
Parabel: Partitioned Label Trees for Extreme Classification with
Application to Dynamic Search Advertising

Yashoteja Prabhu
∗

yashoteja.prabhu@gmail.com

Anil Kag
†

anilkagak2@gmail.com

Shrutendra Harsola
†

shharsol@microsoft.com

Rahul Agrawal
†

Rahul.Agrawal@microsoft.com

Manik Varma
∗†

manik@microsoft.com

ABSTRACT
This paper develops the Parabel algorithm for extreme multi-label

learning where the objective is to learn classifiers that can anno-

tate each data point with the most relevant subset of labels from

an extremely large label set. State-of-the-art 1-vs-All approaches,

which learn a separate classifier per label, have yielded significantly

higher prediction accuracies as compared to leading tree and em-

bedding based methods. Unfortunately, 1-vs-All approaches have

training and prediction costs that are linear in the number of labels

making them prohibitively expensive for real-world applications

such as Dynamic Search Advertising (DSA). Parabel addresses this

limitation by: (a) efficiently learning a balanced label hierarchy

from training data; (b) generalizing the popular hierarchical soft-

max model to the multi-label setting so as to obtain a probabilistic

model of the joint label distribution given the learnt hierarchy and

(c) developing logarithmic time training and prediction algorithms

based on the proposed model. This allows Parabel to be up to 600-

900x faster at training and up to 60-13,000x faster at prediction as

compared to leading 1-vs-All approaches while maintaining clas-

sification accuracy. Experiments also revealed that Parabel could

efficiently scale to DSA problems involving 7 million labels where

it significantly increased the ad-recall and clicks when added to the

system in production on the Bing search engine. Parabel’s source

code can be downloaded from [1].

KEYWORDS
Extreme classification, dynamic search advertising, multi-label hi-

erarchical softmax

ACM Reference Format:
Yashoteja Prabhu, Anil Kag, Shrutendra Harsola, Rahul Agrawal, and Manik

Varma. 2018. Parabel: Partitioned Label Trees for Extreme Classification

with Application to Dynamic Search Advertising. In WWW 2018: The 2018
Web Conference, April 23–27, 2018, Lyon, France. ACM, New York, NY, USA,

10 pages. https://doi.org/10.1145/3178876.3185998

∗
Indian Institute of Technology Delhi

†
Microsoft Research & AI

This paper is published under the Creative Commons Attribution 4.0 International

(CC BY 4.0) license. Authors reserve their rights to disseminate the work on their

personal and corporate Web sites with the appropriate attribution.

WWW 2018, April 23–27, 2018, Lyon, France
© 2018 IW3C2 (International World Wide Web Conference Committee), published

under Creative Commons CC BY 4.0 License.

ACM ISBN 978-1-4503-5639-8/18/04.

https://doi.org/10.1145/3178876.3185998

1 INTRODUCTION
Objective: This paper on extreme classification develops the Para-

bel algorithm whose predictions are almost as accurate as the state-

of-the-art DiSMEC [4] and PPDSparse [44] classifiers while being

up to 600-900x faster at training and up to 60-13,000x faster at

prediction. This allows Parabel to efficiently and accurately predict

the subset of 7 million Bing queries that might lead to a click on a

given ad-landing page for Dynamic Search Advertising (DSA).

ExtremeClassification: Extrememulti-label learning addresses

the problem of automatically annotating each data point with the

most relevant subset of labels from an extremely large label set. For

instance, there are more than a million labels (tags) on Wikipedia

and one might wish to build an extreme multi-label classifier that

tags a new article with the subset of most relevant Wikipedia labels.

Note that multi-label learning is distinct from multi-class classifica-

tion which aims to predict a single mutually exclusive label.

DSA: Advertisers are required to provide only a product descrip-

tion, or an ad-landing page, in DSA. The search engine automates

everything else including generating the ad-copy, customizing the

ad-title and ad-landing page to the search query, generating the

bid-phrases, etc. This provides a number of benefits to the adver-

tiser including eliminating time-consuming and expensive tasks,

reducing the deployment time for new and updated campaigns,

more accurate targeting of users, etc.
A central problem in DSA is to determine the subset of search

engine queries that might lead to a click on the given ad-landing

page. The predictions need to be highly accurate as it is not possible

to either have them be manually verified by the advertiser [3]

or to have them be automatically matched against the advertiser

supplied bid-phrases [33]. Inaccurate predictions therefore decrease

user satisfaction, search engine revenue and conversions for the

advertiser. At the same time, the predictions need to be made in

milliseconds per test point so as to handle the large, and constantly

evolving, corpus of billions of ads. Furthermore, low training costs

are critical as multiple prediction models need to be trained, and

frequently re-trained, for various markets with different languages

and ever changing query distributions.

Traditional approaches for predicting search engine queries from

ad-landing pages are based on landing page summarization [12],

translation and query languagemodels [35, 46], keyword suggestion

based on Wikipedia concepts [48] and matching queries to the ad

title based on deep embeddings [19, 36] etc. This paper formulates

the problem as an extreme multi-label learning task instead with

each of the top 7 million monetizable queries on Bing being treated

https://doi.org/10.1145/3178876.3185998
https://doi.org/10.1145/3178876.3185998

as a separate label. Extreme classifiers are trained to take in a bag-

of-words representation of the ad-landing page as input and predict

the subset of relevant Bing queries as output.

1-vs-All approaches: DiSMEC [4] and PPDSparse [44] make

significantly more accurate predictions than all other extreme clas-

sifiers. They train a separate linear classifier per label based on the

1-vs-All approach and predict the label if the corresponding classi-

fier fires for a given test point. This leads to training and prediction

costs which grow linearly with the number of labels. In particular,

given a dataset with N training points, N ′
test points, L labels and

D̂-sparse features, the training and prediction costs are O(NLD̂)
and O(N ′LD̂) respectively. Such costs can be prohibitive for real-

world applications, such as DSA, where training and prediction

can take months on datasets having millions of labels, hundreds of

millions of training points and billions of test points.

Parabel: Parabel reduces the training time from linear to loga-

rithmic in the number of labels while still following the 1-vs-All ap-

proach and learning a separate linear classifier per label. It achieves

this by reducing the number of points used for training each classi-

fier fromO(N) as in existing 1-vs-All approaches toO((N /L) logL).
Unfortunately, traditional dataset subsampling techniques, such

as PPDSparse’s primal-dual optimization algorithm or the popular

negative sampling heuristic [29] where negative training points are

subsampled uniformly at random, can lead to a significant loss in

prediction accuracy when applied aggressively. Parabel subsamples

data points based on the intuition that accuracy can be maintained

while restricting each label’s negative training examples to those

points annotated with the most similar, or confusing, labels. Thus, a

balanced label hierarchy is learnt efficiently based on a novel label

representation such that similar labels end up together at the leaves.

The negative examples used for training a label’s classifier are then

drawn from the other labels in the same leaf as the given label.

Parabel’s 1-vs-All classifiers are learnt as a MAP estimate of the

joint probability distribution over labels conditioned on data point

features and the learnt hierarchy. The proposed model generalizes

the popular multi-class hierarchical softmax model [10, 17, 29, 31]

used for learning word vector embeddings and language models to

the multi-label setting. Furthermore, the model also allows Parabel

to make predictions in logarithmic time which are optimal for eval-

uation metrics such as precision@r and nDCG@r [20]. As a result,
Parabel can be up to 600-900x faster at training and 60-13,000x

faster at prediction as compared to DiSMEC and PPDSparse with

almost the same prediction accuracy.

Comparison to tree based methods: Parabel can also outper-

form state-of-the-art tree based extreme classifiers. In particular,

Parabel was found to have up to 20x lower training time, 38x lower

model size and 9% higher prediction accuracy as compared to Pfas-

treXML [20]. It achieves this by: (a) learning a small ensemble of up

to 3 trees with powerful (1-vs-All) leaf node classifiers rather than

a large ensemble of 50 PfastreXML trees with weak (constant) leaf

node classifiers; (b) by learning trees which partition labels at each

internal node rather than data points and (c) by learning internal

and leaf node classifiers based on a principled probabilistic model.

DSA Results: These properties make Parabel better suited to

web-scale applications, such as DSA, than leading extreme classi-

fiers. DiSMEC and PPDSparse were unable to scale to DSA datasets

while PfastreXML was 5% less accurate than Parabel in terms of

offline metrics and had higher operating costs. Furthermore, In-

cluding Parabel in the Bing DSA ensemble in production led to a

significant increase in online metrics including a 75% increase in

ad-recall and a 42% increase in clicks.

Contributions: This paper makes the following novel contribu-

tions: (a) it proposes a balanced hierarchy over labels which is both

more accurate and more efficient to learn as compared to existing

hierarchies; (b) it develops a probabilistic model of the joint label

distribution conditioned on data point features and the learnt label

hierarchy which generalizes the hierarchical softmax model to the

multi-label setting; (c) it develops efficient logarithmic time training

and prediction algorithms based on the proposed model and (d) it

demonstrates that Parabel could significantly improve the quality

of dynamic search advertising on the Bing search engine.

2 RELATEDWORK
Extreme multi-label learning: Much progress has recently been

made in developing extreme multi-label learning algorithms based

on trees [3, 20, 21, 33, 34, 37], embeddings [7, 11, 13, 18, 24, 30, 38, 41,

43] and 1-vs-All approaches [4, 25, 32, 42, 44, 45]. Of these, 1-vs-All

and tree based approaches are directly relevant to this paper.

1-vs-All approaches: 1-vs-All approaches such as DiSMEC [4],

PD-Sparse [45], PPDSparse [44] and XML-CNN [25] have high

prediction accuracies and low model sizes. Unfortunately, these

approaches also have high training and prediction times as they

learn a separate classifier per label. Training costs can be high

as each classifier has to be trained over millions of negative data

points which might not be relevant for that label. PPDSparse [44]

addresses this issue to a limited extent by optimizing over a shortlist

of negative training examples based on a primal and dual sparsity

preserving algorithm. This allows PPDSparse to be up to 100x faster

at training than the state-of-the-art DiSMEC on some datasets while

matching its prediction accuracy. Despite this speed-up, PPDSparse

is unable to scale to large problems due to the significant overhead

of generating the shortlist at each iteration. The prediction times of

DiSMEC, PD-Sparse, PPDSparse and XML-CNN are also too high

to meet the latency and throughput requirements of real-world

applications such as DSA. Some heuristics have been proposed

to speed up the prediction times of 1-vs-All approaches based on

trees [42] and label filters [32]. Unlike Parabel, such approaches

are applied post hoc after the base 1-vs-All classifiers have been

trained and can therefore lead to decreased prediction accuracies

and increased training times.

Tree approaches: Tree approaches to extreme classification

have the advantages of low training and prediction times but have

high model sizes and poor prediction accuracies. The Achilles heel

of state-of-the-art tree approaches [3, 20, 34, 37] is their use of

weak constant classifiers in their leaf nodes. Leading approaches

therefore learn a large ensemble to compensate for the poor pre-

diction accuracy of any single tree. Parabel differs by learning

powerful 1-vs-All classifiers in its leaf nodes thereby allowing it to

get significantly higher prediction accuracies using an ensemble

of 3 trees. Furthermore, unlike most extreme multi-label tree clas-

sifiers [3, 20, 34, 37], Parabel learns a hierarchy over labels rather

than data points. While trees that partition labels have been studied

extensively in the multi-class literature [5, 14, 16], most of these

formulations do not extend straightforwardly to the multi-label

setting and have not been shown to scale to millions of classes. For

multi-label classification, the Probabilistic Label Tree (PLT) [21]

and the HOMER [39] approaches are perhaps the most closely re-

lated to Parabel. Parabel improves over PLT by learning the label

hierarchy rather than using a random one, by modelling the joint

label distribution rather than the marginals and by developing more

efficient optimizers. As demonstrated in Section 4, Parabel could

be 10x faster to train than PLT as well as up to 20% more accurate.

Parabel also differs from HOMER as it uses a more accurate label

representation, has a more efficient algorithm for learning the label

hierarchy and has principled algorithms for training and prediction

based on a well-defined probabilistic model.

Deep learning: Deep learning approaches [22, 25, 49] focusing

on learning representations for extreme classification have also

been explored in the literature. Learning features is orthogonal to

the focus of this paper though it should be noted that Parabel could

be used to replace the tree [22] or 1-vs-All [25] classifiers used in

these approaches for even better results.

DSA: This paper focusses on the problem of determining the

subset of search engine queries that might lead to a click on a given

ad-landing page. Various approaches have been proposed for this

task in the organic search literature including information retrieval

based methods [23], probabilistic methods and topic models [40]

and deep learning [19, 36]. Unfortunately, such techniques have

been found to not work well for pithy ad-landing pages. Techniques

have also been proposed specifically for sponsored search including

those based on landing page summarization [12], translation and

query language models [35, 46] and keyword suggestion based on

Wikipedia concepts [48]. Some of these approaches suffer from

low coverage while others might not be able to effectively leverage

historical click data. As demonstrated in Section 4, Parabel comple-

ments such approaches and significantly improves various online

metrics when included in the Bing DSA ensemble in production.

3 PARABEL
This section describes Parabel’s overall architecture and key com-

ponents including an algorithm for efficiently learning a balanced

label hierarchy which helps in accurately identifying the most sim-

ilar labels to a given label, a multi-label model of the joint label

probabilities given the learnt hierarchy and logarithmic time train-

ing and prediction algorithms based on the proposed model.

3.1 Architecture
Parabel learns a small ensemble of up to 3 label trees. Each label tree

is grown by recursively partitioning the labels into two balanced

groups. Nodes become leaves and are not partitioned further when

they contain less thanM labels. The leaf nodes contain linear 1-vs-

All classifiers, one for each label in the leaf, trained on only those

examples having at least one leaf node label.

A test point with unknown labels needs to traverse the label tree

during prediction. Each internal node therefore learns two linear

classifiers indicating whether a test point should be passed down

to the left or right child or both. A test point therefore traverses

multiple paths through the label tree to reach multiple leaves. The

1-vs-All classifiers in these leaves are evaluated to determine the

probability that the corresponding labels are relevant to the test

point. Predictions are made by averaging these probabilities across

the various trees in the ensemble.

3.2 Learning the Label Hierarchy
This subsection describes the algorithm used to partition the labels

at an internal node. The algorithm is applied recursively starting

at the root node containing all the labels. Node partitioning is

terminated when a node contains fewer thanM labels. Training of

the leaf node classifiers is discussed in Subsection 3.4.

Label representation and similarity: A measure of label sim-

ilarity is needed for partitioning the labels allocated to an internal

node. Parabel represents a label by a unit vector in the direction

of the mean of the training points containing the label. Given a

set of N training points {(xi , yi)Ni=1
} with D dimensional feature

vectors xi ∈ RD and L dimensional label vectors yi ∈ {0, 1}L , label

l is represented as

vl = v′l /∥v′l ∥2 where v′l =
N∑
i=1

yilxi (1)

and the similarity between labels l and j can be determined as v⊤l vj .
Note that the label features are needed just as an intermediate

representation to construct the label tree and do not contribute

to Parabel’s final model size. Further note that the features for

all the labels can be computed efficiently in O(NL̂D̂) time where

L̂ = O(logL) and D̂ are the average label and feature sparsities

respectively. This allows label similarity to be determined orders of

magnitude more efficiently as compared to alternatives proposed in

the literature such as those based on the label confusion matrix [5].

The proposed representation is based on the intuition that two

labels are similar if they are active in similar training points. In

DSA, two queries (labels) are similar according to the proposed

representation if they lead to clicks on similar ads (training points).

For example, the similarity between queries "car tyres online" and

"all weather car tyres" is 0.94 as they lead to clicks on similar ads

whereas the similarity between "all weather car tyres" and "dominos

pizza" is 0.02 as they are dissimilar. Parabel’s similarity measure

might also be seen as an efficient proxy for the label confusion ma-

trix since two similar labels, with similar training points, are likely

to have high inter-class confusion. Furthermore, Parabel’s label

representation might be better suited for dealing with tail labels

which have very few training points. The estimated label confusion

matrix might be unreliable for such labels due to classifier overfit-

ting and limited validation data. On the other hand, Parabel’s error

in estimating the tail label’s mean vector might be lower leading

to a more robust representation. Parabel’s label representation can

also be more suitable than HOMER’s representation [39]

ṽl = [y
1l ,y2l , · · · ,yNl] (2)

This can be observed from the fact that Parabel’s label similarity

v⊤l vj might be high for similar tail labels l and j which are active for
similar, but not the same, training points whereas HOMER’s label

similarity ṽ⊤l ṽj would be 0. As a result, Parabel’s representation

leads to significantly higher prediction accuracies than HOMER’s

as demonstrated in Section 4.

Label partitioning: The labels present at an internal node are

partitioned into 2 balanced groups by clustering them using the

constrained spherical k = 2-means objective

max

µ±∈R
D,α ∈{−1,+1}L

1

L

L∑
l=1

(
1 + αl

2

µ⊤+vl +
1 − αl

2

µ⊤−vl
)

(3)

s. t. ∥µ±∥2 = 1, −1 ≤

L∑
l=1

αl ≤ 1 (4)

where it has been assumed without loss of generality that the node

has L labels and αl = +1 indicates that label l has been assigned to

the positive cluster with mean µ+ and αl = −1 indicates that it has

been assigned to the negative cluster with mean µ−. The constraint
on α ensures that the sizes of the two clusters are at most one apart

though this could be relaxed to a user tunable hyperparameter if

the label structure was known to be imbalanced a priori.
The optimization problem in (3) is NP-hard [6]. Parabel there-

fore employs the following alternating maximization algorithm

which converges to a local optimum. The algorithm is initialized

by sampling µ± from {v1, v2, · · · , vL} uniformly at random with-

out replacement. The following two steps are then repeated in

each iteration of the algorithm until convergence. In the first step

of each iteration, (3) is maximized while keeping µ± fixed. It is

straightforward to show that the optimal solution is given by

α∗l = sign

(
rank

(
(µ+ − µ−)⊤vl

)
− L+1

2

)
with sign(0) being resolved

to +1 or −1 depending on whether the label is closer to the positive

or negative cluster respectively. In the second step, each αl is fixed
and (3) is maximized with respect to µ± to get µ∗± = µ′±/∥µ

′
±∥2

where µ′± =
∑

l :αl=±1

vl . Convergence is reached when the α as-

signments do not change from the previous iteration. In practice,

however, the algorithm was terminated early when the objective

function did not increase by more than 10
−4

from one iteration to

the next. The derivation of the update equations and the proof of

convergence to a local optimum are given in the supplementary

material. Note that the proposed algorithm turns out to be a more

efficient version of the constrained k-means algorithm for general

k [9] where α ∗
can be obtained in closed form rather than by solv-

ing a linear program. The label partitioning algorithm is applied

recursively starting at the root node till all the trees are fully grown.

Note that distinct trees are learnt as different random initializations

lead to different solutions of (3).

Comparison to other approaches: Parabel’s label tree is learnt
in time O(D̂L logL). This is significantly more efficient than parti-

tioning labels using graph cuts on the label confusion matrix [5]

which would not lead to balanced trees and where the time taken

to partition the root node itself would be O(L2). The approaches

in [14, 16] introduce balance constraints while partitioning labels at

a node but their algorithms involve fitting an SVM at each iteration

and can therefore be much more expensive than Parabel’s k-means.

As a result, none of the algorithms in [5, 14, 16] have been shown

to scale to large problems involving millions of labels and training

points. Furthermore, Parabel’s label tree can lead to significantly

more accurate predictions as compared to other scalable approaches

such as constructing random label trees as done in PLT or learning

the hierarchy based on HOMER’s representation. Finally, Parabel

should not be confused with LPSR [42], which also uses k-means

to learn its trees albeit by clustering data points rather than by

partitioning labels.

3.3 A Hierarchical Probabilistic Model
Notation: Given a label tree, let I = {1, . . . ,NI } denote the set of

NI internal nodes and L = {NI + 1, . . . ,NI +NL} denote the set

of NL leaf nodes in the tree. Furthermore, let Cn be the set of child

nodes of an internal node n. Note that, while each internal node

has only 2 children in the label tree proposed in Subsection 3.2,

Parabel’s probabilistic model holds for k-ary trees and thus it is

not explicitly assumed that |Cn | = 2. Finally, let yn be a vector of

binary random variables denoting whether the labels in the leaf

node n are relevant to a given data point x.
Discriminative model: Parabel models the joint probability

that a set of labels y ∈ {0, 1}L is relevant to a given data point x.
A label set can be sampled from such a distribution as follows. At

each internal node, starting at the root, a probability distribution is

sampled to determine which child nodes should be traversed. This

procedure is applied recursively until a set of leaf nodes is reached.

The set of relevant labels is then obtained by sampling from the

label distributions in the leaves that were reached.

To be more precise, let the binary random variable zn take the

value 1 if node n was traversed and 0 otherwise and let zCn be the

set of the indicator z variables of the children of node n. Further-
more, let z denote the set of all the z variables in the tree. Then,

tree traversal at the internal node n happens by sampling from

P(zCn |zn = 1, x). The set of relevant labels y is generated by sam-

pling labels from each leaf node n that has been reached according

to P(yn |zn = 1, x). Thus, Parabel’s probabilistic model is given by

P(y|x) =
∑

z
P(y|z, x)P(z|x) (5)

=
∑

z∈Zy

∏
n∈L:zn=1

P(yn |zn = 1, x)
∏

n∈I:zn=1

P(zCn |zn = 1, x) (6)

whereZy denotes the set of all the configurations of z which could

have led to y being sampled. The model is based on the following

assumptions and theorem.

Unvisited node assumption: This assumption formalizes the

observation that the children of an unvisited internal node will

never be traversed and that the labels in an unvisited leaf node will

never be sampled. This implies that

P(zCn = 0|zn = 0, x) = 1 ∀n ∈ I (7)

P(yn = 0|zn = 0, x) = 1 ∀n ∈ L (8)

The set of z values which obeys this assumption is denoted by Zy.
Subtree independence assumptions: Parabel assumes that

the probability distribution at a visited node n, whether internal or
leaf, is sampled independently of all the nodes that are outside the

subtree rooted at node n such that

P(zCn |zn = 1, x) = P(zCn |zn = 1, x, ȳSn
, z̄Sn) ∀n ∈ I (9)

P(yn |zn = 1, x) = P(yn |zn = 1, x, ȳSn
, z̄Sn) ∀n ∈ L (10)

where ȳSn
and z̄Sn denote the sets of all the labels and all the z

variables that lie outside the subtree rooted at node n. Note that
these assumptions do not imply label independence. The leaf node

assumption (10) allows Parabel to model arbitrary correlations

http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf

between the labels within a leaf while also modeling weaker cor-

relations between label sets across leaves. In particular, labels in a

leaf node n can have any correlation structure as long as they can

be sampled efficiently from P(yn |zn = 1, x). This allows Parabel
to model the labels "car tyres online" and "all weather car tyres"

as dependent if required. The assumption also does not imply that

labels in different leaves are independent – they are only condition-

ally independent given z. This allows labels such as "all weather

car tyres" and "dominos pizza" to be modeled as being mutually

exclusive.

The internal node assumption (9) implies that the decision about

which child nodes to traverse at a visited internal node is taken

independently of the decisions taken at all other nodes which are

not its descendants. This is a natural assumption which places only

mild restrictions on label correlations and is commonly made in

most tree algorithms.

Theorem 3.1. Tree factorization: Given a label tree, if the sub-
tree independence and unvisited node assumptions hold at all the tree
nodes, then for a label vector y and an indicator vector z ∈ Zy

P(y|z, x) =
∏

n∈L:zn=1

P(yn |zn = 1, x) (11)

P(z|x) =
∏

n∈I:zn=1

P(zCn |zn = 1, x) (12)

Proof. Please see the supplementary material. �

Comparison with other models: The proposed multi-label

model generalizes the multi-class hierarchical softmax model [10,

17, 29, 31] . Setting k = M = 2 in Parabel’s model would learn a bi-

nary label tree where each internal node had two children and each

leaf node contained a single label. Choosing all internal and leaf

node distributions to be the logistic sigmoid [8] would then reduce

Parabel’s model to the multi-class hierarchical softmax as only a

single, mutually exclusive label would be predicted. Parabel’s model

also differs from PLT [21] as it models the joint label distribution

rather than the marginals over the individual labels. Nevertheless,

Parabel can be reduced to PLT by setting each internal (leaf) node

distribution to be the product of k (M) independent, binary logis-

tic sigmoid distributions. This would allow each child node to be

traversed independently of its siblings and allow each leaf node to

predict all its labels independently. Various other instantiations of

Parabel’s model can be achieved based on different internal and leaf

node distributions. Results for some of these models are presented

in Section 4 and the supplementary material.

Tractability: Assume a balanced k-ary label tree over L labels

grown such that each leaf node has fewer thanM labels. The worst

case space complexity of Parabel’s probabilistic model is O(L(2k +
2
M)) where it has been assumed that each leaf and internal node

distribution takes O(2M) and O(2k) space respectively. This can
be tractable for small values ofM and k particularly as compared

to the O(2L) space complexity needed for modeling any general

multi-label distribution. Assuming that only O(logL) labels are
active for a given data point, the cost of sampling these labels from

Parabel’s model is O(2M logL + 2
k

log
2 L) which is also tractable

for smallM and k . The cost of evaluating P(y|x) for a given x and y

would depend on the cost of marginalizing over z and is discussed

in Subsection 3.4.

3.4 Training
MAP estimation: Training Parabel involves learning the parame-

ters of the internal and leaf node distributions P(z|x) and P(y|z, x)
respectively. Let Θ = {ΘI ,ΘL} denote Parabel’s internal and

leaf node distribution parameters and assume a training set of N
independent and identically distributed points {(xi , yi)Ni=1

} with

xi ∈ RD and yi ∈ {0, 1}L . Then, based on (6) and Theorem 3.1, the

maximum a posteriori estimate of Θ can be obtained as

Θ∗ = arg max

Θ
P(Θ)

N∏
i=1

P(yi |xi ,Θ) (13)

= arg max

Θ
P(Θ)

N∏
i=1

∑
z
P(yi |z, xi ,Θ)P(z|xi ,Θ) (14)

= arg max

ΘI,ΘL

N∏
i=1

∑
z∈Zyi

(∏
n∈L:zn=1

P(yin |zn = 1, xi ,ΘL)∏
n∈I:zn=1

P(zCn |zn = 1, xi ,ΘI)

)
P(ΘI) P(ΘL) (15)

where yin is a vector such that yinl = 1 if label l in node n is

relevant to xi and 0 otherwise, zn = 1 if node n was traversed and

0 otherwise and zCn j = 1 if child j of node n was traversed and 0

otherwise.

Marginalization: Marginalization over z is intractable in the

specific case when the leaf node distributions are given the freedom

to not predict any labels whatsoever and the internal node distribu-

tions have the freedom to terminate traversal by not selecting any

children. Evaluating P(y|x) in this case would require marginal-

izing over the exponential configurations of z ∈ Zy which could

have led to y being sampled. One way of addressing this limitation

would be to choose P(z|x,Θ) such that tree traversal could not be

terminated at an internal node and to choose P(y|z, x,Θ) such that

each visited leaf predicted at least one label. The marginalization

over z would then collapse as only a single z could have been used

to sample the given yi . The supplementary material explores how

such a tractable and accurate model could be obtained. An alterna-

tive solution, which would not preclude the choice of distributions

assuming label independence, would be to allow arbitrary P(z|x,Θ)

and P(y|z, x,Θ) but to train Parabel by maximizing a lower bound

approximation of the log likelihood. The lower bound could be

obtained by choosing the sparsest z obtained as the union of all

paths starting at the root and terminating at a leaf node containing

at least one label present in y. In either case, let z = zi represent the
unique or the sparsest path traversed by xi to generate yi . Then,
the MAP estimation of (13) reduces to the following independent

optimization problems over the internal and leaf nodes respectively

min

ΘI

− logP(ΘI) −

N∑
i=1

∑
n∈I:zin=1

logP(ziCn |zin = 1, xi ,ΘI) (16)

min

ΘL

− logP(ΘL) −

N∑
i=1

∑
n∈L:zin=1

logP(yin |zin = 1, xi ,ΘL) (17)

http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf

which themselves decompose across the various internal and leaf

nodes as the following independent problems

min

ΘIn
− logP(ΘIn) −

∑
i :zin=1

logP(ziCn |zin = 1, xi ,ΘIn) (18)

min

ΘLn
− logP(ΘLn) −

∑
i :zin=1

logP(yin |zin = 1, xi ,ΘLn) (19)

where ΘI = {ΘI1
, . . . ,ΘINI

} and ΘL = {ΘL1
, . . . ,ΘLNL

}.

Convex optimization: Different choices of P(zCn |zn = 1, x)
and P(yn |zn = 1, x) lead to different trade-offs between training

time, prediction time, model size and prediction accuracy – some

of which are explored in the supplementary material. A balanced

trade-off can be achieved by assuming that all nodes learn inde-

pendent 1-vs-All classifiers such that − logP(ziCn |zin = 1, xi) =∑k
j=1

σinj (ziCn j) and − logP(yin |zin = 1, xi) =
∑M
j=1

σinj (yinj)

where σinj (y) = log(1 + e−(2y−1)w⊤
njxi) denotes the log loss and

where it has been assumed, without loss of generality, that leaf

node n hasM labels. Furthermore, applying l2 regularization by as-

suming that − logP(ΘIn) =
1

2C
∑k
j=1

∥wnj ∥
2
and − logP(ΘLn) =

1

2C
∑M
j=1

∥wnj ∥
2
but then enforcing sparsity by clipping all the

learnt weights less than a threshold ϵ to zero as suggested in DiS-

MEC [4] also helped balance model size and prediction time with

training time and prediction accuracy. These assumptions lead to

the following independent optimization problems for all classifiers

j in all internal and leaf nodes n respectively

min

wnj

1

2

∥wnj ∥
2 +C

∑
i :zin=1

σinj (ziCn j) (20)

min

wnj

1

2

∥wnj ∥
2 +C

∑
i :zin=1

σinj (yinj) (21)

Note that Parabel’s overall optimization problem is convex as each

of the problems in (20) and (21) is convex and can be optimized

efficiently using Liblinear’s [15] dual co-ordinate ascent algorithm.

Furthermore, the independence of all the optimization problems

can be exploited to make Parabel highly parallelized and distributed.

This can make Parabel’s training even faster than the single core

implementation numbers reported in the experiments. Finally note

that, while (20) and (21) lead to state-of-the-art results for low-

dimensional, dense, deep learning features, even better results can

be obtained for high-dimensional, sparse bag-of-words features by

replacing the log loss by the squared hinge loss (though this does

not correspond to a valid probability distribution).

Computational complexity: The first step in training Parabel

is to compute the label representations at cost O(ND̂ logL). This
assumes that O(logL) labels are relevant to a data point on aver-

age and where D̂ is the average feature sparsity (D̂ = D for dense

features). A k = 2-ary label tree is then learnt such that each leaf

node contains at mostM = 100 labels (see Subsection 3.2). This has

computational complexity O(kD̂L logL) as there are O(logL) lev-
els in the tree and clustering at each level has complexity O(kD̂L).
Given the learnt label tree and a training point i , zi is obtained as

the union of all the paths connecting the root to a leaf containing

any label relevant to point i . A point can therefore traverse multiple

child nodes at any given internal node. Therefore, each child at

every internal node trains an independent linear classifier to sepa-

rate the training points reaching the child from the training points

reaching its siblings according to (20). The complexity of learning

the child node classifiers at each level is O(kND̂ logL). The overall
complexity of learningO(logL) levels of internal classifiers is there-
fore O(kND̂ log

2 L). Finally, 1-vs-All classifiers are also trained in

all the leaf nodes. Each classifier is trained to separate the training

points annotated with a given label from the other training points

reaching the label’s leaf node according to (21). This implies that

each classifier trains on O(ML N logL) points on average. There-

fore, the overall complexity of training all L leaf node classifiers

is O(NMD̂ logL). Parabel’s overall complexity for training T trees

is therefore O((L/N + M/k + logL)TNkD̂ logL). This compares

favourably to leading 1-vs-All approaches, such as DiSMEC and

XML-CNN, whose complexities are at least O(NLD̂). PPDSparse
tries to reduce training time by optimizing over a shortlist of nega-

tive training examples in each iteration of its algorithm. Unfortu-

nately, the overheads of generating the shortlist make PPDSparse

significantly slower than Parabel. Furthermore, PPDSparse’s neg-

ative sampling heuristic is dependent on feature sparsity and is

ineffective for dense features.

3.5 Prediction
Predictions need to be made efficiently in many extreme classifica-

tion applications. Thismakes existing 1-vs-All approaches infeasible

as their prediction times are linear in the number of labels. Parabel’s

prediction time is logarithmic in the number of labels and it can

make accurate predictions in milliseconds on the largest datasets.

Optimal predictions for gain functions: Gain functions de-

fined over the top ranked relevant predictions tend to be preferred

for evaluating real-world ranking, recommendation and tagging

applications as compared to traditional multi-label loss functions.

Parabel’s predictions therefore optimize such gain functions, includ-

ing precision@r and nDCG@r , based on the following theorems.

Theorem 3.2. Let P(y|x) represent the joint probability that a set
of labels y is relevant to point x. Then, the ranking of labels according
to their marginal probabilities as rank

(
{P(yl = 1|x)}Ll=1

)
maximizes

the expected gain of functions defined over the top ranked predictions
alone such as precision@r and nDCG@r .

Proof. Please see the supplementary material. �

Theorem 3.3. Given a joint probability distribution P(y|x) defined
as in (6) over a label tree, the marginal probability of label l in leaf
node n being relevant to point x is given by

P(yl = 1|x) = P(yl = 1|zn = 1, x)
∏

n̂∈An

P(zn̂ = 1|zPn̂ = 1, x) (22)

where An is the set of ancestors of node n apart from the root and
Pn̂ is the parent of n̂.

Proof. Please see the supplementary material. �

Theorems 3.2 and 3.3 state that optimal precision@r and nDCG@r
predictions can be obtained by sorting Parabel’s marginal label

probabilities and show how to compute the marginals. Computing

P(yl = 1|zn = 1, x) and P(zn̂ = 1|zPn̂ = 1, x) in (22) would have

http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf

O(2M) and O(2k) cost respectively for arbitrary joint distributions

P(yn |zn = 1, x) and P(zCn |zn = 1, x). Thankfully though, both

these probabilities can be obtained directly without any marginal-

ization due to Parabel’s independence assumptions in all leaf and in-

ternal nodes. In particular, P(yl = 1|zn = 1, x) = 1/

(
1 + e−w⊤

nl x
)
for

label l in leaf node n and P(zn̂ = 1|zPn̂ = 1, x) = 1/

(
1 + e

−w⊤
Pn̂ n̂

x
)

for internal node Pn̂ with child node n̂.
Beam search: Evaluating P(yl |x) in (22) for all labels would

incur O(L) costs. Parabel avoids this by predicting only the top

ranked relevant labels based on the following greedy, breadth-first

tree traversal strategy. The strategy is based on the assumption that

the most relevant labels for a given test point x can be determined

by greedily traversing the P most probable paths at each level

in Parabel’s label tree. Starting at the root, each visited internal

node in a level computes the probability of the paths from the

root to each of its children according to (22). The P most probable

paths are greedily selected to obtain the set of child nodes that

should be traversed at the next level. Traversal terminates at P
leaf nodes and has computational complexity O(PD̂k logL). The
marginal probabilities P(yl = 1|x) of all the labels in each of the

P visited leaf nodes is then calculated according to (22). This step

has complexity O(PD̂M). Finally, Parabel predicts a score for each

label l by averaging the label’s marginal probability across all T

trees in the ensemble as sl =
1

T
∑T
t=1
Pt (yl = 1|x). Parabel’s overall

prediction complexity is therefore O(TPD̂k logL +TPD̂M) where

M ≈ k logL. The value P = 10 was empirically found to work well

for precision@5 and nDCG@5 as the top 5 labels were found to

occur outside the top 10 paths with low probability.

4 EXPERIMENTS
Datasets: Experiments were carried out on datasets containing up

to 12 million training points, 4 million dimensional features and 7

million labels (see Table 1 for dataset statistics). The applications

considered include tagging Wikipedia articles (Wiki-500K [2] and

WikiLSHTC-325K [7, 27]), item-to-item recommendation of Ama-

zon products (Amazon-3M [2] and Amazon-670K [7, 27]), relevant

query prediction for a given ad landing page (DSA-2M and DSA-

7M) and document tagging (EURLex-4K [28]). All datasets, apart

from DSA-2M and DSA-7M, can be downloaded from The Extreme

Classification Repository [2]. The DSA datasets were created by

mining the Bing logs. Each ad landing page was represented by a

bag-of-words feature vector and the subset of 2M/7M queries that

led to a click on the page became its relevant labels.

Algorithms and implementation: Parabel was compared to

leading extreme classifiers including DiSMEC [4], PPDSparse [44],

Table 1: Dataset statistics

Dataset

Train Features Labels Test Avg. labels Avg. points

N D L N ′
per point per label

EURLex-4K 15,539 5,000 3,993 3,809 5.31 448.57

WikiLSHTC-325K 1,778,351 1,617,899 325,056 587,084 3.26 23.74

Wiki-500K 1,813,391 2,381,304 501,070 783,743 4.77 24.75

Amazon-670K 490,449 135,909 670,091 153,025 5.38 5.17

Amazon-3M 1,717,899 337,067 2,812,281 742,507 36.17 31.64

DSA-2M 11,966,195 4,091,864 2,078,535 2,988,996 2.57 14.82

DSA-7M 9,042,996 3,977,303 6,969,674 2,261,297 14.75 19.13

PD-Sparse [45] and XML-CNN [25] (1-vs-All based approaches),

PfastreXML [20] and PLT [21] (tree based approaches) and LEML [47],

WSABIE [41], CPLST [11], CS [18] and SLEEC [7] (embedding based

approaches). All algorithms were trained on the bag-of-words fea-

ture representation provided on The Extreme Classification Reposi-

tory apart from XML-CNN which is a deep learning method that

learns its own features from the raw text directly.

The implementations of all algorithms were provided by their

authors apart from CPLST and CS. These algorithms were imple-

mented by us while ensuring that the published results could be

reproduced. Results have been reported for only those datasets to

which an implementation scales. XML-CNN’s results onWikiLSHTC-

325K have also not been reported as the raw text was unavailable.

Parabel’s implementation normalizes the features to unit l2-norm
so as to help deal with documents of different lengths. Results are

reported for internal and leaf node classifiers trained using both

the log loss and the squared hinge loss. All classifier weights less

than ϵ = 0.5 for log loss and ϵ = 0.1 for squared hinge loss were

clipped to 0 as recommended in DiSMEC [4]. The log loss was found

to be better suited than the squared hinge loss for bag-of-words

features evaluated using propensity-scored loss functions [20] and

for deep learning features using unweighted losses (please see the

supplementarymaterial) while the squared hinge loss worked better

for bag-of-words features evaluated using unweighted losses.

Hyperparameters: Parabel has 4 hyperparameters: (a) the num-

ber of trees (T); (b) the maximum number of paths that can be tra-

versed in a tree (P); (c) the maximum number of labels in a leaf node

(M) and (d) the misclassification penalty for all the internal and

leaf node classifiers (C). The default parameter settings ofM = 100,

P = 10 and C = 10 (C = 1) for log loss (squared hinge loss) were

used in all the experiments to eliminate hyperparameter sweeps

(though tuning could have increased Parabel’s accuracy). Results

are reported for T = 1 − 3 trees on all datasets. The hyperparame-

ters of the other algorithms were set as suggested by their authors

wherever applicable and by fine grained validation otherwise.

Results on repository datasets: Table 2 compares Parabel’s

performance to leading 1-vs-All and tree classifiers using the pop-

ular precision@r gain function with r = 1, 3 and 5. Results for

nDCG@r and propensity-scored variants [20] are reported in the

supplementary material. All experiments were run on an Intel Xeon

2.5 GHz processor with 64 GB RAM except for XML-CNN training

and prediction which were carried out on a Nvidia GTX TITAN X

GPU. The training and prediction times for DiSMECwere estimated

on training and test subsets as estimation on a single core was in-

feasible. Parabel could be up to 900x faster at training and 13,000x

faster at prediction than DiSMEC while having prediction accura-

cies that were lower by 1% on the Amazon datasets and by 1.7% on

Wiki-500K. PPDSparse and XML-CNN could not scale to Amazon-

3M and were estimated to also be approximately 600x-1,000x slower

to train than Parabel. On the smaller datasets, PPDSparse was found

to be up to 4x slower at training and up to 60x slower at prediction

than Parabel while having prediction accuracies that were 1.9%

lower on WikiLSHTC-325K but 1.6% higher on Wiki-500K and

1% higher on Amazon-670K. Similarly, XML-CNN was up to 120x

slower at training, 14x slower at prediction and had up to 9% lower

prediction accuracies than Parabel. Finally, Parabel was also up to

8x faster to train, had up to 11x lower model size and had up to 9%

http://manikvarma.org/pubs/prabhu18a-supp.pdf
http://manikvarma.org/pubs/prabhu18a-supp.pdf

Table 2: Parabel is significantly faster at training and prediction than state-of-the-art extreme classifiers while having almost
the same precision@r = 1, 3, 5 values. Results are reported for Parabel with T = 1, 3 trees trained using the log loss (l) and the
squared hinge loss (s). XML-CNN times are not directly comparable as it was trained on a GPU. Please see the text for details.

Method P1 (%) P3 (%) P5 (%)

Training Test Model

time (hr) time/point (ms) size (GB)

EURLex-4K

PfastreXML 75.45 62.70 52.51 0.087 3.92 0.41

PLT 76.58 62.99 52.16 1.30 8.64 0.012

CS 58.52 45.51 32.47 1.52 6.71 0.018

CPLST 72.28 58.16 47.73 2.20 6.82 0.018

WSABIE 68.55 55.11 45.12 0.20 0.39 0.018

LEML 63.40 50.35 41.28 0.64 3.53 0.035

SLEEC 79.26 64.30 52.33 0.062 7.57 0.13

XML-CNN 76.38 62.81 51.41 0.28 0.18 0.017

PD-Sparse 76.43 60.37 49.72 0.041 0.12 0.31

PPDSparse 83.83 70.72 59.21 0.015 1.14 0.065

DiSMEC 83.67 70.70 59.14 0.094 7.05 0.04

Parabel-l-T=3 81.91 68.50 57.54 0.063 1.01 0.038

Parabel-s-T=3 82.25 68.71 57.53 0.018 0.88 0.026

Parabel-s-T=1 81.52 67.83 56.49 0.005 0.28 0.0086

WikiLSHTC-325K

PfastreXML 56.05 36.79 27.09 7.42 1.80 9.37

PLT 45.67 29.13 21.95 9.91 1.37 0.52
SLEEC 54.83 33.42 23.85 18.65 5.67 4.39

PD-Sparse 61.26 39.48 28.79 38.67 0.17 0.69

PPDSparse 64.08 41.26 30.12 3.93 37.76 5.14

DiSMEC 64.94 42.71 31.5 ≈749 ≈2622 3.79

Parabel-l-T=3 64.38 42.40 31.14 3.62 1.17 6.26

Parabel-s-T=3 65.04 43.23 32.05 1.03 1.27 3.10

Parabel-s-T=1 63.00 41.35 30.36 0.29 0.29 1.03

Amazon-3M

PfastreXML 43.83 41.81 40.09 15.74 4.05 36.79

PPDSparse - - - ≈3406 - -

DiSMEC 47.77 44.96 42.80 ≈4955 ≈16430 39.71

Parabel-l-T=3 42.54 41.23 40.14 22.48 1.45 67.32

Parabel-s-T=3 47.51 44.68 42.58 5.39 1.20 31.43

Parabel-s-T=1 46.14 43.35 41.23 1.73 0.32 10.47

Method P1 (%) P3 (%) P5 (%)

Training Test Model

time (hr) time/point (ms) size (GB)

Wiki-500K

PfastreXML 59.52 40.24 30.72 49.24 7.72 63.59

XML-CNN 59.85 39.28 29.81 117.23 23.20 3.71

PPDSparse 70.16 50.57 39.66 28.53 123.7 3.99

DiSMEC 70.20 50.60 39.70 ≈7496 ≈9355 14.76

Parabel-l-T=3 67.98 48.43 37.62 19.95 4.87 16.84

Parabel-s-T=3 68.52 49.42 38.55 8.18 3.27 5.69

Parabel-s-T=1 66.73 47.48 36.78 2.76 0.97 1.90

Amazon-670K

PfastreXML 39.46 35.81 33.05 3.32 4.75 9.80

PLT 36.65 32.12 28.85 3.25 1.71 0.76

SLEEC 35.05 31.25 28.56 11.33 18.51 7.08

XML-CNN 35.39 31.93 29.32 52.23 16.18 1.49

PPDSparse 45.32 40.37 36.92 1.71 66.09 6.00

DiSMEC 45.37 40.40 36.96 ≈373 ≈1414 3.75

Parabel-l-T=3 43.90 39.42 36.09 1.23 1.38 5.33

Parabel-s-T=3 44.90 39.81 35.99 0.42 1.13 1.94

Parabel-s-T=1 43.29 38.03 34.07 0.12 0.33 0.65

DSA-2M

PfastreXML 28.52 17.05 12.5 431.53 7.51 417.5

Parabel-l-T=3 32.07 18.64 13.52 61.21 5.20 53.75

Parabel-s-T=3 33.44 20.21 14.79 21.41 4.15 10.94

Parabel-s-T=1 31.26 18.83 13.74 7.72 1.47 3.65

DSA-7M

PfastreXML 28.09 25.79 23.21 306.55 23.12 410.49

Parabel-l-T=3 31.95 29.42 26.40 104.39 11.24 227.69

Parabel-s-T=3 32.84 30.28 27.35 73.54 5.97 40.96

Parabel-s-T=1 30.77 28.35 25.61 25.88 1.99 13.66

Table 3: Alternative choices of Parabel’s components leads
to worse performance. Results have been reported in terms
of precision@5. Please see the text for details.

Method EURLex-4K WikiLSHTC-325K Amazon-670K

Rocchio leaf 36.71 22.40 30.74

Rocchio internal 50.06 22.44 27.53

Random tree 55.70 21.73 28.58

HOMER features 57.18 23.99 32.03

Parabel-s-T=3 57.53 32.05 35.99

Table 4: The relative improvement of Parabel over BM25 on
a live deployment of Dynamic Search Advertising on Bing.

Algorithm Relative Relative Relative Relative

Ad-recall (%) CTR (%) BR (%) QOA (%)

Parabel 420 120 68 104

higher prediction accuracies than the leading tree based method

PfastreXML [20].

Parabel variants: Table 3 demonstrates that Parabel’s preci-

sion@5 decreases if its components were replaced by variants. Pre-

diction accuracy could drop by up to 10% if Parabel’s learnt label

tree was replaced by PLT’s random tree (Random tree). Further-

more, replacing Parabel’s label representation by HOMER’s label

representation [39] (HOMER features) could reduce precision@5

by up to 8%. The training time could also be substantially reduced

by replacing Parabel’s strong 1-vs-All classifiers with weak Roc-

chio [26] classifiers in the internal (Rocchio internal) and leaf nodes

(Rocchio leaf). However, accuracies could drop by up to 9% in ei-

ther case. Finally, the results of varying Parabel’s hyperparameters

including the number of trees (T), the maximum number of labels

in a leaf (M) and the number of paths taken (P) are reported in the

supplementary material.

Dynamic Search Advertising: Table 2 also reports results on

two small DSA datasets – DSA-2M having many more training

points than labels and DSA-7M having almost the same number of

training points and labels. None of the existing extreme classifiers

could scale to these datasets apart from PfastreXML. Unfortunately,

PfastreXML’s performance was significantly worse than Parabel’s.

Parabel was 4 − 5% more accurate, was 4x-20x faster to train, had

http://manikvarma.org/pubs/prabhu18a-supp.pdf

Parabel

sofas

hsl sofas & chairs

high back sofas

hsl chairs uk

recliner sofas

chairs & sofas

hsl recliner sofas

sale chairs & sofas

electric recliner sofas

shop sofa

Bing

hsl sofas

hsl sofas & beds

sofas lumber support

(a) HSL Sofas

Parabel

wall lamps

internal wall lights

bathroom wall lighting

b & q wall lighting

indoor wall lighting

wall lights bathrooms uk

wall uplights

interior wall lighting

glass shades wall lights

traditional wall lights

Bing

bathroom lights wall

bathroom wall lights

chrome bathroom wall lights

(b) B&QWall Lights

Parabel
car tyres

car tyres online
wholesale car tyres

all weather car tyres
motorcycle tyres

car tyres sale
compare tyre prices online

car tyre prices
car tyres drive
cheap tyres car

Bing
guru tyres
tyre guru

tyre guru uk

(c) Tyres Guru

Parabel
casinos online
casino sites uk

uk online casino
casino eu

new uk casinos
bonus casino

new uk online casinos
new online casinos uk

best uk casinos site
best casinos online

Bing
live casino online
live online casino

REVIEWS ARTICLES SIGN IN

MOST POPULAR CATEGORIES

Casino Slots Roulette BlackJack Gambling Live Casino

BEST UK ONLINE LIVE CASINO SITES OF 2018

Live casino games bring lots of excitement as you can combine the thrill of playing in a real casino and comfort of
being at home. The reviews below will help to select the best online live casino for... read more �Position

Advertising disclosure

1
up to 10% Cashback +100% match

bonus
T&Cs Apply. Payout: 98%

Read review

117 likes

OUR SCORE

2
320% up to £160

T&Cs Apply. Payout: 97% Read review

170 likes

3
100% extra up to £200 Welcome

Bonus
T&Cs Apply. Payout: 98%

Read review

232 likes

4
up to £1600 and 120 Free SPINS

T&Cs Apply. Payout: 98% Read review

244 likes

5
100% up to £300 + 20 free spins

T&Cs Apply. Payout: 97% Read review

223 likes

6
up to 50 Free Spins on 1st Deposit

Wager Free. No Max Win. 18+. T&Cs Apply. Read review

151 likes

7
€600 + 200 free spins

T&Cs Apply. Payout: 97% Read review

140 likes

8
100% up to £ 1500

Payout: 97% Read review

158 likes

9
100% up to £900 + 120 SPINS

T&Cs Apply. Payout: 97% Read review

176 likes

10
£600 bonus + 100 bonus spins

T&Cs Apply. Payout: 97% Read review

207 likes

VIEW ALL

USERS' CHOICE

MOST POPULAR

CODE: GENT1500

� 9.7 GET BONUS

� 9.5 GET BONUS

� 9.3 GET BONUS

� 9.2 GET BONUS

� 9 GET BONUS

� 8.8 GET BONUS

� 8.6 GET BONUS

� 8.5 GET BONUS

� 8.5 GET BONUS

� 8.5 GET BONUS

Play Live Casino UK online with Real Dealer. £5... https://selectbestonlinecasinos.co.uk/Live_Casino

1 of 2 2018/05/05, 15:11

(d) UK Online Casinos

Figure 1: Parabel can improve the quantity, quality and diversity of predicted queries from ad landing pages for DSA on Bing.

10x-38x lower model size and was 2x-4x faster at prediction. Parabel

was therefore found to be better suited for a live deployment on

Bing based on larger datasets.

Table 4 compares Parabel’s performance to the BM25 information

retrieval based algorithm [23] when deployed on Bing. BM25 ranks

documents in response to a given query based on how frequently

the query tokens occur in the document. The performance of both

algorithms was evaluated based on the click-through rate (CTR), the

bounce rate (BR) which is the percentage of times a user returned

immediately to the search engine after clicking an ad, the ad-recall

which is the percentage of ads that were clicked by at least one user

and the quality of ad recommendations (QOA) which measures the

goodness of ad recommendations according to a query-ad relevance

model trained on human labelled data. As can be seen, Parabel

improved relative ad-recall, CTR and BR by 320%, 20% and 32%

respectively as compared to the BM25 strawman. Including Parabel

in the ensemble of algorithms in production in Bing DSA generated

75% additional ad-recall and 42% additional clicks.

Figure 1 shows some qualitative examples where Parabel did

better than the Bing ensemble in production. The traditional ap-

proaches in Bing were able to predict at most three queries for each

ad landing page shown in Figure 1. Parabel predicted manymore rel-

evant queries thereby increasing the ad-recall, query-coverage and

auction-density. This was particularly true for pithy ads. Parabel

also increased the click count by making more diverse predictions

which targeted specific aspects of each ad. For instance, Parabel

was able to augment the "HSL Sofas" ad with queries such as "high

back sofas", "recliner sofas", "electric recliner sofas", etc. Similarly,

while Bing was able to only predict queries related to bathroom

wall lights for the "B&Q Wall Lights" ad, Parabel also predicted

"internal wall lights", "b&q wall lighting", "indoor wall lighting",

etc. Finally, Parabel also increased the CTR and reduced the BR by

avoiding predicting irrelevant queries.

5 CONCLUSIONS
This paper developed the Parabel algorithm for extreme multi-

label learning. Parabel could make predictions almost as accurately

as state-of-the-art extreme classifiers while having training and

prediction costs that were logarithmic in the number of labels.

Parabel’s technical contributions include: a novel procedure for

learning balanced label trees based on an efficient and informative

label representation; a novel probabilistic hierarchical multi-label

model which generalizes hierarchical softmax to the multi-label

setting and scalable algorithms for efficient training and prediction.

Experiments revealed that Parabel could be orders of magnitude

faster at training and prediction as compared to leading 1-vs-All

extreme classifiers with only a 1−2% loss in accuracy in many cases.

Parabel was also found to be superior to leading tree classifiers on

all evaluation criteria. This made Parabel better suited for a live

deployment on Bing where it significantly increased the ad-recall

and clicks for dynamic search advertising.

ACKNOWLEDGEMENTS
We are grateful to Himanshu Jain, Kalina Jasinska, Krzysztof Dem-

bczyński and Kunal Dahiya for helpful discussions and feedback.

REFERENCES
[1] [n. d.]. Code for Parabel. http://manikvarma.org/code/Parabel/download.html.

([n. d.]).

[2] [n. d.]. The Extreme Classification Repository. http://manikvarma.org/

downloads/XC/XMLRepository.html. ([n. d.]).

[3] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. 2013. Multi-label Learning with

Millions of Labels: Recommending Advertiser Bid Phrases for Web Pages. In

WWW.

[4] R. Babbar and B. Schölkopf. 2017. DiSMEC: Distributed Sparse Machines for

Extreme Multi-label Classification. In WSDM. 721–729.

[5] S. Bengio, J. Weston, and D. Grangier. 2010. Label Embedding Trees for Large

Multi-class Tasks. In NIPS. 163–171.
[6] A. Bertoni, M. Goldwurm, J. Lin, and F. Saccà. 2012. Size Constrained Distance

Clustering: Separation Properties and Some Complexity Results. 115 (2012),

125–139.

[7] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. 2015. Sparse Local Embeddings

for Extreme Multi-label Classification. In NIPS.
[8] C. M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science

and Statistics). Springer-Verlag New York, Inc.

[9] P. S. Bradley, K. P. Bennett, and A. Demiriz. 2000. Constrained K-Means Clustering.
Technical Report. MSR-TR-2000-65, Microsoft Research.

[10] W. Chen, D. Grangier, and M. Auli. 2015. Strategies for Training Large Vocabulary

Neural Language Models. CoRR abs/1512.04906 (2015).

[11] Y. N. Chen and H. T. Lin. 2012. Feature-aware Label Space Dimension Reduction

for Multi-label Classification. In NIPS.
[12] Y. Choi, M. Fontoura, E. Gabrilovich, V. Josifovski, M. R. Mediano, and B. Pang.

[n. d.]. Using landing pages for sponsored search ad selection. In WWW 2010.
[13] M. Cissé, N. Usunier, T. Artières, and P. Gallinari. 2013. Robust Bloom Filters for

Large MultiLabel Classification Tasks. In NIPS.
[14] J. Deng, S. Satheesh, A. C. Berg, and L. Fei-Fei. 2011. Fast and Balanced: Efficient

Label Tree Learning for Large Scale Object Recognition. In NIPS. 567–575.
[15] R. E. Fan, K. W. Chang, C. J. Hsieh, X. R. Wang, and C. J. Lin. 2008. LIBLINEAR:

A library for large linear classification. JMLR (2008).

[16] T. Gao and D. Koller. [n. d.]. Discriminative Learning of Relaxed Hierarchy for

Large-scale Visual Recognition. In ICCV. 2072–2079.
[17] J. Goodman. 2001. Classes for Fast Maximum Entropy Training. 1 (2001), 561 –

564 vol.1.

[18] D. Hsu, S. Kakade, J. Langford, and T. Zhang. 2009. Multi-Label Prediction via

Compressed Sensing. In NIPS.
[19] P. S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. P. Heck. 2013. Learning deep

structured semantic models for web search using clickthrough data. In CIKM.

[20] H. Jain, Y. Prabhu, and M. Varma. 2016. Extreme Multi-label Loss Functions for

Recommendation, Tagging, Ranking & Other Missing Label Applications. In

KDD.
[21] K. Jasinska, K. Dembczynski, R. Busa-Fekete, K. Pfannschmidt, T. Klerx, and E.

Hüllermeier. 2016. Extreme F-measure Maximization Using Sparse Probability

Estimates. In ICML. 1435–1444.
[22] Y. Jernite, A. Choromanska, and D. Sontag. 2017. Simultaneous Learning of Trees

and Representations for Extreme Classification and Density Estimation. In ICML.
[23] K. S. Jones, S. Walker, and S. E. Robertson. 2000. A probabilistic model of informa-

tion retrieval: development and comparative experiments. Inf. Process. Manage.
(2000).

[24] Z. Lin, G. Ding, M. Hu, and J. Wang. 2014. Multi-label Classification via Feature-

aware Implicit Label Space Encoding. In ICML.
[25] J. Liu, W. Chang, Y. Wu, and Y. Yang. 2017. Deep Learning for Extreme Multi-label

Text Classification. In SIGIR. 115–124.

[26] C. D. Manning, P. Raghavan, and H. Schütze. 2008. Introduction to Information
Retrieval. Cambridge University Press, New York, NY, USA.

[27] J. McAuley and J. Leskovec. 2013. Hidden factors and hidden topics: understand-

ing rating dimensions with review text. In RecSys.
[28] E. L. Mencia and J. Fürnkranz. 2008. Efficient pairwise multilabel classification

for large-scale problems in the legal domain. In SIGIR.
[29] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. 2013. Distributed

Representations of Words and Phrases and Their Compositionality. In NIPS.
3111–3119.

[30] P. Mineiro and N. Karampatziakis. 2015. Fast Label Embeddings for Extremely

Large Output Spaces. In ECML.
[31] F. Morin and Y. Bengio. 2005. Hierarchical probabilistic neural network language

model. In AISTATS. 246–252.
[32] A. Niculescu-Mizil and E. Abbasnejad. 2017. Label ‘s for Large Scale Multilabel

Classification. In International Conference on Artificial Intelligence and Statistics.
1448–1457.

[33] Y. Prabhu, A. Kag, S. Gopinath, K. Dahiya, S. Harsola, R. Agrawal, and M. Varma.

2018. Extreme multi-label learning with label features for warm-start tagging,

ranking and recommendation. In WSDM.

[34] Y. Prabhu and M. Varma. 2014. FastXML: A fast, accurate and stable tree-classifier

for extreme multi-label learning. In KDD.
[35] S. Ravi, A. Z. Broder, E. Gabrilovich, V. Josifovski, S. Pandey, and B. Pang. [n. d.].

Automatic generation of bid phrases for online advertising. In WSDM 2010.
[36] Y. Shen, X. He, J. Gao, L. Deng, and G. Mesnil. 2014. Learning semantic represen-

tations using convolutional neural networks for web search. In WWW.

[37] S. Si, H. Zhang, S. S. Keerthi, D. Mahajan, I. S. Dhillon, and C. J. Hsieh. 2017.

Gradient Boosted Decision Trees for High Dimensional Sparse Output. In ICML.
3182–3190.

[38] Y. Tagami. 2017. AnnexML: Approximate Nearest Neighbor Search for Extreme

Multi-label Classification. In KDD. 455–464.
[39] Grigorios Tsoumakas, Ioannis Katakis, and Ioannis Vlahavas. 2008. Effective and

efficient multilabel classification in domains with large number of labels. In Proc.
ECML/PKDD 2008 Workshop on Mining Multidimensional Data.

[40] X. Wei and W. B. Croft. 2006. LDA-based document models for ad-hoc retrieval.

In SIGIR.
[41] J. Weston, S. Bengio, and N. Usunier. 2011. Wsabie: Scaling Up To Large Vocabu-

lary Image Annotation. In IJCAI.
[42] J. Weston, A. Makadia, and H. Yee. 2013. Label Partitioning For Sublinear Ranking.

In ICML.
[43] C. Xu, D. Tao, and C. Xu. 2016. Robust Extreme Multi-label Learning. In KDD.

1275–1284.

[44] I. E. H. Yen, X. Huang, W. Dai, P. Ravikumar, I. Dhillon, and E. Xing. 2017.

PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification. In

KDD. 545–553.
[45] I. E. H. Yen, X. Huang, P. Ravikumar, K. Zhong, and I. S. Dhillon. 2016. PD-

Sparse: A primal and dual sparse approach to extreme multiclass and multilabel

classification. In ICML.
[46] W. T. Yih, J. Goodman, and V. R. Carvalho. [n. d.]. Finding advertising keywords

on web pages. In WWW 2006.
[47] H. F. Yu, P. Jain, P. Kar, and I. S. Dhillon. 2014. Large-scale Multi-label Learning

with Missing Labels. In ICML.
[48] W. Zhang, D. Wang, G. Xue, and H. Zha. 2012. Advertising Keywords Recom-

mendation for Short-Text Web Pages Using Wikipedia. ACM TIST (2012).

[49] W. Zhang, L. Wang, J. Yan, X. Wang, and H. Zha. 2017. Deep Extreme Multi-label

Learning. CoRR (2017).

http://manikvarma.org/code/Parabel/download.html
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

	Abstract
	1 Introduction
	2 Related Work
	3 Parabel
	3.1 Architecture
	3.2 Learning the Label Hierarchy
	3.3 A Hierarchical Probabilistic Model
	3.4 Training
	3.5 Prediction

	4 Experiments
	5 Conclusions
	References

