
Multi-tenant GPU Clusters for Deep Learning
Workloads: Analysis and Implications

Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee,
Junjie Qian, Wencong Xiao, Fan Yang

Microsoft Research

Abstract
With widespread advances in machine learning, a number
of large enterprises are beginning to incorporate machine
learning models across a number of products. These models
are typically trained on shared, multi-tenant GPU clusters.
Similar to existing cluster computing workloads, schedul-
ing frameworks aim to provide features like high efficiency,
resource isolation, fair sharing across users, etc. However
Deep Neural Network (DNN) based workloads, predomi-
nantly trained on GPUs, differ in two significant ways from
traditional big data analytics workloads. First, from a cluster
utilization perspective, GPUs represent a monolithic resource
that cannot be shared at a fine granularity across users. Sec-
ond, from a workload perspective, deep learning frameworks
require gang scheduling reducing the flexibility of schedul-
ing and making the jobs themselves inelastic to failures at
runtime. In this paper we present a detailed workload charac-
terization of a two-month long trace from a multi-tenant GPU
cluster in a large enterprise. By correlating scheduler logs
with logs from individual jobs, we study three distinct issues
that affect cluster utilization for DNN training workloads on
multi-tenant clusters: (1) the effect of gang scheduling and
locality constraints on queuing, (2) the effect of locality on
GPU utilization, and (3) failures during training. Based on our
experience running a large-scale operation, we provide design
guidelines pertaining to next-generation cluster schedulers
for DNN training workloads.

1 Introduction
Recent advances in machine learning have led to tremendous
improvements in tasks ranging from object detection [31] to
speech recognition [34] and language translation [47]. As a
result a number of enterprises are now incorporating machine
learning models in various products [1, 4]. To facilitate model
training, enterprises typically setup a large cluster shared by
users belonging to a number of different production groups.
Similar to clusters setup for big data analysis [13, 50], using
shared clusters can facilitate better utilization and reduce
development overheads.

However deep learning workloads pose a number of new
requirements or constraints on cluster management systems.
Since machine learning algorithms are floating point com-
putation intensive, these workloads require hardware accel-
erators like GPUs. However, unlike CPUs, accelerators do

not typically have proper hardware support for fine-grained
sharing [22]. While there are software mechanisms to enable
sharing, they often have high overhead making it challenging
to share resources across jobs [39, 53]. Furthermore, training
on large datasets often requires the use of multiple GPUs [21]
and the machine learning frameworks typically require that
tasks on each GPU be scheduled at the same time, i.e., gang
scheduled [19]. This increases the risk of resource fragmenta-
tion and low utilization in shared clusters. Finally, multi-GPU
training also implies synchronization of model parameters
across GPUs and hence it is important to achieve better local-
ity while scheduling to allow for the use of faster interconnects
for both intra- and inter-machine communication.

Despite their growing popularity, to the best of our knowl-
edge there has been no systematic study of multi-tenant clus-
ters used to train machine learning models. In this paper, we
present the design of a large, multi-tenant GPU-based cluster
used for training deep learning models in production. We de-
scribe, Project Philly, a service for training machine learning
models that performs resource scheduling and cluster man-
agement for jobs running on the cluster. Using data from this
system, we then present a detailed workload characteriza-
tion and study how factors such as gang scheduling, locality
requirements and failures affect cluster utilization.

Our analysis spans across two months and uses around
100,000 jobs run by hundreds of users. We combine logs
from Apache YARN [48], our cluster scheduler, utilization
information from Ganglia [33], and logs from each job to
perform a systematic analysis of cluster utilization. First, we
study the factors influencing queuing delays before training
jobs are run. We breakdown queuing delay into two camps:
(1) delay incurred from users waiting for their fair share of
resources to be available, and (2) delay from waiting for lo-
cality constraints to be met. Training jobs need to be gang
scheduled, as hyper-parameters are picked for specific GPU
count configurations. Given that training jobs take a long time
to run, and greater locality improves performance due to the
availability of faster interconnects for parallel training [52],
the scheduler in Project Philly waits for appropriate availabil-
ity of GPUs before beginning to run the training job. We study
the effect of locality constraints on queuing delays; as one
might expect, relaxing locality constraints reduces queueing
delays, especially for jobs that use many GPUs – our empha-
sis here is not on presenting this as a new insight, but instead

1



on highlighting this using real-world data from production
clusters.

Next, we study the GPU utilization for jobs that are run
on the cluster and focus on how placement decisions for
distributed training jobs affect utilization. Even though most
GPUs within a cluster are allocated to users, thus suggesting
high cluster utilization, this metric alone is misleading. We
show that the hardware utilization of GPUs in use is only
around 52% on average. We investigate two reasons which
contribute to low GPU utilization: (1) the distribution of
individual jobs across servers, ignoring locality constraints,
increases synchronization overheads, and (2) the colocation or
packing of different jobs on same server leads to interference
due to contention for shared resources. Furthermore, given
their statistical nature, we find that around 75% of jobs reach
within 0.1% of their best model with just 40% of training
epochs and thus cluster resources could be better utilized by
terminating training when a target accuracy is reached, rather
than training for a fixed number of epochs.

Finally, we look at why jobs might fail to complete success-
fully and offer a detailed characterization of the causes for
such failures in our clusters. Around 30% of jobs are killed or
finish unsuccessfully due to failures. Failures are caused by
errors across the stack, with programming errors dominating
failures and occurring early in the training process; failures
due to cluster components like HDFS tend to occur much
later in the training lifecycle.

Based on the lessons learnt from data analysis and our ex-
periences running a large-scale operation over the years, we
provide three guidelines to improve the next generation of
cluster schedulers for DNN workloads. First, because the lack
of locality impacts both utilization and job runtime, and be-
cause DNN training jobs are long running, schedulers should
trade queueing delay for adhering to locality constraints. Sec-
ond, different jobs that share a single server may interfere
with each other and thus adversely affect their training time.
Schedulers should thus aim to isolate the jobs on dedicated
servers while implementing techniques like migration for de-
fragmentation, to support the locality constraints of jobs that
need more GPUs. Third, many failures ought to be caught
early, well before they are scheduled on a larger shared clus-
ter. This can be achieved by scheduling each incoming job
on a small dedicated pool of servers for a couple of itera-
tions. For example, even using a single GPU should be able
to catch simple programming and configuration errors from
multi-GPU jobs. Furthermore, an online analysis of failures
at runtime can let schedulers adapt their retry policies thus
avoiding wasteful re-execution.

Overall, our paper describes the experience of running a
large-scale multi-tenant GPU cluster for DNN training work-
loads. We plan to release traces used for our study and hope
that insights and data from our study inform the burgeoning
work of scheduling research for machine learning workloads.

2 Project Philly: System Overview
In this section we provide an overview of the design and archi-
tecture of Project Philly. First, we describe the workloads that
are supported in our system and then describe the hardware
characteristics of the clusters. Next, we describe the lifecycle
of a job. Finally, we explain our data collection pipeline and
highlight the data we use to perform our analysis in subse-
quent sections. Project Philly has been developed over the
past few years by a team of developers in our company and
has gone through multiple generations of design. The authors
would like to note that this paper does not provide a complete
description of the system and our main focus is in presenting
system details that relate to our analysis.

2.1 Workloads
Our system is designed to support workloads that perform
supervised machine learning where jobs learn a model given
training data and the corresponding labels. This includes train-
ing jobs from production groups developing products that use
models for image classification, speech recognition, etc. The
system supports jobs written using any machine learning
framework like TensorFlow [5], CNTK [41], Caffe [29], and
PyTorch [38]. Jobs are based on recently proposed learn-
ing architectures like convolutional neural networks [31],
LSTMs [45] and RNNs [35]. In this paper, we focus on the
system architecture required to support these jobs and thus
do not present details about specific machine learning models
used.

All jobs, irrespective of the framework or model being
used, rely on iterative optimization methods [20] like stochas-
tic gradient descent (SGD). In each iteration of SGD, the
gradient computation is performed by translating the model
components into optimized code that can be executed on ac-
celerators like GPUs. The gradient values are then aggregated
to compute a model update and these iterations are repeated
until convergence. Training a model could require thousands
to millions of iterations [46], and result in multiple passes or
epochs over the entire dataset.

To scale training across larger datasets, a number of jobs
use distributed training across machines. Distributed training
typically uses data parallelism where each worker loads a
complete copy of the model into its own memory. In each
iteration, every worker performs training using a subset of the
input data, and at the end of the iteration all workers exchange
gradients to synchronize model updates. This synchroniza-
tion phase is performed using either MPI AllReduce [6] or
parameter servers [32].

2.2 Cluster Architecture
Our system is deployed on large GPU clusters shared across
many groups in the company. Our clusters has grown signif-
icantly over time, both in terms of the number of machines

2



Exit

Place

Job B

Queue 3

HDFS

Server ServerServer Server

Server ServerServer Server

RDMA domain

RDMA domain

Training

data

R
e

s
o

u
rc

e
 s

c
h

e
d

u
le

r

Queue 2

Queue 1

Queue n

Job A

1
2

3

Figure 1. The lifecycle of deep learning jobs.

(5× increase in one year) as well as the number of GPUs
per-machine (4-GPU to 8-GPU servers).

Our clusters have high-speed network connectivity among
servers and GPUs in the cluster. This is to speed up dis-
tributed training where workers need to exchange model up-
dates promptly for every iteration. There is a hierarchy of
network links available in our cluster for communication
across GPUs. For example, machines within the same rack
(RDMA domain) are connected via 100-Gbps RDMA (Infini-
Band) network, while cross-rack traffic goes through Ethernet.
To improve communication performance, workers in a dis-
tributed training job must either be colocated on the same
machine or preferably communicate over a higher-speed net-
work such as say InfiniBand. Thus, our framework considers
both GPUs and network connectivity for scheduling.

Similar to existing big data analytics clusters, our clusters
use HDFS [43] as the distributed storage system and our re-
source management software is based off Apache YARN [48].
Input data for the machine learning jobs is stored in HDFS
and read by jobs during training. Users provide a Docker con-
tainer with their training code and corresponding dependen-
cies, and this container is instantiated when a job is scheduled
for execution. We next discuss the lifecycle of a job.

2.3 Job Scheduling and Execution Workflow
Figure 1 shows the lifecycle of a deep learning job in Project
Philly and the various stages of execution that it goes through.

Incoming jobs and queueing 1 . As a part of job submis-
sion, users specify the number of GPUs required. To facilitate
host resource allocation, we evenly divide CPUs and memory
to each GPU. Once a job has been received by the scheduler
it is queued while the necessary GPUs are allocated. To sup-
port multiple production groups we create a virtual cluster
for each group and associate a resource share or quota in
terms of number of GPUs to each virtual cluster. Each vir-
tual cluster has a separate allocation queue in Apache YARN
and we use the Fair Scheduler to manage these queues [2].
The Fair Scheduler not only respects the configured resource
shares but also allocates unused GPUs to a queue which has
additional demand. Jobs can be preempted based on fair share
of resources among virtual clusters. Our scheduler starts pre-
emption only when a majority (90%) of total GPUs are being
used.

GPU0 GPU1 GPU2 GPU3

Memory

CPU

Memory

CPUQPI

PCIe root complex PCIe root complex

PCIe switches

GPU4 GPU5 GPU6 GPU7

Figure 2. CPU interconnects within each server.

The deep learning jobs have an additional constraint that
affects queuing delay. For distributed learning, deep learn-
ing frameworks require all the GPUs to be available at the
same time [41]. Thus the scheduler needs to performs gang
scheduling while being locality-aware, i.e., pack a job’s GPUs
onto the smallest number of servers and within an RDMA do-
main. Locality awareness improves training time by bringing
down the time needed for parameter synchronization due to
the availability of: (i) fast intra-server interconnects (such as
PCIe and NVLink), and (ii) for jobs that do not fit on a sin-
gle server, high-bandwidth links available within an RDMA
domain (compared to slower Ethernet links). We implement
these goals by acquiring resources for a job as GPUs become
available and waiting for a pre-specified timeout (2–3 min-
utes in our setup) to acquire all the necessary GPUs with the
locality constraints. To facilitate locality-aware GPU sched-
uling, our job scheduler keeps track of all idle GPUs in the
cluster and ranks the corresponding racks and servers. Specif-
ically, racks are ranked by increasing order of allocation or
occupancy, and the machines in a rack are ordered the same
way. This allows the scheduler to first consider racks and then
servers within those racks that have most GPUs available.

If the request is not fulfilled by the timeout, any partially
acquired resources are relinquished and we retry scheduling
after a back-off (2 minutes in our setup). To avoid starva-
tion, the locality constraints are relaxed after a scheduling
request has been retried a fixed number of times. We analyze
corresponding queuing delays in Section 3.

Job placement and utilization 2 . While the scheduler
tries to maximize locality for distributed jobs as described
before, at the same time the scheduler also aims to avoid frag-
mentation of resources from smaller jobs (e.g., 1-GPU jobs)
by packing them into a fewer servers. However colocating
different jobs on the same server could lead to lower GPU
utilization due to interference in shared system resources
such as PCIe bus, as shown in Figure 2. In order to better
understand this trade-off we study the effects of colocation
vs. distribution and measure how that affects utilization.

Once the job is scheduled to run, its GPUs are not shared
with other jobs. This is because model training is computa-
tion intensive and we need consistent performance among
workers of the job without having stragglers. However, the
dedicated GPUs may be underutilized for many reasons, e.g.,
inefficiencies in the GPU code generated by the machine

3



learning frameworks or programs blocking on I/O when read-
ing data from HDFS over the network. GPU underutilization
also comes from distributed training where computation may
block during model synchronization among the workers. We
analyze the effects of job placement and GPU utilization in
Section 4.
Training progress and completion 3 . Jobs can finish with
one of three statuses: passed, killed, or unsuccessful. Passed
indicates that the job completed successfully, while killed
indicates that the job was terminated by the user.

Among successful jobs, every job runs a number of itera-
tions to improve the model incrementally, and the number of
iterations to run is typically a static parameter set by the user.
In cases where a job is configured with too many iterations, it
is possible to deliver the same (or similar) quality of trained
model with fewer iterations. However, the convergence rate
of each job varies across iterations, and we study the effective
utilization of GPUs by considering how many iterations are
useful in improving model quality in Section 5.1.

Failed jobs in our system are retried a fixed number of times.
This is useful for overcoming non-deterministic failures and
if the job does not succeed after retries then it is marked as
unsuccessful. As failures also contribute to ineffective cluster
utilization, we perform a detailed study to understand the
reasons behind failures in Section 5.2.

2.4 Data Collection and Analysis
To get a comprehensive understanding of characteristics in
our system and workloads, we developed a data collection
and analysis pipeline and collect logs over a 75-day period
from Oct. 2017 to Dec. 2017. Our logs contain a total of
96260 jobs over 14 virtual clusters.

The analysis pipeline combines three main log sources in
our system as follows. (1) We collect the YARN scheduler
logs to obtain job arrival time, number of GPUs requested,
GPU allocation status, and job finish status. (2) We collect std-
out and stderr logs from the machine learning frameworks that
execute scheduled jobs. In some cases, e.g., CNTK running
using MPI, we capture the rank of the MPI process generating
log messages. (3) We collect logs from Ganglia monitoring
system that reports per-minute statistics on hardware usage
on every server, including CPU, memory, network, GPU uti-
lizations. Combined with GPU allocation status in YARN
scheduler logs, we can track how a scheduled job utilizes
cluster hardware resources.

Our collected data contains jobs from a wide spectrum in
terms of their run times and sizes, and consequently cluster
resources demands. Jobs run from minutes to days or even
weeks, as shown in Figure 3. In contrast, in big data analytics,
job execution times range from only tens of milliseconds to a
few hours [12, 36, 40]. Furthermore, we see that our workload
has significant skewness in run time, with 0.5% jobs taking
more than a week to be finished. Figure 3 also shows how jobs

10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

Figure 3. CDF of job run times for 1 GPU, 2-4 GPU, and
>4 GPU jobs.

of different sizes vary in terms of execution times. We see that
jobs with more GPUs tend to run longer. This results in most
of the cluster resources demands coming from the larger jobs,
and resource availability status changing relatively slowly
over time.

3 Analysis of Queueing Delays
The effect of locality constraints on queuing delays has been
extensively explored in large-scale resource allocation [8, 12,
27, 54]. Machine learning workloads introduce similar con-
straints driven be gang scheduling and requirement for using
fast interconnects. In this section, we perform detailed analy-
sis on queueing delays using real-world data in the context of
production DNN training cluster for the first time.

3.1 Job Queuing
We first consider overall queueing delay observed during job
scheduling. We plot the CDF of queueing dealy in Figure 4
for all jobs in five of the largest virtual clusters (VCs). Jobs
that need more than 4 GPUs tend to have a longer tail in
the distribution of queueing delays compared to their 1 GPU
and 2-4 GPU counterparts. This is due to the scheduler’s
best-effort semantics to meet locality constraints for jobs. For
example for VC2, 25% of jobs using >4 GPUs experience a
queueing delay of at least 10 minutes; in comparison, only
10% of 1 GPU jobs experience a queueing delay of at least
10 minutes. But overall, queuing delays for jobs, irrespective
of their GPU demand, are very similar.

The similarities in queueing delays above are partially a
consequence of our scheduling policy that chooses to relax
locality constraints in order to start a job without incurring a
very long queueing delay penalty. To highlight the relation
between locality constraints and queueing delays, we next
consider jobs with >4 GPU and divide them into jobs with
4-8 GPUs and >8 GPU. We correlate scheduler waiting times
with number of servers on which the jobs are placed, and
show the results in Figure 5. As expected, most of jobs with
4-8 GPU are scheduled with high locality, i.e., placed on one
or two servers. On the other hand, we find that jobs with >8
GPU are spread across a wider range from 2 to 16 servers.

4



10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

(a) VC1

10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

(b) VC2

10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

(c) VC3

10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

(d) VC4

10
-1

10
0

10
1

10
2

10
3

10
4

Time (min)

0

20

40

60

80

100

C
D

F

1 GPU

2-4 GPU

>4 GPU

(e) VC5

Figure 4. CDF of scheduler queueing delay for five of the largest virtual clusters in our deployment.

10-1 100 101 102 103 104

Time (min)

0

5

10

15

20

N
u
m

. 
S
e
rv

e
rs

4-8 GPU

>8 GPU

Figure 5. For a given GPU count, relaxing locality con-
straints reduces queueing delays (VC2).

Clearly, when jobs end up running on 16 servers, they start
execution much sooner than running on 2 or 4 servers. This
confirms how our scheduler works in practice to trade-off
locality for lower scheduling delay.

While effective, we find that this decision affects the GPU
utilization as discussed in Section 4.2. In practice, similar
to other scheduling regimes [8, 12, 27, 54], achieving both
high locality and low waiting time is still challenging because
these two requirements are often at odds with each other. We
next look at more details on the queuing delay characteristics
and break down the delay by different causes.

3.2 Impact of Locality-Driven Scheduling
Queuing delay can be caused by two primary factors: fairness
(which is common in conventional data analytics clusters),
and locality requirement and resource fragmentation (which
is more prevalent in deep learning clusters). We call queueing
caused by the first factor as fair-share delay, as it happens
when the virtual cluster uses up its assigned quota (i.e., num-
ber of GPUs). However, it is possible that a job arrives within
the quota but fails to be scheduled, mainly because resource
fragmentation makes it hard to find enough GPUs with high
locality. We call this queuing delay as fragmentation delay. In
practice, we find that resource fragmentation is very common.
For example, we observe that (i) when say two thirds of the
total GPUs are being used, the fraction of servers that are
completely empty is less than 4.5% and that (ii) these servers
are spread across RDMA domains.

We next see how frequently fair-share delay and fragmenta-
tion delay occur for different job sizes in our workloads. Since

Delay Jobs with >4 GPU Other jobs
Fair-share 3859 (21.6%) 33234 (43.9%)

Fragmentation 14045 (78.4%) 42386 (56.1%)
Table 1. Frequencies of two types of queueing delay.

some jobs are quickly terminated, we only consider jobs that
run for at least one minute. Table 1 shows the frequencies for
the two types of delay. For jobs with >4 GPU, fragmentation
delay is responsible for 78.4% of occurrences. In contrast, for
smaller jobs, we see that the two causes are more balanced.
Further, we also observe that across all jobs fragmentation
delay is responsible for around 80% of the delay in terms of
waiting time. This is because fair-share delays are easy to
mitigate with preemption, but fragmentation delays are much
harder to overcome in our current design.

Finally, we note that the queuing delay fractions vary across
virtual clusters. Among the five largest virtual clusters, VC5
often over-subscribes its quota and thus the proportion of
fair-share delay is overall higher at 37%.
Does out-of-order scheduling exacerbate job queueing?
Given the resource fragmentation and the fact that the YARN
scheduler is work-conserving, larger jobs could be addition-
ally negatively affected by out-of-order scheduling. To see
how, consider a job that requires 24 GPUs spread across three
machines. While this job is waiting for such configuration, if
a smaller job requests 2 GPUs, it is scheduled on machines
where two GPUs become available. This could cause further
fragmentation and lead to the 24-GPU job needing to retry
after a backoff.

In our workload, out-of-order scheduling is quite common,
with 38.1% of scheduling decisions, and occurs 100% for
jobs with >4 GPUs. However, we find that most out-of-order
scheduling decisions do not greatly affect the waiting time for
resource-intensive jobs. For example, for out-of-order sched-
uling occurrences of jobs with >4 GPUs, as much as 85.0%
corresponds to cases where idle GPUs are effectively utilized
without prolonging the scheduling time of those waiting jobs.

In summary, our analysis shows that the traditional sched-
uling challenge of ensuring locality with low queueing delays
continues to be important for machine learning jobs. We also
find that in addition to fair-share queuing delay, the need for
gang scheduling and locality introduces fragmentation delay
for machine learning jobs. Our analysis also shows why it

5



20 40 60 80 10
0

Utilization (%)

0

20

40

60

80

100

C
D

F

1 GPU 4 GPU 8 GPU 16 GPU

(a) Passed

20 40 60 80 10
0

Utilization (%)

0

20

40

60

80

100

C
D

F

1 GPU 4 GPU 8 GPU 16 GPU

(b) Killed

20 40 60 80 10
0

Utilization (%)

0

20

40

60

80

100

C
D

F

1 GPU 4 GPU 8 GPU 16 GPU

(c) Unsuccessful

Figure 6. CDF of per-minute GPU utilization for passed, killed, unsuccessful jobs in different sizes.

Job size Passed Killed Unsuccessful All
1 GPU 53.51 37.02 62.82 52.38
4 GPU 51.13 34.39 50.95 45.18
8 GPU 51.09 60.63 64.34 58.99

16 GPU 44.88 36.98 39.02 40.39
All 52.43 42.98 60.43 52.32

Table 2. Mean GPU utilization for different job sizes.

is important to relax locality over time to mitigate queuing
delays.

4 Analysis of GPU utilization
While the main resources used in traditional big data analytics
clusters include CPUs and memory, GPUs are the workhorse
of deep learning clusters. Hence measuring the utilization of
GPUs is an important question and we study utilization of
processing cycles and memory for GPUs allocated to train-
ing jobs in this section. Further, placement choices made by
the scheduler could lead to jobs sharing system resources
like PCIe bus and RDMA network. Thus we also study how
scheduling decisions affect GPU utilization.

4.1 GPU Utilization
GPUs are the most expensive resources in our cluster and this
makes their efficiency an important factor in assessing the
cost-effectiveness across the entire cluster. For each individual
GPU, Ganglia [33] reports aggregate performance counters
every minute, including utilization of processing cycles and
memory, temperature, power usage, etc [3]. We next present
how efficiently training jobs use processing cycles in their
(exclusively) allocated GPUs. Note that our current generation
of GPUs only report coarse-grained utilization for processing
cycles that can only be used to detect if any of the streaming
multiprocessors (SMs) are being utilized [3]. They do not
report what fraction of the SMs are being actually used within
a single GPU. Therefore, our analysis presents an “upper
bound” of actual effective SM utilization.

Overall, deep learning training jobs underutilize GPU pro-
cessing cycles regardless of their job sizes. Figure 6 shows

CDFs of per-minute GPU utilization of passed, killed, and
unsuccessful jobs for different sizes. Table 2 reports averages
for each job size, including averages for different job status.
Surprisingly we find that around 47.7% of in-use GPUs’ cy-
cles are wasted across all jobs. The utilization for jobs with 1
GPU, 4 GPU, 8 GPU and 16 GPU are also low with 52.38%,
45.18%, 58.99%, and 40.39%, respectively.

Another interesting characteristic is that across job status
in Figure 6 using 16 GPUs exhibits relatively lower efficiency
among all sizes. For example, the median utilization for 16
GPU jobs is 45.00%, 34.24%, 39.54% for Passed, Killed,
and Unsuccessful, respectively. These are 6.46%, 40.25%,
and 42.63% lower than the 8 GPU jobs in the corresponding
job status. We study the efficiency of such jobs in the next
section.

4.2 Impact of Distributed Learning
Given that the 8 GPUs mounted in each server can com-
municate more efficiently without using network, our job
scheduling strategy is to favor intra-server locality when as-
signing each job to available GPUs. At the same time, the
scheduler attempts to pack small jobs into fewer servers to
avoid fragmentation. This leads to job colocation on the same
server and consequently could lead to interference in shared
system resources (e.g., RDMA and PCIe) [52]. This creates
an interesting utilization spectrum for multi-GPU jobs. In par-
ticular, jobs using more than 8 GPUs must distribute training
instances across multiple servers and may be dynamically
colocated with other jobs. This scenario also involves com-
munication overheads since each server has to periodically
wait for model aggregation to happen over the network.

To confirm that such distribution and colocation factors in-
deed relate to the efficiency of GPUs in use, we first character-
ize utilization of processing cycles for various job placement
scenarios using a popular image recognition model, ResNet-
50 [24]. Specifically we use ResNet-50 job with 2 GPUs
for model training using TensorFlow and perform offline
experiments with placements that exercise shared resources
differently. Then using our telemetry data, we next try to infer

6



Metric SameServer DiffServer IntraServer InterServer
GPU util. 57.7 49.6 37.5 36.5
Images/s 114.8 98.0 75.6 74.1

Table 3. Mean GPU utilization and training performance of
ResNet-50 over different locality/colocation configurations.

correlations between those factors and the observed efficiency
in our cluster.
Analysis using ResNet-50. Table 3 shows the impact of dis-
tribution only, by comparing a ResNet-50 job placed in a
single server (SameServer) with the job placed in two
servers connected with RDMA network (DiffServer).
Each server has four NVIDIA Tesla P100 GPUs attached
to a CPU socket. The table reports GPU utilization when
processing a batch size of 32 images during training. First
we observe that the training does not fully utilize GPUs even
for single machine execution. In particular, SameServer
achieves utilization of 57.7% for GPUs in use. It increases to
71.1% for twice the batch size but only increases marginally
for larger batches. Also the table shows that using distributed
training achieves lower utilization of 49.6% in DiffServer.
This shows that even for 2-GPU jobs, there is a cost to not
achieving locality.

Given a distributed training setup, contention for shared
resources like RDMA and PCIe further lowers the efficiency
of utilized GPUs. To show this we set DiffServer as our
baseline and measure changes in the efficiency while populat-
ing additional ResNet-50 jobs in the same servers. First, we
measure GPU utilization when the colocated jobs do not use
RDMA network at all: we place two SameServer jobs, one
on each server in the same CPU socket as the job under study.
Thus, these jobs interfere with the job under study in the
use of PCIe buses while reading training inputs, aggregating
model updates, and so on. The observed efficiency is shown
as IntraServer in Table 3, and we see that having such
intra-server interference lowers the utilization by as much
as 12.1%. We also study if such interference matters for the
RDMA network in InterServer. For this setup we use
two DiffServer jobs instead of two SameServer jobs
as background traffic, so that all the jobs are distributed across
two servers and share the RDMA network. In this case, we
see a 13.1% decrease in utilization compared to the baseline.

Our experimental study reveals that efficiency of allocated
GPUs varies according to locality and colocation scenarios
that could occur in the cluster. Further, any placement that
causes lowered GPU utilization also results in slowdown in
training performance (i.e., images processed per second) as
shown in Table 3. Next, we analyze utilization for our aggre-
gate workload. We note that unlike the controlled experiment
with ResNet-50 before, the type of model trained and the
batch sizes used vary across jobs in our aggregate workload
making it harder to establish a baseline utilization without
distribution or inference.

20 40 60 80 10
0

Utilization (%)

0

20

40

60

80

100

C
D

F

8 GPU

16 GPU

Figure 7. GPU utilization when running 8 and 16 GPU jobs
on dedicated servers.

Distributed training with dedicated servers. First, to study
the effects of distribution, we restrict our study to look at
8 GPU and 16 GPU jobs that are packed on one or two
servers. In this case, the 8 GPU jobs uses all 8 GPUs in a
single server while the 16 GPU jobs uses all the GPUs in two
servers. The network over which the servers for these jobs are
connected to each other is shared. Figure 7 shows the results
of our comparison. Compared to the 8 GPU jobs, we see that
16 GPU jobs, which have the additional model aggregation
step in distributed mode, have significantly lower utilization.
Specifically, for 8 GPU jobs, GPU cycles are utilized 56.9%
of time on average while this is only 34.3% for 16 GPU jobs.
Furthermore, the median is 73.12% for 8 GPU jobs, which is
1.67x the median in the 16 GPU case.
Distributed training with shared servers. When locality
constraints are relaxed, a job may have to be distributed over
many servers while sharing them with other jobs. Distributing
a job over many shared servers can further lower utilization
of GPUs. This drop in utilization occurs not only due to a
higher network overhead but also because of interference
from unrelated but co-located jobs. To study this, we see how
the GPU utilization of 16-GPU jobs varies as as we move
from dedicated GPUs to a larger number of shared servers.
Table 4 shows the average and percentiles for GPU utilization
across the different allocation scenarios.

When running on 2 8-GPU servers, a 16 GPU job has
servers dedicated to itself. When running on 4 servers, the
16-GPU job may occupy 4 GPUs on each server, and will
be colocated with other jobs on those servers. We find that
the degree of interference is larger if the job is distributed on
more servers. Table 4 shows that in addition to the inefficiency
caused by distribution (Figure 7) there is additional underuti-
lization caused by colocation. We see that for 16-GPU jobs
distributed across 8 servers, the average utilization is as low
as 28.26% and more than 95% of jobs have less than 80%
utilization.

4.3 GPU Memory and Host Resources
We also study GPU memory utilization, defined as fraction of
memory utilized out of the total, and find that while memory
utilization is overall greater than the processing utilization,

7



Degree Mean 50%ile 90%ile 95%ile
2 servers 43.66 43.69 91.77 97.06
4 servers 40.94 39.85 83.28 91.97
8 servers 28.56 25.71 65.68 78.85

Table 4. GPU utilization for 16-GPU jobs that are spread over
2, 4, and 8 servers.

0 20 40 60 80 10
0

Utilization

0

20

40

60

80

100

C
D

F

CPU Memory

Figure 8. Host resource utilization.

median memory utilization is around 75%. Combined with
low GPU processor utilization, this could open up potential
to pack multiple jobs in the same GPU once isolation mecha-
nisms become more widely available in the future.

Among host resources, our scheduler dedicates CPU and
memory along with GPU to each job. In deep learning clusters,
these host resources are used for many useful tasks includ-
ing caching training inputs, model aggregation, and periodic
model validation and progress report. By default, we allocate
CPU and memory proportional to the number of requested
GPUs. Figure 8 shows CDFs of utilization of these host re-
sources observed in our servers. In general, many servers
underutilize CPU cycles yet highly utilize memory. This indi-
cates that a useful feature in the scheduler would be to observe
if a particular job requires disproportionate amount of host
memory and isolate memory used by jobs colocated on the
same server. This is our ongoing work.

In summary, our data analysis shows how GPUs are un-
derutilized in shared clusters. We presented correlations of
how distribution and interference affect utilization and vali-
dated this using a controlled experiment to break down the
importance of locality and interference on shared resources.
We discuss some of the implications for scheduler design in
Section 6.

5 Training Progress and Completion
Jobs in our system finish with one of three statuses: passed,
killed or unsuccessful. Similar to iterative online computa-
tions [7, 17], the convergence rate and number of iterations
run for our machine learning job have an impact on effec-
tive cluster utilization that is an important metric to consider.
However as opposed to previous study on big data traces [30],
we see a significant fraction of jobs (around 30% as shown
in Table 5) are either terminated unsuccessfully or killed by

Status Count(%) GPU times used (%)
Passed 66696 (69.3%) 44.53%
Killed 12996 (13.5%) 37.69%

Unsuccessful 16568 (17.2%) 17.76%
Total 96260 (100.0%) 100.0%

Table 5. Distribution of jobs by their final status.

users. They constitute around 55% of the total GPU time used
during our trace collection period. Thus it is important to
understand the reason behind these failures as fewer unsuc-
cessful jobs would mean that more of the cluster resources
can be used for successful jobs.

5.1 Excessive Iterations

A large fraction of jobs train for more iterations than nec-
essary. It is hard to predict the optimal number of epochs
to get the most accurate model [23]. This results in users
who submit model training jobs using a larger number of
epochs than necessary to get the optimal model. To analyze
the magnitude of this effect we study how the training loss for
a job varies across epochs and measure the epoch at which
we achieve the best training loss. To obtain loss values every
epoch, we parse the logs from the machine learning jobs. As
this information is not printed in the log by every user/frame-
work, we are only able to obtain convergence information
for around 2502 jobs. We use information from this subset
of jobs in the following section. We also note that most deep
learning jobs optimize a non-convex loss function and the
optimization algorithms do not necessarily guarantee that the
loss always decreases with more training.

Figure 9(a) shows the fractions of epochs required to reach
the best loss and the fraction of epochs required to reach
within 0.1% of the best loss across all passed jobs. From
the figure we see that around 80% of passed jobs require
all the epochs executed to reach the best loss. However we
also see that around 75% of jobs reach within 0.1% of the
lowest loss using only 40% of the epochs. It is observed
that once reaching the lowest loss, the loss value does not
change much in the following epochs. This suggests that a
job can be early terminated to save ineffective use of GPU
times when the loss change is less than a particular threshold
in successive epochs or when a target accuracy is reached:
machine learning practitioners can foresee these parameters
for the same workload that has been run before.

We repeat this study for killed jobs to see if the conver-
gence rate affects when users kill their jobs. For killed jobs,
instead of using the total number of configured epochs as in
Figure 9(a), we use the epoch at which the jobs are killed in
order to calculate the fraction of epochs. From Figure 9(b) we
see a similar pattern as in passed jobs where most jobs that
are killed achieve their lowest loss at the final epoch run but
we again find that around 70% of jobs reach within 0.1% of
their lowest loss with 50% of epochs run. While we do not

8



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Epochs

0

20

40

60

80

100

C
D

F

Lowest loss

Within 0.1% of lowest loss

(a) Passed jobs

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fraction of Epochs

0

20

40

60

80

100

C
D

F

Lowest loss

Within 0.1% of lowest loss

(b) Killed jobs

Figure 9. Fraction of epochs necessary to achieve a particular
loss threshold for (a) passed jobs and (b) killed jobs.

1 2-4 >4 All
Num. GPUs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
u
m

. 
R

e
tr

ie
s

(a) Retries

1 2-4 >4 All
Num. GPUs

0.0

0.1

0.2

0.3

0.4

0.5

U
n
su

cc
e
ss

fu
l 
Jo

b
 R

a
te

(b) Unsuccessful jobs

Figure 10. (a) Average number of job retries for using differ-
ent number of GPUs, and (b) subsequent unsuccessful jobs.

present data from user surveys, we believe that users might
kill jobs if they observe that it is not performing as well as
they hope for and subsequently could tune parameters like
the learning rate.

Finally we look into how the fraction of epochs run after
reaching 0.1% of the lowest loss translates to the fraction of
GPU times. GPU times are obtained by computing a cross-
product between epoch time and the number of GPUs used in
each job. Essentially, this metric informs how much resources
are used to improve 0.1% of convergence accuracy. In our
workload, this accounts for 62% and 56% for passed jobs and
killed jobs, respectively.

5.2 Job Failures
We next present a detailed analysis on job failures, including
why/when/how frequently jobs fail and what their impact is
on effective cluster usage.

We remind the reader that in our cluster scheduler, a job is
retried upon failure. If the job repeatedly fails it is marked as
unsuccessful as further retries are deemed no longer effective.
Figure 10 presents a high-level summary of job retries/failures
and shows that jobs using >4 GPUs not only retry execution
more often but also finish unsuccessfully at higher rate. The
reasons behind job retries/failures are diverse, and failures
occur at different times during job execution. We next investi-
gate failures by classifying them across layers of our system
stack.

5.2.1 Failure Classification
Table 6 presents analysis results of failures based on two clas-
sification factors. First, failures are classified from different
sources (Column 2): the sources include (i) Infrastructure
(IF) which includes YARN, HDFS and all other framework
components, (ii) AI Engine (AE) which includes TensorFlow,
Torch, and any other platforms, and (iii) User (U) which rep-
resents programmers. Column 1 lists a number of reasons for
failures we observe from the workload.

Most failure reasons in the table are self-explanatory, and
we describe six important ones in more detail here.
(1) Incorrect inputs: Model files or input data stored in the
external HDFS storage cannot be read.

(2) Semantic error: Errors that happen due to library version
mismatch or other dependencies of the user training program
not being setup correctly.

(3) Model checkpoint error: The job is not able to success-
fully create a model checkpoint after a certain number of
epochs complete. This is usually due to either transient error
in HDFS or HDFS name node recovery.

(4) MPI runtime failure: This is usually due to either a fail-
ure of network connection to peer MPI rank, or possibly an
internal failure of the MPI daemon itself.

(5) Job preempted: YARN reclaims any GPU currently in
use to schedule another job.

(6) Invalid memory access: Training job dies because of vi-
olating access on memory address space e.g., using an invalid
pointer value, or having race condition while copying data.
This failure is observed in both CPU memory and memory
allocated for GPU access.
While bridging failure category and failure reason, we observe
that a specific failure reason can appear in multiple categories,
even in all involved categories, as shown in Column 2 of
Table 6.
Building failure classifier. There exists causality among
various failure reasons. For example, traceback from crash is a
consequence of an invalid memory access. Our first mission in
building a classifier is identifying signatures of failure reasons
closer to the root cause. We capture root-cause signatures
from stdout or stderr logs of a failed job. If not explicit from
the logs, we then attempt to capture implicit ones such as
traceback from crash. In consequence, our classifier has in
total more than 230 rules to find both explicit signatures and
implicit signatures. If there is no signature at all for a failure,
we tag it as no signature, which constitutes a small fraction
(4.2%) of the total failures.

5.2.2 Failure Frequency
Column 3 of Table 6 summarizes the occurrence frequency
of the classified failure reason. Trial counts the number
of failure events observed in our workload: failure reasons

9



Failure Reason Category Num Occurrences RTF: Runtime to Failure (mins) GPU Demand RTF×Demand (%)
IF AE U Trial Job User 50%ile 90%ile 95%ile Total % 1 2-4 >4

CPU out of memory ✓ ✓ 12076 2803 65 13.45 17.73 33.97 6.62 11465 235 376 3982320 (8.05)
Incorrect inputs ✓ ✓ 9690 4936 208 1.87 404.83 2095.73 30.43 5844 2638 1208 11979474 (24.21)
Semantic error ✓ ✓ 2943 2049 159 2.72 376.00 1436.88 9.22 1603 494 846 8442835 (17.06)
Core dump ✓ ✓ 2912 1784 122 0.85 72.75 431.65 3.35 1936 496 480 1493632 (3.02)
Invalid mem access ✓ 2602 1235 108 1.03 403.50 1357.38 3.82 712 774 1116 2352994 (4.75)
Model ckpt error ✓ 1995 948 85 181.67 3728.93 8196.02 21.73 743 384 868 8080374 (16.33)
CUDA failure ✓ 1484 571 70 1.32 19.87 82.17 0.62 133 1153 198 357119 (0.72)
Syntax error ✓ ✓ 1132 883 110 0.58 5.02 12.00 0.19 780 184 168 130094 (0.26)
Traceback from crash ✓ ✓ ✓ 777 271 44 1.02 894.33 1394.07 2.34 356 277 144 863130 (1.74)
MPI error ✓ 634 166 28 1.62 3015.27 5143.98 3.70 456 54 124 613059 (1.24)
GPU out of memory ✓ 487 261 35 18.53 353.62 2740.28 1.08 237 70 180 1040249 (2.10)
MPI runtime failure ✓ 478 420 96 1389.48 13778.60 18090.88 14.63 240 141 97 7593398 (15.34)
Permission error ✓ 299 151 37 1.00 8.15 15.85 0.07 56 202 41 15185 (0.03)
Import error ✓ ✓ 148 148 41 0.67 4.58 10.73 0.06 108 30 10 10803 (0.02)
Job preempted ✓ 147 95 34 559.08 2682.85 5892.23 1.66 25 95 27 2338772 (4.73)
CUDA init failed ✓ 141 69 20 1.08 2.18 4.63 0.03 16 66 59 64512 (0.13)
Model diverged ✓ 84 30 5 1.48 44.37 76.53 0.01 78 5 1 2562 (0.01)
CUDA ver. mismatch ✓ 49 49 19 0.83 1.65 1.67 0.00 1 1 47 421 (0.00)
GPU ECC error ✓ 10 10 2 26.82 671.92 2035.02 0.03 1 5 4 23575 (0.05)
Output node error ✓ 3 3 1 0.85 0.95 0.95 0.00 3 0 0 2 (0.00)
Cannot load libs ✓ 1 1 1 0.12 0.12 0.12 0.00 1 0 0 0.12 (0.00)
No signature 1684 698 94 1.87 28.00 95.17 0.42 1235 294 155 102138.03 (0.21)

Table 6. Failures classified into failure reasons (sorted based on the number of occurrences). There are largely three categories
that cause the failures: Infrastructure (IF), AI Engine (AE), and User (U). A failure reason may be observed in multiple categories.

are sorted by it. We further group Trial occurrences by job
ID (Job) and user ID (User) to see if failures are localized
according to the same job or user.
Failures repeat for the same job/user. Our analysis shows
that across failure reasons, failures repeat at both job level and
user level. In particular, we measure repetition factors (i.e.,
Trial divided by Job or User) for top-8 failure reasons,
which cover 88.9% of the total failures. The measured repeti-
tion factors are 2.3 and 38.8 on average for Job and User,
respectively, meaning a single job and a single user on average
cause 2.3 and 38.8 occurrences of failure, respectively, during
the data collection period. The most critical one is CPU out
of memory, where we see 185.7 as the User repetition factor.
Interestingly, profiling shows that a certain engineer issued a
number of training jobs, all of which suffer from the same out-
of-memory issue, resulting in high concentration of failures.
This motivates the need for runtime detection mechanisms
that can correlate errors from the same user even though her
jobs are independent from job management point of view.
User/programming errors lead to a lot of failures. Fail-
ures incurred by user errors, such as configuration/syntax/se-
mantic errors in program and script, are dominant. These
failures are very prevalent across our top-8 failure reasons.
As explained, CPU out of memory is the most frequent with
its failures significantly concentrated on a few users. Other
frequent failures such as incorrect inputs and semantic error
are more spread out across different users. From our profiling,

the primary factor that causes those failures is a lot of inde-
pendent components involved in a training job. For example,
by definition, incorrect inputs happens when there is a failure
in reading model or input data stored in external HDFS store.
This is due to any error along the path of accessing data from
user program/script to data physically stored in the HDFS
directory: the path is not correct, data format is inconsistent,
data itself is corrupted, etc. Often, issues in data format af-
fects multiple engineers in the same organization (e.g., speech
recognition team) as they often share the same training data
or reference model for their training jobs.

5.2.3 Runtime to Failure
Column 4 of Table 6 presents runtime to failure (RTF) for
each classified failure reason. To capture the summary of RTF
distribution, in addition to the average, we also present the
50th-percentile (or median) and higher percentiles such as
90th-percentile and 95th-percentile.
The runtime to failure (RTF) exhibits high variability,
with mainly short RTFs. Many failures of training jobs
happen quickly, for example within 10 mins. This is mostly
the case for failures driven by users in syntax, semantic, and
configuration errors, which we can also infer from low 50P
RTFs in the corresponding failure reasons. Note that most of
those failures are deterministic and are caught when the run-
time begins to execute the program. One of exceptions that is
noteworthy is failure corresponding to inconsistent/corrupted
input data. We can only detect this at the moment we actually

10



read the erroneous data and attempt to parse it. This is the
primary reason for having high 95P in incorrect inputs.
Infrastructure failures occur infrequently but have much
longer runtime to failure (RTF). This analysis focuses on
two failure reasons in infrastructure category: model check-
point error and MPI runtime failure. They represent program-
to-storage and program-to-program communication, which
are both critical for reliable distributed deep learning training.
In general, these errors are relatively infrequent compared
to other common errors, constituting only 6.2% of the to-
tal Trials. However, our analysis shows that these errors
tend to appear after a long execution duration, and thus dom-
inate the time until failure detection. In particular, Table 6
shows that when the corresponding RTFs are summed up (i.e.
Total), the two failure reasons, model checkpoint error and
MPI runtime error, occupy as much as 21.73% and 14.63%,
respectively.

5.2.4 Impact of GPUs Allocated
For jobs with the same RTF, the impact on the amount of
utilized resources is proportional to the number of allocated
GPUs or the GPU demand. The larger the demand is, the
bigger the impact is.
Large jobs with programming semantic errors tend to
fail a while after execution. Column 5 of Table 6 presents
GPU demand across failure reasons. To simplify the analysis,
we select four most-dominant failure reasons each contribut-
ing around 10% or more of failures. When we correlate RTF
with GPU demand, among the four failure types, semantic
error exhibits a markedly distinct trend, with jobs that have
higher GPU demand (e.g., 8 GPU in x-axis) having relatively
large RTFs, as compared to jobs having lower GPU demand
(e.g., 1-4 GPU in x-axis). This results in disproportional im-
pact on the actual resources utilized by failed jobs. We show
this in Column 6 of Table 6.

Column 6 presents actual GPU times for failures while mul-
tiplying RTF by GPU demand. As the results show, compared
to the RTF only, the impact of semantic error increases up
to 17.06% from 9.22% while the other three types of failure
are either decreased or unchanged. This corresponds to the
fact that semantic error is relatively frequent in larger-demand
larger-RTF jobs. Looking deeper, we observe that training
program instances sometimes send, receive, and access data
in an inconsistent way during model parameters synchroniza-
tion. As a consequence, semantic error ranks the second in
terms of GPU resources used among failures in our workload.

6 Design Implications for Future Schedulers
Based on our experiences and data-driven analysis so far, in
this section we discuss guidelines pertaining to the design of
next-generation schedulers for DNN training workloads.
Prioritizing locality. One of the main results from our anal-
ysis of GPU scheduling was that lack of locality impacts both

utilization and job running time. Our current scheduler adopts
a classic approach where it waits for a limited time to see if
locality can be achieved and if not the job is scheduled with
the resources available at relaxed locality. The main reason
for this approach is to keep queuing time low as longer wait
times affects user experience.

However given that deep learning jobs run for many hours
or even days, incurring a 10% or 20% drop in efficiency
could extend the job running time by multiple hours. Thus in
such scenarios, waiting for locality for an longer time period
could be more beneficial. However this requires inferring
which jobs are long running and appropriately setting user
expectations. An alternate strategy could be to migrate a job
to machines with better locality if resources become available
during the execution.
Mitigating interference. Another critical guideline for sched-
ulers would be to consider job placement policies to mitigate
inter-job interference. Instead of packing different small jobs
on a single server, one option would be place them on dedi-
cated servers, reducing sharing and thus interference among
such jobs. Such an option would increase fragmentation and
will result in larger jobs having to wait for longer if we have
to prioritize for intra-job locality. Support for job migration
to defragment the cluster [52], especially applied to smaller
jobs, will mitigate interference for small jobs, as much as
possible, and will support intra-job locality for large jobs.

Furthermore, training jobs have different levels of sensitiv-
ity to usage of shared resources from other jobs. Thus it is
crucial for the runtime to understand characteristics of each
job and avoid “harmful” colocation that will degrade perfor-
mance and cluster utilization [52]. The scheduler could obtain
information required for colocation at job submission time
(e.g., model type and size) as well as during training (e.g.,
data transfer rates). When migrating jobs for defragmentation,
runtime strategy could consider if the model is known to be
resource-demanding and if so, how much stress it will put on
the use of shared resources.
Reducing failures. A large number of job failures we see
come from user errors in code or configuration. This is pri-
marily because programming languages in use are typically
not strongly typed. We have found that simple syntax check-
ing could prevent many syntax errors (e.g., missing quotes or
parenthesis) and most of the more sophisticated runtime fail-
ures can be captured by running the first iteration of training
and validation. We plan to set up a pool of cheaper VMs to
pre-run user jobs. Even running multi-GPU jobs on a single
GPU will catch such errors before they run on larger shared
clusters and thus preventing wasted GPU cycles on them.

Training failures also happen due to erroneous data format
(e.g., inconsistent columns in samples). We plan to investigate
having a well defined schema for datasets used in machine
learning, and perform a schema check while accessing data
to reduce such errors.

11



Improved failure handling. A critical extension to systems
for multi-tenant GPU cluster would be to develop a special-
ized system to predictively mitigate failures by proactively
observing repeated failures. The main goal of such a system
would be (i) classifying error messages in a real-time from
logs that training jobs generate, and (ii) adapting scheduling
parameters per job (e.g., number of retries) as well as across
jobs (e.g., input data blacklisting) to reduce failure occur-
rences. For example, the scheduler could stop retrying for
failure categories like syntax error and incorrect data/model
input. It is also important for the failure classification system
to reduce the time from failure detection to identifying failure
reason. If the reason for failures can be accurately determined
within a few seconds, this will let the scheduler adapt job
retry policies as early as possible.

7 Related Work
Failure analysis of data analytics jobs in shared clusters.
Prior work has looked at designing large-scale data analytics
platforms assuming that failures are common [11, 18, 50].
They focus on framework support for fault-tolerance and
reliable job execution. In this paper, we focus instead on
understanding job failures in deep learning specific platforms.

Kavulya et al. conducted a detailed characterization for
job failures in a production MapReduce cluster [30]. Some of
their findings include: (1) Many jobs fail within a few minutes
while the worst-case job takes up to 4.3 days for its failure
to be detected. These failure occur due to data copy errors
and is similar to HDFS-related failures that we observe take
much longer to detect; (2) Many failures are related to either
exceptions due to array indexing errors or IO exceptions. We
again see some similarity to our work where coding errors
lead to a number of failure cases.
Statistical efficiency in machine learning. Statistical ef-
ficiency, which indicates the number of training iterations
to reach a certain accuracy, has been formally studied by
Hadjis et al. in Omnivore [23]. They also study factors that
influence statistical efficiency, build analytical models decou-
pling it from hardware efficiency, and present an optimizer to
lower the convergence time. We believe that our framework
can cut off unnecessary iterations by carefully integrating
their findings, making a more effective use of GPUs.

SLAQ schedules concurrent machine learning training jobs
based on quality improvement for resource usage, allocating
cluster resources for average quality improvement [57]. This
is the first work looking into machine learning workload on
shared clusters from a different angle, as compared to conven-
tional big data workload scheduling. While this may improve
the quality across jobs, each individual job may take longer
time to finish. Further, this work does not address when to stop
training. Optimus [37] leverages the convergence curve to pre-
dict job remaining time for dynamic resource scheduling. It
adopts an online fitting model to derive a proper number of

servers and workers for MxNet [16] jobs in parameter server
architecture.
GPU utilization for deep learning training. Many training
networks are memory bound, especially by capacity. Ryu et
al. analyzed memory allocation for ImageNet [26], with re-
cent VGG-16 model consuming up to 28 GB of memory [39].
The more recent winning network employs much larger and
deeper layers [44], posing increasing pressure on fitting into
GPU memory. Therefore, vDNN [39] proposes virtualized
memory manager, and SuperNeurons [51] adopts fine-grained
layer-wise memory control to schedule memory flexibly be-
tween CPU and GPU. While our work shares some similarity
with prior findings (i.e., some large networks do not fit in GPU
memory), none has qualified the impact jobs with GPU out
of memory has on ineffective resource usage for production
systems and workloads, as shown in Table 6.

There are recent efforts on GPU sharing for simpler ma-
chine learning tasks. Baymax [15] explores GPU sharing as a
way to mitigate both queuing delay and PCIe contention. Fol-
lowing that, Prophet [14] proposes an analytical model to pre-
dict performance of GPU workloads. Gandiva [52] proposes
GPU time-sharing in shared GPU clusters through check-
pointing at low GPU memory usage of training job. Future
work includes integrating these prior work to improve cluster
utilization and capacity to run more jobs.
Approximate data processing. Given that accuracy im-
proves with resources consumed, machine learning training
can be generalized into one type of approximate data process-
ing. In principle, approximation allows the trade-off between
earlier completion time and higher accuracy [7, 10, 17, 25,
28, 55], with opportunistically factoring in the diminishing re-
turns with computation. In databases, online aggregation has
been studied in the context of SQL queries [17, 25, 55]. More
recently, approximation is used in batch processing [7, 9, 49]
and live video analytics [56], as well as in designing sys-
tem components such as DRAM [42]. Our work differs not
only in workload, but also in that we quantify the trade-off
between a large fraction of training iterations and tiny im-
provement in training loss for the first time, which translates
to the potentially ineffective use of GPU resource.

8 Conclusion
In this paper we analyzed a trace of deep learning jobs run
on a large multi-tenant cluster of GPUs and studied various
factors that affect cluster utilization. Our findings indicated
the importance of locality for distributed training jobs and
also how interference from other colocated jobs could lead to
lower GPU utilization. We also performed a detailed analysis
of various failure causes and showed how errors from various
parts of the stack contribute to failures. Based on our data
analysis and experiences running a large-scale operation, we
also described guidelines that could help future research and
development of machine learning schedulers.

12



References
[1] Deep Learning for Siri’s Voice. https://machinelearning.apple.com/

2017/08/06/siri-voices.html.
[2] Hadoop: Fair Scheduler. https://hadoop.apache.org/docs/r2.7.2/

hadoop-yarn/hadoop-yarn-site/FairScheduler.html.
[3] NVIDIA Management Library. https://developer.nvidia.com/

nvidia-management-library-nvml.
[4] Using Deep Learning to Create Professional-Level Pho-

tographs. https://research.googleblog.com/2017/07/
using-deep-learning-to-create.html.

[5] ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A., DEAN,
J., DEVIN, M., GHEMAWAT, S., IRVING, G., ISARD, M., ET AL.
TensorFlow: A System for Large-Scale Machine Learning. In OSDI
(2016).

[6] AGARWAL, A., CHAPELLE, O., DUDÍK, M., AND LANGFORD, J. A
Reliable Effective Terascale Linear Learning System. The Journal of
Machine Learning Research 15, 1 (2014), 1111–1133.

[7] AGARWAL, S., MOZAFARI, B., PANDA, A., MILNER, H., MADDEN,
S., AND STOICA, I. BlinkDB: Queries with Bounded Errors and
Bounded Response Times on Very Large Data. In EuroSys (2013).

[8] ANANTHANARAYANAN, G., AGARWAL, S., KANDULA, S., GREEN-
BERG, A., STOICA, I., HARLAN, D., AND HARRIS, E. Scarlett:
Coping with Skewed Content Popularity in Mapreduce Clusters. In
EuroSys (2011).

[9] ANANTHANARAYANAN, G., HUNG, M. C.-C., REN, X., STOICA,
I., WIERMAN, A., AND YU, M. GRASS: Trimming Stragglers in
Approximation Analytics. In NSDI (2014).

[10] BABCOCK, B., CHAUDHURI, S., AND DAS, G. Dynamic Sample
Selection for Approximate Query Processing. In SIGMOD (2003).

[11] BARROSO, L. A., DEAN, J., AND HÖLZLE, U. Web Search for a
Planet: The Google Cluster Architecture. IEEE Micro 23, 2 (Mar. 2003),
22–28.

[12] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU, J., QIAN, Z.,
WU, M., AND ZHOU, L. Apollo: Scalable and Coordinated Scheduling
for Cloud-scale Computing. In OSDI (2014).

[13] CHAIKEN, R., JENKINS, B., LARSON, P.-Å., RAMSEY, B., SHAKIB,
D., WEAVER, S., AND ZHOU, J. SCOPE: Easy and Efficient Parallel
Processing of Massive Data Sets. VLDB (2008).

[14] CHEN, Q., YANG, H., GUO, M., KANNAN, R. S., MARS, J., AND

TANG, L. Prophet: Precise QoS Prediction on Non-Preemptive Ac-
celerators to Improve Utilization in Warehouse-Scale Computers. In
ASPLOS (2017).

[15] CHEN, Q., YANG, H., MARS, J., AND TANG, L. Baymax: QoS
Awareness and Increased Utilization for Non-Preemptive Accelerators
in Warehouse Scale Computers. In ASPLOS (2016).

[16] CHEN, T., LI, M., LI, Y., LIN, M., WANG, N., WANG, M., XIAO,
T., XU, B., ZHANG, C., AND ZHANG, Z. MXNet: A Flexible and
Efficient Machine Learning Library for Heterogeneous Distributed
Systems. arXiv preprint arXiv:1512.01274 (2015).

[17] CONDIE, T., CONWAY, N., ALVARO, P., HELLERSTEIN, J. M.,
GERTH, J., TALBOT, J., ELMELEEGY, K., AND SEARS, R. Online Ag-
gregation and Continuous Query Support in MapReduce. In SIGMOD
(2010).

[18] DEAN, J., AND BARROSO, L. A. The Tail at Scale. Commun. ACM
56, 2 (Feb. 2013), 74–80.

[19] FEITELSON, D. G. Packing schemes for gang scheduling. In Workshop
on Job Scheduling Strategies for Parallel Processing (1996), Springer,
pp. 89–110.

[20] GOODFELLOW, I., BENGIO, Y., COURVILLE, A., AND BENGIO, Y.
Deep Learning, vol. 1. MIT press Cambridge, 2016.

[21] GOYAL, P., DOLLÁR, P., GIRSHICK, R., NOORDHUIS, P.,
WESOLOWSKI, L., KYROLA, A., TULLOCH, A., JIA, Y., AND HE, K.
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour. arXiv
preprint arXiv:1706.02677 (2017).

[22] GU, J., LIU, H., ZHOU, Y., AND WANG, X. DeepProf: Performance
Analysis for Deep Learning Applications via Mining GPU Execution
Patterns. CoRR abs/1707.03750 (2017).

[23] HADJIS, S., ZHANG, C., MITLIAGKAS, I., AND RÉ, C. Omnivore:
An Optimizer for Multi-device Deep Learning on CPUs and GPUs.
CoRR abs/1606.04487 (2016).

[24] HE, K., ZHANG, X., REN, S., AND SUN, J. Deep Residual Learning
for Image Recognition. In CVPR (2016).

[25] HELLERSTEIN, J. M., HAAS, P. J., AND WANG, H. J. Online Aggre-
gation. In SIGMOD (1997).

[26] ImageNet, 2016. http://image-net.org.
[27] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR,

K., AND GOLDBERG, A. Quincy: Fair Scheduling for Distributed
Computing Clusters. In SOSP (2009).

[28] JERMAINE, C., ARUMUGAM, S., POL, A., AND DOBRA, A. Scalable
Approximate Query Processing with the DBO Engine. ACM Trans.
Database Syst. 33, 4 (Dec. 2008), 23:1–23:54.

[29] JIA, Y., SHELHAMER, E., DONAHUE, J., KARAYEV, S., LONG, J.,
GIRSHICK, R., GUADARRAMA, S., AND DARRELL, T. Caffe: Convo-
lutional Architecture for Fast Feature Embedding. In MM (2014).

[30] KAVULYA, S., TAN, J., GANDHI, R., AND NARASIMHAN, P. An
Analysis of Traces from a Production MapReduce Cluster. In CCGRID
’10 (2010).

[31] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. ImageNet
Classification with Deep Convolutional Neural Networks. In NIPS
(2012).

[32] LI, M., ANDERSEN, D. G., PARK, J. W., SMOLA, A. J., AHMED, A.,
JOSIFOVSKI, V., LONG, J., SHEKITA, E. J., AND SU, B.-Y. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI
(2014).

[33] MASSIE, M. L., CHUN, B. N., AND CULLER, D. E. The Ganglia Dis-
tributed Monitoring System: Design, Implementation And Experience.
Parallel Computing 30, 7 (2004), 817–840.

[34] MAY, A., GARAKANI, A. B., LU, Z., GUO, D., LIU, K., BELLET,
A., FAN, L., COLLINS, M., HSU, D., KINGSBURY, B., ET AL. Ker-
nel Approximation Methods for Speech Recognition. arXiv preprint
arXiv:1701.03577 (2017).

[35] MIKOLOV, T., KARAFIÁT, M., BURGET, L., ČERNOCKỲ, J., AND

KHUDANPUR, S. Recurrent Neural Network Based Language Model.
In Eleventh Annual Conference of the International Speech Communi-
cation Association (2010).

[36] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: Distributed, Low Latency Scheduling. In SOSP (2013).

[37] PENG, Y., BAO, Y., CHEN, Y., WU, C., AND GUO, C. Optimus: An
Efficient Dynamic Resource Scheduler for Deep Learning Clusters. In
EuroSys (2018).

[38] PyTorch, 2018. https://pytorch.org/.
[39] RHU, M., GIMELSHEIN, N., CLEMONS, J., ZULFIQAR, A., AND

KECKLER, S. W. vDNN: Virtualized Deep Neural Networks for Scal-
able, Memory-efficient Neural Network Design. In MICRO (2016).

[40] SCHWARZKOPF, M., KONWINSKI, A., ABD-EL-MALEK, M., AND

WILKES, J. Omega: Flexible, Scalable Schedulers for Large Compute
Clusters. In EuroSys (2013).

[41] SEIDE, F., AND AGARWAL, A. CNTK: Microsoft’s Open-Source
Deep-Learning Toolkit. In KDD (2016).

[42] SHOUSHTARI, M., RAHMANI, A. M., AND DUTT, N. Quality-
configurable Memory Hierarchy Through Approximation: Special Ses-
sion. In CASES (2017).

[43] SHVACHKO, K., KUANG, H., RADIA, S., AND CHANSLER, R. The
Hadoop Distributed File System. In MSST (2010).

[44] SIMONYAN, K., AND ZISSERMAN, A. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR (2015).

[45] SUNDERMEYER, M., SCHLÜTER, R., AND NEY, H. LSTM Neural
Networks for Language Modeling. In Thirteenth Annual Conference of

13

https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://machinelearning.apple.com/2017/08/06/siri-voices.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://hadoop.apache.org/docs/r2.7.2/hadoop-yarn/hadoop-yarn-site/FairScheduler.html
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml
https://research.googleblog.com/2017/07/using-deep-learning-to-create.html
https://research.googleblog.com/2017/07/using-deep-learning-to-create.html
http://image-net.org
https://pytorch.org/


the International Speech Communication Association (2012).
[46] SZEGEDY, C., LIU, W., JIA, Y., SERMANET, P., REED, S.,

ANGUELOV, D., ERHAN, D., VANHOUCKE, V., AND RABINOVICH,
A. Going Deeper With Convolutions. In CVPR (2015).

[47] VASWANI, A., SHAZEER, N., PARMAR, N., USZKOREIT, J., JONES,
L., GOMEZ, A. N., KAISER, Ł., AND POLOSUKHIN, I. Attention Is
All You Need. In NIPS (2017).

[48] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S.,
KONAR, M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH,
S., ET AL. Apache Hadoop YARN: Yet Another Resource Negotiator.
In SoCC (2013).

[49] VENKATARAMAN, S., PANDA, A., ANANTHANARAYANAN, G.,
FRANKLIN, M. J., AND STOICA, I. The Power of Choice in Data-
aware Cluster Scheduling. In OSDI (2014).

[50] VERMA, A., PEDROSA, L., KORUPOLU, M., OPPENHEIMER, D.,
TUNE, E., AND WILKES, J. Large-scale Cluster Management at
Google with Borg. In EuroSys (2015).

[51] WANG, L., YE, J., ZHAO, Y., WU, W., LI, A., SONG, S. L., XU, Z.,
AND KRASKA, T. Superneurons: Dynamic GPU Memory Management
for Training Deep Neural Networks. In PPoPP (2018).

[52] WENCONG XIAO, ROMIL BHARDWAJ, RAMACHANDRAN RAM-
JEE, MUTHIAN SIVATHANU, NIPUN KWATRA, ZHENHUA HAN,
PRATYUSH PATEL, XUAN PENG, HANYU ZHAO, QUANLU ZHANG,
FAN YANG, LIDONG ZHOU. Gandiva: Introspective Cluster Schedul-
ing for Deep Learning. In OSDI (2018).

[53] YU, H., AND ROSSBACH, C. J. Full Virtualization for GPUs Recon-
sidered. In Workshop on Duplicating, Deconstructing, and Debunking
(WDDD) (2017).

[54] ZAHARIA, M., BORTHAKUR, D., SEN SARMA, J., ELMELEEGY, K.,
SHENKER, S., AND STOICA, I. Delay Scheduling: A Simple Technique
for Achieving Locality and Fairness in Cluster Scheduling. In EuroSys
(2010).

[55] ZENG, K., AGARWAL, S., AND STOICA, I. iOLAP: Managing Uncer-
tainty for Efficient Incremental OLAP. In SIGMOD (2016).

[56] ZHANG, H., ANANTHANARAYANAN, G., BODIK, P., PHILIPOSE, M.,
BAHL, P., AND FREEDMAN, M. J. Live Video Analytics at Scale with
Approximation and Delay-tolerance. In NSDI (2017).

[57] ZHANG, H., STAFMAN, L., OR, A., AND FREEDMAN, M. J. SLAQ:
Quality-driven Scheduling for Distributed Machine Learning. In SoCC
(2017).

14


	Abstract
	1 Introduction
	2 Project Philly: System Overview
	2.1 Workloads
	2.2 Cluster Architecture
	2.3 Job Scheduling and Execution Workflow
	2.4 Data Collection and Analysis

	3 Analysis of Queueing Delays
	3.1 Job Queuing
	3.2 Impact of Locality-Driven Scheduling

	4 Analysis of GPU utilization
	4.1 GPU Utilization
	4.2 Impact of Distributed Learning
	4.3 GPU Memory and Host Resources

	5 Training Progress and Completion
	5.1 Excessive Iterations
	5.2 Job Failures

	6 Design Implications for Future Schedulers
	7 Related Work
	8 Conclusion
	References

