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Abstract

We study the problem of identifying the best arm in each otiuedits in a multi-

bandit multi-armed setting. We first propose an algorithftedaGap-based Ex-
ploration (GapE) that focuses on the arms whose mean is o mean of
the best arm in the same bandit (i.e., small gap). We theodntre an algorithm,
called GapE-V, which takes into account the variance of tingsan addition to

their gap. We prove an upper-bound on the probability ofrefwo both algo-

rithms. Since GapE and GapE-V need to tune an exploraticanpeter that de-
pends on the complexity of the problem, which is often unkmawadvance, we
also introduce variations of these algorithms that eserttais complexity online.
Finally, we evaluate the performance of these algorithnts @mpare them to
other allocation strategies on a number of synthetic proble

1 Introduction

Consider a clinical problem with/ subpopulations, in which one should decide betwagnop-
tions for treating subjects from each subpopulatianA subpopulation may correspond to patients
with a particular gene biomarker (or other risk categor@es) the treatment options are the available
treatments for a disease. The main objective here is toanst rule, which recommends the best
treatment for each of the subpopulations. These rules a@lysonstructed using data from clin-
ical trials that are generally costly to run. Thereforesitmportant to distribute the trial resources
wisely so that the devised rule yields a good performanceaceSit may take significantly more
resources to find the best treatment for one subpopulatanftir the others, the common strategy
of enrolling patients as they arrive may not yield an ovegalhd performance. Moreover, applying
treatment options uniformly at random in a subpopulatiom@mot only waste trial resources, but
also it might run the risk of finding a bad treatment for thdiapulation. This problem can be for-
mulated as théest arm identificatiomver M/ multi-armed bandits [1], which itself can be seen as
the problem opure exploratiorj4] over multiple bandits. In this formulation, each subplgtion is
considered as a multi-armed bandit, each treatment as grirging a medication on a patient as a
pull, and we are asked to recommend an arm for each bandiafigen number of pulls (budget).
The evaluation can be based bjthe average over the bandits of the reward of the recommended
arms, or2) the average probability of error (not selecting the best)aom3) the maximum prob-
ability of error. Note that this setting is different frometistandard multi-armed bandit problem in
which the goal is to maximize the cumulative sum of rewarde @g., [13, 3]).

The pure exploration problem is about designing stratabetamake the best use of the limited bud-
get (e.g., the total number of patients that can be admittdktclinical trial) in order to optimize the
performance in a decision-making task. Audibert et al. fbjgpsed two algorithms to address this
problem:1) a highly exploring strategy based on upper confidence bqeatled UCB-E, in which
the optimal value of its parameter depends on some measthe odbmplexity of the problem, and
2) a parameter-free method based on progressively rejettingrims which seem to be suboptimal,
called Successive Rejects. They showed that both algaidttennearly optimal since their probabil-
ity of returning the wrong arm decreases exponentially att@. rRacing algorithms (e.qg., [10, 12])



and action-elimination algorithms [7] address this prablender a constraint on the accuracy in
identifying the best arm and they minimize the budget ne¢dexthieve that accuracy. However,
UCB-E and Successive Rejects are designed for a singletlpantliem, and as we will discuss later,
cannot be easily extended to the multi-bandit case studi¢itis paper. Deng et al. have recently
proposed an active learning algorithm for resource allonadver multiple bandits [5]. However,
they do not provide any theoretical analysis for their alipon and only empirically evaluate its per-
formance. Moreover, the target of their proposed algorighta minimize the maximum uncertainty
in estimating the value of the arms for each bandit. Notetthiatis different than our target, which
is to maximize the quality of the arms recommended for eadidiba

In this paper, we study the problem of best-arm identificatina multi-armed multi-bandit setting
under a fixed budget constraint, and propose an algorithiledd@aap-based Exploration (GapE), to
solve it. The allocation strategy implemented by GapE fesus) the gap of the arms, i.e., the differ-
ence between the mean of the arm and the mean of the best a@hat(bandit). The GapE-variance
(GapE-V) algorithm extends this approach taking into aot@lso the variance of the arms. For
both algorithms, we prove an upper-bound on the probaldfitgrror that decreases exponentially
with the budget. Since both GapE and GapE-V need to tune daraxpn parameter that depends
on the complexity of the problem, which is rarely known in adee, we also introduce their adaptive
version. Finally, we evaluate the performance of theserdhlgns and compare them withniform
andUniform+UCB-E strategies on a number of synthetic problems. Our empirgsallts indicate
that1l) GapE and GapE-V have a better performance thaiformandUniform+UCB-E and2) the
adaptive version of these algorithms match the performahteeir non-adaptive counterparts.

2 Problem Setup

In this section, we introduce the notation used throughuoaipaper and formalize the multi-bandit
best arm identification problem. Lét be the number of bandits arid be the number of arms for
each bandit (we use indices, p, ¢ for the bandits and, i, j for the arms). Each arrh of a bandit
m is characterized by a dlStl‘IbutIOl’,lnk bounded |r{0 b] W|th meanu,,,; and variance?,, . In the
following, we assume that each bandit has a unique best amuenbte by.’, andk;, the mean and
the index of the best arm of bandit (i.e., 1}, = maxi<i<k fmk, k), = argmax; < g fimk)- IN
each banditn, we define the gap for each armas,;, = | max;4 fmj — fmk|-

The clinical trial problem described in Sec. 1 can be foreealias a game between a stochastic multi-
bandit environment and a forecaster, where the distribgfo,,, } are unknown to the forecaster.
At each round: = 1,...,n, the forecaster pulls a bandit-arm pdit) = (m, k) and observes

a sample drawn from the distribution ;) independent from the past. The forecaster estimates
the expected value of each arm by computing the average citingles observed over time. Let
Tk(t) be the number of times that arinof banditm has been pulled by the end of round

then the mean of this arm is estimatedias, (t) = % STk X,k (s), whereX,, ;. (s) is the
s-th sample observed from,,;. Given the previous deflnmons, we define the estimated gaps

Api(t) = | max; 4 fm;(t) — tmk(t)]. Atthe end of round, the forecaster returns for each bandit
m the arm with the hlghest estlmated mean, ifg,(n) = arg max;, fimk(n), and incurs a regret
M
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As discussed in the introduction, other performance meastain be defined for this problem. In
some applications, returning the wrong arm is considereghasror independently from its regret,
and thus, the objective is to m|n|m|ze the average proklylmflerror

(n) MZem MZ #k:m)

m=1 m=1

Finally, in problems similar to the clinical trial, a reasdole objective is to return the right treatment
for all the genetic profiles and not just to have a small aveggbability of error. In this case, the
global performance of the forecaster can be measured as

Z(TL) = HI"E}XZm( ) - ma‘XP( ( ) 7é k'm)

It is interesting to note the relationship between theseetperformance measurasin,, A,, x
e(n) < Er(n) < bxe(n) < bx{(n),where the expectation in the regretis w.r.t. the random $&snp
As a result, any algorithm minimizing the worst case prolighof error, ¢(n), also controls the
average probability of erroe(n), and the simple regrér(n). Note that the algorithms introduced
in this paper directly target the problem of minimizif(g.).
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Parameters: number of rounds, exploration parameter, maximum rangé
Initialize: T:,%(0) =0, ﬁmk(o) =0 for all bandit-arm pairgm, k)
fort=1,2,...,ndo
ComputeB;,.x(t) = YN (t=1) +b, /74— forall bandit-arm pairgm, k)
Draw [ (t) € arg max, k Bmk(t)
ObSEI’VGX}(t) (T](t)(t — 1) + 1) ~ V(L)
Update Ty (t) = Tr)(t — 1) + 1 and Aok (t) VE of the selected bandit
end for

-----

Figure 1: The pseudo-code of the gap-based ExplorationE§z@gorithm.

3 The Gap-based Exploration Algorithm

Fig. 1 contains the pseudo-code of the gap-based explor@hapE) algorithm. GapE flattens the
bandit-arm structure and reduces it to a single-banditlprobvith A7 K arms. At each time stefp
the algorithm relies on the observations up to time 1 to build an indexB,, (t) for each bandit-
arm pair, and then selects the pa{t) with the highest index. The indeR,,,; consists of two
terms. The first term is the negative of the estimated gaprfarkain banditm. Similar to other
upper-confidence bound (UCB) methods [3], the second part é&xploration term which forces the
algorithm to pull arms that have been less explored. As dtrébe algorithm tends to pull arms
with small estimated gap and small number of pulls. The expilon parametes tunes the level
of exploration of the algorithm. As it is shown by the thearat analysis of Sec. 3.1, if the time
horizonn is known,a should be set ta = § 22X, whereH = > i U2/ A7 is thecomplexityof
the problem (see Sec. 3.1 for further discussion). NoteGagiE differs from most standard bandit
strategies in the sense that tBeindex for an arm depends explicitly on the statistics of akteer
arms. This feature makes the analysis of this algorithm nmoate involved.

As we may notice from Fig. 1, GapE resembles the UCB-E algoritl] designed to solve the pure
exploration problem in the single-bandit setting. Nonktkg, the use of the negative estimated gap
(—A,.x) instead of the estimated meai,(;) (used by UCB-E) is crucial in the multi-bandit setting.
In the single-bandit problem, since the best and secondase®t have the same gap fr: =
ming.r: Apk), GapE considers them equivalent and tends to pull themaime smount of time,
while UCB-E tends to pull the best arm more often than thersg@b@st one. Despite this difference,
the performance of both algorithms in predicting the bastaiftern pulls would be the same. Thisis
due to the fact that the probability of error depends on thabdity of the algorithm to distinguish
optimal and suboptimal arms, and this is not affected by #&miht allocation over the best and
second best arms as long as the number of pulls allocateditpdir is large enough w.r.t. their gap.
Despite this similarity, the two approaches become corajyielifferent in the multi-bandit case. In
this case, if we run UCB-E on all thef K arms, it tends to pull more the arm with the highest mean
over all the bandits, i.ek* = argmax,, » itmi. AS aresult, it would be accurate in predicting the
best armk* over bandits, but may have an arbitrarily bad performangeedicting the best arm for
each bandit, and thus, may incur a large effar). On the other hand, GapE focuses on the arms
with the smallest gaps. This way, it assigns more pulls talianvhose optimal arms are difficult
to identify (i.e., bandits with arms with small gaps), andshewn in the next section, it achieves a
high probability in identifying the best arm in each bandit.

3.1 Theoretical Analysis
In this section, we derive an upper-bound on the probalwfigrror/(n) for the GapE algorithm.

Theorem 1. If we run GapE with parametdr < a < 2 =X then its probability of error satisfies
Un) <PBm: Jm(n) # k;,) <2MKn exp(—6i4),
in particular fora = 4 2=22% 'we have/(n) < 2M Kn exp(— 7 2=2E).

Remark 1 (Analysis of the bound).If the time horizomn is known in advance, it would be possible
to set the exploration parameteas a linear function of, and as a result, the probability of error of
GapE decreases exponentially with the time horizon. Theratiteresting aspect of the bound is the



complexity termH appearing in the optimal value of the exploration paramefee.,a = é% .

9
If we denote byH,,,;, = b?/AZ ., the complexity of arnk in banditm, it is clear from the definition
of H that each arm has an additive impact on the overall comple)‘(ithe multi-bandit problem.
Moreover, if we define the complexity of each banditas H,, = 3, b*/A2,, (similar to the
definition of complexity for UCB-E in [1]), the GapE compléximay be rewritten aH =3 Hm-

This means that the complexity of GapE is simply the sum ottraplexities of all the bandits.

Remark 2 (Comparison with the static allocation strategy). The main objective of GapE is to
tradeoff between allocating pulls according to the gapsrénpoecisely, according to the complex-
ities H,,;) and the exploration needed to improve the accuracy of gstimates. If the gaps were
known in advance, a nearly-optimal static allocation sfggitassigns to each bandit-arm pair a num-
ber of pulls proportional to its complexity. Let us considestrategy that pulls each arm a fixed
number of times over the horizan The probability of error for this strategy may be bounded as

éstatlc( )< ]P)(Em Jm Z P(J m Z Z P Mmk* < Mmk( ))
m=1 m=1k#k¥,
M A2 M
< Z Z exp (= Tk (n) k) = Z Z exp(—ka(n)H;i). 1)

m=1k#k*

m

m=1k#k?,

Given the constraind_, , T,,x(n) = n, the allocation minimizing the last term in Eq. 1 is
Ty (n) = nHpyy/H. We refer to this fixed strategy &taticGap Although this is not neces-
sar|ly the optimal static strategy’f,, (n) minimizes an upper-bound), this allocation guarantees
a probability of error smaller thai/ K exp(—n/H). Theorem 1 shows that, for large enough,
GapE achieves the same performance as the static alloGititnGap

Remark 3 (Comparison with other allocation strategies). At the beginning of Sec. 3, we dis-
cussed the difference between GapE and UCB-E. Here we centipatbound reported in Theo-
rem 1 with the performance of théniformand combinedJniform+UCB-Eallocation strategies. In
the uniform allocation strategy, the total budgeis uniformly split over all the bandits and arms.
As a result, each bandit-arm pair is pull€g (n) = n/(M K) times. Using the same derivation as
in Remark 2, the probability of errd(n) for this strategy may be bounded as

Corir(n Z > e (- 3 Ab"ik) < MEexp (= gremtmp—).

m=1k#k,

In the Uniform+UCB-E allocation strategy, i.e., a two-level algorithm that figgtiects a bandit
uniformly and then pulls arms within each bandit using UCRHe total number of pulls for each
banditm is ), Tiux(n) = n/M, while the number of pull§’,,;.(n) over the arms in bandit is
determined by UCB-E. Thus, the probability of error of tHimgegy may be bounded as

M- K M—-K
Lunitruce-g(n Z 2nK exp ( n/18Hm ) < 2nMK exp ( B #mﬂm)’

where the first inequality follows from Theorem 1 in [1] (rédhat H,,, = >, b*/AZ ). Letb =1
(i.e., all the arms have distributions boundeddnl]), up to constants and multiplicative factors in
front of the exponentials, and if is large enough compared i@ and K (so as to approximate
n/M — K andn — K by n), the probability of error for the three algorithms may beibded as

—n/MK —n/M
Lunit(n) < exp (O(#Hk)), Lu+ucee(n) < exp (O(maz/H L))7 Loape(n) < exp (O(
m,k m

N
7))
m,k
By comparing the arguments of the exponential terms, we tiavérivial sequence of inequalities
MK maxy,  Hypp > M max,, Y, Hyp > ka H..x., which implies that the upper bound on the
probability of error of GapE is usually significantly small& his relationship, which is confirmed
by the experiments reported in Sec. 4, shows that GapE istatddapt to the complexityl of
the overall multi-bandit problem better than the other tWocation strategies. In fact, while the
performance of thé&Jniform strategy depends on the mastmplexarm over the bandits and the
strategyUnif+UCB-E is affected by the most complex bandit, the performance @EZ#epends on
the sum of the complexities of all the arms involved in thegpexploration problem.



Proof of Theorem 1Step 1.Let us consider the following event:

£ = {Vm e{l,...,M}, Vke{l,...,K}, Vt € {1,...,n}, |fimk(t) — pimi| < bc TL(t)}

mk
From Chernoff-Hoeffding’s inequality and a union bound veweP (&) > 1—2M Kn exp(—2ac?).
Now we would like to prove that on the evefitwe find the best arm for all the bandits, i.&,,(n) =
kX, Ym € {1...M}. SinceJ,,(n) is the empirical best arm of bandit, we should prove that for
anyk € {1,..., K}, limr(n) < lms:, (n). By upper-bounding the LHS and lower-bounding the
RHS of this inequality, we note that it would be enough to grav/a/ Ty (n) < A,.x/2 on the
event&, or equivalently, to prove that for any bandit-arm pairk, we havel,,;(n) > “Zéi.

Step 2. In this step, we show that in GapE, for any bandits, ¢) and arms(k, j), and for any
t > MK, the following dependence between the number of pulls o&thes holds

a a
At (14 d)b > A+ (1= d)b, =2
(G )\/max(ka(t)—l,l) Z ~Ba + (L= d)by J7s

whered € [0, 1]. We prove this inequality by induction.

)

Base stepWe know that after the first/ K rounds of the GapE algorithm, all the arms have been
pulled once, i.e T, (t) = 1, ¥m, k, thus ifa > 1/4d?, the inequality (2) holds for = M K.

Inductive step.Let us assume that (2) holds at time- 1 and we pull armi of banditp at timet,
e, I(t) = (p,i). So attimet, the inequality (2) trivially holds for every choice ot, ¢, k, and
j, except wher(m, k) = (p,i). As a result, in the inductive step, we only need to prove that
following holds for anyg € {1,...M} andj € {1,... K}

a
Ay + (14 d)b\/max oD 2 Aw - N @3)

Since armi of banditp has been pulled at time we have that for any bandit-arm p@i[, 7)

B a \/ T(t—1) \/ T,(t—1) @)

To prove (3), we first prove an upper-bound feApi(t — 1) and a lower-bound fopﬁqj(t -1)

Bt 1) € Bt 2 [y A Ry1) 2 Ay B ORS

We report the proofs of the inequalitiesAin (5) in App. BAof.[S]he inequality (3), and as a result,
the inductive step is proved by replacirg\,;(t — 1) and—A,; (t — 1) in (4) from (5) and under the
conditions that! > 2 andd > 21\?;. These conditions are satisfied dy= 1/2 andc = v/2/16.

Step 3. In order to prove the condition df,,;(n) in step 1, we need to find a lower-bound on the
number of pulls of all the arms at time= n (at the end). Let us assume that drof banditm has

been pulled less thaﬁM which indicates that-A,,.x + (1 — d)b, /72— > 0. From this
result and (2), we have A,; + (1 + d)b | Tt =T

for any pair(q, ). We also know thad | . Ty;(n) = n. From these, we deduce that- MK <
ab*(1+d)? qu az . So, if we select: such thatt — MK > ab?(1+d)? . we contradict
ab? (l—d)

> 0, or equivalentlyT,;(n) < % +1
a7

q, j A2 1
: H 4ab c? H
the first assumption thak,,;(n) < , which means thal’,,x(n) > 3%z ” for any pair

mk
(m, k), whenl — d > 2¢. This concludes the proof. The condition foiin the statement of the
theorem comes from our choice®in this step and the values eandd from the inductive step. O

3.2 Extensions

In this section we propose two variants on the GapE algorithittn the objective of extending its
applicability and improving its performance.



GapE with variance (GapE-V). The allocation strategy implemented by GapE focuses onthen

arms with small gap and does not take into consideration Waeiance. However, it is clear that the
arms with small variance, even if their gap is small, justth@éew pulls to be correctly estimated. In
order to take into account both the gaps and variances ofthg, ave introduce the GapE-variance

(GapE-V) algorithm. Le&? ;. (t) = 75— STk X2 (5) — 122, (t) be the estimated variance
for armk of banditm at the end of round. GapE-V uses the following B-index for each arm:

2052, (t—1) Tab

Tk (t — 1) - 3(Tomn(t—1)—1)"
Note that the exploration term in the B-index has now two congnts: the first one depends on the
empirical variance and the second one decreas€$ 847, ). As a result, arms with low variance
will be explored much less than in the GapE algorithm. Sintidathe difference between UCB [3]
and UCB-V [2], while the B-index in GapE is motivated by Ha#ffg's inequalities, the one for
GapE-V is obtained using an empirical Bernstein’s inedqu#lil, 2]. The following performance
bound can be proved for GapE-V algorithm. We report the poddheorem 2 in App. C of [8].

Bok(t) = —Api(t — 1) +

Theorem 2. If GapE-V is run with parametey < a < $2=2MXK then it satisfies

O(n) <P(Im: Jp(n) # k) < 6nMK exp < Ja )

64 %64
in particular fora = 3 2=2MK 'we have/(n) < 6nMK exp ( — grg T2,

In Theorem 2 H? is the complexity of the GapE-V algorithm and is defined as

M K 2
. (omk + /o7, + (16/3)bAmk)
H” = .
Although the variance-complexitf/ could be larger than the complexity used in GapE, when-
ever the variances of the arms are small compared to the baofdke distribution, we expedt @ to
be smaller tharii. Furthermore, if the arms have very different variancesnt@apE-V is expected
to better capture the complexity of each arm and allocatgtifie accordingly. For instance, in the
case where all the gaps are the same, GapE tends to allodst@nmportionally to the complex-
ity H,,; and it would perform an almost uniform allocation over basdind arms. On the other
hand, the variances of the arms could be very heterogenad@apE-V would adapt the allocation
strategy by pulling more often the arms whose values are mmeertain.

Adaptive GapE and GapE-V. A drawback of GapE and GapE-V is that the exploration paramet
a should be tuned according to the complexitiésand H? of the multi-bandit problem, which are
rarely known in advance. A straightforward solution to tisisue is to move to an adaptive version
of these algorithms by substitutirfg and H° with suitable estimatesl andH°. At each step of
the adaptive GapE and GapE-V algorithms, we estimate tleaplexities as

_ b2 . LCB., (t) + \/LCB,, (£)% + (16/3)b x UCBa, (1))’
H(t) = g,:k UCBA1 (t)2’ H (t) = g;k ( \/ UCBAT (t)Q . = ) ,  Where
UCBa, (t) = Au(t — 1) + ﬁ and  LCB,(f) = max (07 Gi(t—1)— ﬁ)

Similar to the adaptive version of UCB-E in [} and H? are lower-confidence bounds on the true
complexitiesd and H?. Note that the GapE and GapE-V bounds written for the optirahle of

a indicate an inverse relation between the complexity ancegpboration. By using a lower-bound
on the trueH andH?, the algorithms tend to explore arms more uniformly and afisvs them to
increase the accuracy of their estimated complexitiehdlh we do not analyze these algorithms,
we empirically show in Sec. 4 that they are in fact able to im#éte performance of the GapE and
GapE-V algorithms.

4 Numerical Simulations

In this section, we report numerical simulations of the paged algorithms presented in this paper,
GapE and GapE-V, and their adaptive versions A-GapE and pEG4 and compare them withinif
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Figure 2:(left) Problem 1: Comparison between GapE, adaptive GapE, andifugra strategies.
(right) Problem 2: Comparison between GapE, GapE-V, and adaptipg-&aalgorithms.

Unif + UCBE Unif + AUCBE  Unif + UCBE-V Unif + A UCBE-V GapE A GapE GapE-V A GapE-V

0.25 0.35 0.45
L
L

0.15

s *
b *

Maximum probability of error
.
-

4 8 1632 1 2 4 8 2 4 8 16 4121 2 4 8 1632 1412 1 2 121 2 4 U41L2 1 2
Parameter

Figure 3: Performance of the algorithms in Problem 3.

andUnif+UCB-E algorithms introduced in Sec. 3.1. The results of our expenits both those in
the paper and those in App. A of [8] indicate tHatGapE successfully adapts its allocation strategy
to the complexity of each bandit and outperforms the unifailocation strategie<) the use of
the empirical variance in GapE-V can significantly improlve performance over GapE, a8jithe
adaptive versions of GapE and GapE-V that estimate the @itips H and H? online attain the
same performance as the basic algorithms, which redéiaad H° as an input.

Experimental setting. We use the following three problems in our experiments. Noatb = 1
and that a Rademacher distribution with parameterg) takes value: or y with probability1/2.

e Problem 1.n = 700, M = 2, K = 4. The arms have Bernoulli distribution with parameters:
bandit 1= (0.5, 0.45,0.4,0.3), bandit 2= (0.5,0.3,0.2,0.1).

e Problem 2. n = 1000, M = 2, K = 4. The arms have Rademacher distribution with
parameteryx,y): bandit 1 = {(0,1.0),(0.45,0.45), (0.25,0.65), (0,0.9)} and in bandit 2 =
{(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}.

e Problem 3. n = 1400, M = 4, K = 4. The arms have Rademacher distri-
bution with parametergz,y): bandit 1 = {(0,1.0), (0.45,0.45), (0.25,0.65), (0,0.9)}, ban-
dit 2 = {(0.4,0.6), (0.45,0.45), (0.35,0.55), (0.25,0.65)}, bandit 3 = {(0,1.0), (0.45,0.45),
(0.25,0.65), (0,0.9)}, andbandit 4= {(0.4, 0.6), (0.45,0.45), (0.35, 0.55), (0.25, 0.65) }.

All the algorithms, except the uniform allocation, have apleration parametet. The theoretical
analysis suggests thashould be proportional tg-. Althougha could be optimized according to the
bound, since the constants in the analysis are not accuratgill run the algorithms withw = 74,
wheren is a parameter which is empirically tuned (in the experira@ré report four different values
forn). If H correctly defines the complexity of the exploration problgm, the number of samples
to find the best arms with high probability) should simply correct the inaccuracy of the constants
in the analysis, and thus, the range of its nearly-optimalesashould be constant across different
problems. InUnif+UCB-E, UCB-E is run with the budget of /M and the same parametgfor all

the bandits. Finally, we set ~ H?, since we expect/ ¢ to roughly capture the number of pulls
necessary to solve the pure exploration problem with higtbgbility. In Figs. 2 and 3, we report
the performancé(n), i.e. the probability to identify the best arm in all the basaftern rounds,

of the gap-based algorithms as wellldsif andUnif+UCB-E strategies. The results are averaged



over10® runs and the error bars correspond to three times the estinséandard deviation. In all
the figures the performance 0Ohif is reported as a horizontal dashed line.

The left panel of Fig. 2 displays the performancéoif+UCB-E, GapE, and A-GapE in Probleim

As expectedUnif+UCB-E has a better performance3(9% probability of error) tharunif (29.4%
probability of error), since it adapts the allocation witldach bandit so as to pull more often the
nearly-optimal arms. However, the two bandit problems areegually difficult. In fact, their
complexities are very differenf{; ~ 925 and H, ~ 67), and thus, much less samples are needed
to identify the best arm in the second bandit than in the firs. oUnlike Unif+UCB-E, GapE
adapts its allocation strategy to the complexities of thedita (on average onli9% of the pulls are
allocated to the second bandit), and at the same time to the@mplexities within each bandit (in
the first bandit the averaged allocation of GapE3ig’, 36%, 20%, 7%)). As a result, GapE has a
probability of error ofl15.7%, which represents a significant improvement dvaif+UCB-E.

The right panel of Fig. 2 compares the performance of GapBE34 and A-GapE-V in Problem 2.

In this problem, all the gaps are equals,(;, = 0.05), thus all the arms (and bandits) have the same
complexity H,,, = 400. As a result, GapE tends to implement a nearly uniform atlonawhich
results in a small difference betweemif and GapE Z8% and25% accuracy, respectively). The
reason why GapkE is still able to improve ownif may be explained by the difference between static
and dynamic allocation strategies and it is further ingzgéd in App. A of [8]. Unlike the gaps,
the variance of the arms is extremely heterogeneous. Intfeevariance of the arms of bandits
bigger than in bandi2, thus making it harder to solve. This difference is captungthe definition

of H? (HY ~ 1400 > HJ ~ 600). Note also that#® < H. As discussed in Sec. 3.2, since
GapE-V takes into account the empirical variance of the aitnis able to adapt to the complexity
H¢, of each bandit-arm pair and to focus more on uncertain armepES/ improves the final
accuracy by almost0% w.r.t. GapE. From both panels of Fig. 2, we also notice thatatiaptive
algorithms achieve similar performance to their non-aideptounterparts. Finally, we notice that
a good choice of parameterfor GapE-V is always close td and4 (see also [8] for additional
experiments), while GapE neeglgo be tuned more carefully, particularly in Problem 2 whére t
large values of) try to compensate the fact thAt does not successfully capture the real complexity
of the problem. This further strengthens the intuition thet is a more accurate measure of the
complexity for the multi-bandit pure exploration problem.

While Problems 1 and 2 are relatively simple, we report tiselts of the more complicated Prob-
lem 3 in Fig. 3. The experiment is designed so that the conitglex.t. the variance of each bandit
and within each bandit is strongly heterogeneous. In thiegment, we also introduce UCBE-V
that extends UCB-E by taking into account the empiricalarace similarly to GapE-V. The re-

sults confirm the previous findings and show the improvemehiesed by introducing empirical

estimates of the variance and allocating non-uniformly dandits.

5 Conclusion

In this paper, we studied the problem of best arm identificath a multi-bandit multi-armed setting.

We introduced a gap-based exploration algorithm, callegE;and proved an upper-bound for its
probability of error. We extended the basic algorithm t@alsnsider the variance of the arms and
proved an upper-bound for its probability of error. We alstvaduced adaptive versions of these
algorithms that estimate the complexity of the problemmliThe numerical simulations confirmed
the theoretical findings that GapE and GapE-V outperformmdliiocation strategies, and that their
adaptive counterparts are able to estimate the complekitput worsening the global performance.

Although GapE does not know the gaps, the experimentalteeseported in [8] indicate that it
might outperform a static allocation strategy, which kndws gaps in advance, thus suggesting
that an adaptive strategy could perform better than a statc This observation asks for further
investigation. Moreover, we plan to apply the algorithntsdaduced in this paper to the problem of
rollout allocation for classification-based policy itécatin reinforcement learning [9, 6], where the
goal is to identify the greedy actioanm) in each of the statebéndif) in a training set.
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