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Abstract
This paper presents a study of using deep bidirectional
long short-term memory (DBLSTM) as acoustic model for
DBLSTM-HMM based large vocabulary continuous speech
recognition (LVCSR), where a context-sensitive-chunk (CSC)
backpropagation through time (BPTT) approach is used to train
DBLSTM by splitting each training sequence into chunks with
appended contextual observations, and a (possibly overlapped)
CSCs based decoding method is used for recognition. Our
approach makes mini-batch based training on GPU more effi-
cient and reduces the latency of DBLSTM-based LVCSR from
a whole utterance to a short chunk. Evaluations have been
made on Switchboard-I benchmark task. In comparison with
epochwise BPTT training, our method can achieve about three
times speed-up on a single GPU card. In comparison with a
highly optimized DNN-HMM system trained by a frame-level
cross entropy (CE) criterion, our CE-trained DBLSTM-HMM
system achieves relative word error rate reductions of 9% and
5% on Eval2000 and RT03S testing sets, respectively.
Index Terms: Long short-term memory, DBLSTM, DNN,
LVCSR, Context sensitive chunk, BPTT.

1. Introduction
As a special type of artificial neural networks, recurrent neu-
ral networks (RNNs) can model contextual information of a se-
quence (e.g., [1, 2]), and its bidirectional version (BRNN) [3]
provides a framework to utilize future and past information si-
multaneously at each time instance. These advantages led to
its early success in small-scale automatic speech recognition
(ASR) tasks (e.g., [1, 2]), but it was difficult to scale up for
larger ASR tasks due to the intricacy in training. Recently, deep
neural networks (DNNs), which stack multiple feed-forward
layers on top of each other, have been successfully used as
acoustic models for large vocabulary continuous speech recog-
nition (LVCSR) (e.g., [4, 5] and the references therein). Be-
cause DNNs can only provide limited temporal modeling power
by feeding a fixed-size sliding window of feature vectors, more
powerful model for sequence signal such as RNNs, especially
a long short-term memory (LSTM) version (e.g., [6–8]), have
attracted the attention of many speech research groups again.

LSTM replaces the neurons in recurrent layers of standard
RNN with carefully designed memory blocks to ease train-
ing [6–8]. LSTM and its bidirectional version (BLSTM) [9]
have been applied to ASR (e.g., [9,10]) and handwriting recog-
nition (HWR) (e.g., [11]). Combined with connectionist tem-
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poral classification (CTC) output layer and trained from un-
segmented sequence data by using CTC training [12], it was
demonstrated in [11] that BLSTM-based system outperforms
a state-of-the-art hidden Markov model (HMM) based system
for both offline and online HWR. The same technique has also
been applied to ASR and achieved promising results on TIMIT
task [12]. Following the success of DNNs for acoustic model-
ing, (B)LSTM layers can also be stacked on top of each other to
build deep (B)LSTMs for ASR [13]. More recently, DBLSTM
with CTC training has been used to build an end-to-end ASR
system without leveraging any Gaussian mixture model HMM
(GMM-HMM) system [14]. Another way to use D(B)LSTM for
ASR is to combine it with HMM in a hybrid mode [15]. In [16],
a hybrid DBLSTM-HMM system gives state-of-the-art results
on TIMIT task and outperforms a DNN-HMM system on Wall
Street Journal (WSJ) task. However, both TIMIT and WSJ are
small to medium scale ASR tasks. In [17, 18], hybrid DLSTM-
HMM systems achieve state-of-the-art results with both frame-
level cross entropy (CE) training and sequence-level discrimina-
tive training on the LVCSR tasks of voice search and short mes-
sage dictation. In this paper, we study how DBLSTM-HMM
system works for large-scale LVCSR tasks.

Applying DBLSTM to LVCSR faces several challenges.
Firstly, DBLSTMs are often trained with an epochwise back-
propagation through time (BPTT) algorithm (e.g., [9, 19]),
where network states of all time steps of a sequence need be
stored. Nowadays, GPUs are widely used in deep learning by
leveraging massive parallel computations via mini-batch based
training. When applied to DBLSTM (e.g., [20]), GPU’s limited
memory restricts the number of sequences that can be used in
a mini-batch, especially for LVCSR tasks with long training se-
quences and large model sizes. Secondly, full sequence depen-
dence at each time step makes DBLSTM unsuitable for low-
latency recognition, because a delay of a whole utterance will
be incurred. In [21], a context-sensitive-chunk (CSC) BPTT al-
gorithm, which splits each sequence into chunks with appended
contextual observations, is proposed to deal with similar chal-
lenges for offline HWR. Since CSC-BPTT can parallelize more
chunks and recognition delay is only a short chunk, this tech-
nique can also be applied to LVCSR. Another motivation to
use CSC-BPTT to train speech DBLSTM is similar to HWR,
namely speech feature vectors of a phone are mostly influenced
by several phones before and after it. Inspired by ensemble
method, we also propose a decoding method with overlapped
CSCs to improve recognition accuracy further.

The remainder of this paper is organized as follows. In Sec-
tion 2, we present our approach. In Section 3, we report exper-
imental results and analyze the effect of different factors of our
approach. Finally, we conclude the paper in Section 4.
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2. Our Approach
2.1. Hybrid DBLSTM-HMM LVCSR System

Our LVCSR system is based on a DBLSTM-HMM frame-
work as in a neural-network/HMM hybrid system [15], where
DBLSTM acts as acoustic model. Frame-level state targets are
provided by a forced alignment given by a GMM-HMM system.
The activation function of DBLSTM’s output layer is softmax,
whose unit number is the total number of HMM states. Differ-
ent from a DNN-HMM hybrid system, which appends an acous-
tic context window of frames to either side of the one being clas-
sified at each time step, DBLSTM only feeds a single frame at a
time since it is able to store past and future states internally. In
training, a frame-level cross-entropy objective function is mini-
mized. In recognition, the state-dependent scores derived from
the DBLSTM are combined with HMM state transition proba-
bilities and language model (LM) scores to determine the recog-
nition result by using an in-house decoder for LVCSR.

2.2. DBLSTM Training

2.2.1. Context-sensitive-chunk BPTT

Due to its bidirectional interdependence among frames in a se-
quence, DBLSTM is often trained with epochwise BPTT (e.g.,
[9,19,20]). Given a sequence, this method must accumulate the
history of activations in the network over the entire sequence,
along with the history of errors, then back-propagation is car-
ried out to calculate gradients. After that, weights are updated
accordingly. In order to accelerate training by GPU, mini-batch
technique can be used as in DNN training, but the mini-batch
here has to be defined over sequences (e.g., [20]). Therefore,
for long sequences and large networks, the memory size of GPU
restricts the number of parallel sequences in a mini-batch so the
acceleration is quite limited.

A simple but effective solution to the limited acceleration
problem is to use chunk BPTT [22], which splits sequences into
chunks of particular length, and treats these chunks as isolated
sequences. However, the lost interdependence among chunks
results in performance degradation when the chunk size is
small. In [21], a CSC-BPTT algorithm was proposed to address
this issue. As shown in Fig. 1, given a sequence, it is firstly split
into (possibly overlapped) chunks of fixed length Nc, then Nl

previous frames are appended before each chunk as left context
and Nr future frames after it as right context. For the first/last
chunk of each sequence, no left/right contextual frames are ap-
pended. This kind of chunk is called context-sensitive-chunk
(CSC). The appended frames only act as context and gives no
output, so no error signals will be generated during training, as
illustrated in Fig. 2. CSCs from all the sequences are pooled to-
gether and randomized before every sweep of training. Because
CSCs are treated as isolated sequences, this technique increases
the number of parallel chunks in a mini-batch, leading to faster
training. Moreover, if the length of CSC is short enough, such
trained DBLSTM can be applied to low-latency decoding, while
it is impossible for DBLSTM trained by traditional epochwise
BPTT because of full sequence dependence at each time step.

A CSC with Nc chunk frames, Nl left and Nr right con-
textual frames is denoted as “Nl-Nc+Nr” for simplicity. So,
for chunk BPTT, its chunk of length Nc can be represented as
“0-Nc+0”, and for epochwise BPTT, the chunk configuration is
denoted as “0-Full+0” because a chunk here is the full sequence.
It is noted that CSC-BPTT can also be used to train DLSTM as
we demonstrated in [21]. In our implementation, the per-time-
step input could be a single frame or a concatenation of a local
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Figure 1: Illustration of context-sensitive-chunk (CSC).
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Figure 2: Illustration of forward and backward procedure of
CSC-BPTT to train BLSTM.

window of feature vector sequence. The unfolded RNN in [23]
is a special case of CSC, whose configuration is “Nl-1+0” and
per-time-step input consists of current frame and several future
frames, but is much more expensive for training and decoding
than other configurations with Nc >> 1.

2.2.2. Learning rate scheduling

Tuning learning rate, especially the scheduling of reducing the
learning rates during training, is critical to the performance of
deep learning (e.g., [24]). In this study, we have used a semi-
automatic learning rate scheduling mechanism similar to the
“Newbob+/Train” method in [25]. Our learning rate scheduling
approach works as follows: Firstly, a sub-set of the full training
data set is reserved as a validation set. It differs from the con-
ventional definition of validation because those data would still
be used in training. Secondly, DBLSTM training starts with an
empirically chosen initial learning rate. The frame error rate
(FER) on the validation set is evaluated once after the model
has been updated a fixed number of times. Lastly, the learning
rate is adjusted according to the results of adjacent evaluations.
If the FER improvement between current and previous evalua-
tions is above a threshold τ , the learning rate stays unchanged;
else if the error rate improvement between previous and ante-
penultimate evaluations is not above τ , the learning rate stays
unchanged; otherwise, the learning rate will be multiplied by
a fixed factor ρ (0 < ρ < 1). The above second rule makes
our learning rate scheduling different from that in [25], which
is confirmed in our experiments to be helpful in the final stage
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of learning when shrinking the learning rate does not lead to
enough FER improvement. In this stage, conventional schedul-
ing rules would continuously cut the learning rate and force the
learning to converge prematurely. Our heuristic essentially pre-
vents the learning rate from shrinking so the network is still able
to learn something in the final training stage.

2.3. CSC-based Decoding

Given a CSC-BPTT trained DBLSTM, an unknown utterance
for recognition should also be split into CSCs of the same con-
figuration as used in training. In a preliminary study, we found
that no difference was made for recognition accuracy whether
the training sequences are split into CSCs with or without over-
lap, therefore we use no-overlap scheme in this paper. For a
testing utterance, we could have options. If computational cost
is a concern, then the testing utterance can be split into non-
overlapping CSCs as in [21]; otherwise, the testing utterance
can be split into overlapped CSCs to achieve higher recognition
accuracy. If overlapped CSCs are used, the t-th frame of obser-
vation may be evaluated Nt times, whose scores are denoted as
{y(1)

t , · · · , y(Nt)
t }. The final score could be obtained by taking

an arithmetic mean yt = 1
Nt

∑Nt
i=1 y

(i)
t or a geometric mean

yt =
Nt

√∏Nt
i=1 y

(i)
t . The effect of these two averaging methods

will be compared in Section 3.2.3. Because different scores of a
given frame are predicted from several neighboring chunks, the
averaged score leverages more frames as context, which leads
to better recognition accuracy as we will show in next section.

3. Experiments
3.1. Experimental Setup

Switchboard-I conversational telephone speech transcription
task [26] is used for evaluation. About 300 hours of speech
from 520 speakers are used in training. About 2 hours of speech
from 2000 Hub5 evaluation (Eval2000) and about 6.3 hours of
speech from Spring 2003 NIST rich transcription set (RT03S)
are used in testing. For front-end spectral feature extraction, 13-
dimensional PLP features along with their time derivatives up to
third order are extracted every 10 ms to form a 52-dimensional
raw feature vector. Windowed mean and variance normaliza-
tion is then performed, and a 39 × 52 HLDA transform is esti-
mated afterwards to reduce the feature dimension to 39 such that
GMM-HMM acoustic models are trained with 39-dimensional
feature vectors. A set of speaker independent GMM-HMMs
which contain 9,304 decision-tree tied triphone HMM states
is estimated using maximum likelihood criterion. This GMM-
HMM set is used to perform forced alignment on both training
and testing sets to get the frame-level state labels. In DNN and
DBLSTM training, these labels will be used as ground truth in
training and state classification targets in testing.

A 7-hidden-layer DNN is chosen as the baseline system.
Each hidden layer contains 2,048 rectified linear units (ReLUs),
resulting in approximately 45 million parameters. Input dimen-
sion of this network is 572, and the input is a concatenation of
11 frames of 52-dimensional raw feature vectors. The frame-
level cross-entropy objective function is minimized via mini-
batch SGD with L2 constraint regularization [27], and 7 sweeps
of training data are conducted with a carefully tuned learning
rate schedule.

All DBLSTMs have 5 hidden layers. Each hidden layer
has 512 memory cells (256 for forward and 256 for backward
states) with forget gate and peephole connections [16], result-

Table 1: Performance (in %) comparison on testing sets of
DBLSTM-HMM systems trained by epochwise and CSC BPTT
methods with DNN-HMM system.

Config.
Eval2000 RT03S

FER WER FER WER
TOTAL FSH SWB

0-Full+0 29.7 14.8 44.7 22.9 18.6 27.0
21-64+21 29.6 14.7 44.5 22.8 18.6 26.7

DNN-HMM 39.9 16.2 55.0 24.0 19.5 28.2

ing in approximately 11 million parameters. These models will
be optimized by epochwise, chunk or CSC BPTT. Considering
the memory size of a single Nvidia Tesla K20Xm GPU card,
mini-batch sizes are set to be 8 sequences for epochwise BPTT
and 64 chunks for chunk and CSC BPTT. We implement CSC-
BPTT for DBLSTM training based on open-source Currennt
toolkit [20]. During training process, 30hr data is sampled from
training set as validation set. The FER improvement threshold τ
is set to be 2% and learning rate tuning factor ρ is set to be 0.5.
Evaluation on validation set will be conducted after a sweep of
data and 7 sweeps are used for all the models.

Experiments are conducted for various CSC configurations.
For each configuration, initial learning rate is carefully tuned
and the one leading to the best validation set FER is selected
to decode the test sets. Both FER and Word Error Rate (WER)
are used to evaluate different models. The vocabulary, pronun-
ciation lexicon, trigram language models are the same as that
in [28, 29].

3.2. Experimental Results

3.2.1. Comparison with DNN-HMM

We train two DBLSTMs with epochwise and CSC BPTT, re-
spectively. The CSC configuration is “21-64+21”, the num-
ber of overlapped frames in CSC-based decoding is 48, and
the score averaging method is arithmetic mean. According to
the feature extraction method we used, 64 frames is equiva-
lent to about 6 phones. Table 1 shows a performance compar-
ison on Eval2000 and RT03S testing sets. DBLSTMs trained
with epochwise and CSC BPTT achieve similar recognition
performance. Compared with CE-trained DNN, DBLSTM
trained with CSC BPTT improves FER significantly, which
leads to a relative WER reduction (WERR) of 9.3% and 5.0%
on Eval2000 and RT03S testing sets, respectively. It is noted
that the DNN-HMM system here achieves a WER of 16.2%
on Eval2000, which is better than the WER of 16.4% achieved
by a DNN-HMM system with sigmoid hidden units as reported
in [28, 29] on the same task. Since the number of DBLSTM
parameters is only a quarter of DNN’s, DBLSTM is apparently
a better acoustic model for LVCSR than DNN.

3.2.2. Effect of CSC configurations

Experiments are conducted to identify suitable CSC configura-
tions by varying the chunk size and the number of contextual
frames. In recognition, CSC-based decoding without overlap is
used. The effect of CSC configurations on testing performance
(in %) of DBLSTM-HMM systems is compared in Table 2. It
is observed that for CSCs with Nc = 64, a size of contextual
frames ranging from 16 to 32 works well, while chunk size Nc

has a relatively big influence. All the DBLSTM-HMM systems
trained by CSC-BPTT perform better than the DNN-HMM sys-
tem. When no contextual frames are appended to chunks (i.e.,
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Table 2: Effect of CSC configurations on testing performance
(in %) of DBLSTM-HMM systems. CSC-based decoding with-
out overlap is used.

Config.
Eval2000 RT03S

FER WER FER WER
TOTAL FSH SWB

21-42+21 30.3 15.1 45.5 23.8 19.4 27.9
21-64+21 30.1 15.0 45.2 23.0 18.7 27.0
32-64+32 29.7 14.9 44.9 23.2 18.9 27.2
16-64+16 30.2 15.2 45.3 23.3 19.0 27.4

0-64+0 33.5 16.2 48.6 24.6 19.9 29.0
16-32+16 30.9 15.4 46.3 23.9 19.5 28.0

Table 3: Effect of the number of overlapped frames in CSC-
based decoding on testing performance (in %) of DBLSTM-
HMM systems trained by CSC-BPTT with the configuration of
“21-64+21”. Arithmetic mean is used for score averaging.

# of overlap
frames

Eval2000 RT03S

FER WER FER WER
TOTAL FSH SWB

0 30.1 15.0 45.2 23.0 18.7 27.0
16 29.9 14.9 44.8 23.0 18.8 26.9
32 29.7 14.8 44.7 22.9 18.7 26.8
48 29.6 14.7 44.5 22.8 18.6 26.7

“0-64+0”), CSC-BPTT becomes chunk-BPTT. It is observed
that the DBLSTM-HMM system trained by chunk-BPTT per-
forms worse than the DNN-HMM system. Another interesting
observation is that “16-32+16” configuration contains the same
number of frames with “0-64+0” per chunk, but performs much
better, which demonstrates clearly that appended frames are im-
portant to compensate for the loss of contextual information.

3.2.3. Effect of CSC-based decoding

Table 3 shows the effect of the number of overlapped frames on
testing performance (in %) of DBLSTM-HMM systems trained
by CSC-BPTT with the configuration of “21-64+21”, where
arithmetic mean is used for score averaging in CSC-based de-
coding. When the number of overlapped frames is 48, most
frames are evaluated 4 times, while for cases of 16 and 32 over-
lapped frames, each frame is evaluated at most twice. It is ob-
served that overlap decoding improves the performance slightly
because much contextual information has been contained in
CSCs. Table 4 compares two averaging methods for CSC-based
decoding with overlapped CSCs. No difference is observed,
therefore we recommend to use the simpler arithmetic mean
method for score averaging. For comparison, Table 5 shows
the effect of the number of overlapped frames in chunk-based
decoding on testing performance (in %) of DBLSTM-HMM
systems trained by chunk-BPTT with the configuration of “0-
64+0”. It is observed that overlap decoding improves the per-
formance significantly, but overall, DBLSTM trained by chunk-
BPTT performs worse than its CSC-BPTT counterpart.

3.2.4. Training speed-up

In our experiments, the elapsed time per sweep for epochwise
BPTT is about 59.9 hr, while for CSC-BPTT with “21-64+21”
configuration, the time is shortened to 21.4 hr, namely a 2.8x
speed-up is achieved. If “16-64+16” configuration is used, the
elapsed time will become 18.9 hr, resulting in a 3.2x speed-up.

Table 4: Testing performance (in %) comparison of averaging
methods for CSC-based decoding with overlapped CSCs. The
number of overlapped frames is 48. The DBLSTM is trained by
CSC-BPTT with the configuration of “21-64+21”.

Averaging
methods

Eval2000 RT03S

FER WER FER WER
TOTAL FSH SWB

Arithmetic 29.6 14.7 44.5 22.8 18.6 26.7
Geometric 29.6 14.7 44.5 22.8 18.7 26.7

Table 5: Effect of the number of overlapped frames in chunk-
based decoding on testing performance (in %) of DBLSTM-
HMM systems trained by chunk-BPTT with the configuration
of “0-64+0”.

#overlap
frames

Eval2000 RT03S

FER WER FER WER
TOTAL FSH SWB

0 33.5 16.2 48.6 24.6 19.9 29.0
16 31.1 15.3 46.5 23.8 19.1 28.1
32 30.7 15.1 45.9 23.0 18.5 27.3
48 29.8 15.0 45.1 22.7 18.2 27.0

4. Conclusion and Discussion
We have demonstrated that DBLSTM-HMM can outperform
DNN-HMM on the Switchboard-I benchmark task if both
DBLSTM and DNN are trained by minimizing a frame-level
CE criterion. It is well-known that bidirectional contextual in-
formation plays an important role in acoustic modeling [30],
and DBLSTM offers an elegant way of modeling and lever-
aging the bidirectional contextual information. Given the co-
articulation effect in a speech utterance, speech features of each
phone are mostly influenced by several phones before and af-
ter it, therefore there is no need to model the whole utter-
ance by a DBLSTM directly. This insight motivates us to
propose to use a DBLSTM to model a short chunk, a CSC-
BPTT method to train the DBLSTM, and a CSC-based decod-
ing method for DBLSTM-HMM based LVCSR. Compared with
DNN with a fixed-size window of a feature vector sequence
as input, DBLSTM can learn automatically the effective length
of input feature vector sequence for acoustic modeling. Com-
pared with standard epochwise BPTT method, our CSC-BPTT
method makes mini-batch based training on GPU more effi-
cient, which can achieve about three times speed-up on a sin-
gle GPU card in our experiments. Furthermore, CSC-based
decoding makes low-latency DBLSTM-based LVCSR possi-
ble by incurring only a delay of a short chunk rather than a
whole utterance. Taking a CSC configuration of “21-64+21”
for example, if no frame overlap is used in CSC-based decod-
ing, the delay will be 85 frames or 850 ms, while the computa-
tional complexity will only be about 1.27 times of that using the
DBLSTM trained by epochwise BPTT, which can only be used
for decoding until the whole utterance is observed. In compar-
ison with a highly optimized DNN-HMM system trained by a
frame-level CE criterion, our CE-trained DBLSTM-HMM sys-
tem achieves relative WERRs of 7.4% and 4.2% on Eval2000
and RT03S testing sets, respectively. If a CSC-based decoding
with 48 overlapped frames is used, the above relative WERRs
will become 9.3% and 5.0% respectively with a cost of in-
creased computational complexity. As future work, a compar-
ison of DBLSTM-HMM and DNN-HMM with sequence-level
discriminative training must be made.
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