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How	
  to	
  stop	
  someone	
  from	
  wriEng	
  to	
  
your	
  BIOS	
  

•  AKA	
  “How	
  to	
  stop	
  an	
  aBacker	
  from	
  wriEng	
  to	
  
your	
  BIOS”	
  
– AKA	
  “What	
  the	
  BIOS	
  vendors	
  are	
  typically	
  
configuring	
  wrong	
  when	
  they’re	
  supposed	
  to	
  be	
  
stopping	
  aBackers	
  from	
  wriEng	
  to	
  your	
  BIOS”	
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•  With no Flash Descriptor present, the only mechanisms 
to lock the flash are: 
–  BIOS Range Write Protection 
–  Global Flash Write Protection 

•  The reference to FWH Sector Protection yields no results 
in any datasheets. I am assuming it is related to the R/W 
control shown in the sample FWH register map at the 
beginning of the BIOS Flash section 

Flash Protection 
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•  Covering this first because I believe it to be your first line 
of defense to protect your BIOS flash from writes 

•  Applies to the entire flash chip (Global Flash Protection) 
•  Provides SMM the ability to determine whether or not a 

request to unlock the BIOS flash for writing will be 
permitted 

•  This protection is provided by the chipset (not on the 
flash itself) 

Flash Protection Mechanism #1 
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•  On MCH/ICH 
systems, bits 7:5 of 
the BIOS_CNTL are 
reserved 

•  On this system 
BIOS_CNTL is 
located in the LPC 
device (D31:F0, offset 
DCh) 

•  These protections 
would also apply to 
the Firmware Hub 
(FWH) if the BIOS 
were located there. 

Global BIOS Write Protection 
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ICH/PCH Chipset  
SMM-derived Write Protection: 

•  BIOS_CNTL.BIOSWE (bit 0) enables write access to the 
flash chip 
–  Always R/W 

•  BIOS_CNTL.BLE (bit 1) provides an opportunity for the 
OEM to implement an SMI to protect the BIOSWE bit 
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How	
  you	
  should	
  think	
  of	
  BLE	
  

CPU	
  

ICH	
  or	
  PCH	
  

RAM	
  

Flash	
  Chip	
  
SPI	
  

SMRAM	
  
(SMI	
  Handler)	
  

I	
  sort	
  of	
  provide	
  BIOS	
  
access	
  control!	
  

I	
  help!	
  



How it works 

BIOS_CNTL.BIOSWE	
  =	
  1	
   BIOS_CNTL	
  
BLE	
  =	
  1	
  

BIOSWE	
  =	
  0	
  

Privileged	
  
ApplicaEon	
  

•  Privileged app wants to write to the SPI flash, sets 
BIOS_CNTL.BIOSWE to 1 
–  The only reason privileges are needed is to execute the in/out 

instructions 

SMM	
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How it works 

BIOS_CNTL	
  
BLE	
  =	
  1	
  

BIOSWE	
  =	
  1	
  

SMM	
  

SMI	
  

•  The BIOS_CNTL register has the BIOS Lock (BLE) enabled 
•  Asserting BIOSWE while BLE is set generates an SMI# 

–  SMI# is initiated by the Chipset (ICH) 
•  The processor transitions to System Management Mode 

Privileged	
  
ApplicaEon	
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How it works 

BIOS_CNTL	
  
BLE	
  =	
  1	
  

BIOSWE	
  =	
  1	
  

SMM	
  

No	
  no	
  no,	
  
this	
  will	
  

never	
  do…	
  

•  A routine in the SMI handler explicitly checks to see if 
BIOS_CNTL.BIOSWE is set 

Privileged	
  
ApplicaEon	
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How it works 

BIOS_CNTL	
  
BLE	
  =	
  1	
  

BIOSWE	
  =	
  0	
  

SMM	
  

Much	
  beBer	
  

•  The SMI handler flips this bit back to 0, disabling writes 
to the serial flash 
–  Since updates should be applied only by SMRAM, SMRAM 

knows that unless it flipped this bit, this bit shouldn’t be flipped. 

Privileged	
  
ApplicaEon	
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Heh	
  heh	
  heh	
  

SMM	
  

How it works 

BIOS_CNTL	
  
BLE	
  =	
  1	
  

BIOSWE	
  =	
  0	
  

Aw	
  

•  From the app’s perspective, it appears the BIOSWE bit was 
never even asserted. 

•  Of course this only works if: 
–  BLE is asserted/enabled 
–  There is a SMI handler explicitly checking/resetting the BIOSWE bit 
–  SMIs cannot be somehow suppressed (you already saw 1 way) 

Privileged	
  
ApplicaEon	
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•  Look at the BIOS_CNTL 
register in the LPC 
device 

•  BIOS Lock Enable (BLE) 
bit 1 is not asserted  

•  This means any 
application privileged 
enough to either map the 
PCI Express 
configuration space or 
perform port I/O can 
assert BIOSWE to 
enable writes to the 
BIOS flash 

vulnBIOS example: BIOS_CNTL Testing  
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•  You don’t have to do this, 
but note that it is 
possible to set BIOS 
Lock Enable to 1 and not 
have an SMI handler 
routine running that 
checks and de-asserts 
BIOS Write Enable bit 0 

•  We've seen this on 
multiple systems; where 
BLE was set, but 
asserting BIOSWE to 1 
was not reset to 0 

•  This is why bit 0 must be 
tested in order to really 
test write-protection 

vulnBIOS example: BIOS_CNTL Testing 
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•  Now we’re going to 
setup BIOS_CNTL so 
that it protects the flash 

•  This will only work on 
these lab machines with 
this modified BIOS 

•  I inserted a custom SMI 
handler that resets the 
BIOSWE bit to 0 if it is 
asserted 

•  We’re going to enable 
this by writing the word 
0xb105 to port 0xB2 

•  You should now see the 
BLE bit asserted in 
BIOS_CNTL (0x0A) 

vulnBIOS example:  
BIOS_CNTL Testing: Set BLE 

16	
  



•  Now try to enable writes 
to the BIOS by asserting 
BIOSWE bit 0 
–  Set BIOS_CNTL to 0x0B 

•  You will notice that it 
resets to 0x0A 

•  This is the SMI handler 
working as it should 

•  Note the reset of BIOSWE 
to 0 occurs during SMM 

•  Any tangible delay you 
see in resetting this value 
is due to the 
(configurable) “Refresh” 
button in RW-E 

vulnBIOS example:  
BIOS_CNTL Testing 

Bit	
  0	
  is	
  de-­‐asserted	
  

17	
  



BIOSWE/BLE	
  should	
  be	
  considered	
  
deprecated!	
  

•  We	
  can	
  defeat	
  it	
  on	
  systems	
  that	
  are	
  not	
  using	
  SMRRs	
  
–  "The	
  Sicilian"	
  –	
  "DefeaEng	
  Signed	
  BIOS	
  enforcement",	
  	
  Kallenberg	
  et	
  

al.,	
  EkoParty	
  2013	
  
•  We	
  can	
  defeat	
  it	
  on	
  systems	
  that	
  don't	
  set	
  SMI_LOCK	
  

–  "Charizard"	
  –	
  "Setup	
  for	
  Failure:	
  DefeaEng	
  UEFI	
  Secure	
  Boot",	
  
Kallenberg	
  et	
  al.,	
  Syscan	
  2014	
  

–  But	
  Charizard	
  actually	
  found	
  by	
  Sam	
  Cornwell,	
  it	
  just	
  got	
  merged	
  into	
  
Corey's	
  talk	
  in	
  its	
  first	
  appearance.	
  Will	
  be	
  spun	
  off	
  later.	
  

•  We	
  can	
  defeat	
  it	
  on	
  systems	
  TXT-­‐enabled	
  that	
  suppress	
  SMIs	
  
–  "Sandman"	
  –	
  "SENTER	
  Sandman:	
  Using	
  Intel	
  TXT	
  to	
  aBack	
  BIOSes",	
  

Kovah	
  et	
  al.,	
  Summercon	
  2014	
  
•  We	
  have	
  a	
  new	
  fundamental	
  aBack	
  against	
  it	
  that	
  will	
  bypass	
  BLE	
  

on	
  all	
  systems,	
  once	
  and	
  for	
  all.	
  “Speed	
  Racer”	
  We’ll	
  talk	
  about	
  
these	
  at	
  the	
  end,	
  depending	
  on	
  Eme.	
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•  In PCH chipsets, bit 5 of 
BIOS_CNTL has been 
defined: 

•  Provides the vendor the ability 
to ensure that BIOS region 
may ONLY be written to when 
all processors are in SMM and 
BIOSWE is enabled 

•  Our lab system does not 
implement this bit because it 
is an MCH/ICH system, but 
check it out on your own 

•  As we’ve seen, this register is 
important to lock down the 
BIOS to mitigate SMI 
suppression 

•  Same here 
•  Only 6 out of ~10k systems 

we’ve measured to date use 
it!!!  L 
–  As of 3/31/2014 

BIOS_CNTL: SMM_BWP 
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•  BIOS Range Write-Protection is the second major line of 
defense 

•  There are 5 Protected Range registers (0-4) with 
independent R/W permissions 

•  Setting these will prevent reads and/or writes until the 
system is reset. 

Another Protection Mechanism 

*	
  InformaEon	
  on	
  FWH	
  Sector	
  ProtecEon	
  is	
  hard	
  to	
  come	
  by.	
  It	
  appears	
  to	
  be	
  a	
  security	
  mechanic	
  on	
  the	
  chip	
  itself,	
  since	
  
chips	
  can	
  be	
  described	
  as	
  being	
  divided	
  into	
  sectors.	
   20	
  



Example	
  of	
  a	
  Protect	
  Range	
  Register	
  

So	
  who	
  protects	
  	
  
the	
  protector?	
  
This	
  guy	
  that’s	
  who!	
  
We’ll	
  get	
  to	
  that	
  later	
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Protected Range (PR) Registers 
•  The protections prescribed herein are enforced even 

upon the SMI handler 
•  Enforced on register access, not direct access, however 
•  Protected ranges are available to a SPI flash operating 

in either Non-Descriptor mode or Descriptor mode 
–  The ranges don’t have to mirror descriptor mode regions 

•  Base addresses must be page-aligned 
–  Lower 12 bits are 000h 

•  Limit addresses end at one under a page aligned 
boundary 
–  Lower 12 bits are FFFh 

•  Addresses are Flash Linear Addresses (FLAs)  
–  Basically an offset from the base of the flash 
–  So “offset” 0x260000 on the flash is Flash Linear Address 0x260000 
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PR Sample: 03FF02A2h 
Base 2A2000h 

•  To set a PR from a Flash Linear Address Limit: 
•  PRbase = ((page-aligned FLAbase) & FFF000) >> 12 
•  PRbase |= 2A2 = 0000002A2h 
•  To write-protect this range: PR0 | = 80000000h 
•  To read-protect this range: PR0 |= 00008000h 

*We’re	
  picking	
  a	
  funny	
  base	
  because	
  the	
  offset	
  at	
  the	
  real	
  BIOS	
  base	
  is	
  normally	
  all	
  0xFF’s	
  so	
  it’s	
  harder	
  to	
  illustrate	
  the	
  point.	
  	
  
This	
  example	
  will	
  show	
  us	
  a	
  visible	
  boundary	
  whereas	
  the	
  real	
  BIOS	
  base	
  address	
  would	
  not.	
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PR Example: 03FF02A2h 
Limit 3FFFFFh 

•  To set a PR from a Flash Linear Address Limit: 
•  PRlimit = (page-aligned FLAlimit) << 16  
•  PRlimit = 3FF000 << 4 = 03FF02A2h 
•  To write-protect this: PR | = 80000000h 
•  To read-protect this: PR |= 00008000h 
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vulnBIOS Example: Protected Range Registers 

•  On our lab E6400, the BIOS region occupies the range 
260000 – 3FFFFFh on the physical chip 

–  260000h and 3FFFFFh are Flash Linear Addresses (FLAs) 
•  The CPU/BIOS (including us using RW-E) always has Read/

Write access the BIOS region on flash 
–  Per the flash master permission settings 

BIOS	
  Region	
  

260000h	
  (start	
  of	
  BIOS	
  region)	
  

3FFFFFh	
  (BIOS	
  limit)	
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vulnBIOS Example: Protected Range Registers 

•  The previous slides set up a protected range from 2A2000h to 
3FFFFFh 

•  PR = 03FF02A2h (has not yet been read/write protected) 
•  On our lab machines, this covers a portion of our BIOS region 

BIOS	
  Region	
  
2A2000h	
  (start	
  of	
  protected	
  range)	
  

260000h	
  (start	
  of	
  BIOS	
  region)	
  

3FFFFFh	
  (BIOS	
  limit)	
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vulnBIOS Example: Protected Range Registers 

•  Let’s first verify we can read this by viewing the BIOS dump 
from Copernicus 
•  PR = 03FF02A2h (has not yet been read/write protected) 
•  On our lab machines, this covers a portion of our BIOS region 

BIOS	
  Region	
  
2A2000h	
  (start	
  of	
  protected	
  range)	
  

260000h	
  (start	
  of	
  BIOS	
  region)	
  

3FFFFFh	
  (BIOS	
  limit,	
  end	
  of	
  protected	
  range)	
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vulnBIOS example: Protected Range Registers 

•  First let’s establish that we have permission to read the BIOS 
region  

•  Run Copernicus and open the .bin file with your favorite hex 
editor (HxD is a good one for Windows) 

•  Observe binary range 2A2000-3FFFFFh  
•  Looks like BIOS to me! 

2A2000h	
  (PR	
  Start)	
  

3FFFFFh	
  (PR	
  End	
  (BIOS	
  Limit))	
  

.	
  

.	
  

.	
  
.	
  
.	
  
.	
  

.	
  

.	
  

.	
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vulnBIOS example: Protected Range Registers 

•  To Write-protect a 
range:  

•  PR | = 80000000h 
•  To Read-protect a 

range:  
•  PR |= 00008000h 

•  For this example let’s 
disable reads to this 
range: 

•  Set PR0 (at SPIBAR + 
74h) to 03FF82A2h 
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vulnBIOS example: Protected Range Registers 

•  Now re-run Copernicus and view the BIOS binary file in a hex 
editor 

•  As you can see the Protected Range registers override the 
Flash Master permissions 

•  This is the BIOS region to which the CPU/BIOS Master 
otherwise “always” has permission to read and write 

2A2000h	
  (PR	
  Start)	
  

3FFFFFh	
  (PR	
  End	
  (BIOS	
  Limit))	
  

.	
  

.	
  

.	
  
.	
  
.	
  
.	
  

.	
  

.	
  

.	
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PR Summary: 
•  Implementing Protected Ranges is an important strategy for 

locking down a system BIOS 
•  Without PR’s, any bypass of SMM’s global write-protection 

means an attacker is automatically able to modify the BIOS 
•  Protected Range register enforcement: 

–  Overrides the Flash Master permissions 
–  Prevents Reads/Writes directly from the flash, even when 

the processor is running in SMM 
•  We did not demonstrate this, but it is true 

•  Because of this, BIOS updates (or updates to protected 
ranges) must be performed before the Protected Ranges are 
configured by the BIOS 

•  Only the vendor can reliably configure PR’s since new UEFI 
BIOSes had a region of naturally changing content 
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FLOCKDN Register 

•  When we were been able to easily modify (and re-
modify) registers in the SPI configuration registers that 
are designed to protect the system 

•  For example, we can configure and modify the protected 
range registers to suit the needs of a lab 

•  But if we can change them, so can any other app 
capable of mapping SPIBAR 

•  Intel provides the FLOCKDN register to solve this 
problem 
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FLOCKDN 

•  FLOCKDN, when asserted, prevents certain configuration 
registers/bits in the SPI BAR from being changed 

•  Once asserted, FLOCKDN cannot be reset to 0 until a reset 
–  Or can it? :) Snorlax & Darth Venamis on Day 5! 

•  Although hardware-sequencing is available only in descriptor 
mode, the FLOCKDN bit still provides register lock-down 
protection when the flash is operating in non-descriptor mode 
–  Called SPI or Flash Configuration Lock-Down bit 
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1.  Flash Regions Access Permissions Register (FRAP) 
–  bits 31:24 (BMWAG) and bits 23:16 (BMRAG) 

2.  Protected Range (PR) registers 0 to 4 
–  entire register is locked 

3.  Software Sequencing Flash Control Register (SSFC) 
–  bits 18:16 
–  Configure SPI Cycle Frequency (20 MHz, 33 MHz, or 50 MHz 

[PCH only]) 
4.  Prefix Opcode Configuration Register (PREOP) 

–  entire register is locked 

5.  Opcode Type Configuration Registers (OPTYPE) 
–  Entire register is locked 

6.  Opcode Menu Configuration Register (OPMENU) 
–  Entire register is locked 

FLOCKDN Affected Registers 
(see your manual, but at the time of original class generation…) 
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SPI Lockdown Summary 1 
•  Locking down the SPI Flash is a little more complicated than 

locking down SMM 
•  For the most part, only the vendor can do this, but you can 

verify and try to implement some yourself 

•  Verify that BIOS_CNTL.BLE is set 
–  Oh wait…we’re going to talk about something in a sec that 

completely bypasses BLE :) 
–  If it’s not set, you can assert it yourself but that doesn’t mean there 

is SMI handler code present that will de-assert bit 0 
•  Verify that SMM is protecting the BIOS from writes by 

asserting bit 0 and ensuring that it is reset  
•  If supported, ensure that BIOS_CNTL.SMM_BWP is asserted 

so that the BIOS can only be written to when the processor is 
in SMM 
–  You can set this yourself. The only drawback being that you may not 

be able to update the BIOS, depending on how the vendor 
implemented updates 
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SPI Lockdown Summary 2 

•  Verify that Protected Range registers are being used 
–  You could also set these yourself but it will be a trial and error 

exercise since you won’t know what parts of the BIOS flash will 
be used to store variables (UEFI definitely and some Legacy) 

•  Set FLOCKDN to ensure the above registers can’t be 
changed 

•  The above changes you could play with won’t 
permanently hurt your system if they lock it up – they will 
all reset back to their original values on startup 

•  Verify that the Flash Master permissions are set and that 
the Flash Descriptor region cannot itself be written to 
–  You have no control over this unless it is writeable, in which case 

the most you should do is make the FD un-writeable 
–  Messing with this one could brick your system “permanently” 
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SPI Summary 
•  Locking down the SPI flash memory is the first line of 

defense against an attacker 
•  It is complicated and hard for vendors to get right 
•  It gets a little more complex in UEFI where the SPI flash 

is specifically used as a file system for storing system 
variables 
–  Can’t just set a single PR to write-protect the whole BIOS region 

•  Remember: 
•  The BIOS boots from the flash and is responsible for 

configuring all of the settings we have been discussing 
so far in the class 

•  Letting an attacker modify the BIOS means game over 
•  It’s not easy, but it’s not that hard either for an attacker to 

modify your BIOS flash	
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SPI Summary 
•  All the settings in this section apply to both x86 and x64 

architecture 
•  All the settings in this section apply to both legacy BIOS 

and UEFI BIOS 
•  All the settings in this section apply to systems running 

legacy MCH/ICH chipsets and the new PCH chipsets 
–  Except where otherwise noted (SMM_BWP)	
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