12.
Why Learn Tools?
• Most analysis at Netflix is via GUIs
• Benefits of command-line tools:
– Helps you understand GUIs: they show the same metrics
– Often documented, unlike GUI metrics
– Often have useful options not exposed in GUIs
• Installing essential tools (something like):
$ sudo apt-get install sysstat bcc-tools bpftrace linux-tools-common
linux-tools-$(uname -r) iproute2 msr-tools
$ git clone https://github.com/brendangregg/msr-cloud-tools
$ git clone https://github.com/brendangregg/bpf-perf-tools-book
These are crisis tools and should be installed by default
In a performance meltdown you may be unable to install them
13.
uptime
• One way to print load averages:
• A measure of resource demand: CPUs + disks
– Includes TASK_UNINTERRUPTIBLE state to show all demand types
– You can use BPF & off-CPU flame graphs to explain this state:
http://www.brendangregg.com/blog/2017-08-08/linux-load-averages.html
– PSI in Linux 4.20 shows CPU, I/O, and memory loads
• Exponentially-damped moving averages
– With time constants of 1, 5, and 15 minutes. See historic trend.
• Load > # of CPUs, may mean CPU saturation
$ uptime
07:42:06 up 8:16, 1 user, load average: 2.27, 2.84, 2.91
Don’t spend more than 5 seconds studying these
14.
top
• System and per-process interval summary:
• %CPU is summed across all CPUs
• Can miss short-lived processes (atop won’t)
$ top - 18:50:26 up 7:43, 1 user, load average: 4.11, 4.91, 5.22
Tasks: 209 total, 1 running, 206 sleeping, 0 stopped, 2 zombie
Cpu(s): 47.1%us, 4.0%sy, 0.0%ni, 48.4%id, 0.0%wa, 0.0%hi, 0.3%si, 0.2%st
Mem: 70197156k total, 44831072k used, 25366084k free, 36360k buffers
Swap: 0k total, 0k used, 0k free, 11873356k cached
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
5738 apiprod 20 0 62.6g 29g 352m S 417 44.2 2144:15 java
1386 apiprod 20 0 17452 1388 964 R 0 0.0 0:00.02 top
1 root 20 0 24340 2272 1340 S 0 0.0 0:01.51 init
2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd
[…]
24.
docker stats
• Soft limits (cgroups) by container:
• Stats are in /sys/fs/cgroups
• CPU shares and bursting breaks monitoring assumptions
# docker stats
CONTAINER CPU % MEM USAGE / LIMIT MEM % NET I/O BLOCK I/O PIDS
353426a09db1 526.81% 4.061 GiB / 8.5 GiB 47.78% 0 B / 0 B 2.818 MB / 0 B 247
6bf166a66e08 303.82% 3.448 GiB / 8.5 GiB 40.57% 0 B / 0 B 2.032 MB / 0 B 267
58dcf8aed0a7 41.01% 1.322 GiB / 2.5 GiB 52.89% 0 B / 0 B 0 B / 0 B 229
61061566ffe5 85.92% 220.9 MiB / 3.023 GiB 7.14% 0 B / 0 B 43.4 MB / 0 B 61
bdc721460293 2.69% 1.204 GiB / 3.906 GiB 30.82% 0 B / 0 B 4.35 MB / 0 B 66
6c80ed61ae63 477.45% 557.7 MiB / 8 GiB 6.81% 0 B / 0 B 9.257 MB / 0 B 19
337292fb5b64 89.05% 766.2 MiB / 8 GiB 9.35% 0 B / 0 B 5.493 MB / 0 B 19
b652ede9a605 173.50% 689.2 MiB / 8 GiB 8.41% 0 B / 0 B 6.48 MB / 0 B 19
d7cd2599291f 504.28% 673.2 MiB / 8 GiB 8.22% 0 B / 0 B 12.58 MB / 0 B 19
05bf9f3e0d13 314.46% 711.6 MiB / 8 GiB 8.69% 0 B / 0 B 7.942 MB / 0 B 19
09082f005755 142.04% 693.9 MiB / 8 GiB 8.47% 0 B / 0 B 8.081 MB / 0 B 19
[...]
25.
showboost
• Determine current CPU clock rate
• Uses MSRs. Can also use PMCs for this.
• Also see turbostat.
# showboost
Base CPU MHz : 2500
Set CPU MHz : 2500
Turbo MHz(s) : 3100 3200 3300 3500
Turbo Ratios : 124% 128% 132% 140%
CPU 0 summary every 1 seconds...
TIME C0_MCYC C0_ACYC UTIL RATIO MHz
23:39:07 1618910294 89419923 64% 5% 138
23:39:08 1774059258 97132588 70% 5% 136
23:39:09 2476365498 130869241 99% 5% 132
^C
https://github.com/brendangregg/msr-cloud-tools
29.
Anti-Methodologies
• The lack of a deliberate methodology…
• Street Light Anti-Method:
– 1. Pick observability tools that are
• Familiar
• Found on the Internet
• Found at random
– 2. Run tools
– 3. Look for obvious issues
• Drunk Man Anti-Method:
– Tune things at random until the problem goes away
30.
Methodologies
• Linux Performance Analysis in 60 seconds
• The USE method
• Workload characterization
• Many others:
– Resource analysis
– Workload analysis
– Drill-down analysis
– CPU profile method
– Off-CPU analysis
– Static performance tuning
– 5 whys
…
31.
Linux Perf Analysis in 60s
http://techblog.netflix.com/2015/11/linux-performance-analysis-in-60s.html
1. uptime
2. dmesg -T | tail
3. vmstat 1
4. mpstat -P ALL 1
5. pidstat 1
6. iostat -xz 1
7. free -m
8. sar -n DEV 1
9. sar -n TCP,ETCP 1
10. top
load averages
kernel errors
overall stats by time
CPU balance
process usage
disk I/O
memory usage
network I/O
TCP stats
check overview
32.
USE Method
For every resource, check:
1. Utilization
2. Saturation
3. Errors
For example, CPUs:
- Utilization: time busy
- Saturation: run queue length or latency
- Errors: ECC errors, etc.
Can be applied to hardware and software (cgroups)
Resource
Utilization
(%)
Saturation
Errors
X
Start with the questions,
then find the tools
33.
Workload Characterization
Analyze workload characteristics, not resulting performance
For example, CPUs:
1. Who: which PIDs, programs, users
2. Why: code paths, context
3. What: CPU instructions, cycles
4. How: changing over time
TargetWorkload
35.
~100% of benchmarks are wrong
The energy needed to refute benchmarks
is orders of magnitude bigger than
to run them (so, no one does)
36.
Benchmarking
• An experimental analysis activity
– Try observational analysis first; benchmarks can perturb
• Benchmarking is error prone:
– Testing the wrong target
• eg, FS cache I/O instead of disk I/O
– Choosing the wrong target
• eg, disk I/O instead of FS cache I/O
– Invalid results
• eg, bugs
– Misleading results:
• you benchmark A,
but actually measure B,
and conclude you measured C caution: benchmarking
37.
Benchmark Examples
• Micro benchmarks:
– File system maximum cached read operations/sec
– Network maximum throughput
• Macro (application) benchmarks:
– Simulated application max request rate
• Bad benchmarks:
– gitpid() in a tight loop
– Context switch timing
kitchen sink benchmarks
38.
caution: despair
If your product’s chances of
winning a benchmark are
50/50, you’ll usually lose
Benchmark paradox
http://www.brendangregg.com/blog/2014-05-03/the-benchmark-paradox.html
39.
Solution: Active Benchmarking
• Root cause analysis while the benchmark runs
– Use the earlier observability tools
– Identify the limiter (or suspect) and include it with the results
• For any given benchmark, ask: why not 10x?
• This takes time, but uncovers most mistakes
41.
Profiling
Can you do this?
“As an experiment to investigate the performance of the resulting TCP/IP
implementation ... the 11/750 is CPU saturated, but the 11/780 has about
30% idle time. The time spent in the system processing the data is spread
out among handling for the Ethernet (20%), IP packet processing (10%),
TCP processing (30%), checksumming (25%), and user system call
handling (15%), with no single part of the handling dominating the time in
the system.”
– Bill Joy, 1981, TCP-IP Digest, Vol 1 #6
https://www.rfc-editor.org/rfc/museum/tcp-ip-digest/tcp-ip-digest.v1n6.1
42.
perf: CPU profiling
• Sampling full stack traces at 99 Hertz, for 30 secs:
# perf record -F 99 -ag -- sleep 30
[ perf record: Woken up 9 times to write data ]
[ perf record: Captured and wrote 2.745 MB perf.data (~119930 samples) ]
# perf report -n --stdio
1.40% 162 java [kernel.kallsyms] [k] _raw_spin_lock
|
--- _raw_spin_lock
|
|--63.21%-- try_to_wake_up
| |
| |--63.91%-- default_wake_function
| | |
| | |--56.11%-- __wake_up_common
| | | __wake_up_locked
| | | ep_poll_callback
| | | __wake_up_common
| | | __wake_up_sync_key
| | | |
| | | |--59.19%-- sock_def_readable
[…78,000 lines truncated…]
45.
Flame Graphs
• Visualizes a collection of stack traces
– x-axis: alphabetical stack sort, to maximize merging
– y-axis: stack depth
– color: random (default), or a dimension
• Perl + SVG + JavaScript
– https://github.com/brendangregg/FlameGraph
– Takes input from many different profilers
– Multiple d3 versions are being developed
• References:
– http://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
– http://queue.acm.org/detail.cfm?id=2927301
– "The Flame Graph" CACM, June 2016
46.
Linux CPU Flame Graphs
Linux 2.6+, via perf:
Linux 4.9+, via BPF:
– Most efficient: no perf.data file, summarizes in-kernel
git clone --depth 1 https://github.com/brendangregg/FlameGraph
cd FlameGraph
perf record -F 99 -a –g -- sleep 30
perf script --header > out.perf01
./stackcollapse-perf.pl < out.perf01 |./flamegraph.pl > perf.svg
git clone --depth 1 https://github.com/brendangregg/FlameGraph
git clone --depth 1 https://github.com/iovisor/bcc
./bcc/tools/profile.py -dF 99 30 | ./FlameGraph/flamegraph.pl > perf.svg
These files can be read using FlameScope
51.
Tracing Stack
tracepoints, kprobes, uprobes
Ftrace, perf_events, BPF
perffront-end tools:
tracing frameworks:
back-end instrumentation:
trace-cmd, perf-tools, bcc, bpftraceadd-on tools:
in
Linux
BPF enables a new class of
custom, efficient, and production safe
performance analysis tools
52.
Ftrace: perf-tools funccount
• Built-in kernel tracing capabilities, added by Steven
Rostedt and others since Linux 2.6.27
• Also see trace-cmd
# ./funccount -i 1 'bio_*'
Tracing "bio_*"... Ctrl-C to end.
FUNC COUNT
[...]
bio_alloc_bioset 536
bio_endio 536
bio_free 536
bio_fs_destructor 536
bio_init 536
bio_integrity_enabled 536
bio_put 729
bio_add_page 1004
53.
perf: Tracing Tracepoints
http://www.brendangregg.com/perf.html
https://perf.wiki.kernel.org/index.php/Main_Page
# perf stat -e block:block_rq_complete -a sleep 10
Performance counter stats for 'system wide':
91 block:block_rq_complete
●
perf was introduced earlier; it is also a powerful tracer
# perf record -e block:block_rq_complete -a sleep 10
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.428 MB perf.data (~18687 samples) ]
# perf script
run 30339 [000] 2083345.722857: block:block_rq_complete: 202,1 W () 12986336 + 8 [0]
run 30339 [000] 2083345.723180: block:block_rq_complete: 202,1 W () 12986528 + 8 [0]
swapper 0 [000] 2083345.723489: block:block_rq_complete: 202,1 W () 12986496 + 8 [0]
swapper 0 [000] 2083346.745840: block:block_rq_complete: 202,1 WS () 1052984 + 144 [0]
supervise 30342 [000] 2083346.746571: block:block_rq_complete: 202,1 WS () 1053128 + 8 [0]
[...]
In-kernel counts (efficient)
Dump & post-process
54.
BCC/BPF: ext4slower
• ext4 operations slower than the threshold:
• Better indicator of application pain than disk I/O
• Measures & filters in-kernel for efficiency using BPF
# ./ext4slower 1
Tracing ext4 operations slower than 1 ms
TIME COMM PID T BYTES OFF_KB LAT(ms) FILENAME
06:49:17 bash 3616 R 128 0 7.75 cksum
06:49:17 cksum 3616 R 39552 0 1.34 [
06:49:17 cksum 3616 R 96 0 5.36 2to3-2.7
06:49:17 cksum 3616 R 96 0 14.94 2to3-3.4
06:49:17 cksum 3616 R 10320 0 6.82 411toppm
06:49:17 cksum 3616 R 65536 0 4.01 a2p
06:49:17 cksum 3616 R 55400 0 8.77 ab
06:49:17 cksum 3616 R 36792 0 16.34 aclocal-1.14
[…]
https://github.com/iovisor/bcc
56.
BPF Perf
Tools
(2019)
BCC & bpftrace repos
contain many of these.
The book has them all.
57.
Off-CPU Analysis
• Explain all blocking events. High-overhead: needs BPF.
file read
from disk
directory read
from disk
pipe write
path read from disk
fstat from disk