資料7-2-2

情報通信審議会 情報通信技術分科会

移動通信システム委員会

報 告 (案)

目次(案)

I 審議事項
II 委員会及び作業班の構成2
III 審議経過2
IV 審議概要
第1章 審議の背景等4
1.1 レーダシステムの現状
1.2 高分解能レーダシステムの国際標準化動向12
1.3 審議の背景19
第2章 79GHz 帯高分解能レーダの導入20
2.1 特徴・利用シーン20
2.2 79GHz 帯高分解能レーダシステムの普及予測
2.3 79GHz 帯高分解能レーダの導入に向けた検討
第3章 他の無線システムとの共存に関する検討70
3.1 検討の対象となる無線システム70
3.2 アマチュア無線業務との共用検討70
3.3 電波天文業務との共用検討71
3.4 近傍周波数の他システムとの共用検討72
第4章 79GHz 帯高分解能レーダの技術的条件73
4.1 一般的条件73
4.2 無線設備の技術的条件73
4.3 測定法
第5章 今後の検討課題76
V 審議結果
VI 参考文献76
別表 1
別表 2
別表 380

I 審議事項

移動通信システム委員会(平成 23 年 1 月 18 日から。同年 1 月 17 日までは ITS 無線シ ステム委員会)(以下「委員会」という。)は、平成 21 年 7 月 28 日付け情報通信審議会諮 問第 2029 号「ITS 無線システムの技術的条件」のうち、「79GHz 帯高分解能レーダの技術 的条件」について審議を行った。

Ⅱ 委員会及び作業班の構成

委員会の構成は、別表1及び別表2のとおり。

なお、検討の促進を図るため、本委員会の下に 79GHz 帯高分解能レーダ作業班(以下「作 業班」という。)を設置した。作業班の構成は別表3のとおり。

III 審議経過

1 委員会

① 第3回(平成22年2月3日)

平成 21 年 11 月 24 日の情報通信審議会情報通信技術分科会において、「ITS 無線シ ステムの技術的条件」のうち「79GHz 帯高分解能レーダの技術的条件」の審議が ITS 無線システム委員会において開始された旨報告があった。検討の促進を図るため、作 業班を設置した。

また、審議を開始するにあたり、次回委員会において 79GHz 帯高分解能レーダに ついて意見陳述の機会を設けることが承認された。

② 第4回(平成22年3月8日)

「79GHz 帯高分解能レーダの技術的条件」について関係者からの意見陳述が行われ、 SARA (Strategic Automotive Radar Frequency Allocation)より欧州における 79GHz 帯レーダの制度化の状況の紹介と、国際標準化の観点から可能な限り欧州の規格と整 合されるよう要望があった。

また、国立天文台及び個人から電波天文業務との干渉検討は ITU-R RA.769 に従っ て評価するよう要望があった。

③ 第7回(平成24年2月17日)※

79GHz 帯高分解能レーダの技術的条件の報告書(案)が作業班より提示され、審議 を行った。

※平成23年1月18日の情報通信審議会情報通信技術分科会において、ITS 無線シ ステム委員会は移動通信システム委員会へと再編され、諮問第2029号は移動通信 システム委員会において引き続き審議されることとなった。

2 作業班

① 第1回(平成22年2月8日)

作業班の運営方針及び検討の進め方について審議を行った。また、現在の 79GHz 帯高分解能レーダの取組状況、欧州における 79GHz 帯レーダの動向及び 79GHz 帯に おける電波天文観測の重要性について、それぞれ関係者から説明が行われた。 ② 第 2 回(平成 22 年 3 月 16 日)

79GHz 帯高分解能レーダの利用イメージ、高分解能レーダシステムの普及予測及び ミリ波帯を用いたレーダシステムの高分解能化技術に関する技術試験事務の検討結果 について、それぞれ関係者から説明が行われた。また、委員会で行われた意見陳述の 結果について事務局より説明が行われた。

③ 第3回(平成22年5月1日)

79GHz 帯高分解能レーダの利用イメージ及び高分解能レーダシステムの普及予測 について、関係者から説明が行われた。また、79GHz 帯高分解能レーダとアマチュア 無線業務との共用検討について審議を行った。続いて、関係者より 79GHz 帯高分解 能レーダの技術的条件について提案され審議を行った。また、報告書目次案について 審議を行った。

④第4回(平成24年2月15日)

79GHz 帯高分解能レーダの技術的条件の報告書(案)について審議を行った。

IV 審議概要

第1章 審議の背景等

1.1 レーダシステムの現状

現在、我が国では人や物の移動・輸送等において、自動車は必要不可欠なものとなって いる。しかしながら、自動車の普及が進む一方で、交通事故や交通事故死傷者数は高い水 準で推移しており社会的な問題の一つとなっている。そのため、自動車の機能として、機 動性、利便性に加えて安全性を更に高めていくことが求められている。

このような流れを受けて、情報通信技術を活用して自動車の安全性を向上させる ITS (Intelligent Transport Systems:高度道路交通システム)が注目されている。天候等に左 右されず周囲の把握が可能な車載レーダについては、高級車を中心に既に導入され始めて おり、自車周辺の車両検知や運転補助といった高度な利便性と安全性の提供に活用されて いる。更に近年では、安全・安心の提供範囲を車両以外にも拡大し、歩行者、自転車など に対する安全確保を提供するため、既存の車載レーダよりも更に分解能の高い車載レーダ の実用化が期待されている。

車載レーダが民生市場に最初に導入されたのは、米国における 1993 年のバス、トラック 向けの 24GHz 帯長距離レーダであり、また一般乗用車への車載レーダの搭載は 1999 年の 76GHz 帯ミリ波レーダの欧州市場導入に始まる。

近年の自動車産業及び自動車市場のグローバル性を考慮すると、電波を利用する車載レ ーダの国際標準化は、付加価値向上と普及のために極めて重要な要素であることから、新 たな車載レーダの実用化に当たっては、諸外国での状況を踏まえ議論を進めていく必要が ある。

1.1.1 76GHz/60GHz 帯レーダ及びレーダシステムの現状

我が国では、60GHz 帯レーダの規格が特定小電力無線局ミリ波レーダ用無線設備(指 定周波数帯 60.0-61.0GHz)として 1995 年に制定され、それに従って ARIB STD-T48 が 制定された。しかしながら、米国及び欧州では、76GHz 帯レーダがそれぞれ 1996 年、 1998 年に標準化され、我が国においても 1999 年に指定周波数 76.5GHz (指定周波数 帯 76.0-77.0GHz) が追加・改定された。その結果、76GHz 帯が事実上の国際標準とな っており(表 1.1-1)、60GHz 帯レーダは我が国での限定的な利用に留まっている。

2005年には我が国の特定小電力無線局ミリ波レーダ用無線設備規則の改訂に伴い、 ARIB STD-T48のスプリアス発射に関する規格が改訂された。

76GHz帯レーダは、主に車両の前方 100~200m 程度までの障害物を距離分解能 1~2 m、視野角 20 度程度で検知する前方監視用長距離レーダとして利用されている。特に高 速道路上で先行車両に対し、距離と相対速度を自動制御して運転者に利便性を提供する アダプティブ・クルーズ・コントロール(ACC)システムとして、1999 年に初めて市場 に導入されて以来順調に普及が進んでいる。 その後、欧州における e-Safety Forum、日本の ASV (Advanced Safety Vehicle¹) プロジェクト等において、衝突予防による交通事故死傷者数の低減が強調され、76GHz 帯レーダは安全・安心の観点から、自動車メーカ各社がその開発と普及に取り組んでいる。

地域	日本	北米				欧州
規格	ARIB STD-T48	FCC Part15 § 15.253			ETSI Standard : EN 301 091	
周波数	76.0GHz-77.0GHz	76.0GHz-77.0GHz			76.0GHz-77.0GHz	
空中線電力	10mW 以下 (10dBm)	車両停止時		200nW/cm ² (23.5dBm) at 3m	クラス 1	average 50dBm 以下
許容範囲	+50%, -70%			-		Peak 55dBm 以下
		車両進行時	前方	60uW/cm ² (48.3dBm) at 3m	クラス 2	average 23.5dBm 以下
			後/側方	30uW/cm ² (45.3dBm) at 3m		Peak 55dBm 以下
ピーク電力		許容された	と平均電力	から 20dB を超えないこと	(上言	記による)
占有	通常の変調状態					
周波数带幅	において 500MHz					:
スプリアス 発射の強度	平均電力 100uW 以下 :帯域外におけるス プリアス発射 50 uW 以下 :スプリアス領域に おける不要発射	0.09MHz-9	960MHz	細分化されているため省略	47-74 87.5-118 174-230 470-862 MHz	-54dBm/100kHz
		960 超-40GHz 未満		500uV/m (-41.2dBm)	Otherwise in band 30MHz to 1GHz	-36dBm/100kHz
					1GHz-25GHz	-30dBm/MHz
			1		25GHz-40GHz	-30dBm/MHz
		40GHz 以上 200GHz 以下	前方	600pW/cm ² (-1.68dBm)	73.5-76GHz	0dBm/MHz
			後/側方	300pW/cm ² (-4.69dBm)	77-79.5GHz 40GHz-100GHz	0dBm/MHz -30dBm/MHz
		200GHz 超-	231GHz	1000pW/cm2 (0.53dBm)		
送信装置の	絶対利得					
空中線利得	40dB 以下					

表 1.1-1 76GHz 帯ミリ波レーダの規格

2003 年からは前方監視プリクラッシュシステムや前方監視追突軽減ブレーキシステム を搭載した車両が一部の自動車メーカから市場に投入され、その後、複数社が同様なシス テムを採用したことにより、衝突被害軽減のためのミリ波レーダシステムの普及が進んだ。 前方監視追突軽減ブレーキシステムの一例を図 1.1-1に示す。

¹ 国土交通省先進安全自動車 http://www.mlit.go.jp/jidosha/anzen/01asv/index.html

図 1.1-1 前方監視追突軽減ブレーキシステムの一例

また、図 1.1-2のように ACC とプリクラッシュシステムを統合し、全車速域で対応 可能となるよう高度化することで、自動渋滞追従システムも可能となる。

図 1.1-2 ACC/プリクラッシュシステム機能を統合した車両システムの一例

さらに近年では、監視範囲を前方だけでなく自車周辺に拡大することで、衝突軽減・ 予防効果を高めた安全運転支援システムの実用化に向けた開発が進んでいる。例えば、 図 1.1-3に示すように、76GHz帯レーダを利用した自車周辺監視システムとして後方 プリクラッシュシステムと前側方プリクラッシュセーフティシステムが挙げられる。後 方プリクラッシュシステムは、後方車の追突に対する安全性を向上し、前側方システム は出会い頭衝突等の正面方向以外からの車両衝突に対応するものである。

(b)前側方プリクラッシュセーフティシステム図 1.1-3 周辺監視システムへの拡大例

1.1.2 24GHz/26GHz 帯レーダシステムの現状

マイクロ波・ミリ波技術の開発は、必要な技術的難易度が低い周波数帯から利用が進んできたため、低い周波数帯のレーダシステムの方が製造コストも低い傾向にある。また 24GHz/26GHz 帯の電波は波長が長く広いアンテナ面積が必要となるため、アンテナ 面積を抑えることが可能な比較的広視野角を必要とするシステムにおいて利用が進んでいる。

(1) 24GHz 帯レーダシステム

24GHz 帯狭域レーダシステムは、24GHz 帯 ISM バンド(日本: 24.05GHz~ 24.25GHz、欧州: 24.0GHz~24.25GHz)を利用しており、占有周波数帯幅が約 200MHz 以下であるため距離分解能は1~3m 程度となっている。

24GHz 帯レーダシステムは監視範囲を、前方監視として実用化された後、後方プリ クラッシュシステム、前側方、後側方監視システムへと事故率の高い方向から徐々に 拡大している。

(2) 24GHz/26GHz 帯 UWB レーダシステム

車載レーダは、短距離の範囲で高精度に対象物を検知するため高い分解能が求めら れている。しかし、距離分解能はレーダの占有周波数帯幅に反比例するため、既存の レーダの占有周波数帯幅(24GHz 狭帯域レーダ:200MHz 以下、76GHz/60GHz 帯レ ーダ:500MHz)では十分な距離分解能が確保できない。そのため、周波数帯幅が広 い 24GHz/26GHz 帯 UWB レーダが、米国、欧州、日本においてそれぞれ 2002 年、 2005 年、2010 年に短距離レーダ(SRR:Short Range Radar)として実用化された(表 1.1-2)。使用周波数帯域はいずれも 4.5GHz 幅以上となっており、10~15cm 程度 の高い距離分解能を有するが、他無線システムへの干渉低減のために空中線電力は非 常に低い値(-41.3dBm/MHz EIRP)に制限されており最大検知距離の確保に難点があ る。

その後、米国では 2004 年にレーダーの周波数帯の下限が 23.120GHz に変更され、 また 23.6~24.0GHz 帯では垂直方向の放射電力の制限が無くなり、同時に電力に制限 が加えられている。

地域	北	*	欧州	日本
規格	FCC02-48 sec,15,2515	FCC04-285 sec,15,252	ECC: 2005/50/EC	総務省令 46/47, 告示 166
周波数	22.00GHz - 29.00GHz	23.12GHz - 29.00GHz	22.00 GHz - 26.65GHz	22.00GHz - 29.0GHz(2016 年ま で) 24.25GHz - 29.0GHz(2017 年以 降)
空中線 平均電力	22.00GHz - 29.00GHz - 41.3dBm/MHz EIRP 以下	23.12GHz - 29.00GHz - 41.3dBm/MHz EIRP 以下 但し 23.6-24.0GHz に おいては - 61.3dBm/MHz 以下	- 41.3dBm/MHz EIRP 以下	- 41.3dBm/MHz EIRP 以下
付帯条件等	・23.6~24.0GHz で仰 角 30 度以上で 25~ 35dB 以上放射電力を 減衰させる制限付き。	・23.6~24.0GHz での 垂直方向放射電力制 限無し。	 ・車載レーダに限定 ・仰角 30 度以上で 30dB 以上減衰 ・電波天文台近傍で自動停波 ・2013 年までの時限的認可 但し24.25-26.65GHzは.2018年 1 月まで(EC Decision 7/2011) ・搭載率 7%以下 	 ・23.6-24GHz においては 仰角 30 度以上で 25dB 以上減衰 ・22.21-22.5GHz 及び 23.6-24GHz においては電波天文台近傍で 自動停波 ・22~24.25GHz においては 2016 年末までに限る

表 1.1-2 24GHz/26GHz帯UWB レーダの規格

24GHz/26GHz帯UWBレーダが想定するシステムの応用例を図 1.1-4に示す。 2~8台のUWBレーダを自車両の周りに配置して周辺監視することにより、衝突軽 減・予防による安全提供と共に、駐車支援への活用等、利便性の向上も可能となる。

現在実用化されているレーダシステムでは、車両前方・後方 30m 程度までの広視 野角な扇型範囲を高精度に検知可能なUWBレーダシステムと、前述した76GHz帯長 距離レーダを相互補完的に併用することで前方監視機能の高度化を実現している。し かしながら、最大検知距離 30m は車両の様な大きな物体に対するものであり、歩行 者等の小さな対象物の検知距離は数 m 程度に限られている。

図 1.1-4 24GHz/26GHz帯UWB レーダが想定するシステム応用

また、24GHz/26GHz 帯 UWB レーダについては、他のシステムへの干渉を避ける ため、日本、欧州とも特定の地域ではレーダを自動停止することとしている。更に、 欧州では使用期限を 2013 年(但し 24.25-26.65GHz で動作するレーダは 2018 年)と 定めており、その後は新しい 79GHz 帯へ移行することが条件となっている。日本で も 24GHz 帯 UWB レーダについては使用期限が 2016 年に定められており、また 26GHz 帯 UWB レーダについては、他システムと共存可能な最大普及率(7%)を超 えることが予想される 2022 年頃目処に干渉緩和対策が必要であるとしている。

1.1.3 新たな 79GHz 帯高分解能レーダシステム

交通事故、特に死亡事故の低減に対する社会的要請は世界的に高く、欧州における e-Safety Forum、日本の ASV プロジェクト等においても、衝突軽減・衝突予防による交 通事故死の低減が重要視されている。

図 1.1-5に示すとおり、自動車と歩行者の事故は死亡事故につながりやすいため、 交通事故死者数の低減には、運転者、同乗者だけでなく、歩行者や自転車等に対する安 全も重要である。しかし、前述した76GHz/60GHz帯レーダ或いは24GHz/26GHz帯UWB レーダを利用した安全運転支援システムは、検知対象を主に車両等の大きな対象物とし ており、運用場所も高速道路等の自動車専用道路としている。そのため、衝突軽減・予 防効果を一般道においても実現可能となる各種応用システムの開発が活発に行われてい る。一般道走行時を高速道路走行時と比較した時の大きな差異として、建物、街路樹等 の障害物が道路近辺に存在することで車両周辺の環境が複雑になることや、歩行者、自 転車等の小さな検知対象の存在が挙げられる。

図 1.1-5 交通事故の形態と死亡事故発生頻度(木更津警察署:平成 13-20 年度合計)

従って、一般道での車載レーダによる安全運転支援システムの実現には、複雑な周囲 環境において短距離(0.2 m 程度)から中距離(50-70 m)にわたり歩行者等の小さな物 体を高精度に分離検知(距離分解能 20 cm 程度)することが必要となる。

これに対し、既存の 76GHz/60GHz 帯レーダでは距離分解能の要求条件を満たすこと が難しく、また 24GHz/26GHz 帯レーダについては使用期限が定められていることから、

恒久的に利用可能な新しい高分解能レーダの実用化が求められている。そのため、検知 精度が高く、国際的にも導入に向けた検討が進められている 79GHz 帯レーダを新しい高 分解能レーダとして導入することとし、その検討を始めることとしたものである。図 1. 1-6に示す各種車載レーダで実現可能な検知精度(距離、速度、角度)の比較からも、 79GHz 帯レーダの優位性が確認できる。

図 1.1-6 各種レーダの性能比較

また、79GHz 帯高分解能レーダにより実現可能となる、車両周辺監視安全システムの 構成と利用シーンの例を図 1.1-7 に示す。

図 1.1-7 79GHz レーダによる車両周辺監視安全システムの構成及び利用シーンの例

1.1.4 車載以外のレーダシステムの現状

ここまでは、各種レーダの車載レーダへの応用について述べてきたが、24GHz帯狭域 レーダや76GHz/60GHz帯レーダについては、車載レーダ以外の用途も検討されている。

(1) 道路状況提供システム

悪天候時(吹雪や濃霧等)等の様々な条件下で、走行車両及び道路障害物の検知を レーダにより実現することで、単独・多重事故誘発事象を予測し、適切な道路状況の 情報を提供することができる(図 1.1-8)。また、同様な設備により道路車線を通

過する車両台数を計測する交通流監視システムもある。

図 1.1-8 ミリ波レーダによる道路状況提供システム

(2)鉄道踏切障害物検知システム

踏切内に停留した障害物(車両及び歩行者や車椅子)をレーダにより検知し、天候 の影響を殆ど受けることなく、鉄道の安全運行を支援する鉄道踏切障害物検知システ ムの例を図 1.1-9に示す

図 1.1-9 鉄道踏切障害物検知システム

(3) 横断歩行者検知システム

横断歩道や周辺にいる歩行者や自転車をレーダにより検知し、走行車両に情報を提 供することで交通安全に寄与する他、歩行者の横断状況に応じた適切な道路交通信号 の制御等にも利用することができる。また、横断歩道や周辺にいる歩行者や自転車を レーダにより検知し、走行車両に情報を提供することで交通安全に寄与する他、歩行 者の横断状況に応じた適切な道路交通信号の制御等にも利用することができる(図 1. 1-10)。

図 1.1-10 横断歩行者検知システム

以上のように、車載以外のレーダシステムにおいても、その検知精度が交通事故低 減に直接結びつくため、79GHz 帯高分解能レーダの適用による検知精度の向上が期 待されている。

1.2 高分解能レーダシステムの国際標準化動向

1.2.1 ITU (国際電気通信連合: International Telecommunication Union)の動向 ITU-R (無線通信部門: Radiocommunication Sector)では、ITS に関する無線通信の 技術標準を検討するため、地上業務を担当する SG5 (Study Group 5)の中にある WP5A (Working Party 5A)において、新技術を審議する WG5 (Working Group 5)に SWG2 (Sub Working Group 2)を設けて車載レーダを含む ITS に関する課題の審議を行ってい る(図 1.2-1)。

図 1.2-1 ITU-R における ITS 無線通信技術の検討体制(2012年1月現在)

ITS に関する無線通信の技術標準については既にいくつかの勧告が承認されており、 ミリ波を使った無線通信システムに関しても ITU-R 勧告 M.1452-1" Millimetre wave radiocommunication systems for intelligent transport system applications"が存在する。 この勧告は 2000 年に承認された ITU-R 勧告 M.1452 "Transport Information and control systems - Low power short range radar equipment at 60GHz and 76GHz"へ "Millimeter wave ITS Radiocommunication system"を 2009 年に追加し、ミリ波に関する ITS 無線 通信技術を広く包含可能な勧告へと改訂されている(図 1.2-2)。

図 1.2-2 ITU-R 勧告 M.1452-1 の構成(2009 年改訂)

2010 年 5 月に開かれた ITU-R SG5 WP5A 会合では、日本から 79GHz 帯高分解能レー ダについても近い将来に M.1452-1 の Annex C として追記する可能性に関する情報の提 供を行った。

2011 年 6 月に開かれた ITU-R SG5 WP5A 会合では、日本と、CEPT 承認の下でドイ ツから勧告 M.1452-1 改訂案が入力され、審議の結果 Preliminary [Draft New Recommendation [LMS.ar]] or [Draft New Revision OF Recommendation ITU-R M.1452-1]: Millimetre wave automotive radars and radiocommunication systems for intelligent transport system applications が出力された。この出力文書は勧告 M.1452-1 の 再改訂または新勧告策定のいずれかを WRC-12 の成り行きを見ながら決めるとしたもの である。(図 1.2-3)

2011 年 11 月に開かれた ITU-R SG5 WP5A 会合では日本、ドイツ、ロシアからの入力 に基づき、ITU-R 勧告 M.1452-1"Millimetre wave vehicular collision avoidance radars and radiocommunication systems for intelligent transport system application"の改訂案が出力 され、SG5 に送られた。続いて同月に開かれた SG5 会合で、この文書が審議された結果、 SG5 と ITU-R 加盟国による 2 段階の郵便投票によって審議されることになった。

図 1.2-3 ITU-R 勧告 M.1452-1 改訂案(2011 年提案)

ところで、79GHz帯高分解能レーダが使用する予定の77-81GHzのうち、77.5-78.0GHz にはレーダの運用が可能な無線標定業務の1次業務への分配が国際的に存在しないため、 WRC(世界無線通信会議:World Radiocommunication Conference)において、無線標 定業務への周波数の分配を確保する必要がある。

WRC で議論する前段階として、アジア・太平洋地域での審議が必要であり、バンコク に本部を有する APT(アジア・太平洋電気通信共同体: Asia-Pacific telecommunity)の APG (APT 準備グループ: APT Preparatory Group)での承認取得を目指すことになった。

2010 年 12 月に開かれた APG2012-4 会合で、日本から 77.5-78.0GHz でレーダが運用 可能な無線標定業務の 1 次業務への分配を求める WRC 新議題提案を行った。

2011 年 8 月に開かれた APG2012-5 会合では 77.5-78.0GHz でレーダが運用可能な無 線標定業務に関する 1 次業務としての分配を求める新議題提案が承認された。その後、 新議題提案は APT 加盟国の郵便投票で承認され、2012 年 1 月から 2 月にかけて開かれ る WRC-12 会合に APT から WRC-15 の新議題案として提案された。WRC-12 において 新議題として承認されれば、2015 年に開かれる予定の WRC-15 に向けて他業務との共 用や干渉に関する検討などが ITU-R SG5 WP5A で進められると予想される。 1.2.2 諸外国における標準化検討状況

2011 年 10 月時点での 79GHz 帯高分解能レーダの制度化の状況として、27 の欧州加 盟国(EU decision 2004/545/EC により 2004 年から許可)とシンガポール(IAD TS UWB により 2007 年から許可)、オーストラリア(2010 年から許可)、ロシア(2010 年から許 可)において 79GHz 帯高分解能レーダの規則が採用されていることが挙げられる。なお、 他の地域では制定が保留、或いは検討中となっている。

(1) 欧州での検討動向

欧州委員会では、道路安全と ITS のための新しい短距離レーダの普及策を推進して きた。現在、前述した 24GHz 帯狭域レーダや 76GHz 帯レーダが長距離レーダ(LRR:

Long Range Radar) として、また 24/26GHz 帯 UWB レーダが SRR として活用さ れているが、24/26GHz 帯 UWB レーダについては、他システムとの干渉回避のため 一部地域で使用が制限されているほか、この周波数帯の車載レーダとしての利用を 2013 年までの暫定的な帯域とされていた。

このような中、2004 年に ECC(Electronic Communications Committee)及び欧州 委員会では次の2つの決定を発表している。

- ・ECC/DEC/(04)03 2004 年 3 月 19 日:77-81GHz の周波数帯を車用の短距離レ ーダに指定する決定。
- ・2004/545/EC 2004 年7月8日: EU内での車載用短距離レーダのための79GHz
 帯における周波数の協調に関する決定。

これらは車載用短距離レーダの 77-81GHz 帯での恒久的使用についての決定である。 77-81GHz 帯は短距離レーダの長期的・恒久的な発展に最も適した周波数帯と理解さ れており、前記の ECC および EC の決定は次に示す 24GHz 帯 UWB レーダに関する 暫定的な決定と共に発行されたものである。

- ・ECC/DEC/(04)10 2004 年 12 月 12 日:24GHz 帯車載用短距離レーダの暫定的 な導入に指定する決定。
- ・2005/50/EC 2005 年 1 月 17 日:車載用短距離レーダの EC 内での暫定的な使 用のための 79GHz 帯域における周波数調和に関する決定。

24GHz 帯車載用短距離レーダの使用は、時限付きの許可となっており、24GHz 帯 から 79GHz 帯への移行を意図した所謂「パッケージソリューション」といえる。

なお、24GHz 帯車載用短距離レーダについては、2011 年 7 月、欧州委員会が次の 決定(Amendment 2005/50/EC)を行っているが、使用期限は最長でも 2018 年年初 までと限定されている。

- ・21.65-24.25GHz で運用するレーダの期限は 2013 年 6 月末までのままとする。
- ・24.25-26.65GHz で運用するレーダの期限は 2018 年1月1日までとする。
- ただし、2018年までに型式認定を受けたものは2022年1月1日までとする。

①システム概要

欧州では、欧州の標準化機関である ETSI (European Telecommunications Standards Institute)のシステム規格 (ETSI TR 102 263)の初版に記載されている周波数帯域と 出力に関する技術要件に基づいて、2008 年に 77GHz~81GHz 帯で運用する短距離レ ーダを規定する ETSI 標準 (EN 302 264-1 及び EN 302 264-2)が定められた。スプ リアス放射限度、帯域外放射限度をそれぞれ表 1.2-1、表 1.2-2に示す。

また、この規格における主な技術的パラメータと条件は次のとおりである。

- ・ 周波数帯域: 77GHz -81GHz
- ・用途:車載用短距離レーダ用
- ・被干渉、無保護基準(いわゆる短距離装置アプリケーション)
- ・最大平均 RMS 電力密度: 3 dBm/MHz EIRP (レーダセンサ)
- ・最大平均 RMS 電力密度::-9 dBm/MHz EIRP(バンパー透過後)
- ・ピーク電力:+55 dBm EIRP

周波数帯域	スプリアス放射限度
47~74MHz	-54dBm
87.5~118MHz	-54dBm
174~230MHz	-54dBm
470~862MHz	-54dBm
30~1000MHz 内の他の帯域	-36dBm
1~100GHz※	-30dBm
※ 77GHz~81GHz までの 79G	GHz 帯 SRR に許可された周波
数帯域内では適用されない	

表 1.2-1 スプリアス放射限度

表 1.2-2 帯域外放射限度

周波数帯域	帯域外放射限度
25~77GHz	-30dBm/MHz
81~100GHz	-30dBm/MHz

② 周波数帯の割り当て

欧州における各周波数帯域割当状況を表 1.2-3に示す。

FREQUENCY BAND	ALLOCATIONS(ITU-RR)	ECA TABLE(feb 2004)	
	FIXED	FIXED	
	FIXED-SATELLITE (space-to-Earth)	FIXED-SATELLITE (space-to-Earth)	
	MOBILE	MOBILE	
75.5-76.0GHz	BROADCASTING	BROADCASTING	
	BROADCASTING-SATELLITE	BROADCASTING-SATELLITE	
	Space research (space-to-Earth)	Space research (space-to-Earth)	
	5.559A 5.561	5.559A 5.561 EU35	
	RADIO ASTRONOMY	ADIO ASTRONOMY	
	RADIOLOCATION	RADIOLOCATION ECA note 1)	
76.0.77.5CUz	Amateur	Amateur	
70.0-77.30Hz	Amateur-Satellite	Amateur-Satellite	
	Space-Research (space-to-Earth)	Space-Research (space-to-Earth)	
	5.149	5.149 EU2	
	AMATEUR	AMATEUR	
	AMATEUR-SATELLITE	AMATEUR-SATELLITE	
77.5-78.0GHz	Radio-Astronomy	Radio-Astronomy	
	Space Research (space-to-Earth)	Space Research (space-to-Earth)	
	5.149	5.149	
	RADIOLOCATION	RADIOLOCATION	
	Amateur	Amateur	
78.0.79.0GHz	Amateur-Satellite	Amateur-Satellite	
78:0-79:00112	Radio Astronomy	Radio Astronomy	
	Space Research (space-to-Earth)	Space Research (space-to-Earth)	
	5.149	5.149	
	RADIOLOCATION	RADIOLOCATION	
	Amateur	Amateur	
79.0-81.0GHz	Amateur-Satellite	Amateur-Satellite	
77.0-01.00112	Radio Astronomy	Radio Astronomy	
	Space Research (space-to-Earth)	Space Research (space-to-Earth)	
	5.149	5.149 EU2	

表	1.2-3	各周波数帯域における割当状況

5.149 76-86GHz […]で他の業務の局に割り当てる際は、電波天文業務を有害な干渉から保護のため、実 行可能な全ての手段を取ること。(Nos.4.5、4.6、Article 29 参照)。(WRC-2000)

5.559A 75.5-76GHz もまた 2006 年まで一次業務としてアマチュア、アマチュア衛星業務に割り当てられ ている。(WRC-2000)

EU2 軍民共用

EU35 75.5-76GHz はヨーロッパでは 2006 年以降アマチュア、アマチュア衛星業務にも割り当てられる。 ECA 注 1) RTTT: ECC DEC (02) 01; ERC REC 70-03.Road Transport and Traffic Telematic 76-77GHz Radar (ECC report56.AnnexA-2004 年 10 月より)

(2)米国での検討動向

米国では 2011 年 10 月時点では 79GHz 帯高分解能レーダに関する標準化の検討は 行われていない。欧州の動向や、先に割当を決定している 22~29GHz 帯で使用可能 な UWB レーダの市場動向等を勘案し、79GHz 帯高分解能レーダに関する標準化の検 討が進められるものと予想される。

1.2.3 国際標準化の必要性

先述のとおり、既に欧州及びシンガポール、オーストラリア、ロシアにおいて車載用 レーダ用途へ 79GHz 帯の割当がされ、制度化されている。

このような中、79GHz 帯高分解能レーダを活用した安全運転支援システムの普及の観 点から、先行して制度化されている欧州等の状況を考慮しつつ、周波数帯を含め可能な 限り技術基準の整合を取ることが望ましい。 さらに、79GHz 帯高分解能レーダに関しては、車載レーダの相互干渉を低減するため にも、国際的に広く合意された勧告の実現などを各国・地域と連携し実現することが求 められている。

1.3 審議の背景

先述のとおり、より安全な道路交通社会の実現に向け、自動車のような大きな対象物 だけでなく、歩行者や自転車等の小さな対象物まで検知可能でかつ広く普及可能な高分 解能レーダの実現が求められている。

このような状況の中、日本においても高分解能レーダの社会的貢献に関する検討が進められている。2005年に取りまとめられた「ワイヤレスブロードバンド推進研究会最終報告書」では、高分解能レーダのシステム要件として、人や自転車等の識別が可能な距離分解能を数10cm程度としており、周波数帯としては国際的にも導入に向けた検討が進められている79GHz帯を中心とした割当ての検討をすることが適当とされている。

また、これを受けて 2011 年に改定された「周波数再編アクションプラン(平成 23 年 9月改定版)」では、以下の記述がある。

- ・79GHz帯を利用した新たな高分解能レーダシステムの導入について平成19年度 から技術的検討を進めており、国際標準化動向や諸外国の周波数の割当状況、電 波天文業務との調整状況等を踏まえて、平成23年度中に技術基準の策定等を実施 する。
- ・79GHz 帯を使った高分解能レーダシステムの平成28 年までの実用化を目指し、
 歩行者等を高精度で検出するための高精度分離・検出技術や干渉を低減・回避するための技術等の研究開発を推進する。

また総務省では、平成 19 年度から平成 21 年度までの間、周波数ひっ迫対策のための 技術試験事務として、79GHz 帯を利用した新たな高分解能レーダシステムの実用化に向 けて「ミリ波帯を用いたレーダシステムの高分解能化技術」に関する検討を行った。

これらの背景を踏まえ、新たな需要に対応可能な 79GHz 帯高分解能レーダの導入に必要となる技術的条件について、以下を重点的に考慮しながら審議を行った。

- ・レーダの性能: 79GHz 帯レーダに期待されるシステム応用として、特に歩行者、 自転車に対する安全提供を実現すること。
- ・国際標準化動向:車市場のグローバル性を考慮し、諸外国・国際機関で既存のまたは検討中の技術的条件・規定等との整合性を可能な限り保つこと。
- ・他の無線システムとの共用:79GHz 周波数帯で対象となる電波天文業務、アマチュア無線業務との干渉検討を行うこと。特に、現在アマチュア無線業務が1次業務として割り当てられている77.5GHz~78.0GHzについては共用の可能性を検討すること。

第2章 79GHz 帯高分解能レーダの導入

- 2.1 特徴・利用シーン
 - 2.1.1 車載レーダシステム

79GHz 帯高分解能レーダは、既存の 76GHz/60GHz 帯レーダや 24GHz 帯狭帯域レー ダと比較して高い距離分解能を得ることができる特徴を持つ。また、同程度の距離分解 能が得られる 24GHz/26GHz 帯 UWB レーダより最大検知距離が長いという特徴も併せ 持つ(図 2.1-1)。

図 2.1-1 79GHz 帯高分解能レーダの特徴

このような特徴から、79GHz 帯高分解能レーダを利用した車載レーダシステムでは、歩 行者や自転車等の小さな対象物の分離・抽出性能が向上し早期の発見が可能となるため、 安全運転支援システムの性能向上に大きく寄与する。また、自車周辺の障害物との距離測 定を高い距離分解能・精度で行えるため、衝突直前までの制御が可能となり被害低減にも 役立つと考えられる。

以下に、現在想定されている 79GHz 帯高分解能レーダを利用した安全運転支援システム のイメージ及びシステム構成の例を示す。

(1)利用イメージ例

①直線道路横断歩行者の検出

歩行者が死亡に至った事故は、歩行者が直線道路を横断中に多く発生しており²、図 2.1-2のような場面が考えられる。人が駐車車両や路側構造物の近くから現れる場面

² 高分解能レーダ作業班(第2回)資料 2029-レ作 2-3、「79GHz 帯高分解能レーダの利用イメ ージについて」

において、距離分解能の悪いレーダでは人を分離して検出することが困難であったが、 高分解能レーダを用いることによって、駐車車両や路側構造物などからの反射と人か らの反射を分離して検出することが可能となり、警報等によりその存在を運転手に情 報提供出来るようになる。また、検出する物体の位置精度も高くなることから、衝突 判定時にはドライバーへの警報やブレーキ制御との連動により事故被害の低減が期待 される。

図 2.1-2 直線道路横断歩行者の想定場面

②交差点横断歩行者の検出

歩行者が死亡に至った事故が多いもう一つの場面は、図 2.1-3のような横断歩道 を横断中の場面である。このような場面では複数の人の集団を分離して検出する必要 があるため、距離分解能の悪いレーダでは個々の人を分離して検出することが困難で あったが、高分解能レーダを用いることによって個々の人を分離して検出することが 可能となり、警報等により衝突の可能性を運転手に情報提供出来るようになる。また、 検出する物体の位置精度も高くなることから衝突判定の精度も向上し、衝突判定時に はドライバーへの警報やブレーキ制御との連動により事故被害の低減が期待される。

図 2.1-3 交差点横断歩行者の想定場面

③オートバイの検出

オートバイの死亡事故は車両相互の出会い頭や右折時の事故が多く、交差点以外に も直線道路で多く発生しており、図 2.1-4のような場面が考えられる。このような 場面では自動車よりも反射強度が小さく速度の速いオートバイを周囲と分離して検出 する必要がある。

79GHz 帯高分解能レーダでは、例えば交差点周辺の短距離から直線道路の長距離に わたって広い距離範囲の物体を検出することが可能である。

図 2.1-4 直線道路横断歩行者の想定場面

(2)システム構成の例

システム構成の例を図 2.1-5に示す。この図では車両前方に搭載されたミリ波 レーダで前方に存在する対象物の位置や相対速度等を検出し、この情報を基に衝突判 断を行う。前方の対象物と衝突の可能性がある場合には、警報等によりドライバーに 注意喚起し、衝突が不可避の場合にはブレーキを動作させて車速を落とすことで運転 手や歩行者等の被害を軽減する。なお、図 2.1-5は前方レーダの例であるが、後 方レーダについても同様である。

図 2.1-5 車載レーダシステムの構成例

このように、79GHz 帯高分解能レーダは広い周波数帯域幅を活かした高い距離分解能を 有しており、これにより既存のレーダシステムよりも高い物体の検出性能が実現できる。 この高い検出性能を活かした衝突判断精度の向上により、より安全な制御が可能となり事 故被害の低減が期待される。

2.1.2 車載レーダシステム以外

先述のように 24GHz 帯狭域レーダや 76GHz/60GHz 帯レーダは、インフラ設置型のレ ーダシステムにも利用される等、車載レーダ以外にも利用されている。79GHz 帯高分解 能レーダについても、既存のレーダと同様にインフラ設置型のレーダシステムを始めと した様々な用途への活用が期待されている。

特に 79GHz 帯高分解能レーダは、歩行者や自転車等の小さな対象物を周囲の背景等か ら分離し検知出来るため、既存のレーダでは困難であった広いエリアに存在する多種多 様な対象物を検知するインフラシステムの実現も可能となる。

79GHz 帯高分解能レーダの車載レーダ以外の利用イメージ例を図 2.1-6に示す。

図 2.1-6 車載レーダ以外の利用イメージ例

2.1.3 レーダシステムとしての要求条件

79GHz 帯高分解能レーダの適用が想定される利用シーンは、従来の 24GHz/26GHz 帯 UWB レーダと類似する利用シーンの他、79GHz 帯高分解能レーダに特有の利用シーン が想定されている。各利用シーンで想定しているアプリケーションの実現のためにレー ダシステムに求められる目標性能を、表 2.1-1及び表 2.1-2に示す。

利用シーン		ブラインド スポット	アシスト パーキング	Stop & Go	プリクラッシュ
最小検知対象		歩行者	3"PVC pipe	オートバイ	10cm
		2111	0.100 p.p0		Metal post
最大検知距離	(m)	4	5	30	7
最小検知距離	(m)	0.5	0.2	0.3	0.2
距離分解能	(m)	0.4	0.2	2.0	0.4
是士埃知坦封速度	(m/s)	15	3	8	55
取八俠和伯別还度	(km/h)	54	10.8	28.8	198
相対速度分解能	(m/s)	1	0.1	1	1
データ更新レート	(ms)	50	50	50	10
水平検知視野角	(度)		60	60	60

表 2.1-1 24GHz/26GHz 帯 UWB レーダと類似する利用シーンの目標性能

利用シーン		プリクラッシュ			路側設置交差点及び 周辺エリア監視	
最小検知対象		直線道路 横断歩行者	交差点 横断歩行者	オートバイ	步行者	
			短距離	中距離		
最大検知距離	(m)	50	25	70	40	
最小検知距離	(m)	0.2	0.2	1	0.5	
距離分解能	(m)	0.2	0.2	1	0.2	
目上於何也以注应	(m/s)	17	17	55	11	
	(km/h)	61.2	61.2	198	39.6	
相対速度分解能	(m/s)	1	1	1	0.5	
データ更新レート	(ms)	50	50	50	100	
水平検知視野角	(度)	60	60	15	60	

表 2.1-2 79GHz 帯高分解能レーダに特有の利用シーンの目標性能

2.2 79GHz 帯高分解能レーダシステムの普及予測

79GHz 帯高分解能レーダについて、主に車載レーダシステムとして利用された場合の普及予測の検討結果を示す。

2.2.1 前提条件

(1) 普及推移モデル

普及推移モデルの策定にあたっては、79GHz 帯高分解能レーダの普及は様々な分 野での製品の普及予測に一般的に用いられるロジスティック曲線に従うものと仮定す る。また、既存の車載システム衝突被害軽減ブレーキ(76GHz 帯レーダ等)の普及実 績を基に、自動車の買い替えサイクルを加味するものとする。

<u>ロジスティック曲線の一般式</u>

f(t):装着率

 $f(t) = \left(\frac{a}{b}\right) \frac{1}{1 + ce^{-at}}$ t : 導入からの経過年数 a : 増殖率 (立ち上がりの急峻度に影響) a/b : 環境容量 (十分に時間が経過した時に漸近する値) c : 立ち上がりの時期 (小さいほど早い)

(2) パラメータの定義

79GHz 帯高分解能レーダシステムの主な用途として、車に搭載して使用すること を想定していることから、我が国の自動車保有台数及び新規登録台数を基に検討を行う。

近年、我が国の自動車保有台数は増加傾向ではないため、2010 年における統計デ ータが今後も大きく変動しないと仮定し、79GHz 帯高分解能レーダシステムの普及 予測に使用するパラメータを表 2.2-1のように定義する。なお、79GHz 帯高分解 能レーダシステムの累積導入台数は、自動車の平均使用年数から新規導入台数の過去 12年間分の合計とする。

表 2.2-1 79GHz 帯高分解能レーダシステムの普及予測に使用するパラメータの定義

自動車保有台数	7900 万台 ← 78,894,511 台(2010 年 7 月末)
新規登録台数/年	650万台 ← 78,894,511 台÷12.43 年=6,347,105 台/年
平均使用年数	12.43 年 ← 2010 年の平均使用年数
装着率	(装着車の新規導入台数)÷(新規登録台数)
普及率	(装着車の累積導入台数)÷(自動車保有台数)

(財団法人 自動車検査登録情報協会 統計値より)

2.2.2 普及予測

(1)導入初期の普及予測

衝突被害軽減ブレーキの普及実績に倣って、導入初期は緩かに普及が進み将来 60%に漸近すると仮定した場合の近似式は以下となる。また、この近似式に従って 79GHz 帯高分解能レーダシステムの普及が進むと仮定した場合、導入初期段階での 普及予測は図 2.2-1のよう算出される。

<u>衝突被害軽減ブレーキの普及実績に倣って普及した場合の近似式</u>

 $f(t) = \left(\frac{a}{b}\right) \frac{1}{1 + ce^{-at}}$ a=0.43a/b=0.6 (将来60%に漸近) c=1500

図 2.2-1から、79GHz 帯高分解能レーダシステムの導入開始時期を 79GHz 帯の 電波利用が可能になり商品化が期待される 2014 年と仮定した場合、導入後 6 年経過 した 2020 年の累積導入台数は 9 万台程度(普及率 0.11%)、12 年経過した 2026 年 の累積導入台数は 120 万台程度(普及率 1.5%)となる。

図 2.2-1 79GHz 帯高分解能レーダの導入初期の普及予測

(2) 中長期の普及予測

(1)と同様に中長期の普及予測を算出した結果を図 2.2-2に示す。中長期の普及予測では、79GHz 帯高分解能レーダシステムの搭載率が 60%に漸近する普及予測 に加え、運転席エアバッグの普及実績を参考に普及率が 100%に漸近する普及予測も 算出している。

エアバッグの普及実績に倣って普及した場合の近似式

 $f(t) = \left(\frac{a}{b}\right) \frac{1}{1 + ce^{-at}}$ a=0.7a/b=1 (将来 100%に漸近) c=50000

導入開始後 20 年が経過した 2034 年には、自動車保有台数を分母にした普及率は 19%~42%程度(累積導入台数 1500 万台~3300 万台)となる。

図 2.2-2 79GHz 帯高分解能レーダシステムの中長期の普及予測

2.3 79GHz 帯高分解能レーダの導入に向けた検討

79GHz 帯高分解能レーダに求められる技術的条件について、2.1.3で示した各利用シ ーンでのレーダシステムの目標性能を基に検討する。

レーダの送信波の変調方式としては FMCW (Frequency Modulated Continuous-wave) 方式、パルス方式、2 周波 CW 方式、周波数コード変調方式等が想定されるため、これら 方式につき検討する。

2.3.1 レーダ方式と基本動作の概要

(1) FMCW 方式における基本動作の概要

FMCW 方式は送信周波数をある周波数帯域幅内で遷移させ、送信信号と検知対象から 反射してレーダに到来する信号とをミキシングし、その差周波により距離と相対速度と を求める方式である [1]。

本節では図 2.3-1に示すように、送信波の周波数を三角状に遷移させる方式(以降 この変調方式を三角変調と称する)について述べる。

図 2.3-1 FMCW 方式レーダの送受信周波数とビート周波数との関係

図 2.3-1において実線で示した送信波の周波数は線形に上昇遷移する区間と、線形 に下降遷移する区間とを有する。その周波数の遷移幅を図 2.3-1において Δf とする。 また、上昇遷移する時間、下降遷移する時間は等しいものとして ΔT とし、上昇遷移時間 と下降遷移時間との和を T_m とする。

レーダから送信された電磁波はターゲットで反射し再びレーダに戻る。図 2.3-1に は送信波とともに受信波の周波数の時間変化を破線で示している。送信波に対して受信 波は、レーダとターゲットとの間を往復するために時間軸方向にシフトする。また、レ ーダとターゲットとの相対速度によって送信波はドップラーシフトを生じ、受信波は送 信波に対して周波数軸方向にシフトする。この結果、図 2.3-1の破線で示すように、 受信波は送信波に対して時間軸方向と周波数軸方向の両方にシフトする。

送信波と受信波とをミキシングすることで差周波が観測される。これをビートと呼ぶ。 ビート周波数は、図 2.3-1に示すように、上昇遷移時間と下降遷移時間とにおいて異 なり、上昇遷移時間におけるビート周波数を *f*_{bu}とし、下降遷移時間におけるビート周波 数を *f*_{bd}とする。

先述のとおり、受信波は送信波に対しドップラーシフトにより周波数軸方向にシフト する。このドップラーシフトに依存する周波数を f_{doppler} とすると、周知のとおりレーダと ターゲットとの相対速度 v と送信周波数 f_c とで決まり、

$$f_{doppler} = \frac{2v}{c} f_c \qquad (\exists 2.1)$$

と表される。

(式 2.1)から分かるように、レーダとターゲットとの相対速度は f_{doppler}を測定する
 ことで算出することが可能であり

$$v = \frac{c}{2} \frac{1}{f_c} f_{doppler} \qquad (\exists 2.2)$$

となる。

また、受信波は送信波に対し、レーダとターゲットとの往復に要する時間により時間 軸方向にもシフトする。レーダとターゲットとの距離をR、光速をcとすると、この往 復に要する時間は $\frac{2R}{c}$ となる。この時間差により三角変調においては図 2.3-2に示す ように差周波が観測される。このレーダとターゲットとの距離に起因するビート周波数 を f_{range} とする。

図 2.3-2 FMCW の三角変調におけるレーダとターゲットとの距離に起因する ビート周波数の概略

送信波、受信波の周波数の時間変化(図 2.3-1、図 2.3-2における傾き)は $\frac{\Delta f}{\Delta T}$ であるため、 f_{range} は図 2.3-2より

$$f_{range} = \frac{2R}{c} \frac{\Delta f}{\Delta T} \tag{$\frac{1}{2.3}$}$$

となる。

(式 2.3)から分かるように、レーダとターゲットとの距離は*f_{range}*を測定すること
 で算出でき、

$$R = \frac{c}{2} \frac{\Delta T}{\Delta f} f_{range} \qquad (\exists 2.4)$$

となる。

次に、 $f_{doppler} \ge f_{range}$ を測定する手法を示す。

図 2.3-1、図 2.3-2より、

$$f_{bu} = f_{range} - f_{doppler} \qquad (\vec{x} \ 2.5)$$

$$f_{bu} = f_{range} + f_{doppler} \qquad (\vec{x} \ 2.5)$$

であることが分かり、(式 2.5)と(式 2.6)から、

$$f_{doppler} = \frac{1}{2} (f_{bd} - f_{bu})$$
 (式 2.7)

$$f_{range} = \frac{1}{2} (f_{bd} + f_{bu})$$
 (式 2.8)

となる。(式 2.7)、(式 2.8) で測定した *f_{doppler}* と *f_{range}* の値を(式 2.2)、(式 2. 4)、に代入することでレーダとターゲットとの距離、相対速度を求めることができる。 即ち、図 2.3-1に示した *f_{bu}* と *f_{bd}* とを観測することで、レーダとターゲットとの距離、 相対速度を求めることができる。

以上が FMCW 方式の概要である。

次に FMCW 方式の距離分解能の向上、相対速度分解能の向上の手法を述べる。

上述から距離分解能を向上させるためには f_{range} の測定分解能を向上させることが必要であることが分かり、 f_{range} の測定分解能は f_{bu} 、 f_{bd} の測定分解能で決まる。

一般に周波数の測定分解能は波形の観測時間に逆比例し、観測時間を T_{ob} とすると周波 数分解能 f_{bin} は

$$f_{bin} = \frac{1}{T_{ob}} \tag{$\vec{x} 2.9$}$$

となる。

三角変調を用いた FMCW 方式において、 f_{bu} の測定分解能は、図 2.3-1より観測時間 が ΔT であることから $\frac{1}{\Delta T}$ となる。同様に f_{bd} の測定分解能も $\frac{1}{\Delta T}$ となり、(式 2.8)よ

り f_{range} は f_{bu} 、 f_{bd} で決まることから、 f_{range} の測定分解能は $\frac{1}{\Delta T}$ となる。

また、レーダとターゲットとの距離 R は(式 2.4)で求まる。Rの測定分解能を R_{bin} と表すと(式 2.4)と f_{range} の測定分解能は $\frac{1}{\Lambda T}$ であることから

$$R_{bin} = \frac{c}{2} \frac{\Delta T}{\Delta f} \left(\frac{1}{\Delta T} \right) = \frac{c}{2\Delta f} \qquad (\ddagger 2.10)$$

となる。

(式 2.10)より、レーダとターゲットとの距離分解能を向上させることは △f、すなわち三角変調における周波数遷移の幅、周波数帯域幅を広くすることに帰着することが分かる。

次に、相対速度分解能についても触れる。

相対速度 v は(式 2.2)に示した通り、 $f_{doppler}$ で決まり、 $f_{doppler}$ は(式 2.7)より f_{bu} と f_{bd} で決まる。既述したように f_{bu} と f_{bd} の測定分解能は $\frac{1}{\Delta T}$ であることから $f_{doppler}$ の測定 分解能は $\frac{1}{\Delta T}$ となる。

よって、相対速度分解能を v_{bin} とすると、(式 2.2)と $f_{doppler}$ の測定分解能は $\frac{1}{\Delta T}$ であることから

$$v_{bin} = \frac{c}{2} \frac{1}{f_c} \left(\frac{1}{\Delta T} \right) \tag{$\vec{\textbf{z}} = 1, 1, 1$}$$

となる。

(式 2.11)から三角変調を用いた FMCW 方式において、相対速度分解能を向上させることは周波数遷移時間 Δ*T* を長くすることに帰着することが分かる。

(2) パルス方式における基本動作の概要

パルス方式における検知概要を図 2.3-3に示す。

図 2.3-3 パルス方式における送信パルスと受信パルスの時間関係

パルス方式は、レーダからパルス状にミリ波を送信し、ターゲットで反射して再びレ ーダにパルスが戻るまでのパルスの往復時間 $\frac{2R}{c}$ を測定することで、レーダとターゲッ トとの距離 *R* を算出する方法である。

パルスの往復時間 2R を求める方法の概要を以下で述べる。

パルス方式では、レーダからパルスを送信し最小検知距離からレーダにパルスが戻っ てくる時間、レーダからパルスを送信し最大検知距離からレーダにパルスが戻ってくる 時間、この両者の時間間隔を距離分解能 ΔR に相当する時間 $\frac{2\Delta R}{2}$ に分割する。その上で、

各時間区分 <u>2△R</u> からパルスが反射して返ってくる時間だけ検知回路を開き(レンジゲー トという)、パルスを検知したレンジゲート番号から検知対象までの距離を算出する。

パルス方式で距離分解能(ΔR)を小さくするためには、一つのレンジゲートの時間間 隔は短くする必要がある。そのため、レンジゲートの数は増加する。このレンジゲート 数の増加により最小検知距離から最大検知距離までの全区間を検知するのに要する時間 は長くなる。

以下、図 2.3-4を用いてパルス方式の検知の仕組みを具体的に述べる。

最大検知距離をRmaxとし、最小検知距離をRminとすると、レーダからパルスが送信さ れ、最大検知距離 R_{max} から戻ってくる時間は $\frac{2R_{max}}{2}$ となり(cは光速)、最小検知距離 R_{min} から戻ってくる時間は $\frac{2R_{\min}}{2}$ となる。時間差は $\frac{2(R_{\max}-R_{\min})}{2}$ となり、この時間を先に述 べた距離分解能 ΔR に相当する時間 $\frac{2\Delta R}{c}$ で割った $\frac{(R_{\max} - R_{\min})}{\Delta R}$ がレンジゲート数となる。

図 2.3-4 パルス方式においてレンジゲートを用いた距離検知の概要

任意のレンジゲートの走査に必要な時間は $\frac{2R_{max}}{c}$ である。これは、最大検知距離 R_{max} から信号が返ってくる可能性があることから、これに相当する時間待つ必要があるためである。従って全レンジゲートの走査に必要な時間は

$$\frac{2R_{\max}}{c} \frac{R_{\max} - R_{\min}}{\Delta R}$$
 (式 2.12)

となる。

要求される最大検知距離 R_{max} 、要求される走査エリア $(R_{max} - R_{min})$ が大きくなるほど、 また要求される分解能 ΔR が細かくなるほど走査に必要な時間は(式 2.12)に従い長 くなる。

さらに、歩行者や自転車といった反射率の弱い対象を検知するためには、繰り返し検知し、受信信号を積算することで、反射電力の総和を上げる手段が必要となる。積算回数を M 回とすると、観測に要する時間は(式 2.12)から

$$M \frac{2R_{\max}}{c} \frac{R_{\max} - R_{\min}}{\Delta R} \qquad (\text{zt 2.13})$$

となる。

しかし、例えば表 2.1-1に示されたプリクラッシュ歩行者保護等の当該レーダが使用される利用シーンでは、50msecといった極めて短い時間での走査完了が求められている。

この課題を解決するためには、送信電力及び送信アンテナ利得を上げ対象物からの反 射電力を高くすることが不可欠となる。

(3) 2 周波 CW 方式における基本動作の概要

2 周波 CW 方式では、送信装置は周波数が △f だけ異なる 2 つの周波数を交互に送 信する。ターゲットから反射され受信装置によって受信された信号は元の送信信号と ミキシングされターゲットによるドップラー周波数に対応した 2 出力信号を生む。こ の 2 出力信号の周波数からターゲットの速度、位相差から距離を計測する[1]。表 2. 3-1 と表 2.3-2 はこの変調波形を用いた場合のレーダ基本性能と変調波形パラメ ータとの関係を纏めたものである。
最小検知距離	Rmin	0
最大検知距離	Rmax	$c/(4 \cdot \Delta f)$
距離分解能	ΔR	$R_{max}/(2\pi/\Delta\varphi) = c \cdot \Delta\varphi/(4\pi \cdot \Delta f)$
最小計測速度	\mathbf{V}_{\min}	$c/(f_0 \cdot 2T)$
速度分解能	ΔV	$c/(f_0 \cdot 2T)$
計測時間		Т

表 2.3-1 2 周波 CW 方式の基本性能

where c = velocity of light, $\Delta f = freq. difference of 2 frequencies$,

 $\Delta \phi$ = phase difference of 2 doppler – shifted carrier frequencies,

 f_0 = average of 2 frequencies, T = measurement time for a data acquisition

送信電力 Pt	Pt
受信電力 Pr	$PtGtGr\lambda^2 \cdot \sigma/(4\pi)^3 R^4$
送受信装置必要 RF 帯域 BW	Δf
受信装置 RF 雑音電力 P_N	$kT\Delta f \cdot N$

表 2.3-2 2 周波 CW 方式レーダに対する諸元パラメータ

where Pt = *transmitting power*,

 $G_t = Gain of transmitting antenna, G_r = Gain of receiving antenna,$

 λ = wavelength of carrier frequency, σ = RCS of a target, R = range of the target

kT = thermal noise, N = NF of receiver

(4) 周波数コード変調方式における基本動作の概要

周波数コード変調方式は、周波数拡散変調方式の一種である。種々の周波数拡散変 調方式が知られているが、バーカーコードによるバイナリー位相コード変調、DS-SS、 FH、Chirped-Pulse 等がその一例である[2] [3]。周波数コード変調の具体的な一例を図 2.3-5に示す。送信周波数を一定間隔毎に一定の周波数差 Δf で階段的に n 回変化さ せ、このパタンを周期 T で繰り返す。この変調波形の例では、階段的に変化する FMCW 変調波形と見ることもできる。 n 個の周波数の送出は図 2.3-5の例に示されている 様に順次である必要は無く、ランダムでもまたあるコードに従った順序の場合もあり うる。ターゲット検知するための受信信号の信号処理において、Matched Filter を通 すことによりパルス幅 $1/(n \cdot \Delta f)$ のパルス変調と等価な時間波形に変換しパルス的に 処理することもでき、また FMCW 的な処理をすることも可能である。

何れの場合にも、レーダ基本性能は等価的な FMCW またはパルス変調方式の場合 に置換でき、表 2.3-3及び表 2.3-4 は周波数コード変調をこの等価変換を考慮し て概略検討した結果である。

図 2.3-5 周波数コード変調送信波形の一例

最小検知距離	Rmin	c/(2F)
距離分解能	ΔR	c/(2F)
最小計測速度	V _{min}	$c/(f_0 \cdot 2T)$
速度分解能	Δv	$c/(f_0 \cdot 2T)$
計測時間		Т

表	2.3-3	周波数コー	ド変調方式の基本性能

where c = velocity of light, $F = n\Delta f = total frequency range$,

 f_0 = carrier frequency, T = measurement time for a data acquisition

送信電力 Pt	Pt
受信電力 Pr	$PtGtGr\lambda^2 \cdot \sigma/(4\pi)^3 R^4$
送受信装置必要 RF 帯域	F
BW	
受信装置 RF 雑音電力 P_N	kTF • N

表 2.3-4 周波数コード変調方式レーダの諸元パラメータ

where Pt = *transmitting power*,

 $G_t = Gain of transmitting antenna, G_r = Gain of receiving antenna,$

 λ = wavelength of carrier frequency, σ = RCS of a target, R = range of the target

kT = thermal noise, N = NF of receiver

2.3.2 79GHz 帯高分解能レーダに求められる要求条件

2.1節で検討した表 2.1-1及び表 2.1-2から、79GHz 帯高分解能レーダを利用した レーダシステムに求められる目標性能は表 2.3-5のとおりとなる。なお、24GHz/26GHz 帯 UWB レーダと類似する機能については、各利用シーンの最も厳しい条件の組合せとして おり、この条件を満たすことができれば 24GHz/26GHz 帯 UWB レーダが想定する利用シー ンは全て実現可能となる。

分類	24GHz/26GHz 帯 UWB レーダと類似	79GHz 帯高分解能レーダ特有			
利用シーン		プリクラッシュ		路側設置交差点及び 周辺エリア監視	
最小検知対象	歩行者	直線道路横断 步行者	交差点横 断步行者	オートバイ	步行者
			短距離	中距離	自転車
最大検知距離 (m)	30	50	25	70	40
最小検知距離 (m)	0.2	0.2	0.2	1	0.5
距離分解能(m)	0.2	0.2	0.2	1	0.2
対象の RCS (dBsm)	-10	-10	-10	0	-10
最大相対速度 (m/s)	55	17	17	55	11
速度分解能 (m/s)	0.1	1	1	1	0.5
update time (ms)	10	50	50	50	100
水平検知視野角 (全幅)(deg)	60	60	60	15	60

表 2.3-5 利用シーン別のレーダシステム目標性能

2.3.3 必要帯域幅及び使用周波数帯幅

表 2.3-5の目標性能を満たすためのレーダに求められる、必要帯域幅、使用周波数 帯幅の要求条件を検討した。

(1) レーダ方式別必要帯域幅

表 2.3-5に示す目標性能のうち、距離分解能 20 cmを実現するための占有周波数 帯幅について、代表的なレーダ変調方式である FMCW 方式、パルス方式、2 周波 CW 方式、周波数コード変調方式につき、高分解能化に必要な周波数帯幅について検 討した。

①FMCW 方式における必要帯域幅

2.3.1 節に示した基本式から、20cm 以下の最小検知距離を得るために必要な周波 数偏移幅 △f は 750MHz 程度になるが、あくまでも理想値であり実際には相対速度か ら発生するドップラーシフトやデジタル処理特有の影響があるため詳細な検討が必要 となる。以下、実際の装置を想定して高分解能化の検討を行う。

ア) FFT 処理と各パラメータとの関係

FMCW 方式レーダ装置では、ターゲットの距離および相対速度の情報は送受 信の差分から得られたビート信号を AD 変換し、FFT 処理することによりビート 周波数として求めることが一般的である。その場合、*R_{bin}*は FFT 処理結果の 1bin に相当し、かつ周波数刻みを表すことになるため、*R_{bin}*は距離分解能と読みかえ られる。また、解析可能な周波数範囲はサンプリング理論より DC から AD サン プリング周波数の半分までの範囲となる。レーダの検知性能と各パラメータの関 係は、ビート信号の計測データ数、即ち FFT 処理のポイント数を増やすことで分 解能が高くなり、サンプリング周波数を高くすることで検知距離範囲を広げるこ とになる。また、周波数偏移幅 Δ*f* を広げることはデータ取得時間を延ばして計 測データ数を増やすことと等価であり、分解能の向上に寄与することになる。

イ)窓関数によるスペクトラム拡がり

次に窓関数によるスペクトラム拡がりの影響を検討する。FFT 処理では窓関数 を用いることが一般的であり、使用する窓関数の周波数応答の差によりパワース ペクトラムの形状が変化する。表 2.3-6に窓関数の代表例を、図 2.3-6に 代表的窓関数の周波数応答特性の差を示す。例に挙げた3種の窓関数のうち、矩 形窓以外はスペクトラムが隣接の複数の bin まで拡がってしまうが、その一方で、 矩形窓はサイドローブのレベルが高いためダイナミックレンジが狭いことがわか る。

窓関数名	関数式(Tは切出し区間)
矩形窓	$h(t) = 1, (0 \le t \le T)$
ハニング窓	$h(t) = 0.5 - 0.5 \cos(2\pi t/T)$
ブラックマン窓	$h(t) = 0.42 - 0.5\cos(2\pi t/T) + 0.08\cos(4\pi t/T)$

表 2.3-6 窓関数の例

図 2.3-6 窓関数による周波数応答特性の差

FFT 処理後のビート周波数は窓関数によりスペクトラムが拡がり、各 bin のパ ワーレベルは窓関数の形状に合わせた離散的な値を取る。ビート周波数が bin の 周波数刻みに合わない場合には、binとbinの間にビート周波数を頂点とした形状 に合わせた値となる。代表例にあげたハニング窓、ブラックマン窓の場合は隣接 の複数 bin にスペクトラムが拡がるため、複数 bin 分の情報を合成し周波数を推 測するなどの信号処理による対策が必要である。また、スペクトラムの拡がりは 距離分解能に対しての影響も大きいと考えられており、誤検知率等の他の性能と のトレードオフを考慮してレーダに最適な窓関数を選ぶことが重要である。

ウ)近接ターゲットの距離分解能

ターゲット同士が近接して複数存在する場合にはビート信号に複数の近接周波 数として計測されるため、近接距離に存在する複数のターゲットを分離して検知 するには、Δfをさらに広げる必要がある。離散的な周波数データで複数のビート 周波数を検知するにはある程度の周波数差(bin 数)が無いと複数のピークとし て分離することが難しい。互いに 20cm の距離にあるターゲットを安定的に分離 して検知する場合には、前述の窓関数によるスペクトラム拡がり等を考慮すると 4bin 以上の周波数差が望ましい。その場合、*R_{bin}* は 5cm 以下になり、Δf は 3.0GHz 以上必要になる。実際、試験装置を用いた実験においても同等の結果が 得られている。

②パルス方式における必要帯域幅

周波数有効利用の観点から短パルス変調による占有周波数帯幅を検討する。

必要な必要帯域幅を検討するため、パルス波形を Raised Cosine 波形とした時の必要帯域幅を以下のように求める

パルス幅 τ の Raised Cosine 波形は(式 2.14)で表せ、一個のパルスの全電力は(式 2.15)で求められる。

$$f(t) = A \frac{1 + \cos(\frac{2\pi t}{\tau})}{2} = A \cos^2(\frac{\pi t}{\tau}) \qquad (|t| \le \frac{\tau}{2})$$

$$f(t) = 0 \qquad (|t| \ge \frac{\tau}{2})$$

$$P = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} (f(t))^2 dt = \frac{1}{\tau} \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} (A\cos^2\frac{\pi t}{\tau})^2 dt = \frac{3}{8}A^2 \qquad (\exists 2.15)$$

また f(t)の振幅スペクトラムは(式 2.16)で表せる。

$$F(f) = \frac{A \tau}{2} \frac{\sin(\pi f \tau)}{\pi f \tau} \frac{1}{1 - (f \tau)^2}$$
 (\$\pi\$ 2.16)

全電力は(式 2.17)となる

$$P = \frac{1}{\tau} \int_{-\infty}^{\infty} (F(f)^2 df = \frac{2}{\tau} \int_{0}^{\infty} (\frac{A \tau}{2} \frac{\sin \pi f \tau}{\pi f \tau} \frac{1}{1 - (f\tau)^2})^2 df$$

$$= \frac{A^2}{2} \int_{0}^{\infty} (\frac{\sin \pi x}{\pi x} \frac{1}{1 - x^2})^2 dx \qquad (\ddagger 2.17)$$

ただし、x は 1/t で正規化した周波数で x = ft である。 任意の周波数 f_x までの電力は

$$P_b = \frac{A^2}{2} \int_0^{f_b \tau} \left(\frac{\sin \pi x}{\pi x} \frac{1}{1 - x^2}\right)^2 dx \qquad (\text{zt } 2.18)$$

となり、(式 2. 15)と(式 2. 18)より、*f_b*までの電力占有率 *k* は

$$k = \frac{P_b}{P} = \frac{P_b}{\frac{3}{8}A^2} = \frac{P_b}{0.375A^2}$$
 (£ 2.19)

となる。(式 2.18)について数値積分を行い、正規化周波数 $f_b \tau$ に対する電力占 有率を求めた結果を以下に示す。

$f_b \tau$	P_b	電力占有率
1.2	0.36259A ²	96.69%
1.3	0.36774 A ²	98.06%
1.4	0.37102A ²	98.93%
1.5	0.37297A ²	99.46%
1.6	0.37404A ²	99.74%
1.7	0.37454A ²	99.87%

電力占有率が 99%以上になる周波数として $f_b \tau = 1.5$ を選定すると、距離分解能 20 cm 相当のパルス幅 $\tau= 1.3$ nsec 時の占有周波数帯域幅は以下となる。

 $2 \times f_h = 2 \times 1.5 / \tau = 2 \times 1.5 / 1.3 \times 10^{-9} = 2.3 \text{GHz}$

以上の結果はスペクトラムの帯域幅が最も制限された理想的な Raised Cosine 波形 の場合であり、実際には波形ひずみなどにより帯域の増加が考慮されるため 10%程度 の余裕をみて占有周波数帯幅は 2.5GHz 程度は必要であると考えられる。

③2周波 CW 方式における必要帯域幅

表 2.3-1及び表 2.3-2で示した関係式を用い、2 周波 CW 方式での距離計測の 高分解能化について検討する。表 2.3-1より ΔR =0.42 m・deg./MHz となり、 Δf = 1MHz の 2 周波 CW 変調信号を用いた場合、位相差 $\Delta \phi$ の計側分解能が 1 度あれば、 42cm の距離分解能が得られることを意味する。従って、 ΔR =20cm となるための条 件は $\Delta \phi / \Delta f = 0.48$ (deg./ *MHz*) となる。位相差の計側分解能は、計測法と信号処理法 に依存するが、一般的に数度の精度を得ることは比較的容易である。この様に2 周波 CW 方式は狭い RF 占有帯域でも高距離分解能を得ることが可能であり、周波数利用 効率の観点からは有利であるが、一方でターゲット検知をそのターゲットとの相対速 度に依存しているため、相対速度が0のターゲット、または相対速度の差が次に示す 速度分解能より小さい複数のターゲットを分離検知するためには工夫を要する。

最小計測速度あるいは速度分解能は表 2.3-1に示されるように、送信周波数 f_0 に 逆比例し、周波数のより高いミリ波帯を使うことは大きな利点となる。計測時間Tは 長いほど分解能が高くなるが、表 2.3-5に示した利用シーンでは 10~100ms での 計測が要求される。最小計測速度は

 $v_{\min} = \Delta v = c/(f_0 \cdot 2T) = 0.187 (m/s)/10ms$ (式 2.20) となり、計測時間 10ms では 18.7cm/s の速度分解能が得られる。

上述は理想的な場合であり、実用的なレーダシステムでは受信信号波形は一般にサ ンプリングによりデジタル信号に変換されて信号処理される。多くの場合このデジタ ル信号処理の基本は FFT 処理であり、使用する窓関数により受信検知信号のスペクト ラムが広がるために、(式 2. 20)の複数倍が実用的な分解能となる。2周波 CW レーダでは距離計測が速度計測と独立して実行されるため、複数ターゲットの分離検 知分解能はここで議論されている速度分解能以上の差がある複数ターゲットに対して は $\Delta \phi / \Delta f$ によってのみ決定され、受信信号スペクトラムの拡がりには影響されない。

2周波 CW 方式レーダにおいて必要な検知感度を得るための条件は、表 2.3-2中 の式を用いて検討できる。高分解能レーダにおいて検知すべき実用的なターゲットの 内、RCS が小さいながら重要なものの代表として人間(歩行者)がある。79GHz 帯 における成人男性の RCS は約-10dBsm であるため、本節ではこの数値を基準とし て用いる。

レーダ受信信号の強度は、送受信アンテナの利得と検知距離に大きく依存し、また、 アンテナ利得は、レーダを適用する応用、カバーすべき検知範囲(特に方位角範囲と 検知距離)、方位角検知方式等の諸条件に大きく依存するために、特定の数値を用いる ことは困難であるが、ここでは±30~40度をカバーするアンテナを想定し、アンテナ 利得は参考値として15dBiを基準とする。また同様に、検知距離は40mを基準とする。

図 2.3-7は送受信アンテナ利得 15dBiとし、成人をターゲットとした時に得られ る受信装置入力における受信電力を送信出力 10dBm に対して計算した結果である。

図 2.3-7より、距離 40m にいる成人からの受信電力は-115dBm 以下となるが、 一方で、表 2.3-2より受信装置 RF 雑音電力は kT ∆f・N から NF=0dB を仮定して も-113.8 dBm/MHz となる。

従って、充分な SN 比を持って成人を検知するためには受信装置等価帯域幅を縮小 するハードウェア構成または信号処理法が必要となる。

2 周波 CW 変調方式はターゲットの相対速度によるドップラーシフト周波数を検知 するシステムである。2.1.3節での検討より、相対速度の最大値は約 200km/h を想 定すればよいが、2 周波 CW 変調方式での受信出力信号の周波数帯域は相対速度が 200km/h の時でも 50kHz 以下であり、Δf の大きさに関わらず上記の受信装置等価帯 域幅は狭くすることができる。受信装置等価帯域幅が 50kHz の時、等価受信装置雑音 電力は-127dBm となり 40m 先の歩行者が検知できる可能性がある。

従って、2 周波 CW 方式レーダでは、充分な SN 比があれば、相対速度の異なる複数の物体を距離差にかかわらず分離検知できるが、上記検討はかなり理想化されたものであり、実用的には外来雑音、信号波形歪、ターゲット RCS のふらつき等による S/N 比の劣化が発生するため、実験結果などを踏まえての設計が必要である。

図 2.3-7 79GHz帯レーダの受信電力

④周波数コード変調方式における必要帯域幅

周波数コード変調方式で 20cm の距離分解能を得るために必要な RF 周波数帯域幅 は、表 2.3-3より ΔR =0.15 m/GHz となり 1GHz 帯域で 15cm の分解能を得ること ができる。複数のターゲットに対する分離分解能も基本的にこの距離分解能と同じに なる。例えば、互いに 20cm の距離にあるターゲットを安定的に分離して検知するに は、窓関数によるスペクトラム拡がり等を考慮すると 4bin 以上の周波数差が望ましい。 その場合表 2.3-3より、距離分解能 ΔR は 5cm 以下になり、 Δf は 3.0GHz 以上必 要になる。厳密には各周波数コードあるいは等価パルス波形に依存するためより詳細 な検討が必要である。

最小計測速度或いは速度分解能は、表 2.3-3に示される様に FMCW 変調方式の 場合と同じく送信周波数 faに逆比例し、周波数のより高いミリ波帯を使うことに大き な利点がある。計測時間 T は長いほど分解能が高くなるが、表 2.3-5 に示した利用 シーンでは 10~100ms での計測が要求される。最小計測速度は

 $v_{\min} = \Delta v = c/(f_0 \cdot 2T) = 0.187 (m/s)/10ms$ (式 2.21)

となり、計測時間 10ms では 18.7cm/s の速度分解能が得られる。

これらの議論は、単純理想化された概算を基にしており、実用的には外来雑音、信号波形歪、ターゲット RCS のふらつき等による S/N 比の劣化が発生するため、実験結果などを踏まえての設計が必要である。

⑤各レーダ変調方式における必要帯域幅

以上、代表的なレーダ変調方式である、FMCW 方式、パルス方式、2 周波 CW 方 式、周波数コード変調方式について、距離分解能 20cm を実現するために必要な帯域 幅について、検討した結果を表 2.3-7 にまとめる。

レーダ変調方式	20cm 距離分解能に必要な帯域幅			
FMCW 方式	3GHz 以上			
パルス方式	2.5GHz 以上			
周波数コード変調方式	3GHz 以上			
2 周波 CW 方式	速度差でターゲットを分離検知する			
	(参考値:帯域 4MHz 程度で距離分解能 20cm)			

表 2.3-7 各レーダ変調方式における必要な周波数帯域幅

(2) 干渉に関する検討と使用周波数帯幅

高分解能レーダでは、主に自動車用の安全確保の手段として、常に信頼性の高い情報を提供する必要があるが、走行移動状況によりレーダを実装している目標以外の並 行走行車や対向車線走行車からの干渉状態、及び目標以外の構造物等からの干渉状態 が時々刻々と複雑に変化し、誤動作する可能性があり大きな問題となる。

干渉の低減には、アンテナの指向性を利用する方法、偏波(交差偏波識別度)を利 用する方法、信号処理による改善方法等も考えられるが、多種類のレーダ変調方式が 混在する中で干渉を低減するには、中心周波数をずらすことが効果的である。理想的 には、使用する周波数帯域が重ならないよう中心周波数を完全にずらすことが望まし いが、高分解能レーダが 3GHz の帯域を持ちさらに同等の周波数帯幅を干渉防止用の 可変帯として持つことは実用上困難である。そこで、多種類の方式の高分解能レーダ を試作し、実用的観点から干渉の影響と干渉回避の可能性を試験システムで検討し た。

①同方式・異方式レーダ間干渉に関する検討[4] [5]

ターゲットまでの距離と速度を計測する代表的な4つの基本形のレーダ変調方式 (FMCW 方式、パルス方式、2周波 CW 方式、周波数コード変調方式)を選んで高 分解能レーダを試作し、試験システムを用いて同方式・異方式レーダ間干渉に関し検 討した。結果を表 2.3-8に示す。

レーダ相互干渉によって発生する問題は4つに分類できる。

- (a): スパイク状に干渉現象が出現
- (b): 雑音レベルの上昇
- (c):受信電力の低下
- (d): 検知距離のばらつき増大

このうち(a)と(d)は受信後の信号処理によって問題を回避できる可能性がある。 しかし(b)と(c)とは信号処理では問題回避が困難でレーダ性能に致命的な問題 を生じると考えられる。そこでこの2点の問題について、さらに詳細に実験で確認し た。

		与干涉局				
	パルス方式 FMCW 方式 2 周波 CW 方式 変				周波数コード 変調方式	
被	パルス方式	(a)	(b)	(b)	(b)	
干渉	FMCW 方式	0	(b), (c)	(b)	(b)	
局	2 周波 CW 方式	0	(b), (d)	0	(b), (d)	
	周波数コード 変調方式	0	(b), (d)	(b), (d)	(b), (d)	

表 2.3-8 同方式・異方式レーダ間干渉に関する検討結果

O:大きな干渉の影響は認められなかった

(a):スパイク状に干渉現象が出現 (c):受信電力の低下

(b): 雑音レベルの上昇

(d): 検知距離のばらつき増大

ア)干渉による雑音レベルの上昇

表 2.3-8より、被干渉局がパルス方式のときに、与干渉局の影響を受けやす い。被干渉レーダがパルス方式、与干渉レーダが、FMCW 方式、周波数コード変 調方式、2 周波 CW 方式の各方式について、中心周波数さと平均雑音レベルの実 験結果を図 2.3-8に示す。中心周波数差を 1GHz 以上とることで、干渉による 雑音レベルの上昇を、最大値から約 13dB 以上低減可能である。さらに与干渉局 が無いレベルまで近づけるには、1.5GHz 以上の中心周波数差を持つことが望ま しい。

図 2.3-8 中心周波数差と平均雑音レベル[4]

イ)中心周波数差と受信電力の変動

レーダ相互干渉によって受信電力が低下する問題は表 2.3-8に示したよう に、FMCW 方式と FMCW 方式との組み合わせにおいてのみ顕著になるというこ とまで問題を絞り込むことが出来ている。そこで、この FMCW 対 FMCW におけ る干渉被害軽減を実験的に検討した。結果を図 2.3-9に示す。図 2.3-9は 双方向散乱設置における、被干渉レーダ FMCW 方式、与干渉レーダ FMCW 方式 の場合である。実験では、与干渉レーダと被干渉レーダの中心周波数差を 900MHz とすることで、受信電力の低下を 0.2dB に低減できた。干渉による受信 電力の低下を防ぐには、さらにそれ以上の中心周波数差を持たせることが望まし い。

図 2.3-9 中心周波数差と受信電力低下[5]

②使用周波数带幅

以上の検討から、複数のレーダ間の中心周波数差が小さい場合には、雑音レベルの 上昇や受信電力の低下などの影響がみられるが、中心周波数差が1GHz あれば、雑音 レベルの上昇を低減でき、受信電力の低下を殆どなくせることがわかった。

そのため、高分解能レーダでの使用周波数帯幅は、距離分解能 20cm を実現するための必要帯域幅 3GHz と、レーダ間干渉が発生した場合の干渉回避方策としての周波数帯幅 1GHz を勘案し 4GHz とすることが望ましい。

2.3.4 空中線電力及び空中線利得

79GHz 帯高分解能レーダを利用したレーダシステムに求められる利用シーン別の目標 性能は表 2.3-5のとおりである。各レーダ変調方式について、回線設計により、目標 性能を達成するためのパラメータを検討した。検討に用いた空中線電力は10mWとした。 これは、79GHz 帯高分解能レーダへの使用が想定される半導体 IC デバイス性能の技術 的実現可能性、国際基準の動向、さらに、電波天文台との共用条件等を鑑みて設定した ものである。また、典型的な車載レーダの設計で用いられる値として、受信装置の所要 SNR を 10dB とし、受信装置の雑音指数を 15dB とした。さらに受信装置の温度を 400K とした。これはレーダを車両に搭載する場合、レーダの搭載位置によってはエンジンな どの熱によりレーダ筐体の温度が 400K 程度となる場合もあることを配慮したためであ る。回線設計の検討では、これらのパラメータを用いて受信空中線利得とマージンとの 関係とを求め、マージンが正になる空中線利得を算出した。

(1) FMCW 方式における利用シーン別必要条件の検討

本節では表 2.3-5 でまとめた利用シーンを実現する FMCW 方式レーダの技術条件を検討する。

ア) FMCW 方式で 24GHz/26GHz 帯 UWB レーダシステム と類似する機能を実現 するための条件

必要仕様として表 2.3-5 に示した利用シーン別のレーダシステム目標性能 のうちから 24GHz/26GHz 帯 UWB レーダと類似する機能を実現するための必要 条件を表 2.3-9 に抜き出す。

実現するための必要仕様			
最大検知距離 (m)	30		
最小検知距離 (m)	0.2		
距離分離能 (m)	0.2		
最小検知対象	步行者		
対象の RCS (dBsm)	-10		
最大相対速度 (m/s)	55		
速度分解能 (m/s)	0.1		
水平検知視野角 (全幅)(deg)	60		

表 2.3-9 24GHz/26GHz帯UWB レーダシステム と類似する機能を

距離分離能として 0.2m が求められている。2.3.3節(1)①で示した通り、 この場合には 3GHz の周波数遷移幅が必要となる。

また、遷移時間は(式 2.11)から要求される速度分解能で決まり、 18,974usecとなる。この時の等価雑音帯域幅は53 Hz/binとなる。この場合の等 価雑音帯域電力は-155.360 dBm/bin となる。パラメータを表 2.3-10にまと める。

表 2.3-10 FMCW 方式で 24GHz 帯 UWB レーダと類似するの機能を実現するための

パラメータ	値	単位
周波数遷移幅	3	GHz
遷移時間	18,974	µsec
等価雑音帯域幅	53	Hz/bin
等価帯域雑音電力	-155.360	dBm/bin

レーダパラメータ

ここで、送信周波数を f_c (Hz)、光速をc (m/s)、送信波長を λ (m)、送信 空中線利得を G_t (倍)、受信空中線利得を G_r (倍)、検出対象の Radar Cross Section を σ (m²)、空中線と検出対象との距離をR (m)とすると、空中線電力 P_t (W) は、

$$P_r = \frac{\lambda^2 P_t G_t G_r \sigma}{(4\pi)^3 R^4}$$

となり、等価帯域雑音電力 N(W)は

$$N = k_B T W$$

となる。ここで k_B (J/K) はボルツマン定数、T(K) は受信装置の絶対温度、W (Hz) は帯域幅である[1]。

さらに、受信装置の雑音指数を NF(dB)とし、検出に必要な最小 SNR を

 $SNR_{require}$ (dB) とすると、回線マージン M (dB) は $M = 10\log_{10} \left(1000 \cdot \frac{\lambda^2 P_t G_t G_r \sigma}{(4\pi)^3 R^4} \right) - 10\log_{10} (1000 \cdot k_B T W) - NF - SNR_{require}$ (式 2.22)

となり送信側と受信側の空中線利得が等しく $G_t=G_r=G$ (倍)とすると次式となる。

$$M = 10\log_{10}\left(1000 \cdot \frac{\lambda^2 P_t G^2 \sigma}{(4\pi)^3 R^4}\right) - 10\log_{10}(1000 \cdot k_B TW) - NF - SNR_{require} \quad (\texttt{t} 2.23)$$

以上の計算方法により回線設計を行って求めた空中線利得とマージンとの関係 を図 2.3-10に示す。この計算結果から、空中線利得 5.1dBi 以上で正の回線 マージンを得ることができることが分かる。

図 2.3-10 FMCW レーダ方式で 24GHz/26GHz 帯 UWB レーダシステム と類似する
機能を実現するための空中線利得とマージンとの関係

イ) FMCW 方式で直線道路横断歩行者検知を実現するための条件 FMCW 方式で直線道路横断歩行者検知を実現するための条件を検討する。な お、この検知に必要なレーダの必要仕様は表 2.3-11のとおりである。

最大検知距離 (m)	50
最小検知距離 (m)	0.2
距離分離能(m)	0.2
最小検知対象	歩行者
対象の RCS (dBsm)	-10
最大相対速度 (m/s)	17
速度分解能 (m/s)	1
update time (ms)	50
水平検知視野角(全幅)(deg)	60

表 2.3-11 直線道路横断歩行者検知を実現するための必要仕様

24GHz/26GHz帯UWBレーダシステム と類似する機能について計算した時と 同様の方法で、表 2.3-11に示した機能を満たす FMCW レーダの回線設計を 行う。

距離分離能として 0.2m が求められている。2.3.3節(1)①で示した通り、 この場合には 3GHz の周波数遷移幅が必要となる。

また、遷移時間は(式 2.11)で示した通り要求される速度分解能で決まり、 表 2.3-11の速度分解能の値 1m/s を用いると 1,897usec となる。この時の等 価雑音帯域幅は527 Hz/bin となり、等価雑音帯域電力は-145.360 dBm/bin となる。 パラメータを表 2.3-12にまとめる。

パラメータ	値	単位
周波数遷移幅	3	GHz
遷移時間	1897	µsec
等価雑音帯域幅	527	Hz/bin
等価帯域雑音電力	-145.360	dBm/bin

表 2.3-1 2 FMCW 方式で直線道路横断歩行者保護検知を実現するための レーダパラメータ

表 2.3-12のパラメータで回線設計して得られた空中線利得とマージンとの関係を図 2.3-11に示す。この結果から、空中線利得 14.5dBi 以上で正の回線マージンを得ることができることが分かる。

図 2.3-1 1 FMCW レーダ方式で直線道路横断歩行者検知を実現するための 空中線利得とマージンとの関係

- ウ) FMCW 方式で交差点横断歩行者検知を実現するための条件
 - FMCW 方式で交差点横断歩行者検知を実現するための条件について検討する. この検知のためのレーダ必要仕様は,表 2.3-5に示したように直線道路横断 歩行者検知のほうが厳しい.即ち直線道路横断歩行者検知が実現できるレーダで あるならば交差点横断歩行者検知は実現できる。よって,イ)の検討の結果に包 含されるために割愛する.
- エ)FMCW 方式でオートバイ検知を実現するための条件

FMCW 方式でオートバイ検知を実現するための条件について検討する. この検知に必要なレーダの必要仕様は表 2.3-13のとおりである。

最小検知対象	オートバイ
	中距離
最大検知距離 (m)	70
最小検知距離 (m)	1
距離分解能 (m)	1
対象の RCS (dBsm)	0
最大相対速度 (m/s)	55
速度分解能 (m/s)	1
update time (ms)	50
水平検知視野角(全幅)(deg)	15

表 2.3-13 オートバイ検知を実現するための必要仕様

表 2.3-13に示した機能を満たす FMCW レーダの回線設計をこれまでと同様の方法で実施する。

距離分離能として 1.0m が求められており、2.3.3節(1)①で示した方法で 計算すると、0.6 GHz の周波数遷移幅が必要となる。

また、遷移時間は(式 2.11)から要求される速度分解能で決まり、表 2. 3-13の速度分解能の値1m/s を用いると1,897usecとなる。この時の等価雑音 帯域幅は527 Hz/binとなり、等価雑音帯域電力は-145.360 dBm/binとなる。パラ メータを表 2.3-14にまとめる。

パラメータ	值	単位
周波数遷移幅	0.6	GHz
送信電力	10	dBm
遷移時間	1897	µsec
等価雑音帯域幅	527	Hz/bin
等価帯域雑音電力	-145.360	dBm/bin

表 2.3-14 FMCW 方式でオートバイ検知を実現するためのレーダパラメータ

表 2.3-14のパラメータで回線設計して得られた空中線利得とマージンとの関係を図 2.3-12に示す。この結果から空中線利得 12.4dBi 以上で正の回線 マージンを得ることができることが分かる。

オ) FMCW 方式で路側設置交差点及び周辺エリア監視を実現するための条件 FMCW 方式で路側設置交差点及び周辺エリア監視を実現するための条件につ いて検討する。レーダの必要機能は表 2.3-15のとおりであり、この仕様を 基に他の場合と同様に回線設計を行う。

表	2.3-15	路側設置交差点及び周辺エリア監視の機能を実現す	るための必要仕様
---	--------	-------------------------	----------

最大検知距離 (m)	40
最小検知距離 (m)	0.5
距離分解能 (m)	0.2
最小検知対象	步行者
対象の RCS (dBsm)	-10
最大相対速度 (m/s)	11
速度分解能 (m/s)	0.5
update time (ms)	100
水平検知視野角(全幅)(deg)	60

距離分離能として 0.2m が求められており、2.3.3節(1)①で示した方法で 計算すると、3 GHz の周波数遷移幅が必要となる。

また、遷移時間は(式 2.11)から要求される速度分解能で決まり、表2.3-

15の速度分解能の値 0.5m/s を用いると 3,795usec となる。この時の等価雑音帯域幅は 264 Hz/bin となり、等価雑音帯域電力は-148.370 dBm/bin となる。パラ メータを表 2.3-16にまとめる。

パラメータ	値	単位
周波数遷移幅	3	GHz
	2705	11500
	3795	
	264	HZ/DIN
等価帯域雑音電力	-148.370	dBm/bin

表 2.3-16 路側設置交差点及び周辺エリア監視の機能を実現するための レーダパラメータ

表 2.3-16のパラメータで回線設計して得られた空中線利得とマージンとの関係を図 2.3-13に示す。この結果から空中線利得 11.1dBi 以上で正の回線 マージンを得ることができることが分かる。

図 2.3-13 FMCW 方式で路側設置交差点及び周辺エリア監視の機能を実現するための 空中線利得とマージンとの関係

(2) パルス方式における利用シーン別必要条件の検討 本節では表 2.3-5 でまとめた利用シーンを実現するパルス方式レーダの技術条件を検討 する。所要 SNR、受信装置雑音指数、受信装置温度は①FMCW 方式の場合と同一とする。

ア) パルス方式で 24GHz/26GHz 帯 UWB レーダシステム と類似する機能を実現す るための条件

24GHz/26GHz帯UWB レーダシステム と類似する機能を実現するための必要 仕様は表 2.3-9にまとめた通りである。

表 2.3-9よりレーダの検知範囲は 0.2~30m であり、この条件からパルス繰 り返し周期(Pulse repetition interval: PRI)は 200nsec となる。さらに、距離分 解能 0.2m 及びデータアップデート時間 10msec を考慮すると、(式 2.13)よ り積算回数は最大で 335 回となる。この条件で回線設計して得られた空中線利得 とマージンとの関係を図 2.3-14に示す。空中線利得 31.2dBi で正の回線マー ジンを得ることができることが分かる。

図 2.3-14 パルス方式で 24GHz/26GHz 帯 UWB レーダシステム と類似する機能を 実現するため空中線利得とマージンとの関係

イ)パルス方式で直線道路横断歩行者検知の機能を実現するための条件

直線道路横断歩行者検知の機能を実現するための必要仕様は表 2.3-11に まとめた通りである。

表 2.3-11より、レーダ探知範囲は 0.2m~50m であり、この条件からパル ス繰り返し周期 (Pulse repetition interval : PRI) は 334nsec となる。さらに、距 離分解能 0.2m 及びデータアップデート時間 50msec を考慮すると、(式 2.13) より積算回数は最大で601回となる。この条件で回線設計して得られた空中線利 得とマージンとの関係を図 2.3-15に示す。空中線利得34.4dBiで正の回線マ ージンを得ることができることが分かる。

図 2.3-15 パルス方式で直線道路横断歩行者検知の機能を実現するための 空中線利得とマージンとの関係

ウ)パルス方式で交差点横断歩行者検知を実現するための条件

レーダ必要仕様は、表 2.3-5に示したように直線道路横断歩行者検知のほうが厳しい. 即ち直線道路横断歩行者検知が実現できるレーダであるならば交差 点横断歩行者検知は実現できる。よって、イ)の検討の結果に包含されるために 割愛する.

エ)パルス方式でオートバイ検知を実現するための条件

オートバイ検知を実現するためのレーダの必要仕様は表 2.3-13のとおり である。

表 2.3-5よりレーダ探知範囲は 1m~70m であり、この条件から PRI は 467nsec となる。さらに、距離分解能 1m 及びデータアップデート時間 50msec を考慮すると、(式 2.13)より積算回数は最大で 1,551 回となる。この条件 で回線設計して得られた空中線利得とマージンとの関係を図 2.3-16に示す。 空中線利得 26.7 dBi で正の回線マージンを得ることができることが分かる。

空中線利得とマージンとの関係

オ) パルス方式で路側設置交差点及び周辺エリア監視の機能を実現するための条件 路側設置交差点及び周辺エリア監視の機能を実現するためのレーダの必要仕様 は表 2.3-15にまとめた通りである。

表 2.3-15よりレーダ探知範囲は 0.5m~40m であり、この条件から PRI は 267nsec となる。さらに、距離分解能 0.2m 及びデータアップデート時間 100msec を考慮すると、(式 2.13)より積算回数は最大で 1,897 回となる。 この条件で回線設計して得られた空中線利得とマージンとの関係を図 2.3-1 7に示す。空中線利得 29.9dBi で正の回線マージンを得ることができることが分 かる。

図 2.3-17 パルス方式で路側設置交差点及び周辺エリア監視の機能を実現するための 空中線利得とマージンとの関係

(3) 2 周波 CW 方式における利用シーン別必要条件の検討

本節では表 2.3-5 でまとめた利用シーンを実現する2 周波 CW 方式レーダの技術条件を検討する。所要 SNR、受信装置雑音指数、受信装置温度は①FMCW 方式の場合と同 ーとする。

ア)2周波CW方式で24GHz/26GHz帯UWBレーダシステム と類似する機能を実 現するための条件

24GHz/26GHz帯UWB レーダシステム と類似する機能を実現するための必要 仕様は表 2.3-9にまとめた通りである。

表 2.3-9よりレーダの検知範囲は 0.2m~30m であり、この条件から周波数 幅を2.5MHz とした。また最大相対速度が 55m/s であることから、最大ビート周 波数は約 29kHz となる。パラメータを表 2.3-17にまとめる。表 2.3-17に 示すレーダパラメータで回線設計して得られた空中線利得とマージンとの関係を 図 2.3-18に示す。この結果から、空中線利得 18.8dBi 以上で正の回線マージ ンを得ることができることが分かる。

表 2.3-17 2 周波 CW 方式で 24GHz/26GHz 帯 UWB レーダシステム と

パラメータ	値	単位
周波数差⊿f	2.5	MHz
最大ビート周波数	29	kHz
雑音電力	-113	dBm

類似する機能を実現するためのレーダパラメータ

図 2.3-18 2 周波 CW 方式で 24GHz/26GHz 帯 UWB レーダシステム と類似する
機能を実現するための空中線利得とマージンとの関係

イ) 2 周波 CW 方式で直線道路横断歩行者検知を実現するための条件 直線道路横断歩行者検知の機能を実現するための必要仕様は表 2.3-11に まとめた通りである。

表 2.3-11よりレーダの検知範囲は 0.2m~50m であることから、周波数幅 を1.5MHzとした。また最大相対速度が 17m/s であることから、最大ビート周波 数は約9kHzとなる。パラメータを表 2.3-18にまとめる。表 2.3-18に示 すレーダパラメータで回線設計して得られた空中線利得とマージンとの関係を図 2.3-19に示す。この結果から、空中線利得 20.6dBi 以上で正の回線マージン を得ることができることが分かる。

パラメータ	値	単位
周波数差⊿f	1.5	MHz
最大ビート周波数	9	kHz
雑音電力	-118	dBm

表 2.3-18 2 周波 CW 方式で直線道路横断歩行者検知の機能を実現するための

レーダパラメータ

図 2.3-19 2 周波 CW 方式で直線道路横断歩行者検知の機能を 実現するための空中線利得とマージンとの関係

- ウ)2周波CW方式で交差点横断歩行者検知を実現するための条件 レーダ必要仕様は、表2.3-5に示したように直線道路横断歩行者検知のほうが厳しい、即ち直線道路横断歩行者検知が実現できるレーダであるならば交差 点横断歩行者検知は実現できる。よって、イ)の検討の結果に包含されるために 割愛する.
- エ) 2 周波 CW 方式でオートバイ検知を実現するための条件

オートバイ検知を実現するための必要仕様は表 2.3-13にまとめたとおり である。

表 2.3-13よりレーダの検知範囲は 1m~70m であることから、周波数幅を 1MHz とした。また最大相対速度が 55m/s であることから、最大ビート周波数は 約29kHz となる。パラメータを表 2.3-19にまとめる。表 2.3-19に示すレ ーダパラメータで回線設計して得られた空中線利得とマージンとの関係を図 2. 3-20に示す。この結果から、空中線利得20.6dBi以上で正の回線マージンを得 ることができることが分かる。

パラメータ 値 単位 周波数差∆f 1 MHz 最大ビート周波数 29 kHz -113 雑音電力 dBm

表 2.3-19 2 周波CW方式でオートバイ検知を実現するための レーダパラメータ

図 2.3-20 2 周波 CW 方式でオートバイ検知を実現するための 空中線利得とマージンとの関係

オ) 2 周波CW方式で路側設置交差点及び周辺エリア監視を実現するための条件 路側設置交差点及び周辺エリア監視の機能を実現するためのレーダの必要仕様 は表 2.3-15にまとめた通りである。

表 2.3-15より、レーダの検知範囲は 0.5m~40m であることから、周波数 幅を 1.9MHz とした。また最大相対速度が 11m/s であることから、最大ビート周 波数は約 5.8kHz となる。パラメータを表 2.3-20にまとめる。表 2.3-20 に示すレーダパラメータで回線設計して得られた空中線利得とマージンとの関係 を図 2.3-21に示す。この結果から、空中線利得 17.8dBi 以上で正の回線マー ジンを得ることができることが分かる。

機能を実現するためのレーダパラメータ		
パラメータ	値	単位
周波数差⊿f	1.9	MHz
最大ビート周波数	5.8	kHz
雑音電力	-120	dBm

表 2.3-20 2周波CW方式で路側設置交差点及び周辺エリア監視の

図 2.3-21 2周波CW方式で路側設置交差点及び周辺エリア監視の機能を 実現するための空中線利得とマージンとの関係

(4) 周波数コード変調方式における利用シーン別必要条件の検討

本節では表 2.3-5 でまとめた利用シーンを実現する周波数コード変調方式レーダの 技術条件を検討する。周波数コード変調ではさまざまな変調パタンがあるが、ここでの 回線設計の例としては、送信周波数を一定間隔毎に変化させる特定のパタンを周期*T*で 繰り返す変調方式を用いて計算した。なお、所要 SNR、受信装置雑音指数、受信装置温 度は①FMCW 方式の場合と同一とする。

ア) 周波数コード変調方式で24GHz/26GHz帯UWBレーダシステムと類似する機
能を実現するための条件

24GHz/26GHz帯UWB レーダシステム と類似する機能を実現するための必要 仕様は表 2.3-9にまとめた通りであり、距離分離能として 0.2m が求められて いる。2.3.3節(1)③で示した通り、この場合には 3GHz の周波数遷移幅が 必要となる。 周波数遷移幅を 3GHz、周期を 10ms としたときのレーダパラメータを表 2. 3-21にまとめる。最大検知距離が 30m であり、最大相対速度が 55m/s である ことからは 89kHz となる。表 2.3-21に示すレーダパラメータで回線設計し て得られた空中線利得とマージンとの関係を図 2.3-22に示す。この結果か ら、空中線利得 21.2dBi 以上で正の回線マージンを得ることができることが分か る。

パラメータ	値	単位
周波数差遷移幅	3	GHz
周期	10	ms
帯域幅	89	kHz
雑音電力	-108	dBm

表 2.3-2 1 周波数コード変調方式で 24GHz/26GHz 帯 UWB レーダシステム と 類似する機能を実現するためのレーダパラメータ

図 2.3-22 周波数コード変調方式で 24GHz/26GHz 帯 UWB レーダシステム と 類似する機能を実現するための空中線利得とマージンとの関係

イ)周波数コード変調方式で直線道路横断歩行者検知を実現するための条件 直線道路横断歩行者検知を実現するための必要仕様は表 2.3-11にまとめ た通りであり、距離分離能として 0.2m が求められている。2.3.3節(1)③で 示した通り、この場合には 3GHz の周波数遷移幅が必要となる。

周波数遷移幅を 3GHz、周期を 50ms としたときのレーダパラメータを表 2. 3-22にまとめる。最大検知距離が 50m であり、最大相対速度が 17m/s である ことから帯域幅は 29kHz となる。表 2.3-22に示すレーダパラメータで回線 設計して得られた空中線利得とマージンとの関係を図 2.3-23に示す。この 結果から、空中線利得 23.2dBi 以上で正の回線マージンを得ることができること が分かる。

パラメータ	値	単位
周波数差遷移幅	3	GHz
周期	50	ms
帯域幅	29	kHz
雑音電力	-113	dBm

表 2.3-22周波数コード変調方式で直線道路横断歩行者検知を

実現するためのレーダパラメータ

図 2.3-23 周波数コード変調方式でプリクラッシュ直線道路横断歩行者保護の 機能を実現するための空中線利得とマージンとの関係

ウ)周波数コード変調方式で交差点横断歩行者検知を実現するための条件

レーダ必要仕様は,表 2.3-5に示したように直線道路横断歩行者検知のほうが厳しい.即ち直線道路横断歩行者検知が実現できるレーダであるならば交差 点横断歩行者検知は実現できる。よって,イ)の検討の結果に包含されるために 割愛する.

エ) 周波数コード変調方式でオートバイ検知を実現するための条件 オートバイ検知を実現するための必要仕様は表 2.3-13のとおりであり、距 離分離能として1m が求められている。2.3.3節(1)③で示した通り、この 場合には0.6GHzの周波数遷移幅が必要となる。

周波数遷移幅を0.6GHz、周期を50msとしたときのレーダパラメータを表 2. 3-23にまとめる。最大検知距離が70mであり、最大相対速度が55m/sである ことから帯域幅は35kHz となる。表 2.3-23に示すレーダパラメータで回線 設計して得られた空中線利得とマージンとの関係を図 2.3-24に示す。この 結果から、空中線利得 21.5dBi 以上で正の回線マージンを得ることができること が分かる。

表 2.3-23周波数コード変調方式でオートバイ検知を実現するための

パラメータ	値	単位
周波数差遷移幅	0.6	GHz
周期	50	ms
帯域幅	35	kHz
雑音電力	-112	dBm

レーダパラメータ

図 2.3-24 周波数コード変調方式でオートバイ検知を実現するための 空中線利得とマージンとの関係

オ) 周波数コード変調方式で路側設置交差点及び周辺エリア監視を実現するための 条件

路側設置交差点及び周辺エリア監視の機能を実現するためのレーダの必要仕様 は表 2.3-15にまとめた通りであり、距離分離能として 0.2m が求められてい る。2.3.3節(1)③で示した通り、この場合には 3GHz の周波数遷移幅が必要となる。

周波数遷移幅を 3GHz、周期を 100ms としたときのレーダパラメータを表 2. 3-24にまとめる。最大検知距離が 40m であり、最大相対速度が 11m/s である ことからは 14kHz となる。表 2.3-24に示すレーダパラメータで回線設計し て得られた空中線利得とマージンとの関係を図 2.3-25に示す。この結果か ら、空中線利得 19.6dBi 以上で正の回線マージンを得ることができることが分か る。

表 2.3-24周波数コード変調方式で路側設置交差点及び周辺エリア監視の

パラメータ	値	単位
周波数差遷移幅	3	GHz
周期	100	ms
帯域幅	14	kHz
雑音電力	-116	dBm

機能を実現するためのレーダパラメータ

図 2.3-25 周波数コード変調方式で路側設置交差点及び周辺エリア監視の 機能を実現するための空中線利得とマージンとの関係

(5)回線設計の検討のまとめ

表 2.3-5に示した利用シーン別のレーダシステム目標性能について、各レーダ変調 方式において回線設計を行った。結果を表 2.3-25に記載する。

表	2.3-	25	利用シー	ン別回線設計
---	------	----	------	--------

分類	24GHz/26GHz 帯 UWB レーダと類似	79GHz 帯高分解能レーダ特有			
利用シーン		プリクラッシュ		路側設置 交差点 及び周辺エリア監視	
最小検知対象	歩行者	直線道路横断歩 行者	交差点横 断步行者 短距離	オートバイ 中距離	歩行者 自転車
最大検知距離 (m)	30	50	25	70	40
最小検知距離 (m)	0.2	0.2	0.2	1	0.5
距離分解能 (m)	0.2	0.2	0.2	1	0.2
		步行者	步行者	オートバイ	步行者
対象の RCS (dBsm)	-10	-10	-10	0	-10
最大相対速度 (m/s)	55	17	17	55	11
速度分解能 (m/s)	0.1	1	1	1	0.5
update time (ms)	10	50	50	50	100
水平検知視野角 (全幅) (deg)	60	60	60	15	60
変調方式	FMCW				
周波数遷移幅 (GHz)	3	3	3	0.6	3
遷移時間 (µsec)	18,974	1,897	1,897	1,897	3,795
空中線電力 (dBm)	10	10	10	10	10
空中線利得 (dBi)	5.1	14.5	14.5	12.4	11.1
変調方式			Pulse		
帯域幅 (GHz)	3	3	3	0.6	3
空中線電力 (dBm)	10	10	10	10	10
空中線利得 (dBi)	31.2	34.4	34.4	26.7	29.9
変調方式			2 周波 CW		
帯域幅 (MHz)	2.5	1.5	1.5	1	1.9
空中線電力 (dBm)	10	10	10	10	10
空中線利得 (dBi)	18.8	20.6	20.6	20.6	17.8
変調方式	変調方式				
周波数遷移幅 (GHz)	3	3	3	0.6	3
遷移時間 (msec)	10	50	50	50	100
空中線電力 (dBm)	10	10	10	10	10
空中線利得 (dBi)	21.2	23.2	23.2	21.5	19.6

2.3.5 79GHz 帯高分解能レーダの防護指針

電波法施行規則第21条の3では、電波のエネルギー量と生体への作用との関係が定量 的に明らかにされており、これに基づきシステムの運用形態に応じて、電波防護指針に 適合するようシステム諸元の設定に配慮する必要がある。

79GHz 帯高分解能レーダシステムの安全性を確認するため、表 2.3-26に示す電波 防護指針の基準値に照らした適合性について、以下のとおり検討を行った。

周波数	電界強度	磁界強度	電力束密度	平均時間
f (GHz)	E (V/m)	H (A/m)	S (mW/cm ²)	(分)
1.5-300	61.4	0.163	1	6

表 2.3-26 電波防護指針の基準値(抄)

(1) 前提条件

79GHz 帯高分解能レーダの諸元
送信装置の空中線電力:10mW

送信空中線の最大輻射方向における絶対利得:35dBi

② 電波の強度の算出式(無線設備から発射される電波の強度の算出方法及び測定方法 (告示 平成 11 年 4 月 27 日第 300 号)より引用)

- S:電力束密度(mW/cm²)
- P:空中線入力電力(W)
- G:送信空中線の最大輻射方向における絶対利得(dB)
- R:算出に係る送信空中線と算出を行う地点との距離(m)
- K:反射係数(ただし、反射係数は表 2.3-27のとおり)

1	全ての反射を考慮しない場合	1	
2	大地面の反射を考慮する場合	2.56	
	(送信周波数が 76MHz 以上の場合)		
3	水面等大地面以外の反射を考慮する場合	4	

表 2.3-27 反射係数

(2) 算出結果

電磁界強度指針(一般環境)の基準値を超える送信空中線からの距離を算出すると表 2.3-28のとおり、7cm~13cmとなる。

また、79GHz 帯高分解能レーダの主な利用シーンとして、車載レーダシステムや インフラ設置のレーダシステムが想定されており、車載レーダシステムの場合は走行 中の車での利用となるため、電波発射中に表 2.3-28に示した必要離隔距離以内 に人が立ち入ることは極めて稀である。また、インフラ設置のレーダシステムの場合 には、交差点付近の道路上に設置されることが想定されるが、その場合現行基準から、 表 2.3-28に示した必要離隔距離内に6分以上人が立ち入ることは稀であり、特段 の支障はないと考えられる。

1	全ての反射を考慮しない場合	7cm
2	大地面の反射を考慮する場合 (送信周波数が 76MHz 以上の場合)	11cm
3	水面等大地面以外の反射を考慮する場合	13cm

表 2.3-28 電波防護指針を満たす必要離隔距離

なお、79GHz 帯高分解能レーダシステムの平均電力は 10mW 以下のため、電波法 施行規則第 21 条の3(電波の強度に対する安全施設)の適応対象外扱いとなる。 第3章 他の無線システムとの共存に関する検討

79GHz 帯高分解能レーダの導入のためには、同一周波数帯内の他の無線システムとの共 用について検討を行う必要があり、本章では対象となる無線システム毎に検討結果につい てまとめる。なお第1章で述べたとおり、2011 年現在、79GHz 帯の周波数のうち 77.5-78GHz は国際的に無線標定へ分配されていないが、79GHz 帯高分解能レーダシステ ムの普及等の観点から、既に先行して制度化されている各国・地域と同じ周波数帯を利用 することが望ましいと考えられるため 77GHz~81GHz を検討の対象とした。

3.1 検討の対象となる無線システム

79GHz 帯では、図 3.1-1 に示すとおりアマチュア、アマチュア衛星(77.5-78.0GHz) 及び電波天文(79.0-81.0GHz)に周波数が割当てられていることから、これらを検討対象 として 79GHz 帯高分解能レーダシステムとの干渉検討を行った。

図 3.1-1 76GHz~81GHzの周波数の割当状況

また隣接する 81.0-86.0GHz において 80GHz 帯高速無線伝送システムの導入が検討されていることから当該無線伝送システムとの共用検討について 3.4 に記述した。

3.2 アマチュア無線業務との共用検討

79GHz 帯高分解能レーダシステムから 77.5GHz 帯のアマチュア局へ与える干渉及び、 77.5GHz 帯を使用するアマチュア局から 79GHz 帯高分解能レーダシステムへ与える干渉 について検討した(参考資料1)。

79GHz 帯高分解能レーダシステムからアマチュア局への干渉については許容干渉レベルを満たす離隔距離をメインビーム対向の条件で求め、表 3.2-1の結果が得られた。

表 3.2-1 アマチュア局が被干渉の場合の計算結果

メインビーム対向時の離隔距離	
(FMCW、周波数コード、パルスレ	0.27km
ーダにおける最大値)	

同様にアマチュア局から 79GHz 帯高分解能レーダシステムへの干渉については LNA 入 力値 IP1dB=-10dBm を満たす離隔距離をメインビーム対向の条件で求め、表 3.2-2の 結果が得られた。

表 3.2-2 79GHz 帯高分解能レーダシステムが被干渉の場合の計算結果

メインビーム対向時の離隔距離	42.0
IP1dB=-10dBm(LNA 入力値)	43.6m

双方が互いのビーム幅内に入る確率を概算したところ 114ppm と小さく、共用が可能で あるとの結論に至った。

3.3 電波天文業務との共用検討

79GHz 帯高分解能レーダシステムが利用する周波数である 77-81GHz においては、電波 天文(79.0-81.0GHz)がこの周波数帯を利用している。この周波数帯における観測を行っ ている国内の天文台は国立天文台野辺山宇宙電波観測所のみであるため、国立天文台野辺 山宇宙電波観測所周辺の地形、車両稼働率等を考慮した干渉モデルを ITU-R 各種勧告、統 計データ等をもとに構築し干渉電力を机上検討により評価する方法を用いた。

本干渉検討においては、国立天文台野辺山宇宙電波観測所を中心とする同心円のリング を考え、各リング内に存在する稼動中の 79GHz 帯高分解能レーダシステムからの干渉電力 を求め、各干渉電力を計算し積算することで集合干渉電力を求めた。その結果をもとに干 渉電力が閾値を超える干渉時間率が2%以下となる離隔距離を複数の条件にて求め、共用 について検討した(参考資料2)。

表 3.3-1に異なる干渉時間率の解釈による計算結果を示す。

		普及率	
快市	快討朱件		1.0%
2,000 秒単位時間の平均受信電	半径 10.5km まで均一に見通し内	9.5km	9.5km
力が国立天文台野辺山宇宙電	レーダ搭載車両が現れると仮定		
波観測所閾値	した場合		
(-191.354dBm/MHz)以下と	半径 2.5km 以遠に見通し内レー	2.5km	2.5km
なる確率が 98%となる距離	ダ搭載車両は現れない場合		
見通し内時間率 2%を満たし見通し外干渉電力が国立天文台野辺		400m	1.5km
山宇宙電波観測所閾値以下となる距離			

表 3.3-1 各種検討条件毎の計算結果

本計算結果によれば、レーダ干渉の影響は否定できない。しかし、実運用上の諸要素を 考慮した結果、国立天文台野辺山宇宙電波観測所 45m 電波望遠鏡を用いた 79GHz 帯観測 に限定する限り、実運用上共用可能であるとの結論に至った。

なお本計算では考慮されていないガードレール等路側構造物による遮蔽損失や国立天文 台野辺山宇宙電波観測所における実観測時間帯が交通量オフピーク時になる可能性などの 干渉緩和効果が存在する一方で、同様に計算中に考慮されなかったが遠方にも国立天文台 野辺山宇宙電波観測所を見通せる例(例えば本沢温泉)が存在することを併記する。
3.4 近傍周波数の他システムとの共用検討

近傍の周波数(81GHz~86GHz)においては、80GHz 帯高速無線伝送システムの導入が 制度化されている。

詳細な干渉波の入感強度等については、当該無線伝送システムの送信電力特性や受信感 度等を明確化する必要があるが、次のように、当該システムとの間の干渉は特段問題にな らないものと考えられる。

① 本システムから 80GHz 帯高速無線伝送システムに対する干渉

本レーダシステムからの、80GHz 帯高速無線伝送システムの帯域への漏洩電力量は十分 に小さく、本レーダシステムは 80GHz 帯高速無線伝送システムと比較し相当数普及する可 能性はあるものの、通常は移動しており、80GHz 帯高速無線伝送システムの空中線指向特 性が鋭いことから、干渉が生じても、極めて短時間の一過性干渉となるために、80GHz 帯 高速無線伝送システム相互間の干渉に比べて重大な影響が生じる可能性は低い。

② 80GHz 帯高速無線伝送システムから本システムに対する干渉

ア 本レーダシステムは、同一周波数において連続波方式・間欠波方式それぞれを含むシ ステムが相当数普及することを前提に、それらが相互に共存可能なように検討が進められ ている。

イ 80GHz 帯高速無線伝送システムからの、本レーダシステムの帯域への漏洩電力は十 分に小さく、かつ、80GHz 帯高速無線伝送システムの普及台数は極端に多くなる可能性は 低く、アのレーダ相互の位置関係に比べて極端に近接する場合は少ないと考えられる。

以上のように、当該無線伝送システムとの干渉については、レーダの発射する 80GHz 帯高速無線伝送システムの周波数帯域内のエネルギー成分が極端に大きくなる、あるいは レーダのうち、被干渉耐性が極端に低いものが提案されるようなことがない限り、特段の 問題はないと考えられる。

72

第4章 79GHz 帯高分解能レーダの技術的条件

- 4.1 一般的条件
 - (1) 周波数帯

使用する周波数帯は、77.0GHzから81.0GHzまでとする。

(2)システム設計上の条件

ーの筐体に収められており、かつ、容易に開けることができないこと。ただし、空 中線系については、この限りではない。

- 4.2 無線設備の技術的条件
 - 4.2.1 送信装置
 - (1) 周波数の許容偏差
 - 指定周波数帯によるため規定しない。
 - (2) 占有周波数帯幅の許容値
 - 指定周波数帯を考慮して 4GHz であること。
 - (3)空中線電力

空中線電力は、平均電力 10mW 以下であること。ただし、占有周波数帯幅が 2GHz 以下の場合には占有周波数帯幅(MHz)に5µW/MHz を乗じた値を超えないこと。

(4) 空中線の利得

空中線利得は、絶対利得 35dBi 以下であること。

(5) 空中線電力の許容偏差

空中線電力の許容偏差は、上限 50%、下限 70%であること。

(6)帯域外領域における不要発射の強度の許容値

帯域外領域における不要発射の強度の許容値は、100 µ W/MHz 以下(尖頭電力)で あること。

(7) スプリアス領域における不要発射の強度の許容値

スプリアス領域における不要発射の強度の許容値は、50 μ W/MHz 以下(尖頭電力) であること。

- 4.2.2 受信装置
 - (1) 副次的に発する電波等の限度

受信装置は送信装置と一体であることから、帯域外領域に相当する帯域における副 次的に発する電波等の限度は、100 µ W/MHz 以下(尖頭電力)、スプリアス領域に相 当する帯域における副次的に発する電波等の限度は 50 µ W/MHz 以下(尖頭電力)で あること。

- 4.3 測定法
 - 4.3.1 周波数の偏差

周波数は、占有周波数帯幅の測定において占有周波数帯幅の上限の周波数及び下限

の周波数が指定周波数帯内にあることをもって確認する。

4.3.2 占有周波数带幅

運用状態において占有周波数帯幅が最大となる変調状態として得られるスペクトル 分布の全電力についてスペクトルアナライザ等を用いて測定し、スペクトル分布の上 限及び下限部分における電力の和が、それぞれ全電力の0.5%となる周波数幅を測定す ること。なお、スペクトル分布の電力最大点(キャリアリーク等を除く)から測定系 の雑音レベルまで余裕がなく電力積算に影響を与える場合は、分解能帯域幅を 1MHz とした状態で電力最大点から 23dB 減衰する点の上限周波数と下限周波数の差を用い ることができる。なお 23dB 低下した点が複数ある場合は、最も高い周波数と最も低 い周波数の幅とする。

4.3.3 空中線電力

(1) 平均電力の測定

平均電力で規定される電波型式の場合は、平均電力を測定する。この場合、連続送 信波によって測定することが望ましいが、運用状態において連続送信状態にならない 場合バースト送信状態にて測定する。

バースト送信状態にて測定する場合は、送信時間率(電波を発射している時間/バ ースト繰り返し周期)が最大となる値で一定の値としてバースト繰り返し周期よりも 十分長い区間における平均電力を測定し、送信時間率の逆数を乗じてバースト内平均 電力を求める。

また、測定用端子が空中線端子と異なる場合は、空中線端子と測定用端子の間の損 失等を補正する。ただし、空中線端子がない場合においては、測定のために一時的に 測定用端子を設けて同様に測定すること。

(2) 尖頭電力の測定

尖頭電力で規定される電波型式の場合は、尖頭電力を測定する。ただし、応答時間 の速い尖頭電力計は一般的でないため、送信装置から尖頭電力と同じレベルの無変調 連続波を出力する状態に設定して、平均電力を測定する。この状態で測定した平均電 力を尖頭電力とする。

また、測定用端子が空中線端子と異なる場合は、(1)と同様に一時的に測定用端子を 設けて上記の方法で測定すること。

4.3.4 スプリアス領域における不要発射の強度

運用状態において占有周波数帯幅が最大となる変調状態として、不要発射の参照帯 域幅当たりの尖頭電力を、スペクトルアナライザ等を用いて測定すること。この場合、 スペクトルアナライザ等の分解能帯域幅は、技術的条件で定められた参照帯域幅に設 定することが適当である。

測定周波数範囲は、30MHzから2次高調波までとする。ただし、当面の間測定周波数の上限を110GHzとすることができるほか、導波管、フィルタ等の周波数特性により、不要発射が技術基準を満足することが明らかな場合は、その周波数範囲の測定を 省略することができる。なお、導波管を用いるものは測定周波数の下限をカットオフ 周波数の 0.7 倍からとすることができるほか、導波管が十分に長く技術基準を十分満 足するカットオフ減衰量が得られることが証明できる場合は、その周波数範囲の測定 を省略することができる。

測定用端子が空中線端子と異なる場合は、空中線端子と測定用端子の間の損失等を 補正する。ただし、空中線端子がない場合においては、測定のために一時的に測定用 端子を設けて同様に測定すること。

4.3.5 帯域外領域における不要発射の強度

運用状態において占有周波数帯幅が最大となる変調状態として、不要発射の参照帯 域幅当たりの尖頭電力を、スペクトルアナライザ等を用いて測定すること。この場合、 スペクトルアナライザ等の分解能帯域幅は、技術的条件で定められた参照帯域幅に設 定することが適当である。

測定周波数範囲は、帯域外領域とする。ただし、導波管、フィルタ等の周波数特性 により、不要発射が技術基準を満足することが明らかな場合は、その周波数範囲の測 定を省略することができる。なお、導波管を用いるものは測定周波数の下限をカット オフ周波数の 0.7 倍からとすることができるほか、導波管が十分に長く技術基準を十 分満足するカットオフ減衰量が得られることが証明できる場合は、その周波数範囲の 測定を省略することができる。

測定用端子が空中線端子と異なる場合は、空中線端子と測定用端子の間の損失等を 補正する。ただし、空中線端子がない場合においては、測定のために一時的に測定用 端子を設けて同様に測定すること。

4.3.6 受信装置の副次的に発射する電波等の限度

受信空中線端子において、スペクトルアナライザ等を用いて帯域外領域に相当する 帯域及びスプリアス領域に相当する帯域について測定すること。この場合、スペクト ルアナライザ等の分解能帯域幅は、技術的条件で定められた帯域幅に設定すること。 スプリアス領域に相当する帯域等の測定周波数範囲は、30MHzから110GHzとするが、 導波管、フィルタ等の周波数特性により、副次発射が技術基準を満足することが明ら かな場合は、その周波数範囲の測定を省略することができる。また、導波管を用いる ものは測定周波数の下限をカットオフ周波数の0.7倍からとすることができるほか、 導波管が十分に長く技術基準を十分満足するカットオフ減衰量が得られることが証明 できる場合は、その周波数範囲の測定を省略することができる。

測定用端子が空中線端子と異なる場合は、空中線端子と測定用端子の間の損失等を 補正する。ただし、空中線端子がない場合においては、測定のために一時的に測定用 端子を設けて同様に測定すること。

なお、受信のみの空中線端子がなく送信空中線と共用する場合であって受信装置の みの動作状態にできない場合は、送受信状態で測定する。この場合は、副次的に発す る電波等の限度として不要発射を含めた値を測定値とする。

第5章 今後の検討課題

他の無線システムと共存可能性について、アマチュア無線システム及び電波天文台及び 80GHz帯高速無線伝送システムとの干渉条件が具体的に検討され、いずれのシステムとも 共存が可能であるとの結論に至った。しかし、国立天文台野辺山宇宙電波観測所との干渉 に関して基本的に共存可能と考えるが、将来的に干渉が起こりうる可能性が全くない訳で はないとの懸念が追記事項として表明され、具体的には以下の点を要望または指摘された。

- ・レーダ機能からの干渉低減への努力
- ・将来的に国立天文台野辺山宇宙電波観測所への干渉が検知される可能性に備えたレーダ機能のマニュアル停止機能
- ・干渉検討の際に考慮の対象から漏れた遠方に存在する見通し箇所(例えば本沢温泉)
 の存在

従って、レーダメーカはその開発において必要最小限のレーダ放射電力に留める等の干 渉低減への努力を継続的にすべきと考える。また、レーダ機能のマニュアル停止機能等に ついては、要望を考慮した設計が必要である。

今後、国立天文台野辺山宇宙電波観測所を含む他の無線システムにおいて、79GHz 帯高 分解能レーダからの干渉が検知された場合には、レーダメーカを含むグループは、誠意あ る協議と対応策の検討をすることが必要である。

また、79GHz 帯高分解能レーダの果たすべき車両安全制御システム機能の更なる向上に よる歩行者、自転車などに対する安全確保のため、検知視野角の拡大等の検討を行うこと が望ましい。

現在、79GHz 帯高分解能レーダが使用する周波数帯(77.0GHz から 81.0GHz)について国際的な分配が WRC で検討されているところであるが、本レーダの普及のため引き続き WRC 等への積極的な寄与を行うとともに、その状況を踏まえ柔軟に対応していくことが望まれる。

V 審議結果

79GHz 帯高分解能レーダついて審議を行い、別添のとおり「ITS 無線システムの技術的 条件」のうち、「79GHz 帯高分解能レーダの技術的条件」について一部答申(案)を取り まとめた。

VI 参考文献

- [1]. Merril Skolnik Introduction to radar systems. McGraw-Hill Inc., 1980.
- [2]. D.R. Wehner High-Resolution Radar. Chapters 4&5, Artech House, 1995.
- [3]. J. Zhang et al. " A Novel Transmit signal Based on High Range-Resolution Concept for FLAR or AICC System Applications. 2001 CIE International Conference on Radar, 2001.
- [4]. 総務省. 平成 21 年度 ミリ波帯を用いたレーダシステムの高分解能化技術に関する 調査検討報告書. (社) 電波産業会, 2010.

[5]. 総務省. 平成 22 年度 ミリ波帯を用いたレーダシステムの高分解能化技術に関する 調査検討報告書. (社) 電波産業会, 2011.

情報通信審議会 情報通信技術分科会 移動通信システム委員の構成

(敬称略:主査以外は五十音順)

氏名	現一職
【主査】安藤 真	東京工業大学大学院 理工学研究科 教授
【主査代理】門脇直人	(独)情報通信研究機構 新世代ワイヤレス研究センター長
飯塚 留美	(財)マルチメディア振興センター 電波利用調査部主席研究員
伊藤 数子	(株)パステルラボ 代表取締役社長
伊藤 泰宏	日本放送協会 放送技術研究所 放送ネットワーク研究部長
伊藤 ゆみ子	日本マイクロソフト(株) 執行役法務・政策企画統括本部長
唐沢 好男	電気通信大学 大学院 情報理工学研究科 情報・通信工学専攻 教授
川嶋 弘尚	慶應義塾大学 名誉教授 コ・モビリティ社会研究センター 特別顧問
工藤 俊一郎	(社)日本民間放送連盟 常務理事
河野 隆二	横浜国立大学大学院 工学研究院 教授
小林 久美子	日本無線(株) 研究開発本部 研究所 ネットワークフロンティア チームリーダ 担当課長
中津川 征士	日本電信電話(株) 技術企画部門 電波室長
丹羽 一夫	(社)日本アマチュア無線連盟 副会長
本多美雄	欧州ビジネス協会 電気通信機器委員会 委員長
松尾 綾子	(株)東芝 研究開発センター ワイヤレスシステムラボラトリー 研究主務
宮内 瞭一	一般社団法人 全国陸上無線協会 専務理事
森川 博之	東京大学 先端科学技術研究センター 教授
矢野 由紀子	日本電気(株) システムプラットフォーム研究所 研究部長
若尾正義	一般社団法人 電波産業会 専務理事

平成24年2月現在

情報通信審議会 情報通信技術分科会 ITS 無線システム委員の構成

(敬称略:主査以外は五十音順)

氏名	現 職
【主査】川嶋 弘尚	慶應義塾大学 名誉教授 コ・モビリティ社会研究センター 特別顧問
【主査代理】唐沢好男	電気通信大学 電気通信学部 電子工学科 教授
井筒 郁夫	(社)電気通信事業者協会 専務理事
伊藤 数子	(株)パステルラボ 代表取締役社長
井上 剛志	警察庁 長官官房参事官
大庭孝之	国土交通省 道路局 道路交通管理課 ITS 推進室長
門脇直人	(独)情報通信研究機構 新世代ワイヤレス研究センター長
工藤(俊一郎	(社)日本民間放送連盟 常務理事
桑原雅夫	東京大学 生産技術研究所 教授
小林 久美子	日本無線(株) 研究開発本部 研究所 ネットワークフロンティア チームリーダー
島雅之	国土交通省 自動車交通局 技術安全部 国際業務室長
正源 和義	日本放送協会 放送技術研究所 研究主幹
高安 美佐子	東京工業大学大学院総合理工学研究科知能システム科学専攻 准教授
辻本 圭助	経済産業省 製造産業局 自動車課 ITS 推進室長
豊増後一	日産自動車(株) 執行役員
西川 幸男	トヨタ自動車(株) 常務役員
廣瀬 弥生	国立情報学研究所 特任准教授
柵木 充彦	(株)デンソー 常務役員 情報安全事業部グループ長
矢野 厚	住友電気工業(株) 常務取締役
若尾正義	(社)電波産業会 専務理事

平成 22 年 4 月時点

別表3

情報通信審議会 情報通信技術分科会 移動通信システム委員会

79GHz 帯高分解能レーダ作業班の構成

(敬称略、主任以外は五十音順)

氏名	所属
【主任】門脇 直人	(独)情報通信研究機構新世代ワイヤレス研究センター所長
【主任代理】高田潤一	東京工業大学 大学院理工学研究科 教授
青木豊	(株)デンソー 研究開発3部 担当課長
太田貴志	欧州ビジネス協会/日本自動車輸入組合
柿原 正樹	(社)日本自動車工業会 ITS 技術部会 委員
笠谷 昌史	ボッシュ(株)テクニカルセンター 先端技術開発部 ゼネラルマネージャー
木田 弘幸	日本無線(株)研究開発本部 技術戦略グループ 担当部長
黒田浩司	日立オートモーティブシステムズ(株)技術開発本部 開発研究所 主任技師
近藤 俊幸	一般社団法人 日本アマチュア無線連盟 業務部長
近藤 博司	EHF コンサルティング
新行内 誠仁	(株)本田技術研究所 四輪 R&D センター 第 8 技術開発室 主任研究員
瀬川 倉三	一般社団法人電波産業会 研究開発本部ITSグループ
関哲生	富士通(株)インテリジェントテクノロジー本部 ITS 統括部 マネージャー
高橋 充弘	住友電気工業(株)ネットワーク営業本部 光・エレクトロニクス営業部 主席
中川永伸	(財)テレコムエンジニアリングセンター 技術部 担当部長
松岡 克治	三菱電機(株)自動車機器開発センター 開発第一部 第1グループ グループマネージャ
溝口和貴	日産自動車(株)電子技術開発本部 IT&ITS 開発部 ITS 先行・製品開発グループ 主担
南载明	トヨタ自動車(株)第2電子開発部 第2電子先行開発室 第 4G 主任
山本 智	東京大学大学院理学系研究科 物理学専攻・教授
若林 良昌	日本電気(株)中央研究所 エキスパート

平成24年2月現在