤ |Mt|+ |M̃t| ≤ 2K; and Eq. (70)
uses the fact that χ(Mt\M̃t)∪(M̃t\Mt)

= |χMt
− χM̃t

|.

Then, we have

w̃t(M̃t)− w̃t(Mt) =
〈
w̄t,χM̃t

− χMt

〉
+
〈
radt, |χM̃t

− χMt
|
〉

(71)

≤
〈
w̄t,χM̃t

− χMt

〉
+ ε (72)

= w̄t(M̃t)− w̄t(Mt) + ε

≤ ε, (73)

where Eq. (71) follows from Lemma 5; Eq. (72) uses Eq. (70); and Eq. (73) follows from w̄t(Mt) ≥
w̄t(M̃t).

Therefore, we see that w̃t(M̃t) − w̃t(Mt) ≤ ε. By the stopping condition of CLUCB-PAC, the
algorithm must terminate on round t, before playing any arms. This contradicts to the assumption
that pt = e.

Using Lemma 13 and Lemma 12, we are ready to prove Theorem 5.

22

Proof of Theorem 5. Similar to the proof of Theorem 1, we appeal to Lemma 8, which shows that
the event ξ ,

⋂∞
t=1 ξt occurs with probability at least 1 − δ. We shall assume that ξ occurs in the

rest of the proof.

By the assumption of ξ and Lemma 12, we know that w(M∗) − w(Out) ≤ ε. Therefore, we only
remain to bound the number of samples T .

Consider an arbitrary arm e ∈ [n]. Let T (e) denote the total number of pulls of arm e ∈ [n]. Let te
be the last round in which arm e is pulled, i.e., pte = e. Hence Tte(e) = T (e) − 1. By Lemma 13,
we see that radte(e) ≥ max{ ∆e

3 width(B) ,
ε

2K }. Then, by the construction of radte(e), we have

max

{
∆e

3 width(B)
,
ε

2K

}
≤ R

√
2 log (4nt3e/δ)

T (e)− 1
≤ R

√
2 log (4nT 3/δ)

T (e)− 1
. (74)

Solving Eq. (74) for T (e), we obtain

T (e) ≤ R2 min

{
18 width(B)2

∆2
e

,
16K2

ε2

}
log(4nT 3/δ) + 1. (75)

Notice that T =
∑
i∈[n] T (e). Hence the theorem follows by summing up Eq. (75) for all e ∈ [n]

and solving for T .

C Proof of Lower Bound (Theorem 2)

In this section, we prove the problem-dependent lower bound of the general CPE problem (Theo-
rem 2). In addition, we provide evidence on the conjecture that the sample complexity should hinge
on the size of exchange sets (Theorem 6), which is relevant for decision classes with non-constant
widths.

Notations. In this section, we will use the notion of “next-to-optimal set” defined as follows. Fix a
decision classM ⊆ 2[n] and an expected reward vector w ∈ Rn. Let M∗ = arg maxM∈M w(M)
denote the optimal set. Then, for any e ∈ [n], we define the next-to-optimal set associated with e as
follows

Me =

{
arg maxM∈M:e∈M w(M) if e 6∈M∗,
arg maxM∈M:e 6∈M w(M) if e ∈M∗.

(76)

We note that, by definition of ∆e in Eq. (1), we have w(M∗)− w(Me) = ∆e.

C.1 Proof of Theorem 2

For reader’s convenience, we restate Theorem 2 in the following.

Theorem 2. Fix any decision class M ⊆ 2[n] and any vector w ∈ Rn. Suppose that, for each
arm e ∈ [n], the reward distribution ϕe is given by ϕe = N (w(e), 1), where we let N (µ, σ2)
denote Gaussian distribution with mean µ and variance σ2. Then, for any δ ∈ (0, e−16/4) and any
δ-correct algorithm A, we have

E[T] ≥ 1

16
H log

(
1

4δ

)
, (6)

where T denote the number of total samples used by algorithm A and H is defined in Eq. (2).

Before stating our proof, we first introduce two technical lemmas. The first lemma is the well-known
Kolmogrov’s inequality.
Lemma 14. (Kolmogrov’s inequality [29, Corollary 7.66]) Let Z1, . . . , Zn be independent zero-
mean random variables with Var[Zk] ≤ +∞ for all k ∈ [n]. Then, for any λ > 0,

Pr

[
max

1≤k≤n
|Sk| ≥ λ

]
≤ 1

λ2

n∑
i=1

Var[Zk],

where Sk = X1 + . . .+Xk.

23

The second technical lemma shows that the joint likelihood of Gaussian distributions on a sequence
of variables does not change much when the mean of the distribution shifts by a sufficiently small
value.

Lemma 15. Fix some d ∈ R and θ ∈ (0, 1). Define t = 1
4d2 log(1/θ). Given any integer T ≤ 4t

and any sequence s1, . . . , sT . Let X1, . . . , XT be T real numbers which satisfy the following∣∣∣∣∣
T∑
i=1

Xi −
T∑
i=1

si

∣∣∣∣∣ ≤√t log(1/θ). (77)

Then, we have
T∏
i=1

N (Xi|si + d, 1)

N (Xi|si, 1)
≥ θ,

where we letN (x|µ, σ2) = 1
σ
√

2π
exp

(
− (x−µ)2

2σ2

)
denote the probability density function of normal

distribution with mean µ and variance σ2.

Proof. We define vi = Xi − si for all i ∈ [T]. Then, we have

T∏
i=1

N (Xi|si + d, 1)

N (Xi|si, 1)
=

T∏
i=1

exp

(
− (Xi − si − d)

2
+ (Xi − si)2

2

)

=

T∏
i=1

exp

(
−vid−

1

2
d2

)

= exp

(
−

T∑
i=1

vid

)
exp

(
−Td

2

2

)
. (78)

We now bound each term on the right-hand side of Eq. (78) as follows

exp

(
−

T∑
i=1

vid

)
≥ exp

(
−

∣∣∣∣∣
T∑
i=1

vi

∣∣∣∣∣ · |d|
)

≥ exp
(
−
√
t log(1/θ)d

)
(79)

= exp

(
−1

2
log(1/θ)

)
= θ1/2, (80)

where Eq. (79) follows from Eq. (77); and Eq. (80) follows from the fact t ≤ 1
4d2 log(1/θ). Next we

have

exp

(
−Td

2

2

)
≥ exp

(
−2td2

)
(81)

= exp

(
−1

2
log(1/θ)

)
= θ1/2, (82)

where Eq. (81) follows from T ≤ 4t and Eq. (82) follows from the definition of t. The lemma
follows immediate by combining Eq. (78), Eq. (80) and Eq. (82).

Proof of Theorem 2. Fix δ > 0, w =
(
w(1), . . . , w(n)

)T
and a δ-correct algorithm A. For each

e ∈ [n], assume that the reward distribution is given by ϕe = N (w(e), 1). For any e ∈ [n], let Te
denote the number of trials of arm e used by algorithm A. In the rest of the proof, we will show that
for any e ∈ [n], the number of trials of arm e is lower-bounded by

E[Te] ≥
1

16∆2
e

log(1/4δ). (83)

Notice that the theorem follows immediately by summing up Eq. (83) for all e ∈ [n].

24

Now fix an arm e ∈ [n]. We define θ = 4δ and t∗e = 1
16∆2

e
log(1/θ). We prove Eq. (83) by contra-

diction. Therefore we assume the opposite that E[Te] < t∗e in the rest of the proof.

Step (1): An alternative hypothesis. We consider two hypothesis H0 and H1. Under hypothesis
H0, all reward distributions are same with our assumption in the theorem as follows

H0 : ϕl = N (w(l), 1) for all l ∈ [n].

On the other hand, under hypothesis H1, we change the means of reward distributions such that

H1 : ϕe =

{
N (w(e)− 2∆e, 1) if e ∈M∗
N (w(e) + 2∆e, 1) if e 6∈M∗

and ϕl = N (w(l), 1) for all l 6= e.

For l ∈ {0, 1}, we use El and Prl to denote the expectation and probability, respectively, under the
hypothesis Hl.

Now we claim thatM∗ is no longer the optimal set under hypothesisH1. LetMe denote the next-to-
optimal set defined Eq. (76). By definition of ∆e in Eq. (1), we know that w(M∗)− w(Me) = ∆e.
Let w0 and w1 be expected reward vectors under H0 and H1 respectively. We have

w1(M∗)− w1(Me) = w(M∗)− w(Me)− 2∆e

= −∆e < 0.

This means that under H1, the set M∗ is not the optimal set.

Step (2): Three random events. Let X1, . . . , XTe denote the sequence of reward outcomes of arm
e. Now we define three random events A, B and C as follows

A = {Te ≤ 4t∗e}, B = {Out = M∗} and C =

{
max

1≤t≤4t∗e

∣∣∣∣∣
t∑
i=1

Xt − t · w(e)

∣∣∣∣∣ <√t∗e log(1/θ)

}
,

where Out is the output of algorithm A.

Now we bound the probability of these events under hypothesis H0. First, we show that Pr0[A] ≥
3/4. This can be proven by Markov’s inequality as follows.

Pr0[Te > 4t∗e] ≤
E0[Te]

4t∗e
≤ t∗e

4t∗e
=

1

4
.

We now show that Pr0[C] ≥ 3/4. Notice that
{
Xt − w(e)

}
t=1,...,

is a sequence of zero-mean

independent random variables underH0. DefineKt =
∑t
i=1Xt. Then, by Kolmogorov’s inequality

(Lemma 14), we have

Pr0

[
max

1≤t≤4t∗e
|Kt − t · w(e)| ≥

√
t∗e log(1/θ)

]
≤

E0[(K4t∗e
− 4w(e)t∗e)

2]

t∗e log(1/θ)

(a)
=

4t∗e
t∗e log(1/θ)

(b)
<

1

4
,

where (a) follows from the fact that the variance of ϕe equals to 1 and therefore E0[(K4t∗e
−

4w(e)t∗e)
2] = 4t∗e; and (b) follows since θ < e−16.

Since the probability of error of algorithm A is at most δ < e−16/4 < 1/4, we have Pr0[B] ≥ 3/4.
Define random event S = A ∩ B ∩ C. Then, by union bound, we have Pr0[S] ≥ 1/4.

Step (3): The loss of likelihood. Now, we claim that, under the assumption that E0[Te] < t∗e , one has
Pr1[B] ≥ δ. Let W be the history of the sampling process until the algorithm stops (including the
sequence of arms chosen at each time and the sequence of observed outcomes). Define the likelihood
function Ll as

Ll(w) = pl(W = w),

where pl is the probability density function under hypothesis Hl.

Now assume that the event S occurred. We will bound the likelihood ratio L1(W)/L0(W) under
this assumption. Since H1 and H0 only differs on the reward distribution of arm e, we have

L1(W)

L0(W)
=

Te∏
i=1

N (Xi|w1(e), 1)

N (Xi|w0(e), 1)
. (84)

25

By definition of H1 and H0, we see that w1(e) = w0(e)± 2∆e (where the sign depends on whether
e ∈M∗). Therefore, when event S occurs, it easy to verify that we can apply Lemma 15 (by setting
d = w1(e)−w0(e) = ±2∆e, T = Te and si = w0(e) for all i). Hence, by Lemma 15 and Eq. (84),
we have

L1(W)

L0(W)
≥ θ = 4δ

holds if event S occurs.

Then, define 1S as the indicator variable of event S, i.e., 1S = 1 if and only if S occurs and otherwise
1S = 0. Then, we have

L1(W)

L0(W)
1S ≥ 4δ1S

holds regardless the occurrence of event S. Therefore, we can obtain

Pr1[B] ≥ Pr1[S] = E1[1S]

= E0

[
L1(W)

L0(W)
1S

]
≥ 4δE0[1S]

= 4δ Pr0[S] ≥ δ.

Now we have proven that, if E0[Te] < t∗e , then Pr1[B] ≥ δ. This means that, if E0[Te] < t∗e ,
algorithm A will chooseM∗ as the output with probability at least δ, under hypothesisH1. However,
under H1, we have shown that M∗ is not the optimal set since w1(Me) > w1(M∗). Therefore,
algorithm A has a probability of error at least δ under H1. This contradicts to the assumption that
algorithm A is a δ-correct algorithm. Hence, we must have E0[Te] ≥ t∗e = 1

16∆2
e

log(1/4δ).

C.2 Exchange Set Size Dependent Lower Bound

As a supplement to our main lower bound (Theorem 2), we show that, for any arm e ∈ [n], there
exists an exchange set b = (b+, b−) which contains e such that a δ-correct algorithm must spend
Ω̃
((
|b+| + |b−|

)2
/∆2

e

)
samples on exploring the arms belonging to b+ ∪ b−. Hence, on average,

each arm e ∈ b+ ∪ b− must be sampled for Ω̃((|b+| + |b−|)∆−2
e) times. This is asymptotically

stronger than the result of Theorem 2 when the size of corresponding exchange set |b+| + |b−| is
non-constant. This result is formalized in the following theorem.

Theorem 6. Fix any M ⊆ 2[n] and any vector w ∈ Rn. Suppose that, for each arm e ∈ [n],
the reward distribution ϕe is given by ϕe = N (w(e), 1), where N (µ, σ2) denotes a Gaussian
distribution with mean µ and variance σ2. Fix any δ ∈ (0, e−16/4) and any δ-correct algorithm A.

Then, for any e ∈ [n], there exists an exchange set b = (b+, b−), such that e ∈ b+ ∪ b− and

E

 ∑
i∈b+∪b−

Ti

 ≥ (|b+|+ |b−|)2

32∆2
e

log(1/4δ),

where Ti is the number of samples of arm i.

The proof is quite similar to that of Theorem 2 except that they use different constructions of alter-
native hypothesis and consequently this introduces some difference on the details of computations.

Proof. Fix δ > 0, w =
(
w(1), . . . , w(n)

)T
and a δ-correct algorithm A. For each i ∈ [n], assume

that the reward distribution is given by ϕi = N (w(i), 1). For any i ∈ [n], let Ti denote the number
of trials of arm i used by algorithm A.

Step (0): Setup. Fix an arm e ∈ [n]. As the first step, we construct the exchange set b = (b+, b−)
claimed in the theorem. Let Me denote the next-to-optimal set as defined in Eq. (76). By definition
of ∆e in Eq. (1), we know that w(M∗)−w(Me) = ∆e. We construct the exchange set b = (b+, b−)

26

where b+ = M∗\Me and b− = Me\M∗. It is easy to check that Me ⊕ b = M∗ and 〈w,χb〉 =
∆e > 0.

We have now constructed the exchange set. We define Tb− =
∑
i∈b− Ti and Tb+ =

∑
i∈b+ Ti. Now

we claim that

(a) E
[
Tb−
]
≥ |b−|

2

16∆2
e

log(1/4δ) and (b) E
[
Tb+
]
≥ |b+|

2

16∆2
e

log(1/4δ). (85)

It is easy to check that theorem follows immediately from claims (a) and (b). In the rest of the proof,
we focus on claim (a); the claim (b) can be proven using an almost identical argument.

Now we define θ = 4δ and t∗b− = |b−|2
16∆2

e
log(1/θ). We prove claim (a) by contradiction, that is to

assume the opposite that E[Tb−] < t∗b− .

Step (1): An alternative hypothesis. We define two hypotheses H0 and H1. Under hypothesis H0,
the reward distribution

H0 : ϕl = N (w(l), 1) for all l ∈ [n].

Under hypothesis H1, the mean reward of each arm is given by

H1 : ϕi =

{
N
(
w(i) + 2∆e

|b−| , 1
)

if i ∈ b−,
N (w(i), 1) if i 6∈ b−.

Similar to the proof of Theorem 2, we let w0 and w1 denote the expected reward vectors under H0

and H1 respectively. One can verify that w1(M∗) − w1(Me) = −∆e < 0. This means that under
H1, the set M∗ is not the optimal set.

Step (2): Three random events. First we consider the complete sequence of sampling process by
algorithm A. Formally, let W = {(Ĩ1, X̃1), . . . , (ĨT , X̃T)} be the sequence of all trials by algorithm
A, where Ĩi denotes the arm played in i-th trial and X̃i be the reward outcome of i-th trial. Then,
consider the subsequence W1 of W which consists of all the trials of arms in b−. Specifically, we
write W = {(I1, X1), . . . , (ITb−

, XTb−
)} such that W1 is a subsequence of W and Ii ∈ b− for all

i.

Now we define three random events A, B and C as follows

A = {Tb− ≤ 4t∗b−}, B = {Out = M∗} and C =

{
max

1≤t≤4t∗b−

∣∣∣∣∣
t∑
i=1

Xi −
t∑
i=1

w(Ii)

∣∣∣∣∣ <√t∗b− log(1/θ)

}
,

where Out is the output of algorithm A. We now bound the probability of each event. First, by
Markov’s inequality, we have

Pr0[Tb− > 4t∗b−] ≤
E0[Tb−]

4t∗b−
=

t∗b−
4t∗b−

=
1

4
.

Next, using Kolmogrov’s inequality (Lemma 14), we obtain

Pr0

[
max

1≤t≤4t∗b−

∣∣∣∣∣
t∑
i=1

Xi −
t∑
i=1

w(Ii)

∣∣∣∣∣ ≥√t∗e log(1/θ)

]
≤

E0

[(∑4t∗b−
i=1 Xi −

∑4t∗b−
i=1 w(Ii)

)2
]

t∗e log(1/θ)

(a)
=

4t∗b−
t∗b− log(1/θ)

(b)
<

1

4
,

where (a) follows from the fact that all reward distributions have unit variance; and (b) follows since
θ < e−16.

Since A is a δ-correct algorithm and δ < 1/4, we have Pr0[B] ≥ 3/4. Therefore, we have that the
random event S = A ∩ B ∩ C occurs with probability at least 1/4 under H0.

27

Step (3): The loss of likelihood. Similar to the proof of Theorem 2, we let Ll denote the likelihood
function under hypothesis Hl for l ∈ {0, 1}. Since the difference of H0 and H1 only lies in the
reward distributions of arms belonging to b−, we have

L1(W)

L0(W)
=

Tb−∏
i=1

N (Xi|w1(Ii), 1)

N (Xi|w0(Ii), 1)
,

where Xi and Ii is as defined in Step (2). Assume that S occurs. Since, for all i ∈ [Tb−], we have
w1(Ii)−w0(Ii) = 2∆e

|b−| , we can apply Lemma 15 here (by setting d = 2∆e

|b−|). Therefore, on event S,
we have

L1(W)

L0(W)
≥ θ.

The rest of the proof is identical to Step (3) in the proof of Theorem 2, and one can show that
Pr1[B] ≥ δ under the assumption that E[Tb−] < t∗b− . This means the probability of error of algo-
rithm A is at least δ. This contradicts to the assumption of A. Therefore we have E[Tb−] ≥ t∗b−
which proves claim (a) in Eq. (85).

D Analysis of CSAR (Theorem 3)

Notations. Let w ∈ Rn be the vector of the expected rewards of arms. Let M∗ =
arg maxM∈M w(M) be the optimal set. Let T be the budget of samples. We will also use the
following additional notations in the rest of this section. Let M ⊆ [n] be a set, we denote
¬M to be the complement of M . Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n such that
∆(1) ≤∆(n). Let A1, . . . , An and B1, . . . , Bn be the two sequences of sets which are de-
fined in Algorithm 2. We will also continue to use the notations of incidence vectors of sets and
exchange sets, which are defined in Appendix A.

D.1 Confidence Intervals

First we establish the confidence bounds used for the analysis of CSAR.
Lemma 16. Given a phase t ∈ [n], we define random event τt as follows

τt =

{
∀i ∈ [n]\(At ∪Bt)

∣∣w̄t(i)− w(i)
∣∣ < ∆(n−t+1)

3 width(M)

}
. (86)

Then, we have

Pr

[
n⋂
t=1

τt

]
≥ 1− n2 exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
. (87)

Proof. Fix some t ∈ [n] and fix some active arm i ∈ [n]\(At ∪Bt) of phase t.

Notice that the arm i has been pulled for T̃t times during the first t phases. Therefore, by Hoeffding’s
inequality (Lemma 6), we have

Pr

[∣∣w̄t(i)− w(i)
∣∣ ≥ ∆(n−t+1)

3 width(M)

]
≤ 2 exp

(
−

T̃t∆
2
(n−t+1)

18R2 width(M)2

)
. (88)

By plugging the definition of T̃t, the quantity T̃t∆2
(n−t+1) on the right-hand side of Eq. (88) can be

further bounded by

T̃t∆
2
(n−t+1) ≥

T − n
˜log(n)(n− t+ 1)

∆2
(n−t+1)

≥ T − n
˜log(n)H2

,

28

where the last inequality follows from the definition of H2 = maxi∈n i∆
−2
(i) . By plugging the last

inequality into Eq. (88), we have

Pr

[∣∣w̄t(i)− w(i)
∣∣ ≥ ∆(n−t+1)

3 width(M)

]
≤ 2 exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
. (89)

Now using Eq. (89) and a union bound for all t ∈ [n] and all i ∈ [n]\(At ∪Bt), we have

Pr

[
n⋂
t=1

τt

]
≥ 1− 2

n∑
t=1

(n− t+ 1) exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
≥ 1− n2 exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
.

Readers may notice that the right-hand side of Eq. (87) equals to the probability of error of CSAR
claimed in Theorem 3. Indeed, we will show that the CSAR algorithm will not make any mistakes if
the random event

⋂n
t=1 τt occurs.

The following lemma builds the confidence bound of inner products.
Lemma 17. Fix a phase t ∈ [n], suppose that random event τt occurs. For any vector a ∈ Rn,
suppose that supp(a)∩ (At ∪Bt) = ∅, where supp(a) , {i | a(i) 6= 0} is the support of vector a.
Then, we have

|〈w̄t,a〉 − 〈w,a〉| <
∆(n−t+1)

3 width(M)
‖a‖1 .

Proof. Suppose that τt occurs. Then, similar to the proof of Lemma 7, we have
|〈w̄t,a〉 − 〈w,a〉| = |〈w̄t −w,a〉|

=

∣∣∣∣∣
n∑
i=1

(
w̄t(i)− w(i)

)
a(i)

∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

i∈[n]\(At∪Bt)

(
w̄t(i)− w(i)

)
a(i)

∣∣∣∣∣∣ (90)

≤
∑

i∈[n]\(At∪Bt)

∣∣(w̄t(i)− w(i)
)
a(i)

∣∣
≤

∑
i∈[n]\(At∪Bt)

|w̄t(i)− w(i)| |a(i)|

<
∆(n−t+1)

3 width(M)

∑
i∈[n]\(At∪Bt)

|a(i)| (91)

=
∆(n−t+1)

3 width(M)
‖a‖1 ,

where Eq. (90) follows from the assumption that a is supported on [n]\(At ∪Bt); Eq. (91) follows
from the definition of τt (Eq. (86)).

D.2 Main Lemmas

We begin with a technical lemma which characterizes several useful properties of At and Bt.
Lemma 18. Fix a phase t ∈ [n]. Suppose that At ⊆ M∗ and Bt ∩M∗ = ∅. Let M be a set such
that At ⊆M and Bt ∩M = ∅. Let a and b be two sets satisfying that a ⊆M\M∗, b ⊆M∗\M and
a ∩ b = ∅. Then, we have

At ⊆ (M\a ∪ b) and Bt ∩ (M\a ∪ b) = ∅ and (a ∪ b) ∩ (At ∪Bt) = ∅.

29

Proof. We prove the first part as follows

At ∩ (M\a ∪ b) = (At ∩ (M\a)) ∪ (At ∩ b)
= At ∩ (M\a) (92)
= (At ∩M)\a
= At\a (93)
= At, (94)

where Eq. (92) holds since we haveAt∩b ⊆ At∩ (M∗\M) ⊆M ∩ (M∗\M) = ∅; Eq. (93) follows
from At ⊆M ; and Eq. (94) follows from a ⊆M\M∗ and At ⊆M∗ which imply that a ∩At = ∅.
Notice that Eq. (94) is equivalent to At ⊆ (M\a ∪ b).

Then, we proceed to prove the second part in the following

Bt ∩ (M\a ∪ b) = (Bt ∩ (M\a)) ∪ (Bt ∩ b)
= Bt ∩ (M\a) (95)
= (Bt ∩M)\a
= ∅\a = ∅, (96)

where Eq. (95) follows from the fact that Bt ∩ b ⊆ Bt ∩ (M∗\M) ⊆ ¬M∗ ∩ (M∗\M) = ∅; and
Eq. (96) follows from the fact that Bt ∩M = ∅.
Last, we prove the third part. By combining the assumptions that At ⊆ M∗ and At ⊆ M , we see
that At ⊆M ∩M∗. Also note that a ⊆M\M∗ and b ⊆M∗\M , we have

(a ∩At) ∪ (b ∩At) ⊆
(
(M\M∗) ∩ (M ∩M∗)

)
∪
(
(M∗\M) ∩ (M ∩M∗)

)
= ∅. (97)

Similarly, we have Bt ⊆ ¬M ∩ ¬M∗. Hence, we derive

(a ∩Bt) ∪ (b ∩Bt) ⊆ ((M\M∗) ∩ (¬M ∩ ¬M∗)) ∪ ((M∗\M) ∩ (¬M ∩ ¬M∗)) = ∅. (98)

By combining Eq. (97) and Eq. (98), we obtain

(a ∪ b) ∩ (At ∪Bt) = (a ∩At) ∪ (b ∩At) ∪ (a ∩Bt) ∪ (b ∩Bt) = ∅.

The next lemma provides an important insight on the correctness of CSAR. Informally speaking,
suppose that the algorithm does not make an error before phase t. Then, we show that, suppose arm
e has a gap ∆e larger than the “reference” gap ∆(n−t+1) of phase t, then arm e must be correctly
classified by Mt, i.e., e ∈Mt if and only if e ∈M∗.
Lemma 19. Fix any phase t > 0. Suppose that event τt occurs. Also assume that At ⊆ M∗ and
Bt ∩M∗ = ∅. Let e ∈ [n]\(At ∪ Bt) be an active arm. Suppose that ∆(t−n+1) ≤ ∆e. Then, we
have e ∈ (M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt).

Proof. Fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′). Suppose that e 6∈ (M∗ ∩
Mt) ∪ (¬M∗ ∩ ¬Mt). This is equivalent to the following

e ∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt). (99)

Eq. (99) can be further rewritten as

e ∈ (M∗\Mt) ∪ (Mt\M∗).

From this assumption, it is easy to see that Mt 6= M∗. Therefore we can apply Lemma 2. Then we
know that there exists b = (b+, b−) ∈ B such that e ∈ b− ∪ b+, b− ⊆ Mt\M∗, b+ ⊆ M∗\Mt,
Mt ⊕ b ∈M and 〈w,χb〉 ≥ ∆e > 0.

Using Lemma 18, we see that (Mt⊕b)∩Bt = ∅,At ⊆ (Mt⊕b) and (b+∪b−)∩(At∪Bt) = ∅. Now
recall the definition Mt ∈ arg maxM∈M,At⊆M,Bt∩M=∅ w̄t(M) and also recall that Mt ⊕ b ∈ M.
Therefore, we obtain that

w̄t(Mt) ≥ w̄t(Mt ⊕ b). (100)

30

On the other hand, we have

w̄t(Mt ⊕ b) =
〈
w̄t,χMt

+ χb
〉

(101)

=
〈
w̄t,χMt

〉
+ 〈w̄t,χb〉

>
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆(n−t+1)

3 width(M)
‖χb‖1 (102)

≥
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆e

3 width(M)
‖χb‖1

≥
〈
w̄t,χMt

〉
+ 〈w,χb〉 −

∆e

3
(103)

≥
〈
w̄t,χMt

〉
+

2

3
∆e (104)

≥
〈
w̄t,χMt

〉
= w̄t(Mt), (105)

where Eq. (101) follows from Lemma 1; Eq. (102) follows from Lemma 17 and the fact that (b+ ∪
b−) ∩ (At ∪ Bt) = ∅; Eq. (103) holds since b ∈ B which implies that ‖χb‖1 = |b+| + |b−| ≤
width(B) = width(M); and Eq. (104) and Eq. (105) hold since we have shown that 〈w,χb〉 ≥
∆e ≥ 0.

This means that w̄t(Mt ⊕ b) > w̄t(Mt). This contradicts to Eq. (100). Therefore we have e ∈
(M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt).

The next lemma takes a step further. It shows that if ∆e ≥ ∆(n−t+1) for some arm e, then the
empirical gap of arm e, w̄t(Mt)− w̄t(M̃t,e), is greater than 2

3∆(n−t+1).
Lemma 20. Fix any phase t > 0. Suppose that event τt occurs. Also assume that At ⊆ M∗ and
Bt ∩M∗ = ∅. Let e ∈ [n]\(At ∪Bt) be an active arm such that ∆(t−n+1) ≤ ∆e. Then, we have

w̄t(Mt)− w̄t(M̃t,e) >
2

3
∆(t−n+1).

Proof. By Lemma 19, we see that

e ∈ (M∗ ∩Mt) ∪ (¬M∗ ∩ ¬Mt). (106)

We claim that e ∈ (M̃t,e\M∗)∪(M∗\M̃t,e) and thereforeM∗ 6= M̃t,e. Recall the definition of M̃t,e,
which ensures that e ∈ M̃t,e if and only if e 6∈Mt. By Eq. (106), we see that either e ∈ (M∗ ∩Mt)

or e ∈ (¬M∗ ∩ ¬Mt). First let us assume that e ∈ M∗ ∩Mt. Then, by definition of M̃t,e, we see
that e 6∈ M̃t,e. Therefore e ∈ M∗\M̃t,e. On the other hand, suppose that e ∈ ¬M∗ ∩ ¬Mt. Then,
we see that e ∈ M̃t,e. This means that e ∈ M̃t,e\M∗.
Hence we can apply Lemma 2. Then we obtain that there exists b = (b+, b−) ∈ B such that
e ∈ b+ ∪ b−, b+ ⊆M∗\M̃t,e, b− ⊆ M̃t,e\M∗, M̃t,e ⊕ b ∈M and 〈w,χb〉 ≥ ∆e.

Define M ′t,e , M̃t,e ⊕ b. Using Lemma 18, we have At ⊆ M ′t,e, Bt ∩M ′t,e = ∅ and (b+ ∪ b−) ∩
(At ∪ Bt) = ∅. Since M ′t,e ∈ M and by definition w̄t(Mt) = maxM∈M,At⊆M,Bt∩M=∅ w̄t(M),
we have

w̄t(Mt) ≥ w̄t(M ′t,e). (107)

Hence, we have

w̄t(Mt)− w̄t(M̃t,e) ≥ w̄t(M ′t,e)− w̄t(M̃t,e)

= w̄t(M̃t,e ⊕ b)− w̄t(M̃t,e)

=
〈
w̄t,χM̃t,e

+ χb

〉
−
〈
w̄t,χM̃t,e

〉
(108)

= 〈w̄t,χb〉

> 〈w,χb〉 −
∆(n−t+1)

3 width(B)
‖χb‖1 (109)

31

≥ 〈w,χb〉 −
∆e

3 width(B)
‖χb‖1 (110)

≥ 〈w,χb〉 −
∆e

3
(111)

≥ 2

3
∆e ≥

2

3
∆(n−t+1), (112)

where Eq. (108) follows from Lemma 1; Eq. (109) follows from Lemma 17, the assumption on
event τt and the fact (b+ ∪ b−) ∩ (At ∪ Bt) = ∅; Eq. (110) follows from the assumption that
∆e ≥ ∆(n−t+1); Eq. (111) holds since b ∈ B and therefore ‖χb‖1 ≤ width(M); and Eq. (112)
follows from the fact that 〈w,χb〉 ≥ ∆e.

The next lemma shows that, during phase t, if ∆e ≤ ∆(n−t+1) for some arm e, then the empirical
gap of arm e is smaller than 1

3∆(n−t+1).

Lemma 21. Fix any phase t > 0. Suppose that event τt occurs. Also assume that At ⊆ M∗ and
Bt∩M∗ = ∅. Suppose an active arm e ∈ [n]\(At∪Bt) satisfies that e ∈ (M∗∩¬Mt)∪(¬M∗∩Mt).
Then, we have

w̄t(Mt)− w̄t(M̃t,e) ≤
1

3
∆(n−t+1).

Proof. Fix an exchange class B ∈ arg minB′∈Exchange(M) width(B′).

The assumption that e ∈ (M∗∩¬Mt)∪(¬M∗∩Mt) can be rewritten as e ∈ (M∗\Mt)∪(Mt\M∗).
This shows that Mt 6= M∗, hence Lemma 2 applies here. Therefore we know that there exists
b = (b+, b−) ∈ B such that e ∈ (b+ ∪ b−), b+ ⊆ M∗\Mt, b− ⊆ Mt\M∗, Mt ⊕ b ∈ M and
〈w,χb〉 ≥ ∆e > 0.

Define M ′t,e ,Mt ⊕ b. We claim that

w̄t(M̃t,e) ≥ w̄t(M ′t,e). (113)

From the definition of M̃t,e in Algorithm 2, we only need to show that (a): e ∈ (M ′t,e\Mt) ∪
(Mt\M ′t,e) and (b): At ⊆M ′t,e and Bt ∩M ′t,e = ∅. First we prove (a). Notice that b+ ∩ b− = ∅ and
b− ⊆Mt. Hence we see that M ′t,e\Mt = (Mt\b− ∪ b+)\Mt = b+ and Mt\M ′t,e = Mt\(Mt\b− ∪
b+) = b−. In addition, we have that e ∈ (b− ∪ b+) = (M ′t,e\Mt) ∪ (Mt\M ′t,e), therefore we see
that (a) holds. Next, we notice that (b) follows directly from Lemma 18 by setting M = Mt. Hence
we have shown that Eq. (113) holds.

Hence, we have

w̄t(Mt)− w̄t(M̃t,e) ≤ w̄t(Mt)− w̄t(M ′t,e)
=
〈
w̄t,χMt

〉
−
〈
w̄t,χMt

+ χb
〉

(114)

= −〈w̄t,χb〉

≤ − 〈w,χb〉+
∆(n−t+1)

3 width(M)
‖χb‖1 (115)

≤
∆(n−t+1)

3 width(M)
‖χb‖1 ≤

∆(n−t+1)

3
, (116)

where Eq. (114) follows from Lemma 1; Eq. (115) follows from Lemma 17, the assumption on τt and
(b+∪b−)∩(At∪Bt) = ∅ (by Lemma 18); and Eq. (116) follows from the fact ‖χb‖1 ≤ width(M)
(since b ∈ B) and that 〈w,χb〉 ≥ ∆e ≥ 0.

D.3 Proof of Theorem 3

Using these technical lemmas, we are now ready to prove Theorem 3. For reader’s convenience, we
first restate Theorem 3 as follows.

32

Theorem 3. Given any T > n, any decision class M ⊆ 2[n] and any expected rewards w ∈
Rn. Assume that the reward distribution ϕe for each arm e ∈ [n] has mean w(e) with an R-sub-
Gaussian tail. Let ∆(1), . . . ,∆(n) be a permutation of ∆1, . . . ,∆n (defined in Eq. (1)) such that
∆(1) ≤∆(n). Define H2 , maxi∈[n] i∆

−2
(i) . Then, the CSAR algorithm uses at most T

samples and outputs a solution Out ∈M∪ {⊥} such that

Pr[Out 6= M∗] ≤ n2 exp

(
− (T − n)

18R2 ˜log(n) width(M)2H2

)
, (8)

where ˜log(n) ,
∑n
i=1 i

−1, M∗ = arg maxM∈M w(M) and width(M) is defined in Eq. (4).

Proof. First, we show that the algorithm takes at most T samples. It is easy to see that exactly one
arm is pulled for T̃1 times, one arm is pulled for T̃2 times, . . . , and one arm is pulled for T̃n times.
Therefore, the total number of samples used by the algorithm is bounded by

n∑
t=1

T̃t ≤
n∑
t=1

(
T − n

˜log(n)(n− t+ 1)
+ 1

)
=
T − n
˜log(n)

˜log(n) + n = T.

By Lemma 16, we know that the event τ ,
⋂T
t=1 τt occurs with probability at least 1 −

n2 exp
(
− (T−n)

18R2 ˜log(n) width(M)2H2

)
. Therefore, we only need to prove that, under event τ , the al-

gorithm outputs M∗. We will assume that event τ occurs in the rest of the proof.

We prove by induction. Fix a phase t ∈ [t]. Suppose that the algorithm does not make any error
before phase t, i.e., At ⊆M∗ and Bt ∩M∗ = ∅. We show that the algorithm does not err at phase t.

At the beginning of phase t, there are exactly t− 1 inactive arms |At ∪Bt| = t− 1. Therefore there
must exists an active arm et ∈ [n]\(At ∪Bt) such that ∆et ≥ ∆(n−t+1). Hence, by Lemma 20, we
have

w̄t(Mt)− w̄t(Mt,et) ≥
2

3
∆(n−t+1). (117)

Notice that the algorithm makes an error in phase t if and only if it accepts an arm pt 6∈ M∗ or
rejects an arm pt ∈ M∗. On the other hand, by design, arm pt is accepted when pt ∈ Mt and is
rejected when pt 6∈ Mt. Therefore, we see that the algorithm makes an error in phase t if and only
if pt ∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt).

Suppose that pt ∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt). Now appeal to Lemma 21, we see that

w̄t(Mt)− w̄t(M̃t,pt) ≤
1

3
∆(n−t+1). (118)

By combining Eq. (117) and Eq. (118), we see that

w̄t(Mt)− w̄t(M̃t,pt) ≤
1

3
∆(n−t+1) <

2

3
∆(n−t+1) ≤ w̄t(Mt)− w̄t(Mt,et). (119)

However Eq. (119) is contradictory to the definition of pt , arg maxe∈[n]\(At∪Bt) w̄t(Mt) −
w̄t(M̃t,e). Therefore we have proven that pt 6∈ (M∗ ∩ ¬Mt) ∪ (¬M∗ ∩Mt). This means that the
algorithm does not err at phase t, or equivalently At+1 ⊆ M∗ and Bt+1 ∩M∗ = ∅. By induction,
we have proven that the algorithm does not err at any phase t ∈ [n].

Hence we have An+1 ⊆M∗ and Bn+1 ⊆ ¬M∗ in the final phase. Notice that |An+1|+ |Bn+1| = n
and An+1 ∩ Bn+1 = ∅. This means that An+1 = M∗ and Bn+1 = ¬M∗. Therefore the algorithm
outputs Out = An+1 = M∗ after phase n.

E Analysis of the Uniform Allocation Algorithm

In this section, we analyze the performance of a simple benchmark strategy UNI which plays each
arm for a equal number of times and then calls a maximization oracle using the empirical means of
arms as input. The pseudo-code of the UNI algorithm is listed in Algorithm 3.

33

Algorithm 3 UNI: Uniform Allocation
Require: Budget: T > 0; Maximization oracle: Oracle : Rn →M.
1: Pull each arm e ∈ [n] for bT/nc times.
2: Compute the empirical means w̄ ∈ Rn of each arm.
3: Out← Oracle(w̄)
4: return: Out

The next theorem upper bounds the probability of error of UNI.

Theorem 7. Given any T > n, any decision classM ⊆ 2[n] and any expected rewards w ∈ Rn.
Assume that the reward distribution ϕe for each arm e ∈ [n] has meanw(e) with anR-sub-Gaussian
tail. Also assume without loss of generality that T is a multiple of n. Define ∆(1) = mini∈[n] ∆i and
H3 = n∆−2

(1). Then, the output Out of the UNI algorithm satisfies

Pr[Out 6= M∗] ≤ 2n exp

(
− T

18R2 width(M)2H3

)
, (120)

where M∗ = arg maxM∈M w(M).

From Theorem 7, we see that the UNI algorithm could be significantly worse than CLUCB and CSAR,
since it is clear that H3 ≥ H ≥ H2 and potentially one has H3 � H ≥ H2 for a large number of
arms with heterogeneous gaps.

Now we prove Theorem 7. The proof is straightforward using tools of exchange classes.

Proof. Define ∆(1) = mini∈[n] ∆i. Define random event ξ as follows

ξ =

{
∀i ∈ [n], |w̄(i)− w(i)| <

∆(1)

3 width(M)

}
.

Notice that each arm is sampled for bTn c times. Therefore, using Hoeffding’s inequality (Lemma 6)
and union bound, we can bound Pr[ξ] as follows. Fix any i ∈ [n], by Hoeffding’s inequality, we
have

Pr

[
|w̄(i)− w(i)| ≥

∆(1)

3 width(M)

]
≤ 2 exp

(
−

T∆2
(1)

18R2nwidth(M)2

)
.

Then, using a union bound, we obtain

Pr
[
ξ
]
≥ 1− 2n exp

(
−

T∆2
(1)

18nR2 width(M)2

)
.

In addition, using an argument very similar to Lemma 17, one can show that, on event ξ, for any
vector a ∈ Rn, it holds that

| 〈w̄,a〉 − 〈w,a〉 | <
∆(1)

3 width(M)
‖a‖1 . (121)

Now we claim that, on the event ξ, we have Out = M∗. Note that theorem follows immediately
from the claim. Next, we prove this claim.

Suppose that, on the contrary, Out 6= M∗. In this case, let us write M = Out. We also fix B ∈
arg minB′∈Exchange(M) width(B). Notice that by definition width(B) = width(M).

Since M 6= M∗, we see that there exists e ∈ (M\M∗) ∪ (M∗\M). Now, by Lemma 2, we obtain
that there exists b = (b+, b−) ∈ B such that e ∈ b+∪ b−, b− ⊆M\M∗, b+ ⊆M∗\M , M ⊕ b ∈M
and 〈w,χb〉 ≥ ∆e. Also notice that ∆e ≥ ∆(1). Therefore 〈w,χb〉 ≥ ∆(1).

Consider M ′ ,M ⊕ b. We have

w̄(M ′)− w̄(M) = 〈w̄,χM ′〉 − 〈w̄,χM 〉
= 〈w̄,χb〉 (122)

34

> 〈w,χb〉 −
∆(1)

3 width(M)
‖χb‖1 (123)

≥ ∆(1) −
∆(1)

3
(124)

=
2

3
∆(1) > 0, (125)

where Eq. (122) follows from Lemma 1; Eq. (123) follows from Eq. (121); and Eq. (124) follows
from the fact that b ∈ B and hence ‖χb‖1 = |b+|+ |b−| ≤ width(B) = width(M).

Hence, we have shown that w̄(M ′) > w̄(M). However this contradicts to the fact that w̄(M) =
maxM1∈M w̄(M1) (by the definition of maximization oracle). Hence, by contradiction, we have
proven that Out = M∗.

F Exchange Classes for Example Decision Classes

In this section, we give formal constructions of the decision classes discussed in Example 1, 2 and 3.
Further, we bound the width of exchange classes for different examples. These bounds are proven us-
ing concrete constructions of exchange classes (Fact 1 through 5). The constructed exchange classes
embody natural combinatorial structures. We illustrate the constructed exchange classes in Figure 3.

...

+-

(a) An exchange set from BMATROID(n) (TOPK:
Fact 2; each cylinder represents an arm).

+

-

(b) An exchange set from BMATROID(n) (Spanning
trees: Fact 1; each edge corresponds to an arm).

+
++

- - -

...

...

(c) An exchange set from BMATCH(G) (Matchings:
Fact 4; each edge corresponds to an arm)

+
+ +

+

- - -s t

(d) An exchange set from BPATH(G) (Paths: Fact 5;
each edge corresponds to an arm).

Figure 3: Examples of exchange sets belonging to the exchange classes BMATROID(n) (one for TOPK
and one for spanning tree), BMATCH(G) and BPATH(G): green-solid elements constitute the set b+,
red-dotted elements constitute the set b− and an example exchange set is given by b = (b+, b−).
In Figure 3a, we use TOPK as a specific instance of matroid decision class. In Figure 3b, we use
spanning tree as a specific instance of matroid decision class.

Notation. We need one extra notation. Let σ : E → [n] be a bijection from some set E with n
elements to [n]. Let A ⊆ E be an arbitrary set, we define σ(A) , {σ(a) | a ∈ A}. Conversely, for
all M ⊆ [n], we define σ−1(M) , {σ−1(e) | e ∈M}.
Fact 1 (Matroid). Let T = (E, I) be an arbitrary matroid, where E is the ground set of n elements
and I is the family of subsets ofE called in the independent sets which satisfy the axioms of matroids

35

3. Let σ : E → [n] be a bijection from E to [n]. LetMMATROID(T) correspond to the collection of all
bases of matroid T and formally we define

MMATROID(T) =
{
M ⊆ [n] | σ−1(M) is a basis of T

}
. (126)

Define the exchange class

BMATROID(n) =
{

({i}, {j}) | ∀i ∈ [n], j ∈ [n]
}
. (127)

Then we have BMATROID(n) ∈ Exchange(MMATROID(T)). In addition, we have width(BMATROID(n)) =
2, which implies that width(MMATROID(T)) ≤ 2.

To prove Fact 1, we first recall a well-known result from matroid theory which is referred as the
strong basis exchange property.
Lemma 22 (Strong basis exchange [26]). LetA be the set of all bases of a matroid T = (E, I). Let
A1, A2 ∈ A be two bases. Then for all x ∈ A1\A2, there exists y ∈ A2\A1 such that A1\{x} ∪
{y} ∈ A and A2\{y} ∪ {x} ∈ A.

Using Lemma 22, we are ready to prove Fact 1.

Proof of Fact 1. Fix a matroid T = (E, I) where |E| = n and fix the bijection σ : E → [n]. Let
MMATROID(T) be defined as in Eq. (126) and let BMATROID(n) be defined as in Eq. (127). LetA denote
the set of all bases of T . By definition, we haveMMATROID(T) = {σ(A) | A ∈ A}.

Now we show that BMATROID(n) is an exchange class forMMATROID(T). Let M,M ′ be two different
elements of MMATROID(T). By definition, we see that σ−1(M) and σ−1(M ′) are two bases of T .
Consider any e ∈M\M ′. Let x = σ−1(e). We see that x ∈ σ−1(M)\σ−1(M ′).

By Lemma 22, we see that there exists y ∈ σ−1(M ′)\σ−1(M) such that

σ−1(M)\{x} ∪ {y} ∈ A and σ−1(M ′)\{y} ∪ {x} ∈ A. (128)

Now we define exchange set b = (b+, b−) where b+ = {σ(y)} and b− = {σ(x)}. By Eq. (128) and
the fact that σ is a bijection, we see that M ⊕ b ∈ MMATROID(T) and M ′ 	 b ∈ MMATROID(T). We
also have b ∈ BMATROID(n). Due to the fact that M,M ′ and e are chosen arbitrarily, we have verified
that BMATROID(n) is an exchange class forMMATROID(T).

To conclude, we observe that width(BMATROID(n)) = 2.

Now we show that TOPK and MB are special cases of the family of decision classes of derived from
bases of matroids. This enable us to apply Fact 1 to construct exchange classes and bound the widths
of these decision classes. We also note that one may use a more direct way to construct the exchange
classes for these two problems without appealing to matroids.
Fact 2 (TOPK). For all K ∈ [n], letMTOPK(K) = {M ⊆ [n] | |M | = K} be the collection of all
subsets of sizeK. Then we have BMATROID(n) ∈ Exchange(MTOPK(K)) and width(MTOPK(K)) ≤ 2.

Proof. Let UKn = ([n], IK) where IK is given by

IK =
{
M ⊆ [n] | |M | ≤ K}.

Recall that UKn is a matroid (in particular, a uniform matroid of rankK) [26]. We know that a subset
M of [n] is basis of UKn if and only if |M | = K. Therefore, we haveMTOPK(K) =MMATROID(UK

n).
Then we can conclude immediately by using Fact 1.

Fact 3 (MB). For any partition A = {A1, . . . , Am} of [n], we define

MMB(A) =
{
M ⊆ [n] | ∀i ∈ [m] |M ∩Ai| = 1

}
.

Then we have BMATROID(n) ∈ Exchange(MTOPK(K)) and width(MMB(A)) ≤ 2.

3 The three axioms of matroid are (1) ∅ ∈ I and I 6= {∅}; (2) Every subsets of an independent set
are independent (heredity property); (3) For all A,B ∈ I such that |B| = |A| + 1 there exists an element
e ∈ B\A such that A ∪ {e} ∈ I (augmentation property). We refer interested readers to [26] for a general
introduction to the matroid theory.

36

Proof. Let PA = ([n], IA) where IA is given by

IA =
{
M ⊆ [n] | ∀i ∈ [m] |M ∩Ai| ≤ 1

}
.

It can be shown that PA is a matroid (known as partition matroid [26]) and each basis M of PA
satisfies |M ∩ Ai| = 1 for all i ∈ [m]. Therefore we have MMB(A) = MMATROID(PA). Then the
conclusion follows immediately from Fact 1.

Fact 4 (Matching). Let G(V,E) be a bipartite graph with n edges. Let σ : E → [n] be a bijection.
Let A be the set of all valid matchings in G. We defineMMATCH(G) as follows

MMATCH(G) =
{
σ(A) | A ∈ A

}
.

Define the exchange class

BMATCH(G) =
{

(σ(c+), σ(c−)) | ∃c ∈ C ∪ P, the edges of c alternate between c+, c−
}
,

where C is the set of all cycles in G and P is the set of all paths in G. Then we have
BMATCH(G) ∈ Exchange(MMATCH(G)). In addition, we have width(BMATCH(G)) ≤ |V |, which im-
plies that width(MMATROID(T)) ≤ |V |.

To prove Fact 4, we recall a classical result on graph matching which characterizes the properties of
augmenting cycles and augmenting paths [4].
Lemma 23. Let G(V,E) be a bipartite graph. Let M and M ′ be two different matchings of G.
Then the induced graphG′ from the symmetric difference (M\M ′)∪(M ′\M) consists of connected
components that are one of the following

• An even cycle whose edges alternate between M and M ′.

• A simple path whose edges alternate between M and M ′.

Proof of Fact 4. Fix a bipartite graph G(V,E) and a bijection σ : E → [n]. Let M,M ′ ∈
MMATCH(G) be two different elements of MMATCH(G) and consider an arbitrary e ∈ M\M ′. On
a high level perspective, we construct an exchange class which contains all augmenting cycles and
paths of G. We know that the symmetric difference between M and M ′ can be decomposed into a
collection of disjoint augmenting cycles and paths. And e must be on one of the augmenting cycle
or path. Then, since “applying” this augmenting cycle/path on M will yield another valid matching
which does not contains e. We see that this meets the requirements of an exchange class. In the rest
of the proof, we carry out the technical details of this argument.

DefineA = σ−1(M) andA′ = σ−1(M ′). Let a = σ−1(e). ThenA,A′ are two matchings ofG. Let
G′ be the induced graph from the symmetric difference (A\A′) ∪ (A′\A). Let C be the connected
component of G′ which contains the edge a. Therefore, by Lemma 23, we see that C is either an
even cycle or a simple path with edges alternating between A and A′. Let C+ contains the edges
of C that belongs to A′\A. Similarly, let C− contains the edges of C that belongs to A\A′. Define
b+ = σ(C+) and b− = σ(C−). Let b = (b+, b−) be an exchange set.

Since b corresponds to either an augmenting path or an augmenting cycle, we see that b ∈ BMATCH(G).
Since a ∈ C−, we obtain that e ∈ b−. In addition, note thatC+ ⊆ A′\A andC− ⊆ A\A′. Therefore
we have b+ ⊆M ′\M and b− ⊆M\M ′.
Since C is an A-augmenting path/cycle, therefore it immediately holds that A\C− ∪ C+ is a valid
matching. Therefore, we have M\b− ∪ b+ ∈ MMATCH(G). Similarly, one can show that M ′\b+ ∪
b− ∈MMATCH(G). Hence we have shown that BMATCH(G) is an exchange class forMMATCH(G).

Fact 5 (Path). Let G(V,E) be a directed acyclic graph with n edges. Let s, t ∈ V be two different
vertices. Let σ : E → [n] be a bijection. Let A(s, t) be the set of all valid paths from s to t in G. We
defineMPATH(G,s,t) as follows

MPATH(G,s,t) =
{
σ(A) | A ∈ A(s, t)

}
.

Define exchange class
BPATH(G) = {(σ−1(p), σ−1(q)) | p, q are the arcs of two disjoint paths of G with same endpoints}.
Then, we have BPATH(G) ∈ Exchange(MPATH(G,s,t)). In addition, we have width(BPATH(G)) ≤ |V |
and therefore width(MPATH(G,s,t)) ≤ |V |.

37

Proof. Fix a directed acyclic graph G(V,E) and a bijection σ : E → [n]. Fix two vertices s, t ∈ V .

We prove that BPATH(G) is an exchange class forMPATH(G,s,t). Let M,M ′ ∈ MPATH(G,s,t) be two
different sets. Then σ−1(M), σ−1(M ′) are two sets of arcs corresponding to two different paths
from s to t. Let P = (v1, . . . , vn1

), P ′ = (v′1, . . . , v
′
n2

) denote the two paths, respectively. Notice
that s = v1 = v′1 and t = vn1

= v′n2
. We also denote E(P) = σ−1(M) and E(P ′) = σ−1(M ′).

Fix some e ∈ M\M ′ and define a = σ−1(e). Suppose that a is an arc from u to v. Since a is on
path P , there exists i such that vi = u and vi+1 = v. Now we define j1 = arg maxj≤i,vj∈P ′ j and
j2 = arg minj≥i+1,vj∈P ′ j. Notice that j1 and j2 are well-defined since P and P ′ intersects on at
least two vertices (s and t). Let v′k1 = vj1 and v′k2 = vj2 be the corresponding indices in P ′. Then,
we see that Q1 = (vj1 , vj1+1, . . . , vj2) and Q2 = (v′k1 , v

′
k1+1, . . . , v

′
k2

) are two different paths from
vj1 to vj2 . Denote the sets of arcs of Q1 and Q2 as E(Q1) and E(Q2).

Let b = (b+, b−), where b+ = σ(E(Q2)), b− = σ(E(Q1)). We see that b ∈ BPATH(G). It is clear that
a ∈ E(Q1), E(Q1) ⊆ E(P)\E(P ′) and E(Q2) ⊆ E(P ′)\E(P). Therefore e ∈ b−, b− ⊆M\M ′
and b+ ⊆M ′\M .

Now it is easy to check that E(P1)\E(Q1) ∪ E(Q2) equals the set of arcs of path
(v1, . . . , vj1 , v

′
k1+1, . . . , v

′
k2−1, vj2 , . . . , vn1

) (recall that vj1 = v′k1 and vj2 = v′k2). This means
that E(P1)\E(Q1) ∪ E(Q2) ∈ A(s, t) and therefore M\b− ∪ b+ ∈ MPATH(G,s,t). Using a sim-
ilar argument, one can show that M ′\b+ ∪ b− ∈ MPATH(G,s,t) and hence we have verified that
BPATH(G) ∈ Exchange(MPATH(G,s,t)).

G Equivalence Between Constrained Oracles and Maximization Oracles

In this section, we present a general method to implement constrained oracles using maximization
oracles. The idea of the reduction is simple: one can impose the negative constrains B by setting
the corresponding weights to be sufficiently small; and one can impose the positive constrains A by
setting the corresponding weights to be sufficiently large. The reduction method is shown in Algo-
rithm 4. The correctness of the reduction is proven in Lemma 24. Furthermore, it is trivial to reduce
from maximization oracles to constrained oracles. Therefore, Lemma 24 shows that maximization
oracles are equivalent to constrained oracles up to a transformation on the weight vector.

Algorithm 4 COracle(w, A,B)

Require: w ∈ Rn, A ⊆ [n], B ⊆ [n]; Maximization oracle Oracle : Rn →M
1: L1 ← ‖w‖1
2: for i = 1, . . . , n do
3: if i ∈ A then
4: w1(i)← 3L1

5: else
6: w1(i)← w(i)

7: L2 ← ‖w1‖1
8: for i = 1, . . . , n do
9: if i ∈ B then
10: w2(i)← −3L2

11: else
12: w2(i)← w1(i)

13: M ← Oracle(w2)
14: if B ∩M = ∅ and A ⊆M then
15: Out = M
16: else
17: Out = ⊥
18: return: Out

Lemma 24. Given M ⊆ 2[n], w ∈ Rn, A ⊆ [n] and B ⊆ [n], suppose that A ∩ B = ∅. Then
the output Out of Algorithm 4 satisfies Out ∈ arg maxM∈M,A⊆M,B∩M=∅ w(M) where we use
the convention that the arg max of an empty set is ⊥. Therefore Algorithm 4 is a valid constrained
oracle.

38

Proof. Let w1 and w2 be defined as in Algoritm 4. Let M = Oracle(w2). LetMA,B = {M ∈
M | A ⊆ M,B ∩M = ∅} be the subset ofM which satisfies the constraints. IfMA,B = ∅, then
it is clear M cannot satisfy both of the constraints A ⊆M and B ∩M = ∅. Therefore Algorithm 4
returns ⊥ in this case.

In the rest of the proof, we assume that MA,B 6= ∅. Since MA,B is non-empty, we can fix an
arbitrary M0 ∈ MA,B , which will be used later in the proof. We will also frequently use the fact
that, for all v ∈ Rn and all S ⊆ [n], we have

− ‖v‖1 ≤ v(S) ≤ ‖v‖1 . (129)

First we claim that B ∩M = ∅. Suppose that B ∩M 6= ∅. Then there exists i ∈ B ∩M and we fix
such an i. Then we have

w2(M) = w2(M\{i}) + w2(i)

≤ w2(M\B) + w2(i) (130)
= w1(M\B) + w2(i) (131)
≤ L2 − 3L2 = −2L2, (132)

where Eq. (130) follows from the fact that w2(j) = −L2 ≤ 0 for all j ∈ B\{i}; Eq. (131)
holds since w1 and w2 coincide on all entries of M\B; and Eq. (132) follows from the definition
L2 = ‖w1‖1 and Eq. (129).

On the other hand, observing that B ∩M0 = ∅, we can bound w2(M0) as follows

w2(M0) = w1(M0) ≥ −L2.

Therefore we see that w2(M0) > w2(M). However, this contradicts to the definition of M since
M ∈ arg maxM ′∈M w2(M ′). Therefore our claim B ∩M = ∅ is true. By this claim and since w2

and w1 coincide on entries of [n]\B, we have

w2(M) = w1(M). (133)

Next we claim that A ⊆M . Suppose that A 6⊆M . Then we have

w2(M) = w1(M) = w1(M ∩A) + w1(M\A)

= 3|M ∩A|L1 + w(M\A) (134)
≤ (3|A| − 3)L1 + L1 (135)
= (3|A| − 2)L1, (136)

where Eq. (134) follows from the definition of w1; and Eq. (135) follows from the assumption that
A 6⊆M and therefore |M ∩A| ≤ |A| − 1.

On the other hand, using the fact that A ⊆M0 (since M0 ∈MA,B), we have

w2(M0) = w1(M0) = w1(A) + w1(M0\A) (137)
= 3|A|L1 + w(M0\A) (138)
≥ 3|A|L1 − L1 (139)
= (3|A| − 1)L1, (140)

where Eq. (137) follows from the fact that M0 ∩ B = ∅ and A ⊆ M0; Eq. (138) follows from
the definition of w1, which ensures that w1 and w coincide on M0\A; and Eq. (139) follows from
Eq. (129).

Therefore, by combining Eq. (136) and Eq. (140), we see that w2(M0) > w2(M). Again this
contradicts to the definition of M , which proves the claim that A ⊆M .

Now we see that A ⊆ M and B ∩M = ∅, which means that M ∈ MA,B . Therefore, we remain
to verify that w(M) = maxM ′∈MA,B

w(M ′). Suppose that there exists M1 ∈ MA,B such that
w(M1) > w(M). Notice that B ∩M1 = ∅ and A ⊆M1, we have

w2(M1) = w1(M1) = w1(M1\A) +w1(B) = w(M1\A) + 3|A|L1 = w(M1) + 3|A|L1 −w(A).

Similarly, one can show thatw2(M) = w(M)+3|A|L1−w(A). By combining with the assumption
that w(M1) > w(M) we see that w2(M1) > w2(M), which contradicts to the definition of M .
Hence we have verified that w(M) = maxM ′∈MA,B

w(M ′).

39

H Preliminary Experiments: Identifying the Minimum Spanning Tree

In this section, we present some preliminary experimental results of our algorithms CLUCB and
CSAR. We conduct experiments on a real-world dataset with decision classes corresponding to col-
lections of spanning trees. We compare our algorithms with the uniform allocation benchmark UNI
discussed in Appendix E. The experiment results show that the proposed algorithms are considerably
more sample efficient than the UNI algorithm, which agrees with our theoretical analysis.

0 200 400 600 800 1000

Hardness measure: H

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

CLUCB

(a) Network 1755

0 200 400 600 800 1000 1200 1400

Hardness measure: H

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

CLUCB

(b) Network 3257

0 100 200 300 400 500 600 700 800 900

Hardness measure: H

0.00

0.05

0.10

0.15

0.20

0.25

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

CLUCB

(c) Network 3967

Figure 4: Comparison of empirical probability of errors with respect to H.

0 200 400 600 800 1000

Hardness measure: H

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

sa
m

p
le

s

(a) Network 1755

0 200 400 600 800 1000 1200 1400

Hardness measure: H

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

sa
m

p
le

s

(b) Network 3257

0 100 200 300 400 500 600 700 800 900

Hardness measure: H

0

5000

10000

15000

20000

N
u
m

b
e
r

o
f

sa
m

p
le

s

(c) Network 3967

Figure 5: Empirical sample complexity of CLUCB with respect to H.

1500 2000 2500 3000 3500 4000

Budget size T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

(a) Network 1755 (H = 117.6)

3000 4000 5000 6000 7000 8000

Budget size T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

(b) Network 3257 (H = 181.5)

1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Budget size T

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ro

b
a
b
ili

ty
 o

f
E
rr

o
r

UNI

CSAR

(c) Network 3967 (H = 108.7)

Figure 6: Empirical probability of error of CSAR and UNI with respect to budget size T .

Setup. Our task is to identify the optimal routing tree from a networking system which has the lowest
expected latency in an exploration procedure, where one can obtain noisy measurements of latencies
between different nodes. We model this problem as a CPE problem where the arms correspond to
edges and the decision class corresponds to the set of spanning trees (which is a special case of
matroids, as we have discussed in Example 3). We use a real-world dataset called RocketFuel [30],
which contains several ISP networks with routing information such as average latencies between
nodes pairs. We select three medium-sized ISP networks with numbers of edges ranging from 161
to 328. For each network, we model the latency X(e) of edge e as the sum of the given average
latency l(e) and an additive random noise N (0, 1). Then we model the reward of edge e as the

40

negative latency −X(e) and therefore the expected reward of e is given by w(e) = −l(e). Notice
that we now need to find the spanning tree that maximizes the expected reward, which is exactly an
instance of CPE.

Since the ground-truth of expected reward w is known, we can compute the ground-truth of the
optimal set M∗ and the hardness measures H. Furthermore, in order to investigate the relationship
between H and sample complexity empirically, we generate a number of instances with different H
by adjusting the expected reward of each arm e ∈ M∗ with a same additive quantity c0 while not
changing the optimality of M∗. By definition of H, we see that H decreases when c0 increases.

Recall that the sampling process of CSAR is divided into n phases and, in the end of each phase, the
algorithm either accepts or rejects an arm. In practice, for some decision classes, there may exists a
phase t < n such that there is only a unique set of arms which satisfies all constraints of phase t, i.e.
|MAt,Bt | = 1 (see Section 5 for the definitions of At, Bt andMAt,Bt). By the design of CSAR,
one can see that this unique element of MAt,Bt

will be the output of algorithm. In this case, the
remaining budget for phases t + 1, . . . , n are wasted in the sense that they do not affect the output.
Therefore, in our experiment, we modify CSAR to utilize these remaining budget in this case by
using the following heuristic. If |MAt,Bt

| = 1 for some t < n, we stop the algorithm and then
re-run the algorithm using the remaining budget. During re-running the algorithm, the algorithm
computes the empirical means of arms by using all samples including the samples from all previous
runs of the algorithm. This process continues until the the algorithm terminates normally or the
remaining budget is less than 30% of the original budget.

Evaluation method. We use the following evaluation procedure to compare the sample efficiency
among CLUCB, CSAR and UNI. Since CSAR and UNI are both learning algorithms in the fixed
budget setting, the comparison among them is straightforward: for each given budget, we run both
algorithms with this budget independently for 1000 times and compare their empirical probability
of errors (the fraction of runs where a tested algorithm fails to report the ground-truth optimal set
M∗). On the other hand, we use the following procedure to compare CLUCB with other fixed budget
algorithms. For each instance of ISP network, we run CLUCB independently for 1000 times. Suppose
that the i-th run of CLUCB uses Ti samples, we also run UNI and CSAR with budget Ti. Then
we compare the empirical probability of errors of the tested algorithms after the 1000 runs are
completed. In this way, we see that the compared algorithms use an equal number of samples in
each run, which allows us to compare their sample efficiency. Finally, we set δ = 0.3 for CLUCB
throughout the experiments.

Experimental results. We test all competing algorithms using the aforementioned evaluation
method. The experimental results are shown in Figure 4, Figure 5 and Figure 6. From the results
(Figure 4 and Figure 6), we see that both CLUCB and CSAR are consistently more sample efficient
than UNI by a large margin, i.e., they incur a smaller empirical probability of error than UNI when
using a same number of samples. This matches our theoretical analyses of these algorithms. We
also see that the probability of error of CLUCB is always smaller than the guarantee δ = 0.3 (Fig-
ure 4) and the sample complexity of CLUCB is approximately linear in H (Figure 5), which agrees
with our theory that the sample complexity bound for the spanning tree decision class is Õ(H) (see
Example 3).

41

	Introduction
	Problem Formulation
	Algorithm, Exchange Class and Sample Complexity
	Sample complexity
	Examples of decision classes

	Lower Bound
	Fixed Budget Algorithm
	Probability of error

	Related Work
	Conclusion
	Analysis of CLUCB (Theorem 1)
	Preparatory Lemmas
	Confidence Intervals
	Main Lemmas
	Proof of Theorem 1

	Extensions of CLUCB
	Fixed Budget Setting
	PAC Learning
	Proof of Extension Results
	Fixed Budget Setting (Theorem 4)
	PAC Learning (Theorem 5)

	Proof of Lower Bound (Theorem 2)
	Proof of Theorem 2
	Exchange Set Size Dependent Lower Bound

	Analysis of CSAR (Theorem 3)
	Confidence Intervals
	Main Lemmas
	Proof of Theorem 3

	Analysis of the Uniform Allocation Algorithm
	Exchange Classes for Example Decision Classes
	Equivalence Between Constrained Oracles and Maximization Oracles
	Preliminary Experiments: Identifying the Minimum Spanning Tree

