大学院等高度副プログラム
大学院等高度副プログラムは,所属する専攻で学ぶだけでなく幅広い素養をつけることを目的とした教育プログラムです.
プログラムの申請手続きについて
プログラムへの申請はKOANの「受講ガイダンスシステム」から申請手続きを行ってください.
- 受講プログラム選択と申請手続き方法
- 申請受付期間 2019年4月1日(月)~4月26日(金)
- プログラム授業科目の履修登録は,所属研究科の履修登録期間と,履修希望科目の開講部局の履修登録期間が重なる期間に余裕をもって行ってください.
副プログラムのガイダンス
副プログラムの説明会です.担当教員と副プロ受講生からお話が聞けます.MMDS主催のものと全学主催のものがあります.
数理・データ科学教育研究センター(MMDS)主催
データ科学,金融保険,数理モデルの3つの副プログラムの全てが分かります.
日時:2019年4月12日(金)18時00分~20時00分
会場:法・経講義棟1階1番 講義室@豊中キャンパス
全学教育推進機構主催
大阪大学が提供するすべての副プログラムの説明があります.ポスターでの説明です.
日時:2019年4月9日(火)11時30分~13時30分
会場:テクノアライアンス棟1階アライアンスホール@吹田キャンパス
日時:2019年4月12日(金)11時30分~13時30分
場所:基礎工学国際棟1階 セミナー室@豊中キャンパス
大学院等高度副プログラム 「データ科学」
- 大阪大学は平成26年度に統計学に関する高度副プログラム「データ科学」を開講しました.
- 平成30年度,医学統計学コースを新設しました.
- 「データ科学と意思決定」を担当する河本薫大阪大学招聘教授がメディアで紹介されました.
- H30/3/06 日経XTECH「講師は最強タッグのデータサイエンティスト」 (全文読むには会員登録が必要)
- H30/3/19 NHK TV 「新しい仕事スペシャル」
- H30/3/20 日経XTECH「放送翌日に語った分析人材育成」(全文読むには会員登録が必要)
- 受講生のインタビュー:1.基礎工学研究科の履修生 2.人間科学研究科の履修生
- 担当教員からのメッセージ(PDF)
- 基礎工学研究科新入生ガイダンス(H27/4/7)での副プロ紹介資料(PDF)
- 副プロ「金融保険+データ科学」合同説明会(H27/4/10)での資料(PDF)
履修についての注意
副プログラム申請前に「大学院」で修得した単位について
副プログラム「データ科学」申請前に修得したコース該当科目は,基本的にコース修了の単位として認定されます.単位認定を申し出てください. ただし,コア科目「データ科学特論 I 」および「データ科学特論 II 」については認定しないこととしています. これらの科目は副プログラム申請後に(再度)履修してください.
副プログラム「データ科学」のあるコースにエントリーし「データ科学特論 I or II」の単位を修得した者が別のコースにエントリーした場合,既修得の「データ科学特論 I or II」は,新しいコースの修了単位としても認定されます.「データ科学」には8つのコースがあります.複数のコース修了を目指しましょう.
学部で修得した単位について
コース該当科目で学部と大学院の両方にクロスリスト(合併)している科目の単位を学部で修得した場合,2科目4単位を上限としてコース修了単位に参入することができます.単位認定を申し出てください.ただし,学部で修得した単位は主専攻修了要件単位外の4単位(いわゆるはみだし部分)に充当することはできません. 既修得学部科目認定申請書
| 部局 | 大学院科目名称 | 学部科目名称 | ||
|---|---|---|---|---|
| 基礎工 | 290350 | 統計的推測 | 090389 | 統計的推測 |
| 基礎工 | 290773 290778 | 統計解析 I or II | 090388 | 統計解析 |
| 基礎工 | 290650 290648 | Topics in Mathematical Statistics I or II (統計数理概論 I or II) |
090530 | Topics in Mathematical Statistics (統計数理概論) |
| 基礎工 | 290738 299738 | English for Engineering Science (科学技術英語) |
090557 | English for Engineering Science (科学技術英語) |
| 理 | 240033 | 統計・情報数学概論 | 040009 | 応用数理学2 |
| 人間科 | 211688 | 行動統計科学特講 I (Behavioral Statistics I) |
010633 881205 Z26012 | 多変量統計科学 Multivariate Statistical Science Multivariate Data Science |
| 人間科 | 211689 | 行動統計科学特講 II | 010634 010635 | 推測統計科学 統計情報科学 |
| 人間科 | 211187 | 経験社会学特講 | 010157 | 経験社会学 |
| 人間科 | 210646 | 計量社会学特講 | 010168 | 計量社会学 |
| 人間科 | 211261 | 教育動態学特講 | 010495 | 教育動態学 |
| 経済 | 230005 | 計量経済 Ⅰ (Econometrics I) |
030334 | 上級エコノメトリックス I (Advanced Econometrics I) |
| 経済 | 230006 | 計量経済 II (Econometrics II) |
030335 | 上級エコノメトリックス II (Advanced Econometrics II) |
| 経済 | 232006 | 統計解析 | 030309 | 上級統計 |
データ科学特論 special lecture
- 2019年度 データ科学特論 I
- 平成30年度 データ科学特論 II
- 平成29年度 データ科学特論 I
- 平成28年度 データ科学特論 II
- 平成27年度 データ科学特論 I
- 平成26年度 データ科学特論 II
- 平成25年度 データ科学特論 I
プログラム詳細
| プログラム名称 | データ科学 / Data Science |
|---|---|
| 実施部局 | 数理・データ科学教育研究センター |
| 連携部局 | 基礎工学研究科,経済学研究科,人間科学研究科,医学系研究科,工学研究科,理学研究科,情報科学研究科 |
| 修了要件単位数 | 10単位 選択必修科目から6単位以上,選択科目から2単位以上,合計10単位以上を修得すること. |
| 履修対象者 | 修士・博士 |
| プログラム概要 及び教育目標 |
データ科学には定まった定義はないが,データ科学をデータが関わる研究を行う学問と考えるならばその守備範囲は広大である.大学は学問の府であるから,データが重要な役割を果たす実証研究に直結する研究のデザインやデータのハンドリングの方法(統計手法)の習得が,データ科学の中でも,肝要である.本副プログラムは,こういった意味でのデータ科学の実践的かつ包括的な教育コースを提供する.実証研究のデータ科学を身に付けた修了生は,実社会でもデータに関わる実務においてそのスキルを十分に活かすことができる. 各専攻において基本的なデータ処理の教育はなされている.しかし,それらは十分とは言えないであろう.実際,実証研究を中心に行う専攻では,自身の研究テーマに直結するデータ分析の手続きはよくトレーニングされているが,データ分析の基礎的な事柄の理解は危うく,状況が変化すると適切に分析できなくなることがある.一方,数理統計学やデータ科学の基礎を学ぶ専攻では,実際のデータ分析を体験したり批判を受けることは少なく,統計手法の応用上の意味や分析の困難さを学べない.本副プログラムはこのような問題意識に鑑み,下記の目的をもって開設する.なお,主専攻とは受講生自身が所属する専攻である.
本プログラムには8つのコースがある.
コースを修了するためには,コースごとに指定された選択必修科目と選択科目から,それぞれ,6単位ならびに2単位以上,合計10単位以上を修得する必要がある.統計検定(日本統計学会公式認定)の受験を推奨する. 主専攻に関わるコースにおいても他専攻の講義がいくつか配してあり,それらの履修を勧める.さらに,主専攻とは異なる視点でデータ科学を観るため,他専攻のコース修了を推奨する.多くの異なった分野における固有の技術や概念を学習しデータ科学の観点からそれらを見つめ直すことは,学際的・俯瞰的な視野の醸成に資するであろう. なお,本プログラムは,文部科学省 平成24年度採択 大学間連携共同教育推進事業の取組「データに基づく課題解決型人材育成に資する統計教育質保証」の活動の一環として開始された. |
| 履修資格・条件 | 統計関連科目を受講していること.研究や実務等において実データ解析を行った経験があることが望ましい. |
| 前提知識の要否・目安 | 統計検定2級対応「統計学基礎」東京図書のレベルを基準とする.データ解析環境Rの経験があったほうがよい. |
| 内容 | 「統計数理コース」ではデータ科学における数理的基礎,統計理論を習得するとともに実証科学において応用される分析手法を学ぶ教育プログラムを提供する. 全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,確率解析,確率微分方程式,推測統計,多変量解析,時系列解析,分散分析などを習得する科目を開講する. 「機械学習コース」ではデータから知識・情報を抽出するために必要な数理的基礎,統計理論を学習するとともに,データ解析のスキルを獲得する教育プログラムを提供する. 全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,データマイニング,統計モデル,データ解析,リスクマネジメントなどを習得する科目を開講する. 「医学統計学コース」では,臨床試験,観察研究などの医学研究のデザインと統計解析に必要となる統計学的知識およびプログラミング技術を学ぶ教育プログラムを提供する.全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,医学統計学の各論やクリニカルトライアルを習得する科目を開講する. 「保健医療統計学コース」では保健医療分野で得られたデータを解析するために必要な統計手法と研究方法論を習得する教育プログラムを提供する. 全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,医学統計学,臨床試験,観察研究および疫学研究,多変量解析の理論と応用などを習得する科目を開講する. 「人文社会統計学コース」では心理学,社会学,教育学など人文社会科学分野において用いられる統計手法,研究方法論の習得とともに,それらの数理的基礎を学ぶ教育プログラムを提供する. 全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,線形モデル,潜在変数モデル,社会調査,多変量解析の数理的基礎をなど習得する科目を開講する. 「経済経営統計学コース」では経済学,経営学分野で用いられる統計手法を習得するとともに,それらの数理的基礎を学ぶ教育プログラムを提供する. 全コース共通でデータ解析の実際を学ぶデータ科学特論 IおよびIIに加え,統計理論,計量経済学,社会調査,マーケティング・サイエンス,多変量解析の数理的基礎などを習得する科目を開講する. 「ビッグデータ&データサイエンティストコース」ではビッグデータの利活用に必要な数理的基礎,統計理論を学習するとともに,解析手法を獲得する教育プログラムを提供する.全コース共通でデータ解析の実際を学ぶデータ科学特論IおよびIIに加え,ビッグデータ解析,データ分析,データマイニングなどを習得する科目を開講する. 「Statistics-in-English course」では英語で実施される講義によってデータ科学における数理的基礎,統計理論を修得するとともに,国際競争力を獲得する教育プログラムを提供する.様々な分野の統計学を修得できる科目を開講する. |
| アピールポイント |
|
| 受講してもらいたい人 | 実証科学を専攻していて,自身の研究でデータ解析を行う方. |
| 学び終えて | データサイエンティストとして活躍するデータ科学のスペシャリストはもちろんのこと,実社会においてデータを扱うすべての職業において,本プログラムが提供する教育内容を活かすことができる. |
プログラム構成科目: 2019年度
統計数理コース,主要担当部局:MMDS & 基礎工学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 290350 | 統計的推測 | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 290157 | 多変量解析 | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 290352 | 時系列解析 | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 290346 | 確率解析 | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 290590 | 確率微分方程式 | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 211689 | 行動統計科学特講 II | 2 | 春夏 | 人間科学研究科(院前期) | H31年度不開講 | |
| 240033 | 統計・情報数学概論 | 2 | 春夏 | 理学研究科(院前期) | ||
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
機械学習コース,主要担当部局:MMDS & 工学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 280834 | データマイニング工学 | 2 | 秋冬 | 工学研究科(院前期) | ||
| 290773 | 統計解析 I | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 290778 | 統計解析 II | 2 | 春夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 331220 | 知能と学習 | 2 | 春夏 | 情報科学研究科(院前期) | ||
| 290728 | 統計モデリング | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 290020 | データ解析 | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 290723 | 数理特論 II | 2 | 夏 | 基礎工学研究科(院前期) | ||
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
医学統計学コース,主要担当部局:MMDS & 医学系研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 250573 | 医学統計学各論 | 2 | 秋冬 | 医学系研究科(院前期) | ||
| 250548 | クリニカルトライアル総論 | 2 | 秋冬 | 医学系研究科(院前期) | ||
| 250572 | 医学統計学総論 | 2 | 春夏 | 医学系研究科(院前期) | ||
| 250578 | 統計プログラミング 1 | 1 | 春夏 | 医学系研究科(院前期) | ||
| 250579 | 統計プログラミング 2 | 1 | 春夏 | 医学系研究科(院前期) | ||
| 250590 | 医学統計学特論 1 | 1 | 春夏 | 医学系研究科(院前期) | ||
| 250591 | 医学統計学特論 2 | 1 | 秋冬 | 医学系研究科(院前期) | ||
保健医療統計学コース,主要担当部局:MMDS & 医学系研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 255005 | 保健情報論 | 2 | 春夏 | 医学系研究科(院前期) | ||
| 250572 | 医学統計学総論 | 2 | 春夏 | 医学系研究科(院前期) | 旧「臨床統計疫学特論A」 | |
| 250269 | 医学統計学応用 | 2 | 春夏 | 医学系研究科(院前期) | ||
| 250276 | 臨床試験デザイン基礎 | 2 | 秋冬 | 医学系研究科(院前期) | ||
| 250284 | 観察研究の統計的方法 | 2 | 春夏 | 医学系研究科(院前期) | ||
| 250573 | 医学統計学各論 | 2 | 秋冬 | 医学系研究科(院前期) | 旧「臨床統計疫学特論B」 | |
| 255177 | 看護工学 I | 2 | 春夏 | 医学系研究科(院前期) | ||
| 211688 | 行動統計科学特講 I | 2 | 夏 | 人間科学研究科(院前期) | 集中講義 | |
| 211689 | 行動統計科学特講 II | 2 | 春夏 | 人間科学研究科(院前期) | H31年度不開講 | |
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 250548 | クリニカルトライアル総論 | 2 | 秋冬 | 医学系研究科(院前期) | ||
人文社会統計学コース,主要担当部局:MMDS & 人間科学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 211688 | 行動統計科学特講 I | 2 | 夏 | 人間科学研究科(院前期) | 集中講義 | |
| 211187 | 経験社会学特講 | 2 | 秋冬 | 人間科学研究科(院前期) | H31年度不開講 | |
| 210646 | 計量社会学特講 | 2 | 秋冬 | 人間科学研究科(院前期) | ||
| 211193 | 社会データ科学特講 | 2 | 春夏 | 人間科学研究科(院前期) | 新規追加 H31年度不開講 | |
| 211660 | 社会心理学特講 I | 2 | 春夏 | 人間科学研究科(院前期) | 新規追加 | |
| 211689 | 行動統計科学特講 II | 2 | 春夏 | 人間科学研究科(院前期) | H31年度不開講 | |
| 211261 | 教育動態学特講 | 2 | 秋冬 | 人間科学研究科(院前期) | H31年度不開講 | |
| 290157 | 多変量解析 | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 230106 | 計量経済分析Ⅱ | 2 | 秋冬 | 経済学研究科(院前期) | 奇数年度開講 | |
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
経済経営統計学コース,主要担当部局:MMDS & 経済学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 230005 | 計量経済 I | 2 | 春夏 | 経済学研究科(院前期) | ||
| 211688 | 行動統計科学特講 I | 2 | 夏 | 人間科学研究科(院前期) | 集中講義 | |
| 232006 | 統計解析 | 2 | 春夏 | 経済学研究科(院前期) | ||
| 230006 | 計量経済 II | 2 | 秋冬 | 経済学研究科(院前期) | ||
| 232010 | マーケティング・サイエンス | 2 | 秋冬 | 経済学研究科(院前期) | ||
| 230106 | 計量経済分析Ⅱ | 2 | 秋冬 | 経済学研究科(院前期) | 奇数年度開講 | |
| 290157 | 多変量解析 | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 290020 | データ解析 | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 290737 | 数理特論 III | 2 | 夏 | 基礎工学研究科(院前期) | 意思決定とデータ科学 | |
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
ビッグデータ&データサイエンティストコース,主要担当部局:MMDS & 情報科学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290724 | データ科学特論 I | 2 | 夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 290729 | データ科学特論 II | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 290737 | 数理特論 III | 2 | 夏 | 基礎工学研究科(院前期) | 意思決定とデータ科学 | |
| 331635 | ビッグデータ工学 | 2 | 春夏 | 情報科学研究科(院前期) | 奇数年度開講 | |
| 331304 | 並列アルゴリズム理論 | 2 | 春夏 | 情報科学研究科(院前期) | 偶数年度開講 | |
| 331636 | ビッグデータ解析 | 2 | 春夏 | 情報科学研究科(院前期) | 偶数年度開講 | |
| 280834 | データマイニング工学 | 2 | 秋冬 | 工学研究科(院前期) | ||
| 331303 | 並列プログラミング | 2 | 春夏 | 情報科学研究科(院前期) | 奇数年度開講 | |
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
Statistics-in-English course,主要担当部局:MMDS & 基礎工学研究科
| 時間割 コード | 授業科目名 | 単位数 | 開講 学期 | 開講部局(課程) | 備考 | |
|---|---|---|---|---|---|---|
| 選択 必修 | 選択 | |||||
| 290749 | Data Science and Case Studies I | 2 | 春夏 | 基礎工学研究科(院前期) | ||
| 299738 | English for Engineering Science | 2 | 秋冬 | 基礎工学研究科(院前期) | ||
| 211688 | Behavioral Statistics I | 2 | 夏 | 人間科学研究科(院前期) | 集中講義 | |
| 230005 | Econometrics I | 2 | 春夏 | 経済学研究科(院前期) | ||
| 290650 | Topics in Mathematical Statistics I | 2 | 春夏 | 基礎工学研究科(院前期) | 偶数年度開講 | |
| 290648 | Topics in Mathematical Statistics II | 2 | 春夏 | 基礎工学研究科(院前期) | 奇数年度開講 | |
| 230006 | Econometrics II | 2 | 秋冬 | 経済学研究科(院前期) | ||