Advanced x86:

BIOS and System Management Mode Internals
SPI Flash Protection Mechanisms

Xeno Kovah && Corey Kallenberg
LegbaCore, LLC

8

LEGBACORE

WE DO DIGITAL VOODOO

All materials are licensed under a Creative

Commons “Share Alike” license.
http://creativecommons.org/licenses/by-sa/3.0/

You are free:

@ to Share — to copy, distribute and transmit the work

to Remix — to adapt the work

®

Under the following conditions:

Attribution — You must attribute the work in the manner specified by the
author or licensor (but not in any way that suggests that they endorse you or
your use of the work).

Share Alike — If you alter, transform, or build upon this work, you may
distribute the resulting work only under the same, similar or a compatible
license.

© ®

Attribution condition: You must indicate that derivative work
"Is derived from John Butterworth & Xeno Kovah'’s ‘Advanced Intel x86: BIOS and SMM’ class posted at http://opensecuritytraining.info/IntroBIOS.html” 2

How to stop someone from writing to
your BIOS

* AKA “How to stop an attacker from writing to
your BIOS”

— AKA “What the BIOS vendors are typically

configuring wrong when they’re supposed to be
stopping attackers from writing to your BIOS”

Flash Protection

Table 5-60. Flash Protection Mechanism Summary

Reset-Override . .
- Accesses Range Equivalent Function on
Mechanism o or SMI#-
Blocked Specific? - FWH
Override?
BIOS Range
Write Writes Yes Reset Override FWH Sector Protection
Protection
i)) Same as Write Protect in
Write Protect | Writes No SMI# Override previous ICHs for FWH

« With no Flash Descriptor present, the only mechanisms
to lock the flash are:
— BIOS Range Write Protection
— Global Flash Write Protection

* The reference to FWH Sector Protection yields no results
In any datasheets. | am assuming it is related to the R/W
control shown in the sample F\WH register map at the
beginning of the BIOS Flash section

Flash Protection Mechanism #1

Table 5-60. Flash Protection Mechanism Summary

Reset-Override

Mechanism Accesses Ran_g_e or SMI#- Equivalent Function on
Blocked Specific? - FWH
Override?
BIOS Range
Write Writes Yes Reset Override FWH Sector Protection
Protection
(Write Protect | Writes No SMI# Override Sém.e as Write Pr_otect n
previous ICHs for FWH/

« Covering this first because | believe it to be your first line
of defense to protect your BIOS flash from writes

* Applies to the entire flash chip (Global Flash Protection)

* Provides SMM the ability to determine whether or not a
request to unlock the BIOS flash for writing will be
permitted

* This protection is provided by the chipset (not on the
flash itself)

Global BIOS Write Protection

BIOS_CNTL—BIOS Control Register
(LPCI/F—D31:F0)

Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 00h Size: 8 bit
Lockable: No Power Well: Core

Bit Description

7:5 | Reserved

Top Swap Status (TSS) — RO. This bit provides a read-only path to view the state of

4 the Top Swap bit that is at offset 3414h, bit 0.

SPI Read Configuration (SRC) — R/W. This 2-bit field controls two policies related to
BIOS reads on the SPI interface:

Bit 3- Prefetch Enable
Bit 2- Cache Disable

Settings are summarized below:

Bits 3:2 Description

No prefetching, but caching enabled. 64B demand reads load
the read buffer cache with "valid” data, allowing repeated code
fetches to the same line to complete quickly

3:2 00b

No prefetching and no caching. One-to-one correspondence of

01b host BIOS reads to SPI cycles. This value can be used to invalidate
the cache.

10b Prefetching and Caching enabled. This mode is used for long
sequences of short reads to consecutive addresses (i.e., shadowing).

11b Reserved. This is an invalid configuration, caching must be

when prefetching is enabled:

/'E'Ios Lock Enable (BLE) — R/WLO.
1

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only>

0 = Setting the BIOSWE will not cause SMIs.
cleared by a PLTRST#

BIOS Write Enable (BIOSWE) — R/W.
0 = Only read cycles result in Firmware Hub I/F cycles.

0 1 = Access to the BIOS space is enabled for both read and write cycles. When this bit i
written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is

\generated. This ensures that only SMI code can update BIOS.

— ———

On MCH/ICH
systems, bits 7:5 of
the BIOS CNTL are
reserved

On this system

BIOS CNTL is
located in the LPC
device (D31:FO0, offset
DCh)

These protections
would also apply to
the Firmware Hub
(FWH) if the BIOS

were located there.

|ICH/PCH Chipset
SMM-derived Write Protection:

BIOS Lock Enable (BLE) — R/WLO.

0 = Setting the BIOSWE will not cause SMIs.

1 = Enables setting the BIOSWE bit to cause SMIs. Once set, this bit can only be
cleared by a PLTRST#

BIOS Write Enable (BIOSWE) — R/W.

0 = Only read cycles result in Firmware Hub I/F cycles.

0 1 = Access to the BIOS space is enabled for both read and write cycles. When this bit is
written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is
generated. This ensures that only SMI code can update BIOS.

« BIOS_CNTL.BIOSWE (bit 0) enables write access to the
flash chip

— Always R/W

 BIOS CNTL.BLE (bit 1) provides an opportunity for the
OEM to implement an SMI to protect the BIOSWE bit

How you should think of BLE

CPU <€ >

RAM

SMRAM
(SMI Handler)

A

|

i

1
Y

| sort of provide BIOS i
access control!

ICH or PCH

SPI

‘m

Flash Chip

How It works

BLE=1
BIOS_CNTL
BIOSWE =0

BIOS_CNTL—BIOS Control Register
(LPCI/F—D31:F0)

* Privileged app wants to write to the SPI flash, sets
BIOS CNTL.BIOSWE to 1

— The only reason privileges are needed is to execute the in/out
instructions

How It works

BLE=1
BIOS_CNTL

BIOSWE =1

BIOS_CNTL—BIOS Control Register
(LPC I/F—D31:F0)
« The BIOS_CNTL register has the BIOS Lock (BLE) enabled

» Asserting BIOSWE while BLE is set generates an SMI#
— SMI# is initiated by the Chipset (ICH)

« The processor transitions to System Management Mode

10

How It works No no no,

this will
never do...

BIOS_CNTL

BIOSWE=1 p

BIOS_CNTL—BIOS Control Register
(LPC I/F—D31:F0)

« Aroutine in the SMI handler explicitly checks to see if
BIOS CNTL.BIOSWE is set

11

How It works

<
@/-O@&&
)
)

b,
B L{\é/[:
BIOS CNTL

BIOSWE =0

BIOS_CNTL—BIOS Control Register
(LPC I/F—D31:F0)

« The SMI handler flips this bit back to 0, disabling writes
to the serial flash

— Since updates should be applied only by SMRAM, SMRAM

knows that unless it flipped this bit, this bit shouldn’t be flipped.

12

How It works

BIOS_CNTL

BIOS_CNTL—BIOS Control Register
(LPCI/F—D31:F0)

From the app’s perspective, it appears the BIOSWE bit was
never even asserted.

Of course this only works if:
— BLE is asserted/enabled
— There is a SMI handler explicitly checking/resetting the BIOSWE bit
— SMIs cannot be somehow suppressed (you already saw 1 way)

13

vulnBIOS example: BIOS CN

RW - Read & Wri

Access Specific Window Help

CPEPEEE] I

i par
— W
L=l el (6 O M] o] s 2] i | @
{Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge v
220 00 01 02 03 04 05 06 07 08 09 0OA 0B 0OC 0D OE OF
ob 8 80 17 29 07 01 10 02 03 00 01 06 0O 0O 80 0O
10 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO 00 OO
20 00 00 OO0 OO OO OO OO OO OO OO OO OO 28 10 33 02
30 00 00 OO0 OO EO OO OO OO OO OO OO OO OO OO 00 OO
40 01 10 00 00 80 OO0 OO OO 81 10 OO OO 10 OO0 00 00
50 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
60 83 8A 8B 8A D1 00 00O 0O 8A 83 8B 80 F8 00 00 00
70 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO 00 OO
80 00 00 04 3C 01 09 7C 00 00O OO OO 00O 81 OC 3C 00
90 00 00 OO0 OO OO OO OO OO OO OO OO OO OO OO 00 OO
A0 20 OE 00 00O 39 02 80 00 2B 1C 4A 00 00 03 00 40
BO 00 00 FO OO OO OO OO OO 08 00O O1 OO OO OO 00 OO
CoO 00 00 OO0 OO OO OO OO OO OO OO OO 00 il 00 00 00
DO 00 00 00 OO OO0 OO OO OO 80 FO OO O [1[0 00 00
EO 09 00 0OC 10 00 02 C4 03 04 00 00 00 s 00 00 00
FO 01 80 D1 FE 00O 0O 0O 0D 86 OF 03 00 00 00 00 0O
Hardware

L Testing

Look at the BIOS CNTL
register in the LPC
device

BIOS Lock Enable (BLE)
bit 1 is not asserted

This means any
application privileged
enough to either map the
PCI Express
configuration space or
perform port I/O can
assert BIOSWE to
enable writes to the
BIOS flash

14

vulnBIOS example: BIOS CN

ccess Specific Window

Help

fl pCI
S byte | word| dword| 2

@ G 8 5] o] el 2] i | @)

[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge v
220 00 01 02 03 04 05 06 07 08 09 0DA 0B 0OC OD OE OF
00 8 80 17 29 07 01 10 02 03 00O 01 06 0O 0O 80 OO
10 00 00 OO OO OO OO OO OO OO OO OO OO OO OO OO0 OO0

== . .
ig 00" 00" 00K bey 00,1F,00 Reg ODC (220) s | 10 B
00 00 00 00 00 00
40 01 10 00 00 00 00
7 6 5 4 3 2

S50 00 00 00 0000 10 () - 00 00 00
60 83 B8A 8B — 00 00 00
70 00 00 00 00 00 00
80 00 00 04 40C 3C 00
90 00 00 OO0 OO0 OO0 00 00 00) 00 00 00 00 OO0 00 OO0
A0O 20 OE 00 00 39 02 80 00 2B 4A 00 00 03 00 40
BO 00 00 FO OO0 OO0 OO0 OO0 00 08 00 W 00 00 00 00 00
Co 00 00 00 00 00 00 00 00 00 00 00 i 00 00 00
DO 00 00 00 OO OO0 OO OO OO 80 FO OO6 00 00 00 00
EO 09 00 OC 10 00 02 C4 03 04 00 OO OO0 UU 00O OO0 OO
FO 01 80 D1 FE 00 00 00D OO 86 OF 03 00O OO0 OO 0O OO0

Hardware

L Testing

You don’t have to do this,
but note that it is
possible to set BIOS
Lock Enable to 1 and not
have an SMI handler
routine running that
checks and de-asserts
BIOS Write Enable bit O

We've seen this on
multiple systems; where
BLE was set, but
asserting BIOSWE to 1

was not resetto 0

This is why bit 0 must be
tested in order to really
test write-protection

15

vulnBIOS example:
BIOS CNTL Testing: Set BLE

RW - Read & Writ

Access Specific Window Help

10 Space

Leal [

|0 Space Base = 00B2 |

30

0 0100 0302

oo € 8105) Froo

10 FHEF - . .

20 -4 [Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge
F I\

0504
FFFF

0706
FFOO

0908
FFFF

0BOA
FFOO

0DOC
FFFF

OFOE
S5F40

220 00 01 02 03 04 05 06 07 08 09 O0A
o0 8 80 17 29 07 01 10 02 03 00 01
10 00 00 00 00 00 00 00 00 00 00 00

20 00 00 00 00 00 00 00 00 00 00 00
30 00 00 00 00 EO 00 00 00 00 00 00
01 10 00 00 80 00 00 00 81 10 00
00 00 00 00 00 00 00 00 00 00 00
5 88 8A D1 00 00 0O B8A 83 8B
70 00 1y
80 00 00
a0 00 00 00
A0 20 OE 00 00
BO 00 00 FO 00 00 N 00 00

01 09 7C 00 00 00 OO0

00 00 00 00 00 00 00 00

00 00 00 OO0 OO0 OO OO OO OO0 o0

00 81

Q 00 80 00 2B 1C 4A 00

0B
06
00
00
00
00
00

80

00
C0 00 00 00 00 00 00 00 = (00 00 00 00

DO 00 00 00 00
EO 09 00 o0C 10

0cC
00
00

28

00 00

10

00 00
F8 0OC

00

00 02 C4 03 04 00 00 OO0 == ((

0D
00

Now we're going to
setup BIOS_CNTL so
that it protects the flash

This will only work on
these lab machines with
this modified BIOS

| inserted a custom SMI
handler that resets the
BIOSWE bitto O ifitis

asserted

We’'re going to enable
this by writing the word
0xb105 to port OxB2

You should now see the
BLE bit asserted in
BIOS _CNTL (Ox0A)

16

vulnBIOS example:
BIOS CNTL Testing

PCI
v byte | word| dword| 2
EI @ - ' ﬂ gbit | 16bit| 32bitl A

(7]

[Bus 00, Device 1F, Function 00 - Intel Corporation ISA Bridge

220 00 01 02 03 04 05 06 07 08 09 O0OA OB
00 8 80 17 29 07 01 10 02 03 00 01 06
|

10 OF pc100,1F,00 Reg 0DC (220) =] O
20 0O 00

30 8 00
7/6(5|4|13(2|1|0
0o o001 0 1 1 oo

40 0

50 0 00
60 8
70 0
80 00 00 04 3C 01 09
90 00 00 00 OO0 00 00 00 W
A0 20 OE 00 00 39 00 80 00
BO 00 00 FO 00 00 00 OO0
CoO 00 00 00 OO _0Q00 0O 00
DO 00 00 00 Of H H

o oo oo oc 1 BitOisde-asserted
FO 01 80 D1

Hardware

0B Cancel

80
v | 00

00 00 00 00 00

00 00 00 00
4A 00
N 01 00

00 00 00 ©

0C
00
00
28
00
10
00
F8
00
81
00
00

00

'E

oD
00
00
10
00
00
00
00
00
0C
00
03

FE 00 00 00 00 86 OF 03 00 00 OO0

0E
80
00
33
00
00
00
00
00
3C
00
00
00
00
00

00

00

Now try to enable writes
to the BIOS by asserting
BIOSWE bit 0

— Set BIOS_CNTL to 0x0B

You will notice that it
resets to Ox0A

This is the SMI handler
working as it should

Note the reset of BIOSWE
to 0 occurs during SMM

Any tangible delay you
see in resetting this value
IS due to the
(configurable) “Refresh”
button in RW-E

17

BIOSWE/BLE should be considered
deprecated!

We can defeat it on systems that are not using SMRRs

— "The Sicilian" — "Defeating Signed BIOS enforcement”, Kallenberg et
al., EkoParty 2013
We can defeat it on systems that don't set SMI_LOCK

— "Charizard" — "Setup for Failure: Defeating UEFI Secure Boot",
Kallenberg et al., Syscan 2014

— But Charizard actually found by Sam Cornwell, it just got merged into
Corey's talk in its first appearance. Will be spun off later.
We can defeat it on systems TXT-enabled that suppress SMls
— "Sandman" — "SENTER Sandman: Using Intel TXT to attack BIOSes",
Kovah et al., Summercon 2014

We have a new fundamental attack against it that will bypass BLE
on all systems, once and for all. “Speed Racer” We’'ll talk about
these at the end, depending on time.

BIOS CNTL: SMM BWP

BIOS_CNTL—BIOS Control Register

(LPC I/F—D31:F0)
Offset Address: DCh Attribute: R/WLO, R/W, RO
Default Value: 20h Size: 8 bits
Lockable: No Power Well: Core
Bit Description
7:6 W \
/?MM BIOS Write Protect Disable (SMM_BWP)—R/WL. \
This bit set defines when the BIOS region can be written by the host.
5 0 = BIOS region SMM protection is disabled. The BIOS Region is writable regardless if
processors are in SMM or not. (Set this field to 0 for legacy behavior).
\ 1 = BIOS region SMM protection is enabled. The BIOS Region is not writable unless
I~ processors are in SMM and BIOS Write Enable (BIOSWE) is set to "1".

4 Top Swap S)— his bit provid view the state of

the Top Swap bit that is at offset 3414h, bit 0.

SPI Read Configuration (SRC)—R/W. This 2-bit field controls two policies related to

BIOS reads on the SPI interface:

Bit 3 - Prefetch Enable

Bit 2 - Cache Disable

Settings are summarized below:

Bits 3:2 Description
No prefetching, but caching enabled. 64B demand reads load
3:2 00b the read buffer cache with "valid” data, allowing repeated code
fetches to the same line to complete quickly.
No prefetching and no caching. One-to-one correspondence of
01b host BIOS reads to SPI cycles. This value can be used to invalidate
the cache.
Prefetching and Caching enabled. This mode is used for long
10b sequences of short reads to consecutive addresses (that is,

shadowing).

BIOS Lock Enable (BLE)—R/WLO.

1 0 = Transition of BIOSWE from "0" to "1 will not cause an SMI to be asserted.
1 = Enables setting the BIOSWE bit to cause SMIs and locks SMM_BWP. Once set, this
bit can only be cleared by a PLTRST#.
BIOS Write Enable (BIOSWE)—R/W.
0 = Only read cycles result in Firmware Hub or SPI I/F cycles.
0 1 = Access to the BIOS space is enabled for both read and write cycles. When this bit is

written from a 0 to a 1 and BIOS Lock Enable (BLE) is also set, an SMI# is

generated. This ensures that only SMI code can update BIOS.

In PCH chipsets, bit 5 of
BIOS CNTL has been
defined:

Provides the vendor the ability
to ensure that BIOS region
may ONLY be written to when

all processors are in SMM and
BIOSWE is enabled

Our lab system does not
implement this bit because it
is an MCH/ICH system, but
check it out on your own

As we’ve seen, this register is

important to lock down the
BIOS to mitigate SMI
suppression

Same here

Only 6 out of ~10k systems
we’ve measured to date use
ith! ®

— As of 3/31/2014

19

Another Protection Mechanism

Table 5-60. Flash Protection Mechanism Summary

Reset-Override . .
- Accesses Range Equivalent Function on
Mechanism e or SMI#-
Blocked Specific? O - FWH

verride?
BIOS Range \
Write Writes Yes Reset Override FWH Sector Protection >

. : ~ Same as Write Protect in

Write Protect | Writes No SMI# Override previous ICHs for FWH

« BIOS Range Write-Protection is the second major line of
defense

* There are 5 Protected Range registers (0-4) with
independent R/W permissions

« Setting these will prevent reads and/or writes until the
system is reset.

* Information on FWH Sector Protection is hard to come by. It appears to be a security mechanic on the chip itself, since
chips can be described as being divided into sectors.

PRO—Protected Range 0 Register
(SPI Memory Mapped Configuration Registers) | 5o who protects

Memory Address: X + 74h Attribute: <7 the protector?
Default Value: GuuLOOoh Size: DIts
This guy that’s who!
This register can not be written when the FLOCKDNﬁ is set to 1. We'll get to that later
Bit Description

Write Protection Enable — R/W. When set, this bit indicates that the Base and Limit
fields in this register are valid and that writes and erases directed to addresses between
them (inclusive) must be blocked by hardware. The base and limit fields are ignored
when this bit is cleared.

30:29 | Reserved

Protected Range Limit — R/W. This field corresponds to FLA address bits 24:12 and
specifies the upper limit of the protected range. Address bits 11:0 are assumed to be

31

28:16 FFFh for the limit comparison. Any address greater than the value programmed in this
field is unaffected by this protected range.
Read Protection Enable — R/W. When set, this bit indicates that the Base and Limit
15 fields in this register are valid and that read directed to addresses between them

(inclusive) must be blocked by hardware. The base and limit fields are ignored when
this bit is cleared.

14:13 | Reserved

Protected Range Base — R/W. This field corresponds to FLA address bits 24:12 and
specifies the lower base of the protected range. Address bits 11:0 are assumed to be
000h for the base comparison. Any address less than the value programmed in this

field is unaffected by this protected range.

12:0

Example of a Protect Range Register

Protected Range (PR) Registers

* The protections prescribed herein are enforced even
upon the SMI handler

« Enforced on register access, not direct access, however

* Protected ranges are available to a SPI flash operating
In either Non-Descriptor mode or Descriptor mode
— The ranges don’t have to mirror descriptor mode regions

 Base addresses must be page-aligned
— Lower 12 bits are 000h

« Limit addresses end at one under a page aligned
boundary
— Lower 12 bits are FFFh

« Addresses are Flash Linear Addresses (FLAS)

— Basically an offset from the base of the flash
— So “offset” 0x260000 on the flash is Flash Linear Address 0x260000

PR Sample: 03FF02A2h
Base 2A2000h
Protected Range Base

W R
p ll 0 0 0 1 1 1 1 1 1 1 1 1 1 p ll 0 0 0 i1 0 1 0 1 0 O 0 1 O

FLA, .. = 2A2000h

o o0 o0 1 0 1 0 1 O O O 1 O O o o0 o o0 o o o o o o0 o

 To set a PR from a Flash Linear Address Limit:

* PR, ... = ((page-aligned FLA,...) & FFF000) >> 12
* PR, |7 2A2 = 0000002A2h

 To write-protect this range: PRO | = 80000000h

* To read-protect this range: PRO |= 00008000h

*We're picking a funny base because the offset at the real BIOS base is normally all OxFF’s so it’s harder to illustrate the point.
This example will show us a visible boundary whereas the real BIOS base address would not.

23

PR Example: 03FF02A2h
Limit 3FFFFFh

Protected Range Limit

W R
p ll 0 0 0 1 1 1 1 1 1 1 1 1 1 p ll 0 0 0 1 0 1 0o 1 O O O 1 O

FLA,, ;. = 3FFFFFh

0 0 0 1

 To set a PR from a Flash Linear Address Limit:
* PRjmi = (page-aligned FLA;;) << 16

* PR+ = 3FF000 << 4 = 03FF02A2h
 To write-protect this: PR | = 80000000h

* To read-protect this: PR |= 00008000h

24

vulnBIOS Example: Protected Range Registers

]
""""""" --1---- 260000h (start of BIOS region)

L L

[
[
[
[| BIOS Region

------- 3FFFFFh (BIOS limit)

* On our lab E6400, the BIOS region occupies the range
260000 — 3FFFFFh on the physical chip

— 260000h and 3FFFFFh are Flash Linear Addresses (FLAS)

« The CPU/BIOS (including us using RW-E) always has Read/
Write access the BIOS region on flash

— Per the flash master permission settings

vulnBIOS Example: Protected Range Registers

[(]
L b --1---- 260000h (start of BIOS region)
C —-1---- 2A2000h (start of protected range)

[| BIOSRegion |]

------- 3FFFFFh (BIOS limit)

« The previous slides set up a protected range from 2A2000h to
3FFFFFh

« PR =03FF02A2h (has not yet been read/write protected)
* On our lab machines, this covers a portion of our BIOS region

vulnBIOS Example: Protected Range Registers

[(]
L b --1---- 260000h (start of BIOS region)
2A2000h (start of protected range)

3FFFFFh (BIOS limit, end of protected range)

« Let’s first verify we can read this by viewing the BIOS dump
from Copernicus
« PR =03FF02A2h (has not yet been read/write protected)

* On our lab machines, this covers a portion of our BIOS region

27

vulnBIOS example: Protected Range Registers

i Copernicus_BIOS.bin l

Offset (h) 00 01 02 03 04 0S5 06 07 08 0S OA OB OC 0D OE OF

00221FAO0 00 1E D3 52 F1 AF A1 SB D1 AA 21 35 71 83 61 E6
002A1FBO 52 64 80 48 47 SF 4S5 53 5F 49 4D 4D 12 E1 F5 F3
002A1FC0O 00 FO 46 EB F1 A6 E1 DS 43 EB F1 EB F5 F3 EO OB
002A1FD0O F3 3B 00 57 E4 1F 60 0OC 40 5S4 4F 4B 45 4E 72 46
002A1FEO 21 28 71 DS F3 53 00 SS A4 2F 00 OB D3 E7 DS DE
002A1FFO0 52 43 44 37 00 22 84 FF C2 AS F1 1B F2 DE E2 CD

~ 00232000 i c3 D it F4 A5 10 0F bl cd FrE1 s pies b~ 2A2000h (PR Start)

00222010 33 Al D2 00 44 02 34 10 54 62 C2 20 F3 FF 00 1cC
00222020 26 73 83 77 91 50 71 BO 8B 7B F3 C3 10 4B 54 F4
00222030 OF E3 4E 91 5B 92 CA 53 FB 74 B3 00 53 05 17 E2

003FFFS0 S0 EA FO FF 30 00 00 00 00O 00 00 0O 00 00 00 0O
003FFFAO 00 00 00 00 00 00 0O 00 0O 00 00 0O 00 00 00 0O
003FFFBO 00 00 00 00 00 00 00 00 00 00 00 0O 0O 0O 00 OO
003FFFCO 00 00 00 00 0O 00 0O 00 0O 0O 00 0O 00 00 00 0O
003FFFDO 00 00 00 00 00 00 0O 00 0O 00 00 0O 00 0O 00 0O
003FFFEO 00 00 00 00 00 00 00 00 00 00 00 0O 0O 0O 00 OO

L D03FFFFEQ __E3 _3D_EE_00_00_00_00 00 00 00Q 00 _00_00_00_00_00____ 3FFFFFh (PR End (B|OS lelt))

Offset: 2A2000 Overwr

First let’s establish that we have permission to read the BIOS
region

Run Copernicus and open the .bin file with your favorite hex
editor (HxD is a good one for Windows)

Observe binary range 2A2000-3FFFFFh

Looks like BIOS to me!

28

vulnBIOS example: Protected Range Registers

* To Write-protect a

= Gl &1 &1 8 = & i@ range:
| Address = FED1B800 % - PR | = 80000000h

116 03020100 07060504 0BOA0D908 OFOEODOC

dword
32bit

word
16bit

00 03FF0260 3F006009 003FFFCO 00000000 o TO Read-p rOte Ct a

10 00000000 00000000 00000000 00000000

20 00000000 00000000 00000000 00000000 ra n g e :

30 00000000 00000000 00000000 00000000

40 00FE3DE9 00000000 00000000 00000000 ° P R | — O O O O 8 O O O h

50 00001F1F 00000000 03FF0260 025F000B

60 00020001 000A0003 00000000 00000000

70 00000000 00000000 00000000

80 00000000 Q000U000 00000000 00000000

90 00406004 4FCB0606 029FABAB 01050220 e Forthis exam ple let’'s
AD 00000000 00000000 00000000 00000000

BO 00003008 1F1F0218 00000000 00000000 d isable reads to th iS
co 00000007 00002005 00002005 00000000

DO 00000000 00000000 00000000 00000000 "

EOQ 00000000 00000000 00000000 00000000 ra n g e . [/ /‘é

FO 00000000 00000000 00000000 00000000 o S e t P R O (a t ‘

VHardware

74h) to 03FF82A2h

vulnBIOS example: Protected Range Registers

i Copernicus_BIOS.bin ‘

Offset (h) 00 01 02 03 04 05 06 07 08 0S5 OA OB OC 0D OE OF

002A1FA0 00 1E D3 52 F1 AF Al SB D1 AA 21 35 71 83 61 E6
002A1FBO 952 64 80 48 47 SF 49 53 SF 49 4D 4D 12 E1 F5 F3
002A1FCO 00 FO 46 EB F1 A6 E1 DS 43 EB F1 EB F5 F3 EO 0B
002A1FDO0 F3 3B 00 57 E4 1F 60 0C 40 54 4F 4B 45 4E 72 46
002A1FEQ0 21 28 71 DS F3 53 00 SS9 A4 2F 00 OB D3 E7 DS DE

002A1FFO0 952 43 44 37 00 22 84 FF C2 AS F1 1B F2 DE E2 CD
[~ 00223000 " FF FEsrFrfr Fr Fr T TISrREE FF FF FF FEFF 2A2000h (PR Start)

003FFFS0
003FFFAQ0 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
003FFFBO

e L T S R 3FFFFFh (PR End (BIOS Limit))

Offset: 3FFFFF Overw

Now re-run Copernicus and view the BIOS binary file in a hex

editor
As you can see the Protected Range registers override the

Flash Master permissions
This is the BIOS region to which the CPU/BIOS Master

otherwise “always” has permission to read and write

30

PR Summary:

Implementing Protected Ranges is an important strategy for
locking down a system BIOS

Without PR’s, any bypass of SMM'’s global write-protection
means an attacker is automatically able to modify the BIOS
Protected Range register enforcement:

— Overrides the Flash Master permissions

— Prevents Reads/Writes directly from the flash, even when

the processor is running in SMM
 We did not demonstrate this, but it is true
Because of this, BIOS updates (or updates to protected
ranges) must be performed before the Protected Ranges are
configured by the BIOS
Only the vendor can reliably configure PR’s since new UEFI
BlOSes had a region of naturally changing content

FLOCKDN Register

When we were been able to easily modify (and re-
modify) registers in the SPI configuration registers that
are designed to protect the system

For example, we can configure and modify the protected
range registers to suit the needs of a lab

But if we can change them, so can any other app

capable of mapping %
Intel provides the FLOCKDN register to solve this

problem

FLOCKDN

HSFS—Hardware Sequencing Flash Status Register
(SPI Memory Maped Configuration Registers)

Memory Address: ‘ + 04h Attribute: RO, R/WC, R/W
Default Value: 0000h Size: 16 bits

Bit — Description —
_~— | Flash Configuration Lock-Down (FLOCKDN) — R/W/L. When set to 1, those Flash\>

< 15 Program Registers that are locked down by this FLOCKDN bit cannot be written. Once
set to 1, this bit can only be cleared by a hardware reset due to a global reset or host

_pa\rtition reset in an Intel ME enabled system. -

e —— e

FLOCKDN, when asserted, prevents certain configuration
registers/bits in the SPI BAR from being changed

Once asserted, FLOCKDN cannot be reset to 0 until a reset
— Or can it? :) Snorlax & Darth Venamis on Day 5!

Although hardware-sequencing is available only in descriptor

mode, the FLOCKDN bit still provides register lock-down
protection when the flash is operating in non-descriptor mode

— Called SPI or Flash Configuration Lock-Down bit

33

FLOCKDN Affected Registers

(see your manual, but at the time of original class generation...)

. Flash Regions Access Permissions Register (&
— bits 31:24 (BMWAG) and bits 23:16 (BMRAG)
. Protected Range (PR) registers 0 to 4

— entire register is locked

. Software Sequencing Flash Control Register (SSFC)

— bits 18:16

— Configure SPI Cycle Frequency (20 MHz, 33 MHz, or 50 MHz
[PCH only])

. Prefix Opcode Configuration Register (PREOP)

— entire register is locked

. Opcode Type Configuration Registers (OPTYPE)

— Entire reqister is locked

. Opcode Menu Configuration Register (OPMENU)

— Entire register is locked

SPI Lockdown Summary 1

Locking down the SPI Flash is a little more complicated than
locking down SMM

For the most part, only the vendor can do this, but you can
verify and try to implement some yourself

Verify that BIOS CNTL.BLE is set

— Oh wait...we’re going to talk about something in a sec that
completely bypasses BLE :)

— If it's not set, you can assert it yourself but that doesn’t mean there
is SMI handler code present that will de-assert bit O

Verify that SMM is protecting the BIOS from writes by
asserting bit 0 and ensuring that it is reset

If supported, ensure that BIOS CNTL.SMM_BWP is asserted
so that the BIOS can only be written to when the processor is
in SMM

— You can set this yourself. The only drawback being that you may not

be able to update the BIOS, depending on how the vendor
implemented updates

SPI Lockdown Summary 2

Verify that Protected Range registers are being used

— You could also set these yourself but it will be a trial and error
exercise since you won’t know what parts of the BIOS flash will

be used to store variables (UEFI definitely and some Legacy)
Set FLOCKDN to ensure the above registers can’t be
changed

The above changes you could play with won't
permanently hurt your system if they lock it up — they will
all reset back to their original values on startup

Verify that the Flash Master permissions are set and that
the Flash Descriptor region cannot itself be written to

— You have no control over this unless it is writeable, in which case
the most you should do is make the FD un-writeable

— Messing with this one could brick your system “permanently”

SPI Summary

Locking down the SPI flash memory is the first line of
defense against an attacker

It is complicated and hard for vendors to get right

It gets a little more complex in UEFI where the SPI flash
is specifically used as a file system for storing system
variables

— Can't just set a single PR to write-protect the whole BIOS region

Remember:

The BIOS boots from the flash and is responsible for
configuring all of the settings we have been discussing
so far in the class

Letting an attacker modify the BIOS means game over

It's not easy, but it's not that hard either for an attacker to
modify your BIOS flash

SPI Summary

 All the settings in this section apply to both x86 and x64
architecture

 All the settings in this section apply to both legacy BIOS
and UEFI BIOS

« All the settings in this section apply to systems running
legacy MCH/ICH chipsets and the new PCH chipsets
— Except where otherwise noted (SMM_BWP)

