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Abstract

Localizing a query image against a 3D model at large
scale is a hard problem, since 2D-3D matches become more
and more ambiguous as the model size increases. This cre-
ates a need for pose estimation strategies that can han-
dle very low inlier ratios. In this paper, we draw new in-
sights on the geometric information available from the 2D-
3D matching process. As modern descriptors are not invari-
ant against large variations in viewpoint, we are able to find
the rays in space used to triangulate a given point that are
closest to a query descriptor. It is well known that two cor-
respondences constrain the camera to lie on the surface of
a torus. Adding the knowledge of direction of triangulation,
we are able to approximate the position of the camera from
two matches alone. We derive a geometric solver1that can
compute this position in under 1 microsecond. Using this
solver, we propose a simple yet powerful outlier filter which
scales quadratically in the number of matches. We validate
the accuracy of our solver and demonstrate the usefulness
of our method in real world settings.

1. Introduction

Estimating the pose of a query image from a set of
2D-3D matches is a central task in image-based localiza-
tion [4, 15, 21, 22, 26, 28], with many applications in, e.g.,
Structure-from-Motion (SfM) [12,24,25,27], simultaneous
localization and mapping (SLAM) [3, 5], augmented real-
ity [1, 17], or camera calibration [2]. Wrong 2D-3D corre-
spondences are typically handled through RANSAC [9] as
long as the percentage of such outliers among all matches is
not too large.

Image-based localization approaches establish 2D-3D
correspondences by matching descriptors extracted from
the query image (e.g., SIFT [16]) against descriptors associ-
ated with the 3D model points. However, at large scale or in

1MATLAB sample code available at www.cvg.ethz.ch/
research/toroidal-constraints/

complex scenes with many repetitive elements, establishing
2D-3D correspondences becomes a challenging task due to
the inherent ambiguities of the local appearance [15]. As it
becomes harder to distinguish between correct and incorrect
matches based on local descriptors alone [15], localization
algorithms must be able to cope with large outlier ratios in
order to enable reliable pose estimation. This in turn creates
a strong need for developing efficient outlier filtering strate-
gies which are able to identify and remove wrong matches.

In this paper, we derive a new previously unused geo-
metric constraint that can aid large-scale localization. Ex-
ploiting this constraint, we present a novel filtering strat-
egy that can cope with arbitrary outlier ratios, while re-
taining a runtime that scales quadratically with the number
of matches. Previous approaches either require knowledge
about the gravity direction in combination with a prior on
camera height [26, 28] or knowledge about the full camera
orientation [13]. In contrast, our approach does not depend
on such external information and can approximate the full
6 DOF pose from just two 2D-3D correspondences. For
our application, however, we only use the position from the
pose to efficiently prune outliers (c.f . Section 3.5). Whereas
most reconstruction methods consider viewpoint variance
[18] of descriptors as a weakness, we view it as a strength
useful to infer the viewpoint of the camera.

Our main observation is that, during the SfM process
used to generate a 3D model, each 3D point is associated
with the descriptors of the image features from which it
was triangulated. Thus, each of these descriptors is asso-
ciated with the viewing direction under which the point was
observed. Empirically, we found that the best matching de-
scriptor of a 3D point for a given 2D feature provides a
good approximation to the viewing direction of the query
image, c.f . Section 3.3 and Fig. 1, typically being within
10◦ of the closest match. We call this viewing direction
constraint the triangulation constraint. Additionally, given
two 2D-3D matches, it is known that the camera will lie on
the surface of a torus [7]. The toroidal constraint combined
with the triangulation constraint allows us to formulate a
solver that estimates the position of the camera from only
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Figure 1. Novel Geometric Information. For each query descrip-
tor, dqueryi , we find the closest descriptor inside the track that pro-
duced the 3D point pi. We do this for each match in S, yielding our
augmented match set S̄ (see Section 3.3 for more details). Given
a query measurement, bi and its matched 3D point pi we are able
to find an estimate of its closest ray in 3D by matching against all
images that triangulated pi. Thus, we constrain the query camera
position to lie near ray qnn

i .

two matches. While the resulting positions are approxima-
tions, they are accurate enough to enable efficient outlier
detection, which is a key task for pose estimation at large
scale.

This paper makes the following contributions: (i) We de-
rive a novel two-point formulation to estimate the absolute
position of the camera which incorporates prior information
on the viewing directions. To the best of our knowledge,
ours is the first pose solver which directly incorporates this
type of information into the pose estimation task. (ii) While
computing an exact solution to this problem analytically
is hard, we derive an approximate solver and empirically
show that it is able to recover near-optimal solutions. As
our solver only requires solving two quadratic problems, it
is very efficient with run-times of around∼ 1µs. (iii) Based
on our solver, we propose a novel outlier filter, whose run-
time is independent of the outlier ratio. Compared to pre-
vious approaches, it does not make any assumptions on the
availability of external information [13, 26, 28]. Besides, it
is significantly simpler to implement than [26, 28] and has
a lower computational complexity than [13,26]. (iv) Lastly,
we show that the novel constraint is indeed meaningful for
the localization task by comparing its performance as an
outlier filter to the state-of-the-art.

The rest of this paper is organized as follows: Section 2
provides an overview of the related work. Section 3.1 intro-
duces the problem of large-scale image-based localization
in the presence of large outlier ratios. Sections 3.2 and 3.3
provide a description of the toroidal and triangulation con-
straints. Section 3.4 describes our geometric solver which is
then used to design an efficient outlier filter in Section 3.5.
Section 4 validates our proposed method on both synthetic
and real-world datasets.

2. Related Work
Recent work on scalable image-based localization has

dealt with ambiguities in the matching stage by relaxing
the matching criterion [15, 21, 26, 28]. They handle the re-
sulting larger amount of wrong matches by detecting and
filtering incorrect correspondences before pose estimation.
These methods can be divided into approaches based on co-
visibility [15, 21, 22] and geometric reasoning [26, 28]. The
method proposed in this paper falls into the second category.
Visibility-based methods exploit the fact that the SfM pro-
cess provides information about which 3D points can be
observed together. This information is encoded in the bi-
partite visibility graph [14] and the 2D-3D matches deter-
mine sets of connected components in this graph. Sattler
et al. [22] use only those correspondences falling into the
largest connected component for pose estimation. Rather
than using a single component, [21] computes poses from
multiple subsets of matches and then select the pose with
the largest number of inliers. Instead of deciding on a fixed
subset before pose estimation, Li et al. adopt a RANSAC
sampler to avoid computing a pose from points not co-
visible together [15]. Visibility filtering usually reduces the
number of RANSAC iterations required to ensure a good
estimate is found. Yet, it does not remove the dependency
of RANSAC’s run-time on the outlier ratio.
Geometry-based approaches determine a subset of
matches whose 3D points are geometrically consistent with
their corresponding 2D features. The main motivation is
to design an approach whose run-time depends only on the
number of matches and not on the outlier ratio. One way
to select such a subset are branch-and-bound algorithms
[6,8,20], which often come with guarantees on the optimal-
ity of their solution. However, their algorithmic complex-
ity only allows them to handle a relatively small number of
matches given a limited computational budget.

Recently, more efficient outlier filters have been pro-
posed that rely on additional information. Given the full
orientation of a camera, the method from Larsson et al. re-
jects outliers in O(n2 log n) [13], where n is the number of
matches. They obtain a bound on the maximum number of
inliers for each single match. This, in turn, enables them
to identify and remove correspondences that cannot be part
of the maximum inlier set. Unfortunately, their method re-
quires to repeatably determine the intersection between two
cones, which is computationally involved. Similar to our
approach, Larsson et al. thus employ an approximation al-
gorithm that is more efficient to compute.

Svärm et al. [26] present an outlier filter based on a
known gravity direction and an estimate of the camera’s
height above ground. As a result, they can model pose es-
timation as a 2D registration problem. Similar to Larsson
et al., the approach of [26] determines the maximum num-
ber of correspondences geometrically consistent with each



match. Matches are rejected if this number falls below an
adaptive threshold. While both, Svärm et al. and Larsson
et al., require O(n2 log n) steps, our approach has a com-
putational complexity of O(n2). At the same time, it is
more general as it neither requires information about the full
camera orientation, the gravity direction, nor the camera’s
height.

Following the same setup as [26], Zeisl et al. propose a
filtering strategy based on voting that has an optimal asymp-
totic complexity of O(n) [28]. However, their voting strat-
egy is rather involved, both in terms of implementation and
constant factors contributing to the running time. In order to
accelerate their method, they exploit additional constraints
provided by the local feature geometry, e.g., the scale and
orientation of a 2D feature, as well as viewing direction con-
straints in order to reject matches before voting.

In contrast to Svärm et al. and Zeisl et al., our proposed
approach is both very efficient to compute and simple to
implement. It does not require any additional assumptions.
Instead, it leverages information that is readily available
but has not been previously exploited. This new insight al-
lows us to formulate new constraints that can be efficiently
used in a simple setting, therefore avoiding more involved
schemes as the ones introduced by Zeisl et al. Our experi-
ments show that we can achieve performance similar to [26]
and [28] while maintaining low computational complexity.

3. Localization Using Two Points And Their
Directions of Triangulation

In the following, we first formulate the problem and pro-
vide a description of the toroidal and triangulation con-
straints. We then describe our geometric solver and the pro-
posed outlier filter based on this solver.

3.1. Problem Formulation

Our aim is to localize an image of a scene given a SfM
model. To this end, we assume a set of 2D-3D correspon-
dences S = {bi ↔ pi}Ni = O ∪ I, where O ∩ I = ∅
denote the unknown sets of outlier and inlier matches. The
set {bi}Ni denotes the putative image projections of the
matched landmarks {pi}Ni . Since we deal with calibrated
image features only, we view bi as a 3D unit vector in the
camera frame of reference that emanates from its center.
To identify the inlier set I and refine the pose from all in-
lier matches, the most popular approach is to use P3P plus
RANSAC [9]. However, as noted before, a large outlier ra-
tio |O|/|S| greatly reduces the chances of finding a correct
pose with such methods. This is because RANSAC-style
methods are prone to getting stuck in local minima (i.e.,
they do not converge to the optimal |I|).

Ideally, one would exhaustively search through all
triplets in S and vote for the pose with the highest consen-

sus. However, this is prohibitively slow for most applica-
tions as up to 4

(
N
3

)
= 2/3 N3 poses (P3P returns up to 4

feasible solutions) need to be evaluated. The goal of our
approach is to drastically reduce |O|, so that pose recovery
becomes an easier problem. We will now derive a solu-
tion which prunes the vast majority of outliers and scales
quadratically with the number of matches.

3.2. Toroidal Constraints

Given two matches m0,m1 ∈ S , our goal is to find the
camera center location C represented in world frame co-
ordinates. Let Π0 denote the 3D plane defined by the two
matched 3D points p0 and p1, as well as the camera center
C. Since the angle θ between the rays of the features in
the camera frame θ = ](b0, b1) is known from their pixel
position and the calibration parameters, the location of C is
constrained to lie on a circle (c.f . Fig. 2a). However, this
circular constraint is still fulfilled if we rotate C around the
line connecting p0 and p1 by any angle u (c.f . Fig. 2b).
Thus, C must lie on the surface of a torus T2, yielding

C(u, v) =

(R+ r cos v) cosu
(R+ r cos v) sinu

r sin v

 ∈ T2 . (1)

Here v is the angle which parameterizes the circle, R de-
notes the major radius of the torus (corresponding to the
distance from the origin to the center of the circle) and r is
the radius of the circle. As it can be seen from Fig. 2, in this
particular setting the torus will always be self-intersecting
(i.e. r > R) since the axis of revolution always includes
two points on the circle. This yields sections of the torus
on which the camera can lie; if θ > π/2 the camera will
be constrained to the inner surface of the torus, otherwise it
will lie on the outside surface [7].

Without loss of generality, we make the implict assump-
tion that p0 and p1 are aligned with the z-axis, and that their
midpoint is at the origin. This can be trivially achieved by
pre-rotating and translating p0 and p1 by a suitable amount.
After the location of the camera on T2 has been found, we
transform it back to the world frame of reference.

Without any additional constraints, the exact location of
the camera center C on the two-dimensional manifold T2

is unknown. In the following, we make use of previously
unutilized information from the matching process to find a
likely location for C on the surface of the torus.

3.3. Triangulation-Ray Constraints

Any point pi of the SfM model has been obtained by
triangulating a set of M > 1 image measurements {qij}Mj
with associated descriptors Di = {dij}Mj , where we rep-
resent any qij as a 3D vector of unit length. Alternatively,
qij can be regarded as a vector emanating from pi towards



Figure 2. Toroidal Constraints From Two Matches. The cir-
cle in (a) describes the possible locations for C given two 2D-3D
correspondences. The camera is located on the red arc for angles
θ < π/2 and on the green arc otherwise. The z-axis is the axis of
revolution for this circular constraint, yielding T2, as seen in (b).
The unit vectors q0 and q1 are the directions from the points p0, p1
to the cameras whose descriptor was matched to the query image
descriptors.

Figure 3. Accuracy of the Matched Ray. To validate our new
constraint, we show the cumulative density function of the angular
error between bk and qk for a real dataset with ground truth [23].

the center of camera j (c.f . Fig. 2b). For localization, most
methods exploit a single descriptor derived from this set,
e.g., Davg

i = mean(Di) under the assumption that the vari-
ation inDi is small enough for this to be a valid approxima-
tion. However, we make the observation that the variability
within Di can be exploited to obtain previously unused but
geometrically meaningful information.

For a given match (bi ↔ pi) ∈ S, we denote the as-
sociated query descriptor as dqueryi . We find the closest
descriptor to dqueryi against all M descriptors that gener-
ated pi, i.e., we find dnni ∈ Di that is closest in descrip-
tor space to dqueryi (c.f . Fig. 1). We empirically observed
that for SfM ray measurements associated with dnni , qnni
is close in space to the ray which has produced our query
measurement bi (c.f . Fig. 3). Thus, we obtain the direction
of triangulation for each observed feature match bi ↔ qi
(where for simplicity qi = qnni ). This augments the set
of matches with noisy but informative orientation estimates
S̄ = {bi ↔ (pi, qi)}Ni .

Given two of these augmented matches, m̄0 and m̄1, we
aim to findC(u, v) ∈ T2 such that the angular distance to q0
and q1 is minimized. Notice that we do not strictly enforce
bi to be coincident with qi, as this is only possible for the
unrealistic noise-free case in which each query image was

Figure 4. Approximate Solution for Camera Position. The cost
optimization on T2 is approximated by a two step procedure: find-
ing the angle parameterized by u, then locating the point C(v) by
solving two square roots. The solver we propose minimizes the
angles highlighted in green (b).

taken from exactly the same pose as a camera in the SfM
model.

Our goal is to find a point on the torus whose location is
compatible with the triangulation directions q0 and q1. We
model the variation in Di as a product of viewpoint change
solely. Thus, the most compatible location on T2 for C
minimizes the angular distance, E, to both q0 and q1:

E(u, v) = ] (P0(u, v), q0)
2

+ ] (P1(u, v), q1)
2
, (2)

where Pi(u, v) = C(u, v)− pi, i.e., the vector from pi to C
and C(u, v) ∈ T, c.f . Fig. 4b.

3.4. A Geometric Solver

Minimizing the cost in Eq. 2 results in multiple local
minima. In particular, we are interested in two local min-
ima, one located on the inside and the other on the outside of
the self-intersecting torus. Of these two, we select the one
which best fulfills the angular constraint of θ = ](b0, b1)
as described in Section 3.2 (c.f . Fig. 2a). Since Eq. 2 needs
to be minimized for all N(N − 1)/2 match pairs, we need
an efficient solver which yields a feasible solution within a
few microseconds. Extrema of the initial cost happen when
the gradient of the cost equals zero, and we can use this to
build a system of polynomial equations. We initially pur-
sued a Gröbner basis approach that would solve the system
of polynomial equations given by the gradient of the cost.
Depending on the parameterization (Lagrangian or trigono-
metric), we found this to yield between 24 and 32 solutions
by using Macaulay2 [10]. Therefore, a respective 24 to
32 square matrix needs to be eigen-decomposed, leading to
runtimes of more than 2 milliseconds. Although this yields
the true global optima of Eq. 2, the runtime and number of
solutions to consider render this method unpractical.

We thus propose an approximate solution by solving the
problem in two steps. By inspecting the projection of the
torus onto the xy-plane (c.f . Fig. 4a), one can see that both



triangulation rays emanate from the origin. Thus, a reason-
able approximation û of the optimal angle u is the average
of the angles formed by the projections of q0 and q1 onto
the xy-plane.

Assuming the angle u around the z-axis to be known,
Eq. 2 can be reduced to a one dimensional cost function

E(v) =
∑
i=0,1

(
arctan

(
qi,z
qi,x̂

)
− arctan

(
Pi,z
Px

))2

(3)

where qi,x̂ is the projection of the x coordinate of qi onto
the plane defined by û and the z-axis, denoted Π0. Px =
R+ r cos v and Pi,z = r sin v − pi,z .

We can further simplify Eq. 3 by leveraging the fact that

arctan (α1) + arctan (α2) = arctan

(
α1 + α2

1− α1α2

)
. (4)

Knowing that

X∗ = arg min
x

arctan (x)
2

= arg min
x

x2 , (5)

and dropping the arctan yields

Ê(v) =
∑
i=0,1

(
si − xi(v)

1 + si xi(v)

)2

, (6)

where si = qi,z/qi,x̂ and xi(v) = Pi,z/Px are the slopes of
the rays and the unknown point on the circle, respectively.
Setting the derivative of Eq. 6 w.r.t. v equal to zero we ob-
tain an equation in terms of cos v and sin v,

∂Ê

∂v
=
∑
i=0,1

µi ρi φi
ξi

= 0 ,where

µi =
(
rs2i cos v + r cos v +Rs2i +R

)
,

ρi = (pi,z sin v + r +R cos v) ,

φi = (rsi cos v − r sin v +Rsi − pi,z) ,
ξi = (sipi,z + rsi sin v + r cos v +R) 3 .

(7)

Groebner basis analysis (c.f . supplementary document)
shows that Eq. 7 has at most 12 solutions. This is a great
improvement upon the 32 solutions of the initial problem.

Further, it turns out that 6 of the obtained 12 solutions
correspond to a repeated root, namely a root for an invalid
solution. This repeated root, r cos (v) = R, corresponds to
the solution coincident with the points p0 or p1 and arises
from the fact that at that point, Px is zero and thus the angle
is undefined. Manipulating the equations algebraically al-
lows us to factor out (r cos (v)−R)3, effectively removing
6 roots from the 12 algebraically possible ones (note that for
this factor, v and −v are both feasible solutions). Using the

half-angle tangent substitution (i.e., t = tan (v/2)), Eq. 7
factors as

0 =

Invalid Roots︷ ︸︸ ︷
(r +R+ t2(R− r))3 ·

Valid roots: v1,v2︷ ︸︸ ︷
(λ1 + λ2t+ λ3t

2) ·
((s1 + s0 + t(4s0s1 − 2)− t2(s0 + s1))︸ ︷︷ ︸

Valid roots: v3,v4

· (fc(t))︸ ︷︷ ︸
Complex

(8a)

where

λ1 = κ− τ,
λ2 = 2r(s0 + s1)(p1z(s1 − s0) +Rs0s1 +R),

λ3 = κ+ τ

(8b)

and

κ = R2
(
s20
(
s21 − 1

)
+ 4s0s1 − s21 + 1

)
+

r2
(
s20
(
2s21 + 1

)
+ 2s0s1 + s21 + 2

)
−

2Rp1z
(
s20s1 − s0s21 + s0 − s1

)
τ = r(s0s1 − 1)(p1z(s1 − s0) +Rs0s1 +R) .

(8c)

The factor fc(t) in Eq. 8a is a term quadratic in t whose
roots are always complex. For details on the derivation, we
refer the reader to the supplementary document.

This approximate closed form solution is several orders
of magnitude faster w.r.t. the former methods, since it only
requires the solution of two quadratic polynomials in t. We
obtain a single solution by taking the minimum cost solu-
tion satisfying the inside/outside constraint of the camera.
Even though the proposed solver finds only an approximate
solution, albeit a pretty accurate one (c.f ., Fig. 6), this is
acceptable since we are only interested in a rough and fast
estimate of the camera position to efficiently prune outliers.
The complete procedure for computing an estimate of the
camera position from two matches is given in Algorithm 1.

Algorithm 1 Compute C given bi ↔ (pi, qi)

Require: Points p0, p1, rays q0, q1, measurements b0, b1
1: Compute rotation and translation T s.t. Tp̂i = pi are on

the z-axis and their midpoint is the origin.
2: û← (arctan(q0,y/q0,x) + arctan(q1,y/q1,x))/2
3: θ ← arccos(b0 · b1)
4: Compute V = {vi}4i=1 using Eq. 8a.
5: for all vi ∈ V do
6: if vi on the side of the circle constrained by θ (Fig. 2)

then
7: Compute cost: costi ← E(û, vi) using Eq. 2
8: end if
9: end for

10: v∗ ← solution with minimum costi
11: return T−1C(û, v∗)



3.5. The Outlier Filter

For any pair of matches, we can follow the efficient pro-
cedure outlined in the previous section in order to obtain an
estimate of the camera position. Since our aim is to deal
with cases that have very low inlier ratios, we want to use
every possible match pair in order to fully explore the set
of possible camera poses. A naı̈ve approach would simply
consider all Q = N(N − 1)/2 matching pairs, compute a
position estimate, and later cluster on the space of 3D po-
sitions. However, this method has a few drawbacks. First
of all, for images with a very high number of feature detec-
tions, Q might be larger than 10 million pairs. Thus, clus-
tering such a dense population of position hypotheses could
prove difficult. Second, clustering in 3D space would not
identify the inlier set required for pose refinement. In this
paper we therefore take a different approach by individually
scoring each 2D-3D match.

We use 3D occupancy information to discard gross out-
liers by using an octree, which is particularly suited for im-
ages with a very large number of matches. To this end, we
store all Q position hypotheses in an octree of fixed depth.
Because of its fixed depth, the structure itself helps us dis-
card position hypotheses far from a principal cluster. After
generating all hypotheses, we traverse the tree once to find
the most populated voxel, denoted V ∗. For all remaining
operations, we only use point hypotheses that lie inside V ∗.

After computing all camera hypotheses, for each match
mi ∈ S we have a set of NV position hypotheses in which
match mi participated and that lie inside V ∗, denoted as
Ci = {Cij}

NV
j . Using these putative camera positions, we

compute NV inverse depth measurements Wi = {‖pi −
Cj‖−1}NV

j (c.f . Fig. 5) and use this to derive an inlier score
for each match individually. Given that outlier matches will
produce camera positions that are not clustered around any
particular point in space, the inverse depth measurements
they produce will not cluster around the true inverse depth
of the feature pi. Rather, the inverse depths produced by
outliers will cluster around zero (since many outliers will
result in positions very far from the true position). On the
other hand, an inlier match mi will necessarily present two
peaks, one near zero z0 (as produced when mi was paired
with an outlier match), and a peak around the true inverse
depth value z1 (c.f . Fig. 5).

Our goal is therefore to find the number of inverse depth
measurements that are part of the true depth cluster, z1. If
the support of the z1 cluster |Wz1

i | is high, then there is high
evidence that the point pi is geometrically sound, i.e., it is an
inlier. We thus define the score of the i-th match as the ratio
|Wz1

i |/|Wi|. To produce the scores we then only need to
partitionWi into two clusters. We use k-means with k = 2
for this purpose. For such simple one-dimensional two-
class clustering problems, k-means can be approximated
with linear complexity by setting a fixed number of itera-

Figure 5. Inverse Depth Distribution for Inliers and Outliers.
Shown in blue are the inverse depths that were classified as outliers
and in orange the inliers, with their respective centroids z0 and z1.
For inliers, the support for z1 will be high (a). On the other hand,
the support of z1 for outliers will be very low (b). The data used
for this visualization was produced from a single image from [23].

Algorithm 2 Produce a score for match mi ∈ S
Require: A set of NV positions Ci = {Cij}

NV
j

1: for all Cij ∈ Ci do
2: W i

j ← ‖pi − Cij‖−1
3: end for
4: Initialize cluster centroids: z0 ← 0 and z1 ← 1
5: Run k-means over all W i

j

6: Wz0
i ← members of cluster z0

7: Wz1
i ← members of cluster z1

8: return |Wz1
i |/|Wi|

tions (equal to 20 for our case), and will converge in ap-
proximately 1µs per match.

The output of the procedure outlined above and summa-
rized in Algorithm 2 is thus a score for each input match.
Notice that the position computation and the inverse depth
clustering are fully parallelizeable. Having obtained a set
of scores, we can use a threshold tid ∈ [0, 1] to discard out-
liers, or leverage the statistics of the scores to keep a pre-
scribed number of matches. From the remaining set, we run
RANSAC with P3P [11] to get a final pose estimate. Since
the outlier ratio of the remaining filtered set of matches is
much lower compared to the initial set, RANSAC converges
quickly to the correct solution.



Figure 6. Accuracy of the Geometric Solver. The log10 angular
error in degrees of our approximate geometric solver against the
ground truth method, i.e., solving the cost in Eq. 2 using gradient
descent and using multiple initializations on a 100×100 grid. The
strongest approximation we make, that of the u angle, suffers most
from error. However, v has a very low approximation error.

Figure 7. Synthetic Evaluation of the Filter. Precision and re-
call curves of the filter for different outlier ratios compared against
RANSAC. Precision is computed as number of correctly classified
inliers (CCI) over number of classified inliers. Recall is measured
as CCI over total number of true inliers.

4. Experiments
4.1. Synthetic Evaluation of the Solver

In order to validate the solver described in Section 3, we
compare the positions computed by our solver to the ex-
act solution provided by an exhaustively initialized Gauss-
Newton minimization. For this, we generate 106 random
synthetic scenes in the following manner. We sample two
3D points, p0 and p1, from a uniform distribution inside the
cube [0, 10]3. Afterwards, a random camera location, C is
chosen from the same distribution and translated 10 units
away of the cube in the Z direction. We then simulate noisy
triangulation-ray matches by adding Gaussian noise to the
unit vectors qi = (C − pi)/‖C − pi‖, i = 0, 1. The noise
was added to a plane perpendicular to qi with a standard de-
viation of 0.5. We have empirically observed that, for inlier
matches, these are adequate simulation parameters.

Fig. 6 shows the error between the ground truth esti-
mator and our solver, which is statistically negligible when
compared to the angular distance from qi to bi.

Additionally, in order to validate the efficacy of our filter
as an outlier filter, we generate 3000 2D-3D matches and
then inject a varying amount of outliers. The performance
of our filter and of simple RANSAC were then compared
to validate the usefulness of the filter as an outlier rejection

Figure 8. Efficacy of our Method as an Outlier Filter. For a
prescribed threshold tid, the inlier ratio can be increased although
some number of true inliers might be discarded. This graph shows
such trade-off when averaging inlier-ratio and recall for the dataset
in [23]. E.g., given a threshold we can get 80% of inliers with over
50% inlier ratio. A high threshold will reject the vast majority of
outliers but might reject true inliers, and conversely for a low tid
threshold.

Figure 9. Depth Range. Left: View with inlier matches in red.
Right: 3D model with inlier points (red) and camera in pink.

scheme. As it can be seen in Fig. 7, the filter is quite effi-
cient for high outlier ratios.

4.2. Real-World Evaluation

In order to further validate our method and assess its per-
formance w.r.t. the state of the art, we conduct experiments
on a publicly available real-world dataset. The dataset we
used is the Dubrovnik dataset from [25], which consists of
800 query images with SIFT [16] features that are matched
against an SfM model with 1.89 million landmarks. This
dataset is scaled in meters and each of the 800 query im-
ages have bundle adjusted ground-truth poses. We chose
this dataset since it is widely used for comparing localiza-
tion methods, as it is a challenging dataset with ground truth
poses. Furthermore, this dataset is particularly challeng-
ing for our filter. Since the depth variation per view in this
dataset can be quite large (c.f . Fig. 9), this dataset allows us
to validate our method under such difficult conditions.

For each query image, we extract ground-truth inlier
matches by using the provided ground-truth pose. We first
evaluate the effect of different score thresholds tid∈[0,1]
(c.f . Fig. 8). For this, we vary tid to obtain different per-
formance points, where high score thresholds increase the
inlier ratio but may prune out true inliers. We observe that



Method Assumptions Registration Statistics Error Quartiles [m] |S| Time [s]V S R |I|>11 ε<18.3 ε>400 1st 2nd 3rd

Setting 1 800 739 8 0.22 1.07 2.99 6210 9.7
Setting 2 797 731 8 0.50 1.16 3.42 8415 9.1
Setting 3 • 793 720 13 0.81 2.06 6.27 4766 3.2

RANSAC+P3P • 634 601 11 1.20 5.06 8.11 4766 12.9
Zeisl [28] • • 798 725 2 0.75 1.69 4.82 11265 3.78

Zeisl BA [28] • • 794 749 13 0.18 0.47 1.73 49 -
Svärm [26] • • 798 771 3 - 0.56 - 4766 5.06
Sattler [22] • 797 704 9 0.50 1.3 5.0 6 100 0.16

Table 1. Results for the Dubrovnik Dataset. We compare registration metrics for our method against the state-of-the-art. Here ε and |I|
represent the translation error (in meters) and the number of inliers of the final image registration, respectively. Further, V denotes known
vertical direction, S known scale and R methods relying on a good SIFT ratio (i.e. relying on the discriminative power of features, which
is dataset-dependent).

the filter operates as expected; for a wide range of thresh-
olds we can increase the inlier ratio while discarding only
very few inliers.

For the next evaluation, we draw several descriptive
statistics from our pose results in order to compare it
against previously existing methods on the Dubrovnik
dataset (c.f . Table 1). Additionally, we compare to a simple
RANSAC+P3P method as a baseline. We run three differ-
ent settings, the first one uses the octree method discussed
in Section 3.5 to discard gross outliers, while the second and
third do not.
Setting 1 For this setting, we use all available matches as
computed by FLANN [19] and set tid=0.55.
Setting 2 Here we do not use an octree but still use all avail-
able matches.
Setting 3 Here we discard the matches for which the ratio
test [16] (the ratio of the first SIFT nearest neighbor over
the second neighbor) was more than 0.9 (this is the setting
that Svarm et al. use for their filter). Since now the number
of matches is lower, we do not use an octree.

For Settings 2 and 3, we set tid=0.35. Notice that we
may set a lower threshold for these two settings since a lot
of outliers have already been removed by the octree or the
ratio test.

Since many true inliers are discarded using a ratio test
and our filter is designed to handle as many outliers as
needed, we perform better under the first setting. However,
this means that the number of average matches per image
to be considered is much higher (|S| in Table 1), and as
such the runtime of our filter is higher. In many hard cases,
there may be a high number of approximate inlier matches.
These are matches that would not be inliers to a final P3P
position, but are not effectively discarded with our approxi-
mate positions. Thus, these matches are very close to being
geometrically sound, since their true projection is only a
few pixels away, passing the proposed outlier filter. This
results in the final RANSAC solver retrieving a wrong local
minimum leading to a bad localization.

However, since our filter enforces matches to be con-

strained by a strong geometric restriction, we observe better
median positional errors w.r.t. other methods that do not re-
fine their final solution, such as [28] with voting only. Fur-
ther, [26] propose an optimal pose estimation strategy under
low-outlier conditions that could also be used in conjunc-
tion with our filter. This would further improve our posi-
tional accuracy. Under Setting 2, we do not achieve such
high performance since the inverse depth data points are too
contaminated with outliers, rendering the choice of thresh-
old more challenging. Finally, Setting 3 has lower recall
since we clearly prune out valuable inliers using the ratio
test. In terms of positional accuracy and successful local-
izations, we are able to produce competitive results for all
of the settings used. Note that, in contrast to [26,28], we do
not make any assumptions about the data: no assumption of
known vertical, known scale, known ground plane, etc. In-
stead, we use geometrically meaningful information latent
in the 2D-3D matches that was previously untapped.

5. Conclusions

In this paper we have presented a new 2D-3D geometric
constraint and its application to visual localization. Albeit
our outlier filter based on toroidal constraints is simple, it
effectively removes many outliers and performs on par with
more involved approaches. The proposed solution makes
no strong assumptions on the data and thus is widely ap-
plicable. Therefore, it can be used as a drop-in solution
in any localization pipeline to greatly increase the perfor-
mance for difficult cases. Furthermore, even other pipelines
that already employ a tailored approach for city-wide local-
ization [22, 26, 28] can potentially benefit from this newly
derived constraint. The constraint presented can thus be re-
garded as a new additional and meaningful geometric in-
sight useful for the localization task.
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