
TR-Spark: Transient Computing for Big Data Analytics

Ying Yan, Yanjie Gao, Yang Chen, Zhongxin Guo1, Bole Chen2, Thomas Moscibroda
Microsoft Research

{ying.yan,yanjga,yachen,moscitho}@microsoft.com, guozhongxin@bupt.edu.cn1, bolec@andrew.cmu.edu2

Abstract
Large-scale public cloud providers invest billions of dollars
into their cloud infrastructure and operate hundreds of thou-
sands of servers across the globe. For various reasons, much
of this provisioned server capacity runs at low average uti-
lization, and there is tremendous competitive pressure to in-
crease utilization. Conceptually, the way to increase utiliza-
tion is clear: Run time-insensitive batch-job workloads as
secondary background tasks whenever server capacity is un-
derutilized; and evict these workloads when the server’s pri-
mary task requires more resources. Big data analytic tasks
would seem to be an ideal fit to run opportunistically on
such transient resources in the cloud. In reality, however,
modern distributed data processing systems such as MapRe-
duce or Spark are designed to run as the primary task on
dedicated hardware, and they perform badly on transiently
available resources because of the excessive cost of cascad-
ing re-computations in case of evictions.

In this paper, we propose a new framework for big data
analytics on transient resources. Specifically, we design
and implement TR-Spark, a version of Spark that can run
highly efficiently as a secondary background task on tran-
sient (evictable) resources. The design of TR-Spark is based
on two principles: resource stability and data size reduction-
aware scheduling and lineage-aware checkpointing. The
combination of these principles allows TR-Spark to natu-
rally adapt to the stability characteristics of the underlying
compute infrastructure. Evaluation results show that while
regular Spark effectively fails to finish a job in clusters of
even moderate instability, TR-Spark performs nearly as well
as Spark running on stable resources.

Categories and Subject Descriptors B.8.1 [Reliability and
Fault-Tolerance]:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’16, October 05-07, 2016, Santa Clara, CA, USA.
c© 2016 ACM. ISBN 978-1-4503-4525-5/16/10. . . $15.00.

DOI: http://dx.doi.org/10.1145/2987550.2987576

Categories and Subject Descriptors Performance, Algo-
rithms

Keywords Transient computing, Spark, Checkpointing

1. Introduction
The amount of money large-scale public cloud providers like
Amazon, Microsoft, or Google invest into their cloud infras-
tructure is mind-boggling. Microsoft, for example, publicly
reported to operate a fleet of more than a million servers as
early as 2013 for its worldwide cloud operations, and it is
known that it has since expanded its cloud operations dra-
matically. New data centers are being built and expanded
across the globe, with no end in sight to this growth. Given
these extraordinary investments, it is worthwhile to note that
even with the latest state-of-the-art cluster management and
scheduling techniques (e.g. [16, 24, 25, 29, 32, 34]) the av-
erage resource utilization of servers in data centers is very
low. To say it pointedly, at any moment in time, the equiva-
lent of entire data centers of computing resources are wasted.
The reasons for this low resource utilization are not acciden-
tal, to a large extent they are fundamental: Some capacity is
required as buffers to handle the consequences of failures;
natural demand fluctuation causes capacity to be unused at
certain times; servers are over-provisioned to handle load-
spikes; fragmentation at the node and cluster level prevents
all machines to be fully utilized; churn induces empty capac-
ity; and so forth.

Given the large infrastructure investments and fierce
competitive pressure, it is only natural that companies are
urgently trying to increase utilization by running delay-
insensitive or non-customer facing workloads using these
temporarily spare capacities. Ideal candidate workload for
this purpose would be big data analytics and other type
of batch workloads (e.g. machine learning training). Using
such workloads to fill up unused capacity would be partic-
ularly desirable given the growing volume and importance
of big data analytic workloads in cloud computing compa-
nies across the industry. The total volume of processed data,
the number of executed jobs per day and the number of ma-
chines used for this purpose are all dramatically increasing
at rapid speed. The amount of money Microsoft and other

484

companies invest into computing and analyzing big data for
their daily and weekly production pipelines is staggering.

The inherent challenge with running any workload on
temporarily spare cloud resources is that these resources
are fundamentally instable, or transient: Nodes kept empty
as a resource buffer may suddenly be utilized in case of a
failure; spare capacity provisioned for load-spikes vanishes
whenever a spike occurs; etc. For the same reason, cloud
providers started to offer such transiently available resources
(typically at a lower price) to both internal and external cus-
tomers, e.g. Amazon EC2 spot instances [3], Google pre-
emptible instances[5], or Azure Batch [4]. As mentioned,
big data analytics jobs would be an ideal fit to run on such
“transient resources” since these jobs are expensive, but not
latency critical. Thus, concretely we would like to run big
data processing systems such as MapReduce, Spark[7], or
Scope[12] on transient resources. Logically, the big data pro-
cessing system could run as a lower-priority task in the com-
pute cluster and use the available resources whenever they
are available. While conceptually being a simple and natu-
ral idea, the opportunity of big data analytics on transient
resources is tremendous: large-scale cloud companies could
save $100s millions dollars if the approach was successfully
put into practice.

Unfortunately, things are not as simple. The key techni-
cal challenge is that existing big data processing systems (in-
cluding MapReduce, Spark, or Scope) perform exceedingly
badly on transient resources. These systems are designed to
tolerate failures, but they run stably and efficiently only if
such failures are very rare events. When computing on tran-
sient resources in the cloud, however, the event of a comput-
ing resource becoming unavailable is not a very rare event;
instead it is fundamentally and by design a rather common
occurrence. The reason that all existing data processing sys-
tems are unable to cope with transient resources is that they
have been designed to run on dedicated resources (typically,
companies have dedicated MapReduce clusters, Scope clus-
ters, Spark clusters, etc.), and they do not run efficiently on
transiently available resources due to the exceedingly high
cost of cascading re-computations caused by failures. Again,
if such failures are very rare, the cost of re-computation is
acceptable, but—as we show in this paper—even at small
degrees of resource instability, existing data processing sys-
tems either take an excessive amount of time to complete a
job, or even fail to complete the job entirely.

In this work, we design and implement TR-Spark, a ver-
sion of Spark that can execute highly-efficiently as a sec-
ondary background task on transient (evictable) resources.
Our motivation to build TR-Spark follows the outline above:
We intend to run jobs from Microsoft’s big data analytic
Spark pipeline as background tasks on nodes that are tem-
porarily not fully utilized for their primary task (e.g. hosting
Azure services or Bing index serve). In order to address the
aforementioned problem of excessive re-computation, TR-

Spark is based on the following two principles: resource-
stability and data-size reduction-aware scheduling (TR-
Scheduling) and lineage-aware checkpointing (TR-
Checkpointing). Our solution is based on the following intu-
itions obtained from intensive job trace analysis and system
profiling in Microsoft’s cloud environments. First, a jobs’
re-computation cost can be reduced through backing up in-
termediate results. However, such check-pointing decisions
(what, when and to where to do the backup) should be made
according to the level of resources instability, current re-
computation cost and data lineage. Secondly, the number of
re-computations can be significantly reduced if the task that
outputs the least amount of data is prioritized during task
scheduling (task to resource assignment). The importance of
such data-size reduction-aware scheduling is that in this way,
the downstream stage maintains less output data waiting for
backup.

Our contributions are summarized as follows:

• We identify the performance problem of existing big data
analytic systems when run on transient resources and
propose two key principles to address the performance
problems.

• We propose optimized resource-stability and data-size
reduction-aware scheduling (TR-Scheduling) and lineage-
aware checkpointing (TR-Checkpointing) strategies to
enable big data analytic systems to run efficiently on
transient resources.

• We design and implement TR-Spark, a version of Spark
which can efficiently run on transient resources based on
the above two principles. Experimental results show that
TR-Spark scales near-optimally on transient resources
with different instabilities. We deploy and test TR-Spark
on Azure Batch.

2. TR-Spark
2.1 Background on Spark
Spark is an open source distributed big data processing en-
gine [7]. Its performance, ease of programming and deploy-
ment, and rich set of high-level tools make it attractive to an
increasing number of enterprise users and contributors. All
major cloud providers offer managed Spark services to ease
its usage.

Spark uses RDD (Resilient Distributed Datasets)[38] to
abstract and manage distributed data sets. Each data record
in an RDD is divided into partitions and computed on dif-
ferent nodes. An RDD is an immutable distributed dataset
which avoids the complexity of concurrent consistency.
RDD combines data flow with map reduce type primitives to
support high level APIs. Spark parses and translates a user
submitted job into a DAG of stages to execute on distributed
environment. The execution model likens BSP (Bulk syn-
chronous parallel) which makes Spark general and easy to
use. Spark schedules the tasks in different stages based on

485

FIFO or FAIR strategies [8]. It assigns tasks to machines
based on data locality using delay scheduling [37]. Spark’s
fault tolerance is achieved through logging the RDD’s oper-
ations and dependencies to recompute the partition when a
failure occurs. Spark’s checkpointing unit is also an RDD.
The problem is that in the context of running on transient
resource, Spark’s checkpointing has multiple several limita-
tions: (1) Coarse grained checkpointing – Spark must check-
point all data within an RDD in each checkpointing action.
(2) High level Spark APIs like SQL do not support check-
pointing. (3) Programming Complexity – the checkpoint has
to be written by the developer in the application; it cannot
be adaptive to a dynamic unstable environment. Also, the
developer needs to take care of what is to be checkpointed.
When running Spark on unstable resources, these limitations
make it hard in practice for Spark to be stable and efficient.

2.2 TR-Spark: Motivation

(a) No checkpointing

(b) Stage level checkpointing (Always Checkpointing)

(c) TR-Checkpointing: Based on transient resource stability (our
solution)

Figure 1. Different checkpointing strategies
TR-Spark provides task level self-adaptive checkpointing

(TR-Checkpointing) and scheduling (TR-Scheduling) mech-
anisms for reducing the number of re-computations caused
by the resource instability, and therefore ensures stability
and efficiency.

Figure 1 illustrates the basic idea of TR-Checkpointing
compared to existing solutions. Figure 1(a) shows the origi-

nal Spark, without periodic in-job check-pointing: once the
VM fails (VM X in the example)1, the current task running
on the VM (task t10) and all its dependencies (t6, t1 and
t3) need to be re-computated. As resources become less sta-
ble, original Spark becomes so inefficient that the job even
fails to complete. The simplest possible solution to reduce
re-computation cost is to do periodic checkpointing. For ex-
ample, we can do checkpointing at every stage as shown in
Figure 1(b) (through manually partitioning the job into sub-
jobs based on the stage and calling the checkpointing API of
Spark). Since this has to be done by the developer in the ap-
plication at compile time, the checkpoint interval cannot be
adaptive to the actual resource availability condition in the
cluster. Checkpointing everything is the most conservative
choice to guarantee the fewest number of re-computations.
In this example, when a failure occurs, only one task t10
needs to be recomputed. However, all the 5 stages which
t10 depends on are checkpointed, which is also expensive,
since all data needs to be stored to disk, requiring substan-
tial communication and I/O. Thus, while original Spark has
excessive recomputation cost on transient resources, always
checkpointing has excessive checkpointing cost. Therefore,
neither solution achieves an acceptable performance when
run as a background task on a compute cluster in practice.

An example of the checkpointing strategy in TR-Spark
is shown in 1(c). With a resource instability distribution
estimation, the system can smartly compute an VM fail-
ure probability range (in the example, TR-Spark decides
to checkpoint only the outputs of t6 and t8) as well as the
expected cascading re-computation and checkpointing cost.
Then, TR-Spark takes the decision of whether or not to
checkpoint to achieve an optimal trade off between the num-
ber of re-computations and checkpoints. This is done in a
way that is transparent to the applications. Regular Spark
jobs can thus be made to run on transient resources effi-
ciently.

TR-Spark provides a fine grained checkpointing policy -
task level checkpointing. The granularity of the data object
that TR-Spark checkpoints is the result of individual tasks.
An example is shown in Figure 2. Each task, e.g. Task 1,
outputs a list of data blocks identified with a ShuffleBlockID.
The number of data blocks equals the number of reducers.
During the checkpointing process, the backup of a task’s out-
put is successful if and only if all the data blocks in the cur-
rent task’s output list are finished. In this paper, we use ‘data
block’ as a simplification of a task’s output data block list
when discussing our checkpionting strategy. Compared to
the checkpointing API of Spark which checkpoints the RDD
of the entire stage, TR-Spark checkpoints only the subset of
the tasks of a stage that need checkpointing. A comparison is

1 We use the terminology VM because we design TR-Spark specifically for
Azure Batch, where the unit of computation are VMs. But TR-Spark can
also run on other compute resource units, such as nodes, servers, machines,
containers, etc...

486

made in Figure 2, suppose VM 1 is not stable, then Task 1’s
output data blocks on VM 1 should be checkpointed. How-
ever, using the stage level checkpointing strategy (e.g[30]),
all the tasks in Task 1’s current stage will be checkpointed
although VMs 2 through m are all sufficiently stable. Usu-
ally, in big data analytics applications, the number of VMs
or nodes m is very big. Therefore, stage level checkpointing
incurs excessive checkpointing overhead. In contrast, TR-
Spark only checkpoints the result of Task 1. The tasks in
one stage are running on different VMs with different stabil-
ities, thus finer grained checkpointing offers more flexibility
to achieve the best checkpointing plan. To further reduce the
checkpointing cost, TR-Spark also co-optimizes the schedul-
ing policy as we discuss in Section 3.1.

Figure 2. Checkpointing granularity: stage v.s. task level

2.3 TR-Spark: Design Overview
The system architecture of TR-Spark is shown in Figure 3.
We implement TR-Spark by modifying Spark’s Task Sched-
uler and Shuffle Manager, and introduce two new modules
Checkpointing Scheduler and Checkpoint Manager. Details
of the implementation are given in Section 5.
Task Scheduler implements our TR-Scheduling algorithm
for task scheduling (Section 3.1).
Checkpointing Scheduler implements our TR-Checkpointing
algorithm (Section 3.2). It first collects the necessary re-
source instability information, computes the best check-
pointing plan, and then sends the checkpointing plan as a
triple <ShuffleID, TaskID, Backup plan> to the Checkpoint
manger on each worker. Finally, it pushes the information
into a backup stack. We use a stack here for the reason that
when the stack is not empty, it is always more efficient to
backup the top data blocks which are newly generated. In
this way, if the tasks in the next stage finish the backup, the
current stage’s tasks do not need to be backed up any more.
Through prioritizing the backup order we may save backup
cost as much as possible. After receiving the checkpoint-
ing status from the Checkpoint Manager, the Checkpointing
Scheduler updates the new data location in the mapstatus
table.
Checkpoint Manager is responsible for maintaining the
backup plan stack and executing the backup operation. It
also periodically sends back status information to the Check-
pointing Scheduler in the master.
Shuffle Manager supports checkpointing data to remote
reliable storage.

Figure 3. TR-Spark Architecture

3. Transient Computing
At the heart of TR-Spark are the novel resource-stability and
data-size reduction-aware scheduling (TR-Scheduling) pol-
icy and the lineage-aware checkpointing (TR-Checkpointing)
strategy. We introduce these paradigms in this section.

3.1 TR-Scheduling
The task scheduler’s job is to assign a task from the pend-
ing list whenever there is a resource available (i.e., a free
core). The task selection is done through scanning the non-
blocking tasks (all their dependencies are finished) ordered
according to a certain priority rule (e.g. FIFO or Fair in orig-
inal Spark [8]). In order to reduce re-computation cost in the
face of unstable resources, we should give prioritize tasks
that output the least amount of data for scheduling. In this
way, the downstream stages contain less output data, which
makes back-up and checkpointing relatively cheaper. Based
on this intuition, we identify two important factors that gov-
ern scheduling decisions when computing on transient re-
sources:
Task’s output and input data sizes: A task which generates
less output data than it takes in as input, effectively reduces
the size of data for checkpointing. Such tasks should have
higher priority for scheduling.
Task’s execution time: A task with shorter execution time
has less risk of being impacted by a failure, and thus has
higher probability of reducing the number of data blocks
waiting to be processed.

TR-Scheduling co-considers the above two factors and
combines them with Spark’s other existing scheduling fac-
tors. Specifically, as illustrated in Algorithm 1, for an avail-
able resource on VM v, TR-Scheduling prioritizes the tasks
according to:

• The task whose success probability on that VM exceeds
a probability threshold γ . When the VM’s lifetime can be
accurately obtained (e.g. Amazon spot block), γ is set to
1.

• The task with the biggest data size reduction rate is se-
lected with higher priority. For a task t, its data reduction
rate is calculated as reduceSizeRate = reduceSize/ET ,

487

where ET is the estimated execution time of task t.
reduceSize can be calculated from Size(Out putData)−
Size(InputData). If the data is located not on the current
VM, then Size(InputData) = 0.

Algorithm 1 TR-Scheduling
1: Input: VM v with a free core, γ , K, candidateStages
2: Output: Task Id
3: Initialize currentBestTaskId, candidateTasks, stage to

null
4: if (stage is null) then
5: stage← selects max reduceSizeRate stage from can-

didateStages
6: end if
7: for each task Id i in stage do
8: if taskSet[i].ET

v.E(t,T) < γ then
9: push i to candidateTasks

10: end if
11: end for
12: for each task Id j in candidateTasks do
13: if currentBestTaskId is null then
14: currentBestTaskId = j
15: else
16: currentBestTaskId← max(
17: candidateTasks[currentBestTaskId].reduceSizeRate,
18: candidateTasks[j].reduceSizeRate)
19: end if
20: end for
21: return currentBestTaskId

3.2 TR-Checkpointing
As motivated above, checkpointing is crucial when operating
in an environment with transient resources, but on the other
hand, we do not want to checkpoint everything as check-
points are expensive. A checkpointing strategy determines
for each data block 1) whether it should be backed up and
2) if so, to where. The optimal checkpointing strategy backs
up the right data blocks to the right location, so that the ef-
ficiency of the job is optimized. From our investigation, the
ideal target data blocks for backup are those data blocks,

(1) whose VM will fail before they are consumed (pro-
cessed by the next task), and

(2) whose re-computation cost is larger than their backup
cost.

Principle (1) ensures that we only consider a minimal set
of data blocks as checkpointing candidates. Given a data
block, if it can be read and processed by its next stage
before the VM fails (or is likely to fail), it does need to be
backed up. Unfortunately, the next stage’s starting time is
typically difficult to be accurately predicted, and sometimes
the VM failure time may also not be estimated accurately. In
practice, we therefore take a probabilistic approach and give
the data blocks with higher probability of being consumed a
lower priority in the backup candidate list. For every backup

candidate, Principle (2) further compares their backup cost
to the hypothetical re-computation cost for re-generating
this data block so that the most efficient decision can be
made to ensure the efficiency of the entire job. There are
different options for the backup location, and these options
have different cost: Backup to remote reliable storage (e.g.
Azure Blob or a dedicate HDFS cluster) has typically higher
backup cost than backup to another local VM due to the
differences in bandwidth. On the other hand, backing up data
blocks to local VMs in a transient resource environment has
the downside that these local VMs themselves may also be
unstable. Thus, when backing up to a local VM, we need to
take into account the additional hypothetical re-computation
cost that is incurred if the local backup destination VM fails
before the data block is consumed.

Thus, making the right backup decision is complex and
should be made based as much as possible on an accurate
cost estimation and calculation. In a real-world production
environment, all parameters can vary dynamically. Having
sufficiently accurate estimates for the key algorithm param-
eters and cost models (for both Principles (1) and (2)) is im-
portant for generating an optimal checkpointing strategy. We
will discuss cost estimation in TR-Spark in detail in Section
4.

Following the above principles, TR-Checkpointing works
as shown in Algorithm 2. The algorithm optimizes check-
pointing decisions by taking into consideration both the lin-
eage information from the DAG of each job and the environ-
ment stability distribution of the runtime environment.

Algorithm 2 TR-Checkpointing
1: Input: Data Block Set b
2: CBR = BackupRemoteCost();
3: CRedo = RecomputationCost();
4: VMid = FindLocalBackupDestination();
5: if VMid > −1 then // Find a proper local backup desti-

nation VM.
6: CBL = BackupLocalCost(VMid);
7: else
8: CBL = double.max // Big cost value;
9: end if

10: if CBL <=CRedo then
11: if CBL <=CBR then
12: Backup to local VM VMid ;
13: else
14: Backup to remote;
15: end if
16: else
17: if CRedo >=CBR then
18: Backup to remote;
19: end if
20: end if

TR-Checkpointing is triggered by either a new coming
event (such as a task accomplishment) or periodically. The

488

estimation of backup cost CBR, CBL, re-computation cost
CRedo and VM’s failure probability before each stage is ex-
plained in the Section 4.

4. Cost Estimation
The effectiveness of both TR-Checkpointing and TR-Scheduling
(and thus TR-Spark as a whole) is largely determined by its
estimation of the costs of the various decision options. In
this section, we introduce TR-Spark’s VM instability model,
as well as backup and re-computation cost estimation.

4.1 Transient Resource Instability
Suppose we know the distribution of a VM’s lifetime (time
until failure). Given this VM’s failure PDF f (x),

∫
∞

0 f (x)dx=
1. Assume that a VM v has been running for time τ . Under
this condition, the probability that v will fail at time t is
f (τ, t) =

∫ t
τ f (x)dx∫
∞
τ f (x)dx . The expected lifetime of v between time

ti and t j is computed as E(ti, t j) =
∫ t j

ti f (τ, t)tdt .
Different types of VMs will naturally have different dis-

tributions from which we can calculate the probabilities of
failure at any specific time.2 The two extreme cases are 1)
we know the exact VM lifetime distribution (e.g., Amazon
spot block), and 2) we know nothing at all about the dis-
tribution. In the latter case, the best we can do is to collect
historical VM lifetime distribution information to get a sta-
tistical distribution function.

4.2 Re-computation Cost CRedo

The re-computation of a task k’s output block bk is a cas-
cading process, whose cost is estimated by the cost of the
current task k together with all of k’s parent tasks if their in-
put data is not available due to a VM failure. Let τi be the
existing running time of the VM which has data block bi.
Given the VM lifetime distribution, we can calculate the ex-
pected re-computation cost CRedo of data block bk from the
equation as follows:

CRedo(bk) =
∫ Tmax

tc
f (τk, t)Er(t,k)dt.

Er(t,k) is the expected re-computation cost of task k if the
VM fails at time t. If bk is not consumed (there exists some
task that depends on bk), task k which generates this block
bk needs to be re-computated, then Er(t,k) 6= 0. Otherwise,
Er(t,k) = 0. Er(t,k) can be calculated as follows:

Er(t,k) =Ck + ∑
i∈setN

Er(t, i)+ ∑
j∈setA

f (τ j, t)Er(t, j).

k’s expected re-computation cost Er consists of three com-
ponents:

• The re-computation cost of k: Ck is the running time
(cost) of task k which needs to be recomputed.

2 We do observe this very clearly in our implementation in Azure Batch.

• The re-computation cost of k’s dependent tasks which
also need to be re-computed: SetN is the set of k’s depen-
dent tasks whose result data blocks are lost due to VM’s
failure. If k requires re-computation, these tasks in SetN
also require re-computation.

• The re-computation cost of k’s dependent tasks which
may require re-computation at a near future time t: SetA is
the set of k’s dependent tasks whose result data blocks are
available now on some other VM, but will be lost at time
t due to a future VM failure. If k requires re-computation,
some of the tasks in SetA require re-computation the cost
of which can be calculated according to its VM’s duration
probability distribution.

The calculation of Er is thus recursive. In practice, a recur-
sion depth limit can be applied to control the computation
overhead for scheduling efficiency. Note that the task’s run-
ning time is always collected when it is accomplished, so we
can estimate this task’s re-computation cost when it requires
re-computation.

4.3 Backup Cost CBR and CBL

Figure 4. Backup cost components

When checkpointing a data block, there are two options:
backup to remote reliable storage or backup to a more stable
local VM. Let BT (x) = Data Size / IO Cost(x), x =local for
local backup time and x =remote for remote backup time.
The expected backup cost consists of three main components
as illustrated in Figure 4:

• The backup cost when the VM fails before the backup is
finished: CB1(x) =

∫ tc+BT (x)
tc f (τ, t)(t− tc)dt.

• The re-computation cost when the VM fails before the
backup is finished: CR(x) =

∫ tc+BT (x)
tc f (τ, t)∗Er(t,k)dt

• The backup cost when the VM fails after the backup
operation is finished: CB2(x) = BT

∫ T
tc+BT (x) f (τ, t)dt

Therefore, the backup costs are calculated as CB(x) =
CB1(x)+CR(x)+CB2(x) and CBR = CB(remote) and CBL =
CB(local).

The cost estimation above is based on a parameter that
characterizes the next stage’s starting time, which is the
earliest time for a data block to be consumed. It is non-
trivial to accurately estimate this value due to the different
starting and execution times of the tasks in the current stage.
In the presence of failures, estimation becomes even more

489

inaccurate. In practice, we use ∑PS Ni∗Ti
#core ∗ α for estimating

the parameter, where Ni is the number of tasks in stage i
that have not yet finished. Ti is the average running time of
tasks in stage i and α >= 1 is an inverse function of the
VMs’ instability. That means that as the VMs become more
unstable, we obtain a longer stage execution time estimation.

The above cost estimation models are applicable to all
VM instability settings (deterministic and indeterministic
VM lifetime distributions). As mentioned, it applies well to
the case of running TR-Spark on Azure Batch, as we have
detailed lifetime prediction models at the granularity of in-
dividual underlying VMs. In the case where no explicit in-
formation is available with high confidence, and the average
failure rates are extremely high, our general backup strategy
would naturally reduce to an “Always Checkpointing” strat-
egy which backs up every data block to remote storage.

5. Implementation
We implement TR-Spark, a new version of Spark based on
the checkpointing and scheduling algorithms described in
the previous sections. The detailed implementation is shown
in Table 1 with several practical optimizations to further
improve efficiency, as well as to guarantee worst case system
performance in transient resource environments (the latter
being important in many production environments).

Safety Belt: As discussed in Section 4, the cost estima-
tion is based on the transient resource’s stability. In prac-
tice, one concern is the behavior of TR-Spark in case the ac-
tual resource stability in the cluster behaves radically differ-
ent from the assumed distributions. In this case, the system
should have the ability self-adjust to guarantee an acceptable
performance. For this reason, our implementation of the TR-
Checkpointing algorithm adds one extra rule: when the cur-
rent task’s total re-computation cost exceeds β < 1 times the
job’s execution time before re-computation is started, then
we forcibly trigger an ‘always checkpointing’ policy.

Figure 5. Live-site checkpointing plan

Figure 5 illustrates this plan’s updates. Suppose the
job execution time before re-computation is t1 and the re-
computation time is β t1, while when always checkpointing
from the beginning we need only t2. We know that t1 <= t2,
and t1 + β t1 <= 2t2. Therefore, the total job running time
can be guaranteed to be less than twice the cost of always
checkpointing. Thus, we can guarantee that in the worst
case, TR-Spark performs at most 2x as efficient as “always
checkpointing” strategy. Notice that this bound holds even
if our estimates are completely wrong. Of course, as long as

our estimates are correct, then TR-Spark is always at least
as good as the “always checkpointing” strategy.

Increasing resource utilization: In the checkpointing
process, the data block which is assigned to be backed up
locally or remotely should be checkpointed immediately in
order to avoid data loss caused by resource instability. Dur-
ing the backup execution, if this is a free CPU resource,
we schedule the next task to maximize the concurrency of
checkpointing and task execution.

Dynamic task splitting & duplication: Relatively long
running tasks (LRTs) significantly prolong job latency. In a
transient resource environment, LRTs have even more nega-
tive impact: firstly, LRTs have higher failure probability on
the VMs and secondly, LRTs increase the re-computation
and backup cost. Usually, when LRT delays the job re-
sponse time seriously, the system will trigger task splitting.
Some related work [23] has summarized the reasons for LRT
and proposed some practical solutions. In our TR-schedule,
we can leverage the existing strategies through splitting the
tasks to reduce the skewness. For example, when LRT tasks
are longer than every VM’s expected lifetime, it implies that
those tasks cannot be successfully run with high probability.
In this case, the system triggers a task splitting.

In the transient resource environment, sometimes there
are idle free resources in the VM cluster and no task is
pending for execution. To fully utilize the free resources
for improving the job’s efficiency, task duplication [40] can
be applied. When a VM v is waiting for task assignment
for time t, duplication is triggered. To perform duplication,
we first sort the running tasks by their duplication rates,
the top task is duplicated from its current VM s to v. Task
i’s duplication rate can be computed as duplicationRatei =
reduceSizeRatei∗s.E(t,t+ETi)

v.E(t,t+ETi)

where ETi is task i’s estimated execution time and s.E(tx, ty)
is used to denote the expected lifetime of VM s between
times tx and ty. After duplication, some tasks may have mul-
tiple replicas running concurrently. Whenever one of these
replicas is successfully completed, the other replicas can be
killed. Also, when there is no free resource available (wait-
ing task queue is not empty). The duplicated task with the
most remaining time should be killed.

6. Evaluation
Our evaluation consists of two parts. First, to study the ef-
fectiveness of the scheduling and checkpointing algorithms,
we conduct evaluations on a home-built TR-Spark simulator
with different parameters and environment settings. Then,
to evaluate the robustness and scalability of our implemen-
tation, we deploy and conduct evaluations of TR-Spark on
Azure Batch with benchmark as well as production work-
loads. TR-Spark is implemented on Spark 1.5.2.

We compare TR-Spark to the original Spark as well as
Spark with Always Checkpointing, which checkpoints ev-
ery task’s output whenever it is generated. The efficiency

490

Table 1. TR-Spark design
Module Class Base Class Functionality Method

Task
Scheduler

TRDAGScheduler DAGScheduler

Collect runtime stages and task
information, launch checkpointing
scheduler and adapt old logic
to current strategies

handleTaskCompletion()
handleExecutorLost()
getCheckpointingStages()

TRTaskSetManager TaskSetManager Task-level TR-Scheduling dequeueTask()
TRSchedulingAlgortihom SchedulingAlgortihom Stage-level TR-Scheduling comparator()

TRShuffleMapTask ShuffleMapTask
Update meta data and trigger
checkpoiting runTask()

TRExecutorAllocationManager ExecutorAllocationManager Update resource status schedule()
TRScheduleMetricsListener ScheduleMetricsListener Getting the shuffle metrics onTaskEnd()

Checkpointing
Scheduler

TRBlockManagerMasterEndpoint BlockManagerMasterEndpoint Sending checkpointing RPC receive()
TRCheckPointingScheduler TR-Checkpointing generateCheckpointPlan()

Checkpointing
Manager

TRBlockManager BlockManager
Launch checkpointing Manager,
implement checkpointing primitives,
adapt old logic to current strategies

getBlockData()
removeBlock()
replicate()

TRBlockManagerSlaveEndpoint BlockManagerSlaveEndpoint
Getting RPC messages from Driver
and calling backup primitive receive()

AzureBlobBlockManager ExternalBlockManager Checkpointing to Azure Blob
putBytes()
getBytes()

HDFSBlockManager ExternalBlockManager Checkpointing to HDFS
putBytes()
getBytes()

Shuffle TRNettyBlockRpcServer NettyBlockRpcServer
Control the network traffic
and requests priority receive()

TRShuffleBlockFetcherIterator ShuffleBlockFetcherIterator
Adapt shuffle reader to support
fetch from reliable storage

fetchLocalBlocks()
sendRequest()

results are expressed as the slowdowns compared to the per-
formance of running original Spark on stable resources.

We choose four representative workloads: (1) TPC-DS
Benchmark [9] contains SQL-like job workloads with in-
put data size 2TB; (2)-(3) Production workloads for Bing
API and Cortana session analysis with input data sizes 1TB
and 950GB, respectively; (4) PageRank with input data size
250GB. Example job DAGs are illustrated in Figure 6.

Figure 6. Job DAG example

Evaluations are conducted at with different degrees of
resource stability, defined as the ratio between a VM’s mean
lifetime and the average task’s execution time: VM stability
= AV G(V M li f etime)

AV G(task latency) . VM lifetime distribution is approximated

as an exponential distribution [13, 30], y = 1
λ

e−λx with λ

varying from 0.005 to 0.5. VM mean lifetime is 1
λ

, and
variance is 1

λ 2 .
Each performance result is reported as the average results

of 50 runs. The parameters and their ranges considered in

the experiments are listed in Table 2. In each group of eval-
uations, we vary some parameters within their ranges. For
the remaining parameters, unless mentioned otherwise, the
default values are selected.

Table 2. Parameter Setting
Parameter Range Default

Number of VM 50-200 100
Number of cores per VM 2-16 4
VM Lifetime - Exponential distribution λ 0.005-0.5 0.15
Local per VM bandwidth [2] 200-400 MB/s 400 MB/s
Remote per VM bandwidth 50 - 200 MB/s 100 MB/s
Remote total bandwidth limit - 10 GB/s

6.1 Effectiveness of the Algorithms
We implement a TR-Spark simulator that accurately im-
plements different Spark schedulers, including TR-Spark.
The principle events such as task submission, task com-
pletion, VM failure with representative workloads over dif-
ferent scalability of clusters are modeled in the simulator,
as well as different settings like DAG workflows, network
bandwidth, VM stability and input data size. The evaluations
are done using real-world representative workload traces.

6.1.1 Effect of Resource Instability
In the first group of evaluations, we seek to understand the
robustness of TR-Spark on resources with different stabil-
ities. Performance results across four different workloads
are illustrated in Figures 7 and 8. For TR-Spark, we also
consider different settings to profile its effectiveness. More
specifically, we use TR-Spark (deterministic, remote) to
represent the setting where each VM’s lifetime is known [1]

491

 1

 2

 4

51030507090110130150

Sl
ow

do
w

n
(X

)

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(a) SQL

 1

 2

 4

51030507090

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(b) Bing API Analysis

 1

 2

 4

550110150200250400

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)
TR-Spark(Stage level, remote)

(c) Cortana Session Analysis

 1

 2

 4

51030507090110130150200250

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(d) PageRank

Figure 7. Performance with different resource instabilities

 0

 1000

 2000

 3000

 4000

 5000

51030507090110130150

V

M
 F

ai
lu

re
s

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(a) VM Failure Distribution

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

51030507090110130150

R

em
ot

e
C

he
ck

po
in

tin
g

VM Stability

Always Checkpointing
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(b) Remote Checkpointing Counter

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

 24000

51030507090110130150

L

oc
al

 C
he

ck
po

in
tin

g

VM Stability

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(c) Local Checkpointing Counter

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 22000

51030507090110130150

R

ec
om

pu
ta

tio
n

VM Stability

Always Checkpointing
Spark

TR-Spark(deterministic, local)
TR-Spark(indeterministic, remote)

TR-Spark(deterministic, remote)

(d) Recomputation Counter

Figure 8. Perf Counters of SQL Workload

and remote reliable storage is available. We use TR-Spark
(indeterministic, remote) to represent the setting where
only a statical (historical) lifetime distribution is known and
remote reliable storage is available. TR-Spark (determin-
istic, local) is used to represent the case when each VM’s
exact lifetime distribution is known but there is no remote
storage available. With the above settings, we gain insight
into the effects of resource instability and the importance of
reliable storage in our algorithms.

From the results in Figure 7, it is clear that original Spark
fails to work on transient resources. As the VMs stability de-
creases, the performance of Spark decreases exponentially.
Most of the jobs cannot even get completed within a rea-
sonable amount of time. The fundamental reason is the ex-
cessive cost of cascading re-computations (see counters in
Figure 8(d)). Always checkpointing fails to adapt to the in-

stability of the environment. It performs well when VMs are
highly unstable, but it is inefficient in less unstable environ-
ments as it backs up every intermediate result to reliable stor-
age. When the environment is relative stable, usually, not
all data needs to be backed up. As shown in Figure 8(b),
its backup count is much bigger than TR-Spark with differ-
ent settings. The latency of Always checkpointing is also af-
fected by the remote bandwidth cost which will be discussed
in 6.1.4.

TR-Spark (deterministic, local) performs poorly when the
resources become more unstable because in that situation, it
is almost impossible to find a local reliable backup destina-
tion. TR-Spark (deterministic, remote) addresses this prob-
lem by checkpointing more intermediate results to remote
reliable storage. It gracefully degrades to always checkpoint-
ing when the resource instability is extremely high. Impor-
tantly, TR-Spark (indeterministic, remote) without accurate
VM lifetime information is still much better than both the
original Spark and Spark with always checkpointing. It does
not perform as well as TR-Spark (deterministic, remote be-
cause the failure of VMs can not be predicted accurately. To
reduce the number of re-computations, it prefers to check-
point more often (Figure 8(c)). The results from different
workloads confirm the effectiveness of TR-Spark.

From the backup to local counters in Figure 8(c), we see
how the checkpointing plan adapts to the instability of the re-
sources. When the resources are stable, the VM failure prob-
ability is small, therefore, the re-computation cost is small.
There are no checkpointing decisions to be made. As the re-
sources become more unstable, re-computation costs start to
increase and checkpointing decisions should be made. When
there exist local VMs suitable to be a backup destination, a
local backup plan is chosen. As the resources become even
more unstable, there are fewer qualified local backup desti-
nation VMs and therefore, a remote backup plan is chosen.
This also explains why our checkpointing algorithm auto-
matically reduces to Always Checkpointing strategy in the
limit.

To analyze the performance of stage level checkpointing
(similar granularity to [30]) in our VM distribution setting,
we conduct one more evaluation over Cortana workload. As

492

shown in Figure 7(c), when the VM becomes less stable, in
every stage, there is always some VMs which are not stable,
which triggers checkpointing. Therefore, the checkpointing
overhead increases.

6.1.2 Effectiveness of TR-Scheduling
In this group of evaluations, we want to examine the effec-
tiveness of our TR-Scheduling algorithm. We compare the
performance of TR-Spark with and without TR-Scheduling
on workload (2). The number of VMs is 50. The local and
remote bandwidth is 400 and 100 MB/S. The result is illus-
trated in Figure9(a). We can see that with TR-Scheduling,
the performance of TR-Spark improves when the resources
are less stable. This is because TR-Scheduling can reduce
the number of costly checkpointings, thus reducing the total
number of re-computations (Figure 9(b)) through prioritiz-
ing tasks that can reduce the output data size the most.

 1

 2

 4

5102030407090110

Sl
ow

do
w

n
(X

)

VM Stability

Always Checkpointing
Spark

TR-Spark(indeterministic,no scheduling)
TR-Spark(indeterministic)

TR-Spark(deterministic,no scheduling)
TR-Spark(deterministic),

(a) Perf

 0

 2000

 4000

 6000

102030405090

#R
ec

om
pu

ta
tio

n

VM Stability

TR-Spark(indeterministic, no scheduling)
TR-Spark(indeterministic),

TR-Spark(deterministic, no scheduling)
TR-Spark(deterministic)

(b) Counters

Figure 9. Impact of TR-Scheduling

6.1.3 Scalability
We study the scalability of our proposed solution in this
group of evaluation. We use workload (1) TPC-DS Bench-
mark. When increasing the number of VMs from 50 to 200,
with fixed input data size of 2T, the job latency is reduced.
The input data is read from local HDFS and checkpointed to
Azure blob. Figure 10(a) shows the changes of the VM insta-
bility. Spark fails to get reasonable performance as the num-
ber of VMs increases. As shown in Figure 10(b), the always
checkpointing strategy faces a dramatic slowdown when the
job runs on 200 VMs. This is because when there are 200
VMs, the available bandwidth per VM becomes small due
to the limitation of the total remote bandwidth. Therefore,

the relative remote checkpointing cost increases. In contrast,
as shown in Figures 10(c) and 10(d), TR-Spark is highly ef-
fective at different cluster sizes.

 1

 2

 4

51030507090130200300

Sl
ow

do
w

n

VM Stability

50 VM
100 VM
200 VM

(a) Spark

 1

 2

 4

51030507090130200300

Sl
ow

do
w

n

VM Stability

50 VM
100 VM
200 VM

(b) Always Checkpointing

 1

 2

 4

51030507090130200300

Sl
ow

do
w

n

VM Stability

50 VM
100 VM
200 VM

(c) TR-Spark (deterministic)

 1

 2

 4

51030507090130200300

Sl
ow

do
w

n

VM Stability

50 VM
100 VM
200 VM

(d) TR-Spark (indeterministic)

Figure 10. Scalability

 1

 2

 4

 8

51030507090110130150

Sl
ow

do
w

n
(X

)

VM Stability

Spark
Aways checkpointing 200MB
Aways checkpointing 400MB

TR-Spark 200MB
TR-Spark 400MB

Figure 11. Effect of Bandwidth

6.1.4 Effect of Bandwidth
In this group of evaluations, we change the local and remote
bandwidth with fixed local : remote bandwidth ratio to ex-
amine the effect of bandwidth to our solution. The number
of VMs is set to 100. As the local bandwidth increases from
200 to 400 MB, (Figure 11), the remote bandwidth is also in-
creased. The checkpointing cost thus becomes cheaper and
TR-Spark becomes more efficient. Although we might ex-
pect that with the increase of bandwidth, the original Spark
should be more efficient because of the cheaper shuffle cost,
it still performs poorly when the resource become unstable.
Indeed, it cannot be used at all on transient resources.

493

6.1.5 Robustness to Imprecision of Resource Stability
Estimation

The cost calculation in the scheduling and checkpointing al-
gorithms are based on information about instability of the
underlying resources. In this group of experiments, we ex-
amine the robustness of our algorithm to imprecisions in
these estimations. Specifically, we manually add an error to
the estimation of the mean lifetime and report the resulting
latency slowdown. The evaluation is done on workload (1)
with the error ranging from 20% to 50% over different num-
bers of VMs. VM instability is 90. The setting of TR-Spark
we use is TR-Spark (indeterministic, Remote). From the re-
sults shown in Figure 12 we see that as imprecision increases
slowdowns also increase. However, importantly, even when
the estimation error is 50% over 200 VMs, the slowdown is
still no bigger than 30% which confirms the robustness of
our proposed solution.

 1

 1.1

 1.2

 1.3

 1.4

20% 30% 40% 50%

Sl
ow

do
w

n

% of Imprecision

50 VM
100 VM
200 VM

Figure 12. Robustness

6.2 TR-Spark on Azure
Finally, we deploy our implementation of TR-Spark on
Azure Batch D3 cluster (4 Intel(R) Xeon(R) CPU E5-
26600@2.20GHz, 14GB memory) with local and remote
bandwidth 200 and 60 MB/s. TR-Spark is built on and
compared to Spark 1.5.2. To simulate different VM sta-
bilities, we kill VMs according to the VM lifetimes mod-
eled as exponential distributions following workload data
from the underlying Azure Fabric. We evaluate the perfor-
mance and scalability of TR-Spark with TPC-DC (400GB
input), PageRank (50GB input) and production Cortana ses-
sion (100GB input) workloads. Performance is measured by
the slowdown compared to Spark on stable resources. First,
we fix the number of VMs to be 20 and examine the perfor-
mance of TR-Spark over different workloads. As shown in
Figures 13(a) - 13(c), the original Spark does not work when
the resources become less stable. In contrast, TR-Spark al-
ways performs very well with different resource stabilities.
Then, when we vary the number of VM from 5 to 50, as
shown in Figure 13(d), the performance gain compared to
original Spark on stable resources over SQL workload is
stable across different scales.

In summary, the above evaluations in both simulator and
real cloud environments confirm the efficiency and effective-
ness of TR-Spark on transient resources.

7. Related Work
Transient resource aware checkpointing: Many existing
works [10, 13, 14, 18, 19, 21, 35, 36, 41] propose solu-
tions to minimize the cost and optimize the performance
through checkpointing based fault-tolerance. Specifically,
[35, 36] proposes job level checkpointing and migration
planning specific to Amazon EC2 spot instance based on
price prediction. [14, 21] provides interval-based check-
pointing solutions. [19] proposes monetary cost optimiza-
tions for MPI-based applications with deadline constraints
on Amazon EC2 spot instance. [41] presents a solution to
maximize the revenue through a dynamic resource allocation
plan. [10] further considers Map-Reduce jobs: The solution
is to split an original reduce task into fine-grained tasks and
checkpoint intermediate data at key boundaries. [18] pro-
vides an efficient checkpointing implementation. The above
two works are complementary to our work in this paper. [13]
is maybe most closely related to our work. It leverages Ama-
zon EC2 spot instance pricing as an estimation of resource
unavailability and proposes MapReduce job’s checkpointing
decisions, however without co-considering scheduling plan
and complex job DAG structure. [28] proposed a cost-based
materialization (checkpointing) scheme for fault-tolerance
with the assumption that intermediates are not lost by failure
which is different from the VM failure settings we consider.
The recent effort Flint [30] has a similar optimization goal as
our work. Flint is based on RDD-level checkpointing, while
TR-Spark provides finer granularity - task-level checkpoint-
ing and together with its scheduling algorithm can perform
well over resources with different instability. The work of
[11] provides checkpointing to remote scheme for Amazon
spot instance, while our work considers more checkpointing
location options. In contrast to these works, the solution in
this paper is the first comprehensive solution to explicitly
consider the performance of Spark on transient resources,
co-optimizing scheduling and checkpointing strategies. Our
implementation and evaluations are based on a real system
implementation that is deployed on Azure Batch.

Large scale job scheduling: Scheduling has been stud-
ied almost ad infinitum. [22] presented a framework to opti-
mize dataflow scheduling in the Cloud. [26] provides heuris-
tics for task scheduling along the DAG with budget con-
straint. [15] designed online heuristics for optimizing job la-
tency and cost. [42] provides solutions to scientific workflow
scheduling on the cloud with user-defined optimization goals
and constraints. [37] proposed a delay-scheduling algorithm
to increase the job’s throughput. However, these works are
based on the assumption that the underlining resources are
stable. The intermediate states are always available even af-
ter pausing and restarting.

Big data analytic systems and fault-tolerance: Efficient
big data analytic systems [6, 12, 17, 20, 27, 31, 33, 39] have
fault-tolerance mechanisms. As described, these systems are
designed to run on dedicated clusters instead of the cloud

494

 1

 2

 4

10306090120150210

Sl
ow

do
w

n
(X

)

VM Stability

Spark
TR-Spark

(a) SQL

 1

 2

 4

 8

102030405090120
Sl

ow
do

w
n

(X
)

VM Stability

Spark
TR-Spark

(b) Cortana

 1

 2

 4

 8

102030405090140

Sl
ow

do
w

n
(X

)

VM Stability

Spark
TR-Spark

(c) PageRank

 0

 2000

 4000

 6000

 8000

 10000

5 10 20 50

L
at

en
cy

 (
S)

VM

Spark on reliable VM(opt)
TR-Spark Stability = 160

TR-Spark Stability = 60

(d) Scalability

Figure 13. TR-Spark on Azure

transient resources. Our solution and principles are applica-
ble to all these systems.

8. Conclusion
A large-scale public cloud provider like Microsoft and Ama-
zon operates hundreds of thousands of servers across the
globe. Running big data analytic jobs en masse on transient
resources (possibly at lower price) could be a key tool to
increase utilization. In reality, however, modern distributed
data processing systems such as MapReduce or Spark are
designed to run on dedicated hardware, and they perform
badly on transient resources because of the excessive cost
of cascading re-computations. In this work, we propose a
new framework for big data analytics on transient resources,
based on two principles: resource-stability and data-size
reduction-aware scheduling and lineage-aware checkpoint-
ing. We implement our principles into Spark, producing
TR-Spark (Transient Resource Spark). Intensive evaluation
results confirm the efficiency of TR-Spark on transient re-
sources. While original Spark is often unable to complete
a task within a reasonable amount of time on even moder-
ately transient resources, TR-Spark adaptively adjusts to the
cluster environment, and completes all jobs within a near-
optimal execution time.

References
[1] http://aws.amazon.com/about-aws/whats-

new/2015/10/introducing-amazon-ec2-spot-instances-for-
specific-duration-workloads/.

[2] http://docs.aws.amazon.com/awsec2/latest/userguide/ebs-
ec2-config.html/.

[3] https://aws.amazon.com/ec2/spot/.

[4] https://azure.microsoft.com/en-us/services/batch/.

[5] https://cloud.google.com/compute/docs/ins-
tances/preemptible.

[6] https://flink.apache.org/.

[7] http://spark.apache.org/.

[8] http://spark.apache.org/docs/latest/job-scheduling.html.

[9] http://www.tpc.org/tpcds/.

[10] G. Ananthanarayanan, C. Douglas, R. Ramakrishnan, S. Rao,
and I. Stoica. True elasticity in multi-tenant data-intensive
compute clusters. In ACM Symposium on Cloud Computing,
SOCC ’12, page 24, 2012.

[11] C. Binnig, A. Salama, E. Zamanian, M. El-Hindi, S. Feil, and
T. Ziegler. Spotgres - parallel data analytics on spot instances.
In ICDE Workshops, pages 14–21, 2015.

[12] R. Chaiken, B. Jenkins, P. Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. SCOPE: easy and efficient parallel
processing of massive data sets. PVLDB, 1(2), 2008.

[13] N. Chohan, C. Castillo, M. Spreitzer, M. Steinder, A. N.
Tantawi, and C. Krintz. See spot run: Using spot instances
for mapreduce workflows. In 2nd USENIX Workshop on Hot
Topics in Cloud Computing, HotCloud’10, 2010.

[14] S. Di, Y. Robert, F. Vivien, D. Kondo, C. Wang, and F. Cap-
pello. Optimization of cloud task processing with checkpoint-
restart mechanism. In International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC’13, pages 64:1–64:12, 2013.

[15] S. K. Garg, R. Buyya, and H. J. Siegel. Scheduling parallel
applications on utility grids: Time and cost trade-off manage-
ment. In Computer Science 2009, Thirty-Second Australasian
Computer Science Conference (ACSC 2009), pages 139–147,
2009.

[16] A. Goder, A. Spiridonov, and Y. Wang. Bistro: Scheduling
data-parallel jobs against live production systems. In 2015
USENIX Annual Technical Conference, USENIX ATC ’15,
pages 459–471, 2015.

[17] I. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Ap-
proxhadoop: Bringing approximations to mapreduce frame-
works. In Proceedings of the Twentieth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 383–397, 2015.

[18] I. Goiri, F. Julià, J. Guitart, and J. Torres. Checkpoint-based
fault-tolerant infrastructure for virtualized service providers.
In IEEE/IFIP Network Operations and Management Sympo-
sium, NOMS 2010, pages 455–462, 2010.

[19] Y. Gong, B. He, and A. C. Zhou. Monetary cost optimizations
for mpi-based HPC applications on amazon clouds: check-
points and replicated execution. In Proceedings of the Inter-
national Conference for High Performance Computing, Net-

495

working, Storage and Analysis, SC 2015, pages 32:1–32:12,
2015.

[20] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad:
distributed data-parallel programs from sequential building
blocks. In Proceedings of the 2007 EuroSys Conference, pages
59–72, 2007.

[21] D. Jung, J. Lim, H. Yu, and T. Suh. Estimated interval-based
checkpointing (EIC) on spot instances in cloud computing. J.
Applied Mathematics, 2014:217547:1–217547:12, 2014.

[22] H. Kllapi, E. Sitaridi, M. M. Tsangaris, and Y. E. Ioannidis.
Schedule optimization for data processing flows on the cloud.
In Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2011, pages 289–
300, 2011.

[23] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. Skewtune:
mitigating skew in mapreduce applications. In Proceedings of
the ACM SIGMOD International Conference on Management
of Data, SIGMOD 2012, pages 25–36, 2012.

[24] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Heracles: improving resource efficiency at
scale. In Proceedings of the 42nd Annual International Sym-
posium on Computer Architecture, Portland, OR, USA, pages
450–462, 2015.

[25] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and
C. Kozyrakis. Improving resource efficiency at scale with her-
acles. ACM Trans. Comput. Syst., 34(2):6, 2016.

[26] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman, R. Sakel-
lariou, K. Vahi, K. Blackburn, D. Meyers, and M. Samidi.
Scheduling data-intensiveworkflows onto storage-constrained
distributed resources. In Seventh IEEE International Sym-
posium on Cluster Computing and the Grid (CCGrid 2007),
pages 401–409, 2007.

[27] B. Saha, H. Shah, S. Seth, G. Vijayaraghavan, A. C. Murthy,
and C. Curino. Apache tez: A unifying framework for model-
ing and building data processing applications. In Proceedings
of the 2015 ACM SIGMOD International Conference on Man-
agement of Data, pages 1357–1369, 2015.

[28] A. Salama, C. Binnig, T. Kraska, and E. Zamanian. Cost-
based fault-tolerance for parallel data processing. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on
Management of Data, Melbourne, Victoria, Australia, May 31
- June 4, 2015, pages 285–297, 2015.

[29] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and
J. Wilkes. Omega: flexible, scalable schedulers for large com-
pute clusters. In SIGOPS European Conference on Computer
Systems (EuroSys), pages 351–364, Prague, Czech Republic,
2013.

[30] P. Sharma, T. Guo, X. He, D. Irwin, and P. Shenoy.
Flint: Batch-interactive data-intensive processing on transient
servers. In Proceedings of the European Conference on Com-
puter Systems (EuroSys), 2016.

[31] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency and
fault-tolerance optimizer for online parallel query plans. In
Proceedings of the ACM SIGMOD International Conference
on Management of Data, SIGMOD 2011, Athens, Greece,
June 12-16, 2011, pages 241–252, 2011.

[32] A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes. Large-scale cluster management at
Google with Borg. In Proceedings of the European Con-
ference on Computer Systems (EuroSys), Bordeaux, France,
2015.

[33] C. Xu, M. Holzemer, M. Kaul, and V. Markl. Efficient
fault-tolerance for iterative graph processing on distributed
dataflow systems. In 32nd IEEE International Conference on
Data Engineering, ICDE 2016, Helsinki, Finland, May 16-20,
2016, pages 613–624, 2016.

[34] H. Yang, A. D. Breslow, J. Mars, and L. Tang. Bubble-flux:
precise online qos management for increased utilization in
warehouse scale computers. In The 40th Annual International
Symposium on Computer Architecture, ISCA’13, pages 607–
618, 2013.

[35] S. Yi, A. Andrzejak, and D. Kondo. Monetary cost-aware
checkpointing and migration on amazon cloud spot instances.
IEEE Trans. Services Computing, 5(4):512–524, 2012.

[36] S. Yi, D. Kondo, and A. Andrzejak. Reducing costs of spot
instances via checkpointing in the amazon elastic compute
cloud. In IEEE International Conference on Cloud Comput-
ing, CLOUD 2010, pages 236–243, 2010.

[37] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy,
S. Shenker, and I. Stoica. Delay scheduling: a simple tech-
nique for achieving locality and fairness in cluster schedul-
ing. In European Conference on Computer Systems, Proceed-
ings of the 5th European conference on Computer systems,
EuroSys 2010, pages 265–278, 2010.

[38] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation,
NSDI 2012, pages 15–28, 2012.

[39] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-
Cauly, M. J. Franklin, S. Shenker, and I. Stoica. Resilient dis-
tributed datasets: A fault-tolerant abstraction for in-memory
cluster computing. In Proceedings of the 9th USENIX Sym-
posium on Networked Systems Design and Implementation,
NSDI 2012, pages 15–28, 2012.

[40] M. Zaharia, A. Konwinski, A. D. Joseph, R. H. Katz, and
I. Stoica. Improving mapreduce performance in heteroge-
neous environments. In 8th USENIX Symposium on Oper-
ating Systems Design and Implementation, OSDI 2008, pages
29–42, 2008.

[41] Q. Zhang, E. Gürses, R. Boutaba, and J. Xiao. Dynamic
resource allocation for spot markets in clouds. In USENIX
Workshop on Hot Topics in Management of Internet, Cloud,
and Enterprise Networks and Services, Hot-ICE’11, 2011.

[42] A. C. Zhou, B. He, X. Cheng, and C. T. Lau. A declara-
tive optimization engine for resource provisioning of scien-
tific workflows in iaas clouds. In Proceedings of the 24th
International Symposium on High-Performance Parallel and
Distributed Computing, HPDC 2015, pages 223–234, 2015.

496

