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Simultaneous real-time visible and 

infrared video with single-pixel 

detectors
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Conventional cameras rely upon a pixelated sensor to provide spatial resolution. An alternative 

approach replaces the sensor with a pixelated transmission mask encoded with a series of binary 

patterns. Combining knowledge of the series of patterns and the associated filtered intensities, 
measured by single-pixel detectors, allows an image to be deduced through data inversion. In this 

work we extend the concept of a ‘single-pixel camera’ to provide continuous real-time video at 10 Hz 

, simultaneously in the visible and short-wave infrared, using an efficient computer algorithm. We 
demonstrate our camera for imaging through smoke, through a tinted screen, whilst performing 

compressive sampling and recovering high-resolution detail by arbitrarily controlling the pixel-

binning of the masks. We anticipate real-time single-pixel video cameras to have considerable 

importance where pixelated sensors are limited, allowing for low-cost, non-visible imaging systems 

in applications such as night-vision, gas sensing and medical diagnostics.

When multi-pixel sensors are not available due to cost or technological constraints, imaging systems 
require alternative approaches. A number of related approaches use spatially structured illumination1–3 
or structured detection4,5 and a single-pixel detector to deduce an image. Perhaps the most obvious of 
these approaches is to raster scan a spatially selective detector over the field of view and rely upon the 
temporal analysis of the back-scattered light to give the intensity of every pixel in the image. Although 
giving a complete image, clearly this approach has an optical efficiency that scales inversely with the 
number of pixels in the image.

Instead of scanning a single detector over the whole image an alternative is to measure many pixels 
simultaneously, which in practice improves the measurement signal-to-noise. Broadly-termed aperture 
coding, one implementation scheme uses a series of binary transmission masks applied using a spatial 
light modulator to the image formed by a lens, and a single detector to measure the transmitted inten-
sity. The known series of mask patterns and the measured intensities can be combined and inverted, 
using a variety of algorithms, to give a good estimate of the image. The use of a single detector to obtain 
the image data leads this technique to be called a ‘single-pixel camera’4,6. We note at this point that the 
single-pixel camera has much in common with the field of computational ghost imaging7–11, whereupon 
the latter uses knowledge of projected illumination patterns and measured back-scattered signals. Both 
single-pixel cameras and computational ghost imaging systems use similar algorithms applied to the back 
scattered intensities to deduce the image.

For both aforementioned approaches utilising single-pixel detectors to reconstruct images there exists 
a trade-off between acquisition time and image resolution, which results from the finite display rate of 
the spatial light modulator. Importantly however, most natural images exhibit similar characteristics, for 
example sparsity in their spatial frequencies, which allow for compressive techniques to represent images 
with less information. Indeed the field of compressed sensing asserts that an image can be recovered 
with far fewer measurements than the Nyquist limit. Recently, there has been considerable interest in the 
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development of advanced compressive algorithms for the acquisition of video12–20. However impressive 
the compression rates of these approaches, the associated reconstruction times greatly exceed the acqui-
sition time thereby prohibiting use in real-time video systems for human interfacing.

Results
In this work we demonstrate real-time video from a single-pixel camera for visible and short-wave infra-
red (SWIR) wavelengths without the requirement for lengthy post-processing. Our system utilises a 
high-speed digital micro-mirror device (DMD) to apply spatial masks from which the transmitted light 
is spectrally filtered simultaneously onto four separate single-pixel detectors, corresponding to the red, 
green, blue and SWIR colour channels. We note that this experimental system has a similar configuration 
to that in Ref [4,6], with the addition of simultaneous spectral filtering. However, key to this approach 
is the implementation of an efficient iterative computer algorithm that stores only the current frame in 
memory and thus can operate continuously, which is an important feature for this technology in appli-
cations. We compare real-time colour video (red, green, blue) and SWIR video (800-1800 nm) acquired 
and processed at frame rates of ~10 Hz with a resolution of 32 ×  32 pixels or ~2.5 Hz at a resolution of 
64 ×  64 pixels. Furthermore, we demonstrate the use of real-time image optimisation similar to tech-
niques used in existing ‘compressed sensing’ work4,21,22, in the presence of moderate and excessive noise. 
In addition, we demonstrate the recovery of high-resolution detail in real-time by arbitrarily modifying 
both the DMD region of interest and mirror binning.

Our modified single-pixel camera demonstrates simultaneous acquisition of multispectral images in 
the visible and shortwave infrared. Obtaining colour and SWIR images provide an intuitive demonstra-
tion of the technology, showcasing the perfect pixel registration inherent with this approach. However, in 
principle these types of systems can be extended for imaging at mid-infrared and terahertz wavelengths, 
where existing detector arrays are very expensive or have inherent limitations, such as microbolome-
ter arrays which require cooling for improved sensitivity or low-resolution Schottky diode arrays that 
require scanning.

The optical design concept is based upon a high-speed digital light projector for which the light 
source is replaced with a detection system incorporating a hot mirror to separate SWIR and visible light. 
Subsequently, a dichroic prism is used to separate visible light into red, green and blue spectral bands. 
Photomultipliers (PMT’s) are used to sense the visible colour channels and an InGaAs photodiode is 
used to sense the SWIR light (see Fig.  1). The controller board for the DMD allows binary patterns 
to be preloaded and then displayed at a maximum rate of 20.7 kHz. Each mirror on the DMD can be 
electronically actuated to one of two states representing ‘on’ or ‘off ’ (transmissive or opaque)23. For every 
pattern displayed, the controller board also provides an output synchronisation TTL signal that is used 
to trigger signal acquisition on a high-dynamic range, analogue-to-digital converter (ADC), capable of 
acquiring 250 k samples/s.

Figure 1. Experimental setup for real-time video with single-pixel detectors. A lens is used to form an 
image of the scene onto the digital-micromirror-device (DMD). The spatially filtered light is directed onto 
a hot-mirror, which reflects SWIR light onto an InGaAs photodetector (PD) and transmits visible light. A 
dichroic prism (x-prism) subsequently filters the visible light into red, green and blue output ports, sensed 
by three identical photomultipliers (PM’s). The measured intensities are digitised by an analog-to-digital 
converter (ADC) for computer processing.
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As with any imaging system, the image quality is dependent upon the level of noise on the detector, 
whether it be a single-pixel or a sensor array. With single-pixel imaging technology, image quality can 
be optimised via both optical and computational techniques. Similar to the work of Ref [4,6], we perform 
optical optimisation by making use of PMT’s as the single-pixel detectors for detection of visible light, 
which enables the system to operate under low-light conditions. In this experiment we make use of the 
well-known Hadamard matrices24, which are binary matrices that form a complete orthonormal set and 
where each pattern contains an equal number of 1’s and − 1’s, representing ‘on’ and ‘off ’ respectively for 
each mask applied to the DMD. Each row from the Hadamard matrix, when reshaped to 2D, contains a 
different subset of spatial frequencies, such that an N N×  pixel image can be fully sampled with N 
Hadamard patterns. However, to preserve orthogonality, this approach relies on sensing the light reflected 
in both outputs of the DMD, or alternatively, by displaying each pattern and immediately succeeding it 
by its inverse. The former requires the use of two detectors for each waveband, while the latter approach 
used here halves the maximum achievable frame rate. Both approaches utilise the difference between the 
two measurements to provide a zero-mean differential signal25, which is similar to lock-in detection at 
22 kHz and 11 kHz respectively, helping to eliminate unwanted sources of noise.

Given a sequence of N orthonormal pattern pairs Ai,j, where the pixel values are assigned ± 1 (i is the 
pixel number and j is the pattern number), the corresponding differential signals are Sj,n. For a pattern 
sequence the nth image estimate of thebject Ox,y,n, reformatted as a column vector of pixel values, Oi,n, 
can be estimated simply as
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which for n =  N provides perfect reconstruction of the image in the absence of noise and is equivalent 
to the least-squares solution to the data. However, most images, Ox,y, are sparse, not in their intensity 
values but in their spatial frequencies. The field of compressed sensing takes advantage of this fact by 
using only a subset of measurement patterns n N� , whilst still achieving a good estimate of the image. 
However, depending on the level of compression, most implementations require considerable processing 
time and therefore these techniques do not lend themselves well to real-time single-pixel video systems.

In this work we show that by employing relatively low-resolution Hadamard matrices, an image can 
be sampled and iteratively reconstructed in real-time from Eq. (1) at up to 10 Hz. However, Eq. (1) 
can still yield poor quality reconstructions under certain conditions, for example when the measure-
ment SNR is low or when performing compressive sampling. Therefore an optimisation algorithm can 
instead be employed which uses the output of Eq. (1) and the measured signals and patterns within 
a forward-model. As an alternative to optimising for sparsity of the spatial frequencies, we perform 
minimisation of the image spatial-curvature, the latter being far quicker to compute and hence more 
applicable to real-time video. In our system optimisation is applied to each of the colour plane images 
separately, based on minimisation of its spatial-curvature and its frame-to-frame temporal derivative. 
The nth image of the sequence is obtained by minimisation of its cost function, Cn, given by
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where σs is the standard deviation of the noise associated with the measurement of Sj,n and On is the 
image expressed in 2D form. The rst term of Eq. (2) corresponds to a minimisation of χ2/N of the image 
with respect to the measured data; the second term represents a minimisation of the total spatial-curvature 
and the third term corresponds to a minimisation of the difference between the current and previous 
image. Values of λ 1 and λ 2 are picked empirically to ensure that, once optimised, N 12χ / �  Utilising an 
image resolution of 32 ×  32 pixels, the optimisation algorithm runs approximately 5×  faster than the 
total time for displaying 1024 pattern pairs, allowing suitable time for convergence before a new set of 
signals is supplied to the algorithm for the following frame.

As the theoretical framework supporting the iterative and optimisation algorithm have been outlined 
in Eqs. (1) and (2) respectively, we herein provide experimental reconstructions when operating the 
system in different conditions. Four frames extracted from a video (see supplementary material: Video 
1) are shown in Fig. 2, obtained when operating the camera in good lighting conditions. Each N pixel 
frame is obtained by displaying N orthogonal pattern pairs and iteratively reconstructing using Eq. (1). 
The top row of Fig. 2 shows that good quality full-colour real-time video is acquired and we observe that 
no visible light penetrates the infrared-transmitting filter located at the right-hand side of each frame. 
The bottom row of Fig.  2 shows the corresponding SWIR video frames. As expected the entire scene 
located behind the infrared filter is revealed by measuring light on the the InGaAs detector. In addition, 
we demonstrate the system performance under low-light conditions, by attenuating the light received at 
the lens using an ND filter. The frames shown in Fig. 3(a,b) have been reconstructed using Eqs. (1) and 
Eq. (2), respectively. We observe a noise reduction within the image at the expense of spatial resolution 
as expected, when using optimisation parameters λ 1 =  3 ×  10−5 and λ 2 =  0.75.
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In addition to reconstructing fully sampled real-time video at a frame rate of ~10 Hz for an image 
resolution of 32 ×  32 pixels, increased image resolutions are also possible. At increased resolutions how-
ever, obtaining real-time video demands efficient compressed sensing techniques to achieve similar 
frame-rates. In choosing the optimal compressed sensing approach we note that typical images can be 

Figure 2. Sample of video frames reconstructed in real-time for visible and SWIR wavelengths 
simultaneously. The top and bottom rows respectively show video frames for full-colour (red,green,blue) and 
SWIR (800 −  1800 nm). Both reconstructions have been fully sampled at 32 ×  32 pixel resolution and up-
sampled and interpolated to 64 ×  64 pixels in real-time with no additional time-lag.

Figure 3. Sample of video frames reconstructed in low light conditions for visible and SWIR wavelengths 
simultaneously, whilst utilising an iterative and optimisation algorithm. The top and bottom rows 
respectively show video frames for full-colour (red,green,blue) and SWIR (800–1800 nm). Frames 
reconstructed using the iterative algorithm (a) show uniform noise across the image compared to frames 
reconstructed using the optimisation algorithm (b) at the expense of image resolution. Both reconstructions 
have been fully sampled at 32 ×  32 pixel resolution and up-sampled and interpolated to 64 ×  64 pixels in 
real-time with no additional time-lag.
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represented by a subset of Hadamard patterns. Hence by utilising only the patterns whose measured 
signals yield ‘significant’ magnitudes, a form of compressed sensing is applied. In other words, we can 
choose to display only a subset of the complete pattern library (stored on the controller board mem-
ory), which are predicted to give the highest signals in the subsequent frame. This compression tech-
nique works well for static scenes, since the measured signals from the previous frame can be used to 

Figure 4. Sample of video frames reconstructed in the presence of smoke for different levels of compressed 
sensing. The frames from each video are reconstructed at 64 ×  64 pixel resolution and up-sampled and 
interpolated to 128 ×  128 pixels in real-time with no additional time-lag. The top and bottom rows show a 
sample of video frames for visible (red,green,blue) and SWIR (800–1800 nm), when sampled at (a) 100%, (b) 
50% and (c) 25% compression. An optimisation algorithm is employed for compressively sensed frames as 
shown in (b) and (c).
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inform the choice of patterns in the following frame. However this approach is less robust for monitoring 
dynamic changes within a scene in real-time as the ‘significant’ patterns for the next frame can change. 
Therefore to allow the ‘significant’ subset of patterns to continuously adapt to a dynamic scene, a small 
random subset from the remaining pattern library can be utilised. We term this iterative compressed 
sensing approach an ‘evolutionary’ compressive technique26.

In a separate experiment the system was modified by removing the dichroic prism and two pho-
tomultipliers such that a single photomultiplier was used to measure visible light. A comparison was 
then made between visible and SWIR channels whilst operating outdoors in daylight, while a commer-
cial smoke machine was used to fill the scene. Fig. 4(a) shows a sample of visible and infrared frames 
reconstructed at 64 ×  64 pixel resolution using Eq. (1) at a frame rate of ~2.5 Hz, and continuously using 
4096 Hadamard pattern pairs, equating to no compression (see supplementary material: Video 2). We 
observe that the subject’s tinted sunglasses become transparent at SWIR compared to visible wavelengths. 
Moreover, the presence of smoke is shown to overwhelm the visible channel due to scattering, while 
the subject remains clear in the SWIR channel. In Fig. 4(b,c) the number of pattern pairs continuously 
displayed on the DMD was 2048 and 1024 respectively, equivalent to 50% and 25% compression, pro-
viding frame rates of ~5 Hz and ~10 Hz, respectively (see supplementary material: Video 3 and Video 4 
respectively). Reconstructions were made utilising Eq. (2) with λ 1 =  1 ×  10−4 and λ 2 =  0.8.

It is clear that due to the fixed frame-rate of the DMD, a trade-off exists between the frame-rate 
and pixel number with single-pixel camera architectures. One technique described in Ref. [15] utilises 
multi-scale sampling resolution in order to permit reconstruction of low-resolution frames through-
out the acquisition process. By utilising the low-resolution images, an estimate for the motion in 
the scene is calculated, and later used as an additional constraint for compressive reconstruction of 
higher-resolution video frames, providing improved robustness to temporal blur. However, the require-
ment for post-processing with this approach still prevents real-time high-resolution video.

We propose a compromise in order to achieve increased spatial-resolution, maintain high frame-rates 
and is relatively simple to employ, which is to sample over an arbitrarily defined region of interest but 

Figure 5. Sample video frames acquired for different levels of zoom. The object, a USAF test target, is 
located at a distance of 2 meters from the camera. The left column shows the image when sampled fully at 
64 ×  64 pixel resolution with fixed mirror binning of 12 ×  12 and digitally zooming into the central region of 
interest by a factor of 2 and 4. In contrast the right column shows the image fully sampled at 64 ×  64 pixel 
resolution, but for 12 ×  12, 6 ×  6 and 3 ×  3 mirror binning, equivalent to providing a physical zoom of 1× , 
2×  and 4× , respectively.
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maintain the orthogonal sampling matrix dimensions. This can be achieved in practice by changing 
the mirror binning, whereby ‘unused’ mirrors remain in the ‘off ’ state and are hence not sensed by the 
photodetector. By reducing the mirror binning, the angular resolution is increased, equivalent to an 
optical zoom. However, importantly no optical component is moved with this approach, instead for every 
additional level of zoom, an extra pattern library is preloaded into the onboard memory and selected 
for display on the DMD. Fig.  5 shows the result of 12 ×  12, 6 ×  6 and 3 ×  3 mirror binning, which is 
analogous to providing 1× , 2×  and 4×  physical zoom of the image for a predetermined resolution of 
64 ×  64 pixels.

Nevertheless, the challenge of obtaining full-frame, high-resolution video in real-time from single-pixel 
detectors remains. Perhaps this will be made possible in the future with improved computer processing 
performance and advanced video-based compressed sensing techniques or through efficient optical and 
computational multiplexing27.

The data used to produce the content of this manuscript is available at: http://dx.doi.org/10.5525/gla.
researchdata.167

Discussion
We have demonstrated a real-time video system utilising single-pixel detectors for imaging simultane-
ously at visible and short-wave infrared wavelengths. The maximum frame rate of our camera is ~10 Hz. 
We have demonstrated the infrared real-time imaging system when monitoring a variety of scenes con-
taining an infrared filter, sunglasses, smoke and under different lighting conditions, similar in character 
to results reported with conventional SWIR detector arrays. Once matured this technology could lead 
to significantly cheaper SWIR imaging devices. When operating in low-light conditions, or performing 
compressive sampling, an efficient optimisation algorithm was shown to considerably improve the image 
quality. In order to increase spatial resolution of images whilst maintaining high-frame rates we have 
shown a simple approach for arbitrarily modifying the mirror binning and utilising a specific region 
of interest on the DMD. In practice this region of interest may be automated or arbitrarily defined by 
the camera operator. We anticipate that the large operational bandwidth afforded by DMD technology 
will enable real-time imaging from such single-pixel camera systems to have widespread application in 
industry, medicine and defence, at wavelengths were detector arrays are limited or costly.
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