
Advanced	
 x86:	

BIOS	
 and	
 System	
 Management	
 Mode	
 Internals	

SPI	
 Flash	
 Protec/on	
 Mechanisms	

Xeno	
 Kovah	
 &&	
 Corey	
 Kallenberg	

LegbaCore,	
 LLC	

All materials are licensed under a Creative
Commons “Share Alike” license.

http://creativecommons.org/licenses/by-sa/3.0/

2
ABribuEon	
 condiEon:	
 You	
 must	
 indicate	
 that	
 derivaEve	
 work	

"Is	
 derived	
 from	
 John	
 BuBerworth	
 &	
 Xeno	
 Kovah’s	
 ’Advanced	
 Intel	
 x86:	
 BIOS	
 and	
 SMM’	
 class	
 posted	
 at	
 hBp://opensecuritytraining.info/IntroBIOS.html”	

How	
 to	
 stop	
 someone	
 from	
 wriEng	
 to	

your	
 BIOS	

•  AKA	
 “How	
 to	
 stop	
 an	
 aBacker	
 from	
 wriEng	
 to	

your	
 BIOS”	

– AKA	
 “What	
 the	
 BIOS	
 vendors	
 are	
 typically	

configuring	
 wrong	
 when	
 they’re	
 supposed	
 to	
 be	

stopping	
 aBackers	
 from	
 wriEng	
 to	
 your	
 BIOS”	

3	

•  With no Flash Descriptor present, the only mechanisms
to lock the flash are:
–  BIOS Range Write Protection
–  Global Flash Write Protection

•  The reference to FWH Sector Protection yields no results
in any datasheets. I am assuming it is related to the R/W
control shown in the sample FWH register map at the
beginning of the BIOS Flash section

Flash Protection

4	

•  Covering this first because I believe it to be your first line
of defense to protect your BIOS flash from writes

•  Applies to the entire flash chip (Global Flash Protection)
•  Provides SMM the ability to determine whether or not a

request to unlock the BIOS flash for writing will be
permitted

•  This protection is provided by the chipset (not on the
flash itself)

Flash Protection Mechanism #1

5	

•  On MCH/ICH
systems, bits 7:5 of
the BIOS_CNTL are
reserved

•  On this system
BIOS_CNTL is
located in the LPC
device (D31:F0, offset
DCh)

•  These protections
would also apply to
the Firmware Hub
(FWH) if the BIOS
were located there.

Global BIOS Write Protection

6	

ICH/PCH Chipset
SMM-derived Write Protection:

•  BIOS_CNTL.BIOSWE (bit 0) enables write access to the
flash chip
–  Always R/W

•  BIOS_CNTL.BLE (bit 1) provides an opportunity for the
OEM to implement an SMI to protect the BIOSWE bit

7	

How	
 you	
 should	
 think	
 of	
 BLE	

CPU	

ICH	
 or	
 PCH	

RAM	

Flash	
 Chip	

SPI	

SMRAM	

(SMI	
 Handler)	

I	
 sort	
 of	
 provide	
 BIOS	

access	
 control!	

I	
 help!	

How it works

BIOS_CNTL.BIOSWE	
 =	
 1	
 BIOS_CNTL	

BLE	
 =	
 1	

BIOSWE	
 =	
 0	

Privileged	

ApplicaEon	

•  Privileged app wants to write to the SPI flash, sets
BIOS_CNTL.BIOSWE to 1
–  The only reason privileges are needed is to execute the in/out

instructions

SMM	

9	

How it works

BIOS_CNTL	

BLE	
 =	
 1	

BIOSWE	
 =	
 1	

SMM	

SMI	

•  The BIOS_CNTL register has the BIOS Lock (BLE) enabled
•  Asserting BIOSWE while BLE is set generates an SMI#

–  SMI# is initiated by the Chipset (ICH)
•  The processor transitions to System Management Mode

Privileged	

ApplicaEon	

10	

How it works

BIOS_CNTL	

BLE	
 =	
 1	

BIOSWE	
 =	
 1	

SMM	

No	
 no	
 no,	

this	
 will	

never	
 do…	

•  A routine in the SMI handler explicitly checks to see if
BIOS_CNTL.BIOSWE is set

Privileged	

ApplicaEon	

11	

How it works

BIOS_CNTL	

BLE	
 =	
 1	

BIOSWE	
 =	
 0	

SMM	

Much	
 beBer	

•  The SMI handler flips this bit back to 0, disabling writes
to the serial flash
–  Since updates should be applied only by SMRAM, SMRAM

knows that unless it flipped this bit, this bit shouldn’t be flipped.

Privileged	

ApplicaEon	

12	

Heh	
 heh	
 heh	

SMM	

How it works

BIOS_CNTL	

BLE	
 =	
 1	

BIOSWE	
 =	
 0	

Aw	

•  From the app’s perspective, it appears the BIOSWE bit was
never even asserted.

•  Of course this only works if:
–  BLE is asserted/enabled
–  There is a SMI handler explicitly checking/resetting the BIOSWE bit
–  SMIs cannot be somehow suppressed (you already saw 1 way)

Privileged	

ApplicaEon	

13	

•  Look at the BIOS_CNTL
register in the LPC
device

•  BIOS Lock Enable (BLE)
bit 1 is not asserted

•  This means any
application privileged
enough to either map the
PCI Express
configuration space or
perform port I/O can
assert BIOSWE to
enable writes to the
BIOS flash

vulnBIOS example: BIOS_CNTL Testing

14	

•  You don’t have to do this,
but note that it is
possible to set BIOS
Lock Enable to 1 and not
have an SMI handler
routine running that
checks and de-asserts
BIOS Write Enable bit 0

•  We've seen this on
multiple systems; where
BLE was set, but
asserting BIOSWE to 1
was not reset to 0

•  This is why bit 0 must be
tested in order to really
test write-protection

vulnBIOS example: BIOS_CNTL Testing

15	

•  Now we’re going to
setup BIOS_CNTL so
that it protects the flash

•  This will only work on
these lab machines with
this modified BIOS

•  I inserted a custom SMI
handler that resets the
BIOSWE bit to 0 if it is
asserted

•  We’re going to enable
this by writing the word
0xb105 to port 0xB2

•  You should now see the
BLE bit asserted in
BIOS_CNTL (0x0A)

vulnBIOS example:
BIOS_CNTL Testing: Set BLE

16	

•  Now try to enable writes
to the BIOS by asserting
BIOSWE bit 0
–  Set BIOS_CNTL to 0x0B

•  You will notice that it
resets to 0x0A

•  This is the SMI handler
working as it should

•  Note the reset of BIOSWE
to 0 occurs during SMM

•  Any tangible delay you
see in resetting this value
is due to the
(configurable) “Refresh”
button in RW-E

vulnBIOS example:
BIOS_CNTL Testing

Bit	
 0	
 is	
 de-­‐asserted	

17	

BIOSWE/BLE	
 should	
 be	
 considered	

deprecated!	

•  We	
 can	
 defeat	
 it	
 on	
 systems	
 that	
 are	
 not	
 using	
 SMRRs	

–  "The	
 Sicilian"	
 –	
 "DefeaEng	
 Signed	
 BIOS	
 enforcement",	
 	
 Kallenberg	
 et	

al.,	
 EkoParty	
 2013	

•  We	
 can	
 defeat	
 it	
 on	
 systems	
 that	
 don't	
 set	
 SMI_LOCK	

–  "Charizard"	
 –	
 "Setup	
 for	
 Failure:	
 DefeaEng	
 UEFI	
 Secure	
 Boot",	

Kallenberg	
 et	
 al.,	
 Syscan	
 2014	

–  But	
 Charizard	
 actually	
 found	
 by	
 Sam	
 Cornwell,	
 it	
 just	
 got	
 merged	
 into	

Corey's	
 talk	
 in	
 its	
 first	
 appearance.	
 Will	
 be	
 spun	
 off	
 later.	

•  We	
 can	
 defeat	
 it	
 on	
 systems	
 TXT-­‐enabled	
 that	
 suppress	
 SMIs	

–  "Sandman"	
 –	
 "SENTER	
 Sandman:	
 Using	
 Intel	
 TXT	
 to	
 aBack	
 BIOSes",	

Kovah	
 et	
 al.,	
 Summercon	
 2014	

•  We	
 have	
 a	
 new	
 fundamental	
 aBack	
 against	
 it	
 that	
 will	
 bypass	
 BLE	

on	
 all	
 systems,	
 once	
 and	
 for	
 all.	
 “Speed	
 Racer”	
 We’ll	
 talk	
 about	

these	
 at	
 the	
 end,	
 depending	
 on	
 Eme.	

18	

•  In PCH chipsets, bit 5 of
BIOS_CNTL has been
defined:

•  Provides the vendor the ability
to ensure that BIOS region
may ONLY be written to when
all processors are in SMM and
BIOSWE is enabled

•  Our lab system does not
implement this bit because it
is an MCH/ICH system, but
check it out on your own

•  As we’ve seen, this register is
important to lock down the
BIOS to mitigate SMI
suppression

•  Same here
•  Only 6 out of ~10k systems

we’ve measured to date use
it!!! L
–  As of 3/31/2014

BIOS_CNTL: SMM_BWP

19	

•  BIOS Range Write-Protection is the second major line of
defense

•  There are 5 Protected Range registers (0-4) with
independent R/W permissions

•  Setting these will prevent reads and/or writes until the
system is reset.

Another Protection Mechanism

*	
 InformaEon	
 on	
 FWH	
 Sector	
 ProtecEon	
 is	
 hard	
 to	
 come	
 by.	
 It	
 appears	
 to	
 be	
 a	
 security	
 mechanic	
 on	
 the	
 chip	
 itself,	
 since	

chips	
 can	
 be	
 described	
 as	
 being	
 divided	
 into	
 sectors.	
 20	

Example	
 of	
 a	
 Protect	
 Range	
 Register	

So	
 who	
 protects	
 	

the	
 protector?	

This	
 guy	
 that’s	
 who!	

We’ll	
 get	
 to	
 that	
 later	

21	

Protected Range (PR) Registers
•  The protections prescribed herein are enforced even

upon the SMI handler
•  Enforced on register access, not direct access, however
•  Protected ranges are available to a SPI flash operating

in either Non-Descriptor mode or Descriptor mode
–  The ranges don’t have to mirror descriptor mode regions

•  Base addresses must be page-aligned
–  Lower 12 bits are 000h

•  Limit addresses end at one under a page aligned
boundary
–  Lower 12 bits are FFFh

•  Addresses are Flash Linear Addresses (FLAs)
–  Basically an offset from the base of the flash
–  So “offset” 0x260000 on the flash is Flash Linear Address 0x260000

22	

PR Sample: 03FF02A2h
Base 2A2000h

•  To set a PR from a Flash Linear Address Limit:
•  PRbase = ((page-aligned FLAbase) & FFF000) >> 12
•  PRbase |= 2A2 = 0000002A2h
•  To write-protect this range: PR0 | = 80000000h
•  To read-protect this range: PR0 |= 00008000h

*We’re	
 picking	
 a	
 funny	
 base	
 because	
 the	
 offset	
 at	
 the	
 real	
 BIOS	
 base	
 is	
 normally	
 all	
 0xFF’s	
 so	
 it’s	
 harder	
 to	
 illustrate	
 the	
 point.	
 	

This	
 example	
 will	
 show	
 us	
 a	
 visible	
 boundary	
 whereas	
 the	
 real	
 BIOS	
 base	
 address	
 would	
 not.	

24	
 23	
 22	
 21	
 20	
 19	
 18	
 17	
 16	
 15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

0	
 0	
 0	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 0	
 	
 0	
 0	
 	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	
 0	

FLAbase	
 =	
 2A2000h	
 	
 	

23	

31	
 30	
 29	
 28	
 27	
 26	
 25	
 24	
 23	
 22	
 21	
 20	
 19	
 18	
 17	
 16	
 15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

W
P	
 	
 	
 	
 0	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 	
 1	
 	
 1	
 R	

P	
 	
 	
 	
 0	
 0	
 0	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 0	

Protected	
 Range	
 Base	

PR Example: 03FF02A2h
Limit 3FFFFFh

•  To set a PR from a Flash Linear Address Limit:
•  PRlimit = (page-aligned FLAlimit) << 16
•  PRlimit = 3FF000 << 4 = 03FF02A2h
•  To write-protect this: PR | = 80000000h
•  To read-protect this: PR |= 00008000h

24	
 23	
 22	
 21	
 20	
 19	
 18	
 17	
 16	
 15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

0	
 0	
 0	
 	
 1	
 1	
 	
 	
 1	
 	
 1	
 	
 1	
 1	
 	
 	
 1	
 	
 1	
 	
 1	
 	
 1	
 	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

FLAlimit	
 =	
 3FFFFFh	

24	

31	
 30	
 29	
 28	
 27	
 26	
 25	
 24	
 23	
 22	
 21	
 20	
 19	
 18	
 17	
 16	
 15	
 14	
 13	
 12	
 11	
 10	
 9	
 8	
 7	
 6	
 5	
 4	
 3	
 2	
 1	
 0	

W
P	
 	
 	
 	
 0	
 0	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 1	
 	
 1	
 	
 1	
 R	

P	
 	
 	
 	
 0	
 0	
 0	
 1	
 0	
 1	
 0	
 1	
 0	
 0	
 0	
 1	
 0	

Protected	
 Range	
 Limit	

vulnBIOS Example: Protected Range Registers

•  On our lab E6400, the BIOS region occupies the range
260000 – 3FFFFFh on the physical chip

–  260000h and 3FFFFFh are Flash Linear Addresses (FLAs)
•  The CPU/BIOS (including us using RW-E) always has Read/

Write access the BIOS region on flash
–  Per the flash master permission settings

BIOS	
 Region	

260000h	
 (start	
 of	
 BIOS	
 region)	

3FFFFFh	
 (BIOS	
 limit)	

25	

vulnBIOS Example: Protected Range Registers

•  The previous slides set up a protected range from 2A2000h to
3FFFFFh

•  PR = 03FF02A2h (has not yet been read/write protected)
•  On our lab machines, this covers a portion of our BIOS region

BIOS	
 Region	

2A2000h	
 (start	
 of	
 protected	
 range)	

260000h	
 (start	
 of	
 BIOS	
 region)	

3FFFFFh	
 (BIOS	
 limit)	

26	

vulnBIOS Example: Protected Range Registers

•  Let’s first verify we can read this by viewing the BIOS dump
from Copernicus
•  PR = 03FF02A2h (has not yet been read/write protected)
•  On our lab machines, this covers a portion of our BIOS region

BIOS	
 Region	

2A2000h	
 (start	
 of	
 protected	
 range)	

260000h	
 (start	
 of	
 BIOS	
 region)	

3FFFFFh	
 (BIOS	
 limit,	
 end	
 of	
 protected	
 range)	

27	

vulnBIOS example: Protected Range Registers

•  First let’s establish that we have permission to read the BIOS
region

•  Run Copernicus and open the .bin file with your favorite hex
editor (HxD is a good one for Windows)

•  Observe binary range 2A2000-3FFFFFh
•  Looks like BIOS to me!

2A2000h	
 (PR	
 Start)	

3FFFFFh	
 (PR	
 End	
 (BIOS	
 Limit))	

.	

.	

.	

.	

.	

.	

.	

.	

.	

28	

vulnBIOS example: Protected Range Registers

•  To Write-protect a
range:

•  PR | = 80000000h
•  To Read-protect a

range:
•  PR |= 00008000h

•  For this example let’s
disable reads to this
range:

•  Set PR0 (at SPIBAR +
74h) to 03FF82A2h

29	

vulnBIOS example: Protected Range Registers

•  Now re-run Copernicus and view the BIOS binary file in a hex
editor

•  As you can see the Protected Range registers override the
Flash Master permissions

•  This is the BIOS region to which the CPU/BIOS Master
otherwise “always” has permission to read and write

2A2000h	
 (PR	
 Start)	

3FFFFFh	
 (PR	
 End	
 (BIOS	
 Limit))	

.	

.	

.	

.	

.	

.	

.	

.	

.	

30	

PR Summary:
•  Implementing Protected Ranges is an important strategy for

locking down a system BIOS
•  Without PR’s, any bypass of SMM’s global write-protection

means an attacker is automatically able to modify the BIOS
•  Protected Range register enforcement:

–  Overrides the Flash Master permissions
–  Prevents Reads/Writes directly from the flash, even when

the processor is running in SMM
•  We did not demonstrate this, but it is true

•  Because of this, BIOS updates (or updates to protected
ranges) must be performed before the Protected Ranges are
configured by the BIOS

•  Only the vendor can reliably configure PR’s since new UEFI
BIOSes had a region of naturally changing content

31	

FLOCKDN Register

•  When we were been able to easily modify (and re-
modify) registers in the SPI configuration registers that
are designed to protect the system

•  For example, we can configure and modify the protected
range registers to suit the needs of a lab

•  But if we can change them, so can any other app
capable of mapping SPIBAR

•  Intel provides the FLOCKDN register to solve this
problem

32	

FLOCKDN

•  FLOCKDN, when asserted, prevents certain configuration
registers/bits in the SPI BAR from being changed

•  Once asserted, FLOCKDN cannot be reset to 0 until a reset
–  Or can it? :) Snorlax & Darth Venamis on Day 5!

•  Although hardware-sequencing is available only in descriptor
mode, the FLOCKDN bit still provides register lock-down
protection when the flash is operating in non-descriptor mode
–  Called SPI or Flash Configuration Lock-Down bit

33	

1.  Flash Regions Access Permissions Register (FRAP)
–  bits 31:24 (BMWAG) and bits 23:16 (BMRAG)

2.  Protected Range (PR) registers 0 to 4
–  entire register is locked

3.  Software Sequencing Flash Control Register (SSFC)
–  bits 18:16
–  Configure SPI Cycle Frequency (20 MHz, 33 MHz, or 50 MHz

[PCH only])
4.  Prefix Opcode Configuration Register (PREOP)

–  entire register is locked

5.  Opcode Type Configuration Registers (OPTYPE)
–  Entire register is locked

6.  Opcode Menu Configuration Register (OPMENU)
–  Entire register is locked

FLOCKDN Affected Registers
(see your manual, but at the time of original class generation…)

34	

SPI Lockdown Summary 1
•  Locking down the SPI Flash is a little more complicated than

locking down SMM
•  For the most part, only the vendor can do this, but you can

verify and try to implement some yourself

•  Verify that BIOS_CNTL.BLE is set
–  Oh wait…we’re going to talk about something in a sec that

completely bypasses BLE :)
–  If it’s not set, you can assert it yourself but that doesn’t mean there

is SMI handler code present that will de-assert bit 0
•  Verify that SMM is protecting the BIOS from writes by

asserting bit 0 and ensuring that it is reset
•  If supported, ensure that BIOS_CNTL.SMM_BWP is asserted

so that the BIOS can only be written to when the processor is
in SMM
–  You can set this yourself. The only drawback being that you may not

be able to update the BIOS, depending on how the vendor
implemented updates

35	

SPI Lockdown Summary 2

•  Verify that Protected Range registers are being used
–  You could also set these yourself but it will be a trial and error

exercise since you won’t know what parts of the BIOS flash will
be used to store variables (UEFI definitely and some Legacy)

•  Set FLOCKDN to ensure the above registers can’t be
changed

•  The above changes you could play with won’t
permanently hurt your system if they lock it up – they will
all reset back to their original values on startup

•  Verify that the Flash Master permissions are set and that
the Flash Descriptor region cannot itself be written to
–  You have no control over this unless it is writeable, in which case

the most you should do is make the FD un-writeable
–  Messing with this one could brick your system “permanently”

36	

SPI Summary
•  Locking down the SPI flash memory is the first line of

defense against an attacker
•  It is complicated and hard for vendors to get right
•  It gets a little more complex in UEFI where the SPI flash

is specifically used as a file system for storing system
variables
–  Can’t just set a single PR to write-protect the whole BIOS region

•  Remember:
•  The BIOS boots from the flash and is responsible for

configuring all of the settings we have been discussing
so far in the class

•  Letting an attacker modify the BIOS means game over
•  It’s not easy, but it’s not that hard either for an attacker to

modify your BIOS flash	

37	

SPI Summary
•  All the settings in this section apply to both x86 and x64

architecture
•  All the settings in this section apply to both legacy BIOS

and UEFI BIOS
•  All the settings in this section apply to systems running

legacy MCH/ICH chipsets and the new PCH chipsets
–  Except where otherwise noted (SMM_BWP)	

38	

