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Statistical Cyber Research

Data science techniques have an important role to play in the next generation of
cyber-security defences.

Inside a typical enterprise computer network, a number of high-volume data sources are
available which could enable the discovery and prevention of cyber-attacks and other
nefarious network activity.

At Imperial, our interests are in developing statistical, probability model-based techniques
for identifying the most subtle intrusion attempts using these data sources.

The advantage of such approaches is the ability to learn, from historical data, complex
patterns of normal computer and network behaviour, so that anomalies can be detected
which would not stand out otherwise; one example is unusual network traversal using
valid (but possibly stolen) credentials.
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Data sources and platforms

e Network flow data — IP—IP, next level protocol, ports, TCP flags, number of
packets/bytes, start time, duration

e Authentication events — usernames, computers, success, type, time

e Host-sensor data — network events, processes, memory usage, time, duration,
lock /unlock

e Physical — building access control, sensors, [oT

High volume, high frequency data which require thinning (screening, triage) and parallel
processing:

e Hadoop — MapReduce and Spark

e Algorithms which scale well or can run in the stream
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Methodological Approaches

Analyses can be performed at different levels of resolution:

e Hntire network analysis - graph theory, spectral decompositions, community
detection, clustering. Also high level traffic summaries for network oversight.

e Node-based models - building statistical models of the processes run by a host, its
network connectivity, pattern of life.

e Hdge-based models - detecting beacons to specific IP addresses, temporal dependence
on neighbouring edges, typical packet sizes.

All of these viewpoints, and others, can yield cyber-security analytics.

There wnll not be one statistical test that answers all questions.

Power must be obtained by combining several possibly weak indicators into a strong
overall signal.

This talk will provide examples of each class of analysis, summarising published work and
current research.
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An edge between two hosts or IP addresses (“nodes”) is the basic fundamental unit for
behavioural modelling (perhaps counter-intuitively, rather than nodes).

4 > Y

Edges should typically be directed, for example a client z connecting to a server y.
The presence of the edge will be taken to mean that z has ever been observed to initiate
a connection to y.

In NetFlow, some edges will carry only machine-driven, automated connections; some will
be entirely human-driven; others will have a mixture of both.

6/ 40




Distinguishing Automated from Human Traffic

Automated edges typically carry “super-human” traffic volumes. But not always, and so
we need more sophisticated filters.

Automated events are often highly periodic, corresponding to scheduled beacons pushing
refreshes and updates, or “keep-alives”.

(Heard, Rubin-Delanchy, and Lawson, 2014) We can scan for periodicities in event times
by inspecting the periodogram after time T,

T 2

S(f)= = |) {dN(t) - N(T)/T}e >

=1

which can be efficiently calculated at each of the Fourier frequencies f, = k/ T,
k=1,...,|T/2|, via the Fast Fourier Transform.

~I
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AN

S(f) is proportional to the squared magnitude of the resultant vector when the events are
represented as unit vectors on the f ~!-second clock.

By the CLT, if events arrive as a Poisson process then asymptotically Vf, S(f) ~ Xe.
Fisher’s g-test provides approximate p-values for the relative magnitude of the peak of S,
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Dropbox events projected onto a 43-second clock as unit vectors
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NetFlow events on my computer, before and after filtering

Before filtering

After filtering
17 18 19
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NetFlow events on my computer, before and after filtering
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Classifying events on edges (with F. Sanna Passino)

b

e The Fourier analysis approach quickly classifies edges containing automated traffic

» If there 1s a mixture, the automated traffic will normally be higher volume and dominate

o We might further want to classify every single NetFlow event as being human or
automated. We can examine:

» How well synchronised an event i1s with the periodic phase for that edge
» Whether the time of day is consistent with human behaviour on that edge/node




e We fit a Bayesian mixture model to learn the human and automated components:

» fs: Wrapped normal density for learning phase (circular mean) and variance of beacons
» fy: Plecewise constant density to consistently estimate human event distribution

e Hvents are probabilistically attributed to either f4 or fi
e Example: 13.107.42.11 (outlook.com), polling at ~ 8s intervals
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Modelling bursts of events (with M. Price-Williams)

Even human-generated network connections do not arrive as an (inhomogeneous) Poisson
process. They occur in bursts, on the same edge and between edges.

We model arrivals of event times y;, ¥o,... as a Wold process with self-exciting
> conditional intensity

¢
}\Y(t) = A+ Z )\ju[’r]-_l,"rj)(t - yY(t))

j=1
1.5
—~~~
~
Neiat 1 ~
D \
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0.5
0 X ‘ S > ‘ KK > A A
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t t t




Advantages:
e Flexible changepoint model for excitation function provides consistent estimator

e Capturing burstiness negates the need to model seasonality, which has complex
variations day-on-day
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'The idea has been extended to node-based modelling of all outgoing edges, such that
events on one edge from a node can trigger events on its other edges

15 / 40




Modelling bursts of events (with M. Price-Williams)

Even human-generated network connections do not arrive as an (inhomogeneous) Poisson
process. They occur in bursts, on the same edge and between edges.

We model arrivals of event times yi, ¥»,... as a Wold process with self-exciting
> conditional intensity

(
AY(t) = A+ Z )\jﬂ[”rj_l,"rj)(t - yY(t))

j=1
1.5
—~~~
~
~— 1 -
D \
<
0.5
0 > ‘ S X ‘ KK > A A
0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5

t t t




Advantages:
e Flexible changepoint model for excitation function provides consistent estimator

e Capturing burstiness negates the need to model seasonality, which has complex
variations day-on-day

1

- - HPP

- 1HPP
Hawkes exp fn

-.=.= Hawkes step fn

—— Wold step fn

=
0o

=
o)

Uniform quantiles
o
N

=
b

0 0.2 0. 0.6 0.8 1
p-value quantiles

'The i1dea has been extended to node-based modelling of all outgoing edges, such that
events on one edge from a node can trigger events on its other edges

15 / 40




Nodes




Monitoring node connectivity

We can monitor the sequence of destinations a node connects to and look for bursts of
unusual connectivity.

BEach connection event is scored, and surprise 1s aggregated using control charts or p-value
combination techniques.

(Heard and Rubin-Delanchy, 2016) Server modelling: The sequence of clients z;, 2o, . ..
connecting to a server y were modelled as a multinomial, with an unbounded number of
categories and a Dirichlet process prior (with some base measure «Fj) on the category
probabilities.

The p-value score for observation z,,,1:

o
Pa= ),

A4S V:oc;goc;n+1

o of = aFp(z)+ > ., 0:(z;) and o* = & + n.
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Edge scoring: For each unique client z connecting to server y, the minimum p-value was
obtained from the sequence and beta-transformed to a p-value score for the edge (z, v)

C17693
400ﬂ
N
% 300
qg), 200
& 100 1_
O o e B
0 0.2 0.4 0.6 0.8 1
p-value

Node scoring: For each client z, the p-values across all of its edges were combined using
Fisher’s method.

e Red team attacks in Los Alamos enterprise network were found in this way
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New edges (with S. Metelli)

The red team attack within public Los Alamos enterprise network data contained a spate
of new edges being formed between hosts which had not previously connected.
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Different hosts form new edges at very different rates, and an unsurprising destination for
one host may be highly unusual for another.

We require models for both the rate at which a host makes new edges, and the identities

of those connections.
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We model the conditional intensity of a new directed connection being formed for every
possible (source,destination) pair z € X, y € Y:

}\:cy(t) = I](Xx Y)\Gt{(z)y)} T‘(t) exp{cx- (N::_(t)>Ny_(t)> liv,l(t)alivﬂ(t)) i3 63?3/ ' Zmy(t)}

e (; 1s the network graph of existing edges at time ¢

e 7(t) is a hypothetical model for time of day/day of week variability, treated as a
nuisance parameter

e N, (t),N, (t) are the out/in degrees of nodes z and y at time ¢

e [.1(t), I 2(t) indicate if the most recent one or two connections were new edges
e Z.,(t) represents the attraction between z and y; from either

» hard-thresholding, clustering clients and servers
» soft-thresholding, latent feature models with Indian buffet process prior
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We model the conditional intensity of a new directed connection being formed for every
possible (source,destination) pair z € X, y € Y:
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Related applications

Similar ideas can be used for host-based data, such as the WLS logs from Los Alamos.
p)

e Modelling the sequences of processes executed by a computer, and measuring
accumulated surprise in unlikely processes or poorly predicted new processes

» Data fusion, combining the host-level process and network-level connection sequences is
current work at Turing, under the Data Centric Engineering programme

e Port-scoring: Modelling of server ports in NetFlow on an edge, looking for unusual
services (previous work with J. Neil, now @Microsoft)
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Adjacency matrix approaches (with Rubin-Delanchy, Sanna Passino)

We can consider the binary, directed adjacency matrix A; for the entire network, defined
such that (A4¢); =1 iff 2 — 7 by time ¢.

2 6 & o

¥ 0 0 0 1

Gt = @ W= %=1 0 0 0
\;/ 1010

A low rank approximation of A;, or some Laplacian-style transformation, can provide a
statistical estimate of the underlying structure.

e SVD approximation: A ~ A, = Uy - V,J where U, V) represent the first k£ columns
of the full SVD of A. Small k£ prevents overfitting

e 1/7th row of Uy /V; provides a latent notional position of client ¢/server j in R”
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A, predicts new edges, and identifies anomalous edges
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Poisson factorisation (with M. Turcotte, F. Sanna Passino)

Alternatively, A; can be formulated as a matrix of counts. For example, (A4:); = N;;(¢),
the number of connections from user 2+ to computer/process 7 by time ¢.

These counts can be regarded as preferential scores, analogous to problems in
recommender systems.

In Turcotte et al., 2016 we considered a Poisson factorisation model

A ~ Poisson(y; - v))

o u; ~I'(a,&;), Vs ~ F(CL,T]]') (L =1, ..o k)
® E'Z’n] - 2 I-‘(.5, .01)

A p-value for anomaly detection was given by the estimated upper tail probability of the
observed count; combined for each client using Fisher’s method to detect red team.

Current work incorporating known groupings of computers/users with unknown latent
factors.
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Topic modelling (with X. Zhang)

Network traffic lowing from an IP address often comes from a mixture of multiple
individuals, each exhibiting their own mixtures of behavioural norms. The
presence/absence of these components naturally varies over time.

Building accurate network models could be better achieved by decomposing these
mixtures.

Latent feature models such as fopic modelling, typically used in text analysis for
automatically classifying the (inferred) topics present in documents, can be deployed.

In cyber, words can be destination IP addresses visited by a client, and topics correspond
to users or their behavioural modes (Heard, Palla, and Skoularidou, 2016).

Bayesian nonparametrics allow potentially infinitely many, temporally-occurring topics.
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LANL servers visited by 5 users over 10 days
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Network-wide change detection (with K. Hallgren)

Finally, it can be informative to model the volumes of different types of traffic passing
through the network over time, to detect any significant changes.

For example, the 2017 Wannacry ransomware attack (the largest cyber attack to hit the
UK so far) produced a strong peak in traffic on TCP service port 445, amongst others.
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Aim to monitor for changes in a range of different features:
e services
e traffic volumes
e data volumes
e geo-locations
> We are interested in changepoint analysis with marked changepoints indicating which
aspects of the data collection have changed.
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[CL TCP traffic by time of week (2017, pre Wannacry)

Much seasonal variation across the week — too many changepoints
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Difficulties applying changepoint detection

Changepoint models rely on partitioning the passage of time into segments, and fitting
relatively simple models within each segment to provide a global model with higher
complexity.

Often the model is an oversimplification, and therefore more changepoints are fitted than
would be preferable.

Modelling seasonality explicitly, for example, i1s one alternative; but rigid models of
seasonality often fail, since no two weeks are the same. And generally, building such
bespoke models 1s labour-intensive.

Instead, current work admits the model for data within changepoint segments may be
misspecified, and requires clear discontinuity for a changepoint rather than gradual drift.
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Bayesian changepoint analysis: an alternative view

Let T = (T11,7T2,...) be a sequence of (unknown) changepoints in a time-indexed piecewise
deterministic process 0, such that 0; = 0U) for Ty S b <0

Assuming discrete-time (not essential), suppose we observe X = (X1, Xs,...,X,) with

each X; independently drawn from
P(X¢|0¢)

Bayesian inference on 1 is computationally tractable when assuming independent,
conjugate priors for the segment parameters {G(j )}. (Or priors well-approximated by
conjugate priors, admitting the possibility of importance sampling.)

o The parameters {0\7)} can then be integrated out, and commonly the resulting
marginal likelihood for X conditional on a proposed vector of changepoints factorises
as product of joint distributions of the observables for each segment,

XIT) — H [P(XTU Tk+1—1)
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Example: Poisson counts

Suppose within a segment,
01 ~I'(x, B), b . - Poisson(04)

Importantly, and slightly paradoxically, this sampling scheme is equivalent to the
following dynamic-0 strategy:

01 ~I'(x, B), X, ~ Poisson(0)

0o ~ F(O( + X1, + 1), Xo ~ POiSSOn(ez)
n—1 :

Bs; I (oc -+ zj:1 X4 P+ — 1) , X, ~ Poisson(0,,)
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The segment marginal likelihood 1s of course

B INCEDPEP. €
(B + n)“+2?=1 X; ')

i A N,

and this naturally factorises as the product of predictive probabilities

i n , R R .
H[P(X'|X- ; Xl):H(B+z—1) +:]:1XJP((X—|—Zj 1X)
=1 e ((5 +]')°‘+Z;‘:1 X; ((X + Zz 1 X )

By De Finetti’s representation theorem, it is precisely this structure that guarantees
exchangeability of observations within a segment.

S0 to relax the assumption of exchangeability, and allow temporal trends within segments
but still maintain analytic tractability, we can simply break this full conditioning.
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Robust Bayesian changepoint analysis

For example, consider Markov order-k conditioning:

Pr(X1,. . X)—Hﬂ% 1ty oy Ki) =

B r(cx+zj?;ql X)) & (B4i—1)TES % Do+ i 4 X;)
(B+Ek+ 1)a+2f;1 % ['(ex) i—k+2 (P +J)“+ZF2—‘~‘ i Do+ Z] i )
Averaging Pr(X1,...,X,) over a prior @ on k (e.g. geometric) provides a more robust

model for the data in a changepoint segment: Pgo(Xy,...,X,) = | Pr(Xi,..., X,)dQ(k).
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The segment marginal likelihood 1s of course

B T+ >0 Xj)
(B + n)a+Z}"=1 X; ')

P, o X)i=

and this naturally factorises as the product of predictive probabilities

B s ) ES G D+ Y -
[P X, ..., x) = [ BHe =D — ( Zz 1 .
i=1 i1 (B+g) =% Dla+ 30 X))

By De Finetti’s representation theorem, it is precisely this structure that guarantees
exchangeability of observations within a segment.

So to relax the assumption of exchangeability, and allow temporal trends within segments
but still maintain analytic tractability, we can simply break this full conditioning.
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Robust Bayesian changepoint analysis

For example, consider Markov order-k conditioning:

(Xl’ ” X ) = H[Pk iI-Xz'_l,...,Xz'_k.) —

Boc P(O(—I—Zk+1X) n (B+?,—1)a+zf"x P(OC+ZJ L )

k
(B+k+ 1)%2’;11 % I'(a) i—k+2 (P +])a+21=’—’~‘ i o+ Z] )
Averaging Pp(Xi,...,X,) over a prior @ on k (e.g. geometric) provides a more robust

model for the data in a changepoint segment: Pgo(Xi,...,X,) = | Pr(Xi,..., X,)dQ(k).
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For the dynamic-0 formulation, this is analogous to drawing

n—1
8, ~T ((x + Zj_n_k Xip+k— 1) , X, ~ Poisson(0,)

Interpretation of this truncated conditioning: There may have been a changepoint at
any @Q-distributed time 1n the past, truncated by the inferred changepoint ;.

— T1,Ta, ... therefore take on the interpretation of definite changepoints.
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Example simulation
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Example simulation
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Example simulation
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Example simulation
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For the dynamic-0 formulation, this is analogous to drawing

n—1
8, ~T (oc + Zj_n_k XiPp+k— 1) , X, ~ Poisson(0,)

Interpretation of this truncated conditioning: There may have been a changepoint at
any @Q-distributed time 1n the past, truncated by the inferred changepoint ;.

—> T1,Ta, ... therefore take on the interpretation of definite changepoints.
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Example simulation

l

1,500 s :
: S |

o ‘::‘4‘{.".7 ! a |

|

500 |

50 100 150 200 250 300 350 400
t

o= 10.002, b= 1.
k=25

36 / 40




Example simulation
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Example simulation
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2017 Port 445 data

Bayesian changepoint MAP Robust Bayesian changepoint MAP
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Conclusions

Statistical methods provide a principled framework for automating the detection of
significantly unusual cyber behaviour.

Analyses can be performed at different scales, ranging from edge-level to full graph
analyses.

At each level of resolution, the models will typically be under-specified due to the
complex natures of both human and automated network traffic. But the calculus of
probability still provides a coherent scale for priotising the most interesting discoveries.

Much future work should be concerned with identifying robust anomaly detection
methods, through a combination of:

e Robust models

e Combining evidence/performing data fusion to synthesise multiple weak signals into
a strong signal
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Related applications

Similar ideas can be used for host-based data, such as the WLS logs from Los Alamos.
b

e Modelling the sequences of processes executed by a computer, and measuring
accumulated surprise in unlikely processes or poorly predicted new processes

» Data fusion, combining the host-level process and network-level connection sequences is
current work at Turing, under the Data Centric Engineering programme

e Port-scoring: Modelling of server ports in NetFlow on an edge, looking for unusual
services (previous work with J. Neil, now @Microsoft)
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We model the conditional intensity of a new directed connection being formed for every
possible (source,destination) pair z € X, y € Y:

)\:cy(t) = I](Xx Y)\Gt{(m’y)} T‘(t) exp{cx- (Naj_(t)>Ny_(t)> [$,1(t),]$,2(t)) % Bxy ' ny(t)}

e (; 1s the network graph of existing edges at time ¢

e 7(t) is a hypothetical model for time of day/day of week variability, treated as a
nuisance parameter

e N, (t), N, (t) are the out/in degrees of nodes z and y at time ¢

e [.1(t), I 2(t) indicate if the most recent one or two connections were new edges
e Z.,(t) represents the attraction between z and y; from either

» hard-thresholding, clustering clients and servers
» soft-thresholding, latent feature models with Indian buffet process prior
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Monitoring node connectivity

We can monitor the sequence of destinations a node connects to and look for bursts of
unusual connectivity.

BEach connection event is scored, and surprise is aggregated using control charts or p-value
combination techniques.

(Heard and Rubin-Delanchy, 2016) Server modelling: The sequence of clients z;, 2, . ..
connecting to a server y were modelled as a multinomial, with an unbounded number of
categories and a Dirichlet process prior (with some base measure «Fy) on the category
probabilities.

The p-value score for observation z,,1:

o
Pra= ),

A4S V:oc;goc;n+1

o of = aFp(z)+ > ., 0:(z;) and o* = & + n.
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N\

S(f) is proportional to the squared magnitude of the resultant vector when the events are
represented as unit vectors on the f ~!-second clock.

By the CLT, if events arrive as a Poisson process then asymptotically Vf, S(f) ~ Xe.
Fisher’s g-test provides approximate p-values for the relative magnitude of the peak of S,

A man § fk
9(5) = ( g) .
Z1gkgLT/2J (fx)
BExample: My computer to Dropbox:
100 1
St
«© B0 | .
0

55 55.2 554 55.6 55.8 56 56.2 56.4 56.6 56.8 57
f~1 (seconds)




Distinguishing Automated from Human Traffic

Automated edges typically carry “super-human” traffic volumes. But not always, and so
we need more sophisticated filters.

Automated events are often highly periodic, corresponding to scheduled beacons pushing
refreshes and updates, or “keep-alives”.

(Heard, Rubin-Delanchy, and Lawson, 2014) We can scan for periodicities in event times
by inspecting the periodogram after time T,

T 2

8(f)= = |) {dN(t) - N(T)/T}e >

=1

which can be efficiently calculated at each of the Fourier frequencies f, = k/T,
k=1,...,|T/2], via the Fast Fourier Transform.
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N

S(f) is proportional to the squared magnitude of the resultant vector when the events are
represented as unit vectors on the f ~!-second clock.

By the CLT, if events arrive as a Poisson process then asymptotically Vf, S(f) ~ X5
Fisher’s g-test provides approximate p-values for the relative magnitude of the peak of S,

maxy, S (f)

Z1§k§LT/2J g(fk)

9(8) =

BExample: My computer to Dropbox:
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Modelling bursts of events (with M. Price-Williams)

Even human-generated network connections do not arrive as an (inhomogeneous) Poisson
process. They occur in bursts, on the same edge and between edges.

We model arrivals of event times y;, ¥2,... as a Wold process with self-exciting
> conditional intensity

(
)\Y(t) = A+ Z )\jﬂ['rj_l,"rj)(t - yY(t))

j=1
1.5
—~~~
~+
— 1
D \
<
0.5
0 > ‘ S > ‘ KK > A A
0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5

t t t




e We fit a Bayesian mixture model to learn the human and automated components:

» f4: Wrapped normal density for learning phase (circular mean) and variance of beacons
» fy: Plecewise constant density to consistently estimate human event distribution

e Hvents are probabilistically attributed to either f4 or fgy
e Example: 13.107.42.11 (outlook.com), polling at ~ 8s intervals
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Modelling bursts of events (with M. Price-Williams)

Even human-generated network connections do not arrive as an (inhomogeneous) Poisson
process. They occur in bursts, on the same edge and between edges.

We model arrivals of event times 1, ¥, ... as a Wold process with self-exciting
> conditional intensity

(
)\Y(t) = A+ Z )\ju[”rj_l,"rj)(t - yY(t))

j=1
1.5
~~~
-+
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D \
<
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Advantages:
o Flexible changepoint model for excitation function provides consistent estimator

e Capturing burstiness negates the need to model seasonality, which has complex
variations day-on-day

1

- - HPP

- 1HPP
Hawkes exp fn

-=.= Hawkes step fn

— Wold step fn

&
o0

=
o

Uniform quantiles
o
N

=
b

0 3.2 0. 0.6 0.8 1
p-value quantiles

The idea has been extended to node-based modelling of all outgoing edges, such that
events on one edge from a node can trigger events on its other edges
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Modelling bursts of events (with M. Price-Williams)

Even human-generated network connections do not arrive as an (inhomogeneous) Poisson
process. They occur in bursts, on the same edge and between edges.

We model arrivals of event times yi, ¥»,... as a Wold process with self-exciting
> conditional intensity

{
}\Y(t) = A+ Z )\]'U[Tj_l,’rj)(t — yY(t))

j=1
1.5
~~~
~+
Neadl 1 -
D \
<
0.5
0 > ‘ S > ‘ KK > A A
0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5 0 0.13 0.25 0.38 0.5

t t t




Infected C17693 Uninfected C586

| X l l " " | R
10-1 1 ul x —
3| W P | [P (e || XA I S "
@ 107 e il e e
e
»>
8, 10—5
10— )
| l l # !
0 0.5 1 1.5 2 0 1 2 3 4
t (seconds) .106 t (seconds) .106

Control chart thresholds at the 1% (---) and 0.1% (- - - ) significance levels.

20/ 40




A, predicts new edges, and identifies anomalous edges
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Poisson factorisation (with M. Turcotte, F. Sanna Passino)

Alternatively, A; can be formulated as a matrix of counts. For example, (A4:); = N;;(¢t),
the number of connections from user 7+ to computer/process 7 by time ¢.

These counts can be regarded as preferential scores, analogous to problems in
recommender systems.

In Turcotte et al., 2016 we considered a Poisson factorisation model

Ay ~ Poisson(u; - v))

o s ro TwE7); Uppro Taym;) (=1, vy K)
® Evz,n] - P(.B, .01)

A p-value for anomaly detection was given by the estimated upper tail probability of the
observed count; combined for each client using Fisher’s method to detect red team.

Current work incorporating known groupings of computers/users with unknown latent

factors.
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