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ABSTRACT
We show that it is possible for the information paradox in black hole evaporation to be resolved
classically. Using standard junction conditions, we attach the general closed spherically sym-
metric dust metric to a space–time satisfying all standard energy conditions but with a single
point future c-boundary. The resulting Omega Point space–time, which has NO event horizons,
nevertheless has black hole type trapped surfaces and hence black holes. However, since there
are no event horizons, information eventually escapes from the black holes. We show that a
scalar quintessence field with an appropriate exponential potential near the final singularity
would give rise to an Omega Point final singularity.

Key words: black hole physics – gravitation – large-scale structure of Universe.

1 I N T RO D U C T I O N

One of the outstanding questions of black hole physics is to deter-
mine what happens to the information that falls into a black hole.
Hawking (1976, 1982, 1996) has shown that a black hole radiates
away its mass, and he pointed out that if a black hole were to com-
pletely evaporate – which it inevitably will in a universe that exists
forever in cosmological proper time – a Planck size remnant would
probably be inconsistent with the Bekenstein Bound (Bekenstein
1981, 1999;1 Bekenstein & Schiller 1989; Wald 1994) – then any
information exclusively inside the black hole would disappear from
the universe, violating unitarity. Many solutions have been proposed
to resolve this paradox. Hawking himself until recently believed that
unitarity was indeed violated, but it has been argued that such a res-
olution would be inconsistent with locality and/or conservation of
energy (Banks, Susskind & Peskin 1984). Hawking (2005) now be-
lieves that the unitarity-violating universes would be of measure
zero in the multiverse, and so they can be neglected in the sum
over histories. If Hawking’s new position is correct, it would mean
that unitarity is effectively valid. Susskind (1992, 1995) and t’Hooft
(1990) propose, on the other hand, that all information inside a black
hole is also completely encoded on its surface, so there is no net in-
formation inside the black hole. However, at the semiclassical level,
this ‘holographic principle’ would not resolve the paradox, because

�E-mail: tipler@tulane.edu
1 Bekenstein (1999) shows that the claim in Wald (1994), that the Bekenstein
Bound is not an essential assumption in any derivation of the generalized
Second Law and hence need not be true, is incorrect.

the generators of an event horizon – the black hole surface – cannot
end in a space–time, but at a singularity which itself would anni-
hilate any information on the horizon. To avoid unitarity violation,
the information must get outside the black hole event horizon.

Bekenstein (1993) has pointed out that the Hawking radiation is
not quite a blackbody spectrum, and thus it carries some information
about the initial state of the black hole. He has shown that the permit-
ted information outflow rate can be as large as the rate of decrease
in black hole’s entropy, and hence it is possible for information to
gradually leak out of a black hole during evaporation. However,
Bekenstein emphasized that he had not demonstrated that all the
information got out, just that it was possible that it did, and if only
one bit of information fails to escape, unitarity will be violated.
Bekenstein also did not address the semiclassical event horizon
problem. Ashtekar & Bojowald (2005) have proposed that it will be
necessary to consider trapped surfaces in the context of full quantum
gravity to resolve the information problem.

We will show in this paper that a purely classical gravity solution
to the black hole information problem is possible and consistent
with all observations: the universe may have no event horizons at
all. In such a universe, there would be no black hole event hori-
zons to prevent the exchange of information between one part of
the cosmos and another. A space–time with no event horizons has
a future c-boundary (Hawking & Ellis 1973, pp. 217–221) which
is topologically a single point, and hence has been called (Tipler
1994) an Omega Point space–time. It can be shown (Tipler 1994)
that if a space–time’s future c-boundary is a single point, then the
space–time necessarily admits compact Cauchy surfaces, and the
global space–time topology is S × R1, where S is the topology
of any Cauchy surface. Even in a universe with compact Cauchy
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630 F. J. Tipler et al.

surfaces, we would expect black holes to evaporate to completion
if the universe were to expand forever. Hence, a space–time which
avoids the black hole information paradox because of the absence
of event horizons would have to end in a final singularity before
any black hole would have time to evaporate. Since the expected
black hole lifetime is 1064(M/M�)3 yr, (Wald 1994), our universe
would have to expand to a maximum size and recontract before
1064 yr have passed. It can be shown (Barrow, Galloway & Tipler
1986; Barrow & Tipler 1986) that the only two simple topologies
possible for universe with a maximal Cauchy hypersurface and sat-
isfying the weak energy condition are S3 and S2 × S1.

We will construct in this paper a spherically symmetric S3 uni-
verse with a black hole but with no event horizons. The space–time
will be shown to satisfy all the standard energy conditions. Indeed,
the stress energy tensor for the space–time will be just pressure-free
dust in its expanding phase. We will discuss various definitions of
‘black hole’ in closed universes, and show that the space–time we
construct has a black hole by any of these definitions. The parame-
ters of the constructed space–time can be chosen so that the black
hole is identical to a black hole in any dust spherically symmetric
(Tolman–Bondi) S3 universe – and hence it would be in appearance
a black hole with event horizons according to any observations that
could be carried out in the expanding phase of a closed universe. The
null generators of what is apparently the event horizons stay close
to the trapped surfaces during the expanding phase of the closed
universe, and only expand out into the universe at large very close
to the final singularity. This means that the standard astrophysical
analysis of black holes and their collisions (e.g. Matzner et al. 1995,2

Matzner et al. 1996; Price et al. 1999) can be trusted, since they are
in the short run the same as in asymptotically flat space–time. Thus,
our proposal is quite different from many proposals which eliminate
event horizons by eliminating black hole type trapped surfaces. In
our proposal, black hole trapped surfaces exist as usual, but they do
not give rise to event horizons.

This paper will be organized as follows. In Section 2, we will con-
struct a Friedmann–Robertson–Walker (FRW) universe which is a
standard dust FRW closed universe until arbitrarily near the final
singularity when we join it to a metric which satisfies all the energy
conditions, which has a final singularity, but which has no event
horizons. In Section 3, we show that the no event horizon metric
constructed in Section 2 satisfies the Einstein equations for a scalar
field with a suitably chosen exponential potential. In Section 4, we
will generalize the FRW w = −1/3 universe to the spherically sym-
metric case, obtaining an inhomogeneous (but spherically symmet-
ric) space–time which satisfies all the standard energy conditions,
yet has a future c-boundary which is a single point. In Section 5,
we join this modified version of the FRW event horizonless metric
to a general Tolman–Bondi closed universe. In Section 6, we dis-
cuss various definitions for a black hole in a closed universe, and
show that the Tolman–Bondi universe parameters of the metric in
Section 5 can be chosen so that by any of these definitions the ex-
panding phase of the universe has a black hole. In Section 7, we
show that the recent supernova observations which strongly sug-
gest that the universe is currently accelerating are consistent with
a universe which recollapses to a final singularity before any black

2 See especially the ‘horizon generators’ of a pair of colliding black holes,
which appeared on the cover of the issue of Science containing this paper
(1995 November 10). The null geodesics so pictured will still exist, and will
be astrophysically indistinguishable from the null geodesics pictured here,
but they will not be the generators of a event horzion.

hole has time to completely evaporate, provided the acceleration is
due to quintessence with certain specified properties. Finally in our
concluding Section 8, we will point out how our ‘no event horizon’
solution to the black hole information paradox naturally comple-
ments the ‘holographic principle’ resolution, which assumes that
all information in a black hole interior is coded also on its surface.

2 A T H R E E - S P H E R E
F R I E D M A N N – RO B E RT S O N – WA L K E R
U N I V E R S E W I T H F I NA L S I N G U L A R I T Y BU T
N O E V E N T H O R I Z O N S

The Friedmann equation for an S3 closed universe is(
1

R

dR

dt

)2

= 8πG M

3R3(1+w)
− 1

R2
(2.1)

where the pressure p =wρ, with w = γ − 1, where γ is the adiabatic
index and ρ the mass density. If w = −1/3, then

R(t) =
√(

8πG M

3
− 1

)
(tf − t) (2.2)

is a solution to equation (2.1) for t < tf with a final singularity at
t = tf, provided (8πGM/3) > 1. The second-order equation for the
Friedmann universe,

1

R

d2 R

dt2
= −4πG

3
(ρ + 3p) , (2.3)

is automatically satisfied for p = −(1/3)ρ and d2R/dt2 = 0.
The closed FRW universe with the scalefactor (2.2), namely

ds2 = −dt2 + R2
0(tf − t)2[dχ2 + sin2 χ (dθ 2 + sin2 θdϕ2)], (2.4)

has no event horizons; that is, its future c-boundary consists of a
single point – the Omega Point. Indeed, the equation for future-
directed null geodesics, ds2 = 0, can be integrated for radial null
geodesics to give


χ =
∫ tf dt

R(t)
= +∞ (2.5)

which shows that radial null geodesics circumnavigate the universe
an infinite number of times as the future c-boundary at t = tf is
approached. By homogeneity and isotropy, we can transpose the
coordinate system so that any spatial location (χ , θ , φ) can reach
any other location (χ ′, θ ′, φ′) via a radial null geodesic segment,
and equation (2.5) shows such radial geodesics can be exchanged an
infinite number of times. Hence, all future endless time-like curves
define the same c-boundary point: the future c-boundary is a single
point.

A perfect fluid with w = −1/3 satisfies the weak, the strong,
and the dominant energy conditions, since Hawking and Ellis have
shown (1973, pp. 89–95) that for diagonalizable stress energy ten-
sors (Type I matter), the weak energy condition will hold if ρ � 0
and ρ + p � 0, the strong energy condition will hold if ρ + p �
0 and ρ + 3p � 0, and the dominant energy condition will hold if
ρ � 0 and −ρ � p � ρ.

It is possible to join the metric with scalefactor (2.2) to any closed
FRW universe at any time in the collapsing phase. Consider, for
example, the dust (w = 0) scalefactor

R(τ ) = Rmax

2
(1 − cos τ ), (2.6)

t(τ ) = Rmax

2
(τ − sin τ ), (2.7)
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Black holes without event horizons 631

where 0 < τ < 2π is the conformal time, and Rmax is the radius of
the universe at maximum expansion, which occurs when τ = π. We
will make the join at a conformal time π � tjoin < 2π, which by
equation (2.7) gives a proper time of

tjoin ≡ tjoin(τjoin) = Rmax

2
(τjoin − sin τjoin).

The standard junction conditions (see e.g. Misner, Thorne &
Wheeler 1973, section 21.13, pp. 551–556) require continuity of
the metric and its first derivatives at the join:

R(τjoin) = Rmax

2
(1 − cos τjoin) (2.8)

= R(tjoin) = −Qtjoin + A, (2.9)

dR

dt

∣∣∣∣
τjoin

=
(

dR/dτ

dt/dτ

)∣∣∣∣
τjoin

= (2.10)

sin τjoin

1 − cos τjoin
= dR

dt

∣∣∣∣
tjoin

= −Q, (2.11)

where Q ≡ √
8πG M/3 − 1 and A ≡ tfQ. Solving for tf and M

yields

8πG M

3
= 2

1 − cos τjoin
, (2.12)

tf = Rmax

2

[
τjoin + 2(cos τjoin − 1)

sin τjoin

]
. (2.13)

Note that as τjoin → π+, we have tf → +∞, which means join-
ing at the time of maximum expansion would yield the Einstein
static universe thereafter. As τjoin → 2π, we have tf → πRmax and
M → +∞, which means that an arbitrarily large total mass of the
w = −1/3 matter is required to eliminate event horizons if the join
is made arbitrarily close to the usual proper time end of a dust FRW
universe, tf = πRmax.

The standard junction conditions yield a global metric which is
C∞, except at the join, where it is C1. One can smoothen this met-
ric to one which is C∞ everywhere and which satisfies the energy
conditions everywhere by allowing w to vary smoothly from 0 to
−1/3 in a neighbourhood [tjoin, tjoin − 
 t). By the constraint FRW
equation (R−1 dR/dt)2 = −R−2 + 8πGρ/3 and the dynamical FRW
equation 2R−1 d2R/dt2 = −(R−1 dR/dt)2 − R−2 − 8πGp, continuity
in p and ρ would ensure that R(t) is C2, and repeatedly differentiating
the dynamical equation would yield that R(t) is C∞ (the constraint
and dynamical FRW equations imply the conservation equation
Tµν

;ν = 0).
Since Rµ

µ = − 8πGTµ
µ = 16πGρ = 16πGM/R2 for the w =

−1/3 equation of state, where Rµ
µ is the Ricci scalar, the Omega

Point singularity at t = tf (at R = 0) is a p.p. (parallel propagated)
curvature singularity (Hawking & Ellis 1973, p. 260). Budic &
Sachs (1976) were the first to investigate Omega Point space–times,
and he pointed out that they are most easily formed by suitably
identifying Minkowski space, which would have locally extensible
singularities.

3 A w = −1/3 P E R F E C T F L U I D C A N B E
G E N E R AT E D B Y A QU I N T E S S E N C E S C A L A R
F I E L D W I T H A N E X P O N E N T I A L P OT E N T I A L

We will now show that a scalar field with exponential potential will
generate, at least in an FRW universe, a w = −1/3 perfect fluid

behaviour near the final singularity, that is, the w = −1/3 perfect
fluid behaviour will be seen if the potential for the scalar field φ is
of the form V(φ) = V0eBφ , where V0 and B are constants. Such a
potential is often discussed as a particularly plausible potential for
the inflation field which is thought to be responsible for inflation in
the early universe, and as a model of the quintessence field which is
responsible for the cosmological acceleration in the present epoch.
This will show that a w = −1/3 equation of state is physically
plausible near the final singularity of a closed universe, and thus
that the absence of event horizons is physically possible.

The stress energy tensor for a scalar field φ with potential V(φ)
is (Turner 1983):

Tαβ =
[
φ;αφ;β − 1

2
gαβ

(
φ;µφ;νgµν + 2V (φ)

)]
. (3.1)

In the FRW universe, we have φ = φ(t), so φ;i = 0 and φ;0 =
φ,0, where the i denotes a spatial coordinate, 0 the time coordinate
t, and the semicolon and comma denote the covariant and partial
derivatives, respectively. In a local orthonormal frame, we obtain

T0̂0̂ = 1

2
(φ,0̂)2 + V (φ) (3.2)

and

T0̂0̂ + 3Tîî = 2
[
(φ,0̂)2 − V (φ)

]
(3.3)

If w = −1/3, T0̂0̂ + 3Tîî = 0, which means

V (φ) = (φ,0̂)2 = (φ,0)2, (3.4)

where we have used φ,0̂ = φ,0 = dφ/dt . Thus,

8πGT0̂0̂ = 12πG(φ,0)2 = G 0̂0̂

= 3((R,0)2 + 1)

R2
= 3

(
R2

0 + 1
)

R2
0(tf − t)2

. (3.5)

Taking the square root gives

dφ

dt
=

√
(R2

0 + 1)/4πG

R0(tf − t)
(3.6)

which can be immediately integrated to yield

φ0 − φ =
√(

1

4πG

)(
1 + 1

R2
0

)
ln(tf − t), (3.7)

where φ0 is a constant. Equation (3.7) can be written in the form

(tf − t)−1 = exp


 φ − φ0√

(1/4πG)
(

1 + 1/R2
0

)

 . (3.8)

We thus obtain for the potential

V (φ) = (φ,0)2 =
(

R2
0 + 1

)
4πG R2

0

[
1

(tf − t)2

]
= V0eBφ, (3.9)

where

B =
√

16πG R2
0

R2
0 + 1

(3.10)

and

V0 =
(

R2
0 + 1

)
4πG R2

0

e−Bφ0 . (3.11)

It was pointed out in the previous section that the join between
the dust- (or radiation-) dominated FRW part of the universe and
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the w = −1/3 portion can be made at any time and at any radius. If
the constants V0 and B are fixed by the laws of physics, then as the
above relation between these constants and the constants R0 and φ0

indicate, the physical laws would also restrict the radius of the join
and the value of the scalar field at the join.

It is interesting to confirm that the potential (3.9) satisfies the
second-order equation of motion for a scalar field in the FRW uni-
verse with R(t) = R0(tf − t). The equation of motion with arbitrary
scalar potential V(φ) is (Tipler 1994, p. 466; Barrow & Tipler 1986,
p. 431):

φ;α
;α = ∂V (φ)

∂φ
. (3.12)

In the FRW universe we have φ;α
;α = (φ,0);0 = (φ,0);0 = (−φ,0);0,

and in a coordinate basis, the identity Aα
;α = (1/

√−g)(
√−g Aα),α ,

for any vector field Aα , applies. Thus, in an FRW coordinate basis,
the scalar field equation of motion can be written in the form

1

R3

(
R3(−φ,0)

)
,0

= ∂V (φ)

∂φ
, (3.13)

which can be reduced to the standard expression φ̈+3H φ̇+V ′(φ) =
0 as follows. In both a coordinate basis and an orthonormal basis,
we have A,0 = dA/dt, for any function A. Thus, for an exponen-
tial potential, we have ∂V(φ)/∂φ = BV(φ) = B(φ,0)2. Using R =
R0(tf − t) and the expression (3.6) for φ,0, it is confirmed that ex-
pression (3.13) is indeed an identity.

An alternative derivation of the fact that the w =−1/3 equation of
state can be generated by a scalar field with exponential potential
would be to make use of Barrow’s work (Barrow 1987; Burd &
Barrow 1988) on scalar fields with exponential potentials in a flat
space (FRW k = 0). Barrow (1987) in fact noted that in the far future,
an exponential potential could give rise to the w = −1/3 equation of
state in the k =+1 case, but he did not attempt to derive the constants
(B and V0 above) that would allow the w = −1/3 equation of state
to be joined to a dust equation of state for earlier times, which is
why we did the calculation above. In addition, Vilenkin (1984) (see
also Turner 1999) has pointed out that a w = −1/3 equation of state
can be generated by a tangled network of very light cosmic strings.

In joining two metrics with different equations of state, one ef-
fectively assumes that one form of matter disappears and is replaced
by the other. More realistically, if a scalar field were to be present
near a final singularity, we would expect it to be in addition to dust
or radiation already present. In such a situation, a pure exponential
potential uncoupled to the other forms of matter would not give rise
to a single c-boundary point, if its stress–energy tensor increased as
R−2, since dust and radiation would increase as R−3 and R−4, respec-
tively; such a universe would inevitably become radiation dominated
sufficiently near the singularity. However, in an FRW universe, we
can always find, for any assumed mixture of dust and radiation, a
suitable potential V(φ) which would have the effect of cancelling
out the gravitational force of the dust and matter fields, leaving an
effective pure exponential scalar field (this is in effect what happens
after the join between the w = −1/3 equation-of-state and the w =
0 equation-of-state fluids).

However, the actual universe is not expected to be an FRW near
the final singularity. Even if the universe were an FRW in the be-
ginning, we would expect it to become curvature dominated near
the final singularity, since the ‘effective energy density’ curvature
perturbations around FRW grow as R−6, much faster than the densi-
ties of dust or radiation (Misner, Thorne & Wheeler 1973, p. 807).
Thus, in the actual universe, the elimination of event horizons would
have to be carried out by the global collective interactions (of known

forces) which give rise to the Misner mixmaster horizon elimination
mechanism, as described in Tipler (1994).

On the other hand, a pure scalar inflation (quintessence field)
with exponential potential might be expected to be the entire matter
content in the very early universe, and the initial singularity might be
expected to be an FRW. In such a case the effect of such an inflation
field would be to eliminate the particle horizons. In other words, with
an exponential inflation (quintessence) field, the horizon problem
of cosmology would be automatically resolved.

4 G E N E R A L I Z I N G T H E F RW w = −1/3
O M E G A P O I N T S PAC E – T I M E TO T H E
S P H E R I C A L LY S Y M M E T R I C C A S E

The approach used in Section 2 for creating space–times with no
event horizons can be generalized to yield a wider class of such
space–times. Instead of using the metric (2.4), we introduce func-
tions N(χ ) and Z(χ ), where N is positive on [0, π] and Z is positive
on (0, π), vanishing at 0 and π. The metric we then use is

ds2 = −dt2 + (tf − t)2[N 2 dχ 2 + Z 2(dθ 2 + sin2 θ dϕ2)]. (4.1)

Proposition 1. A Tolman–Bondi space–time with metric (4.1) has a
c-boundary which is a single point.

Proof. To check that this space–time actually has no event horizons,
we mimic the calculation of the same proposition for the w = −1/3
FRW universe in Section 2. Let Nmax be the maximum value of N
on [0, π], and then


χ =
∫ tf dt

N (χ )(tf − t)
�

∫ tf dt

Nmax(tf − t)
= +∞. (4.2)

Thus, in this class of space–times, radial null geodesics are capa-
ble of hitting every value of χ an infinite number of times. In order to
conclude that every point in space can communicate with every other
point, however, we must refine the argument given in Section 2 a bit,
for we no longer have the symmetry of the three-sphere to exploit.
We do, however, still have (two-)spherical symmetry. Therefore, we
can say that a null geodesic may be sent from the origin to any (χ ,
θ , ϕ), and vice versa. Hence, given points P1 = (χ 1, θ 1, ϕ1) and
P2 = (χ2, θ2, ϕ2) which desire to communicate with one another,
there exists a piecewise C∞ null curve from P1 to P2, consisting
of a null curve from P1 to the origin and then a null curve from
the origin to P2. Applying an elementary result of Penrose (1972,
lemma 2.16), we conclude that there exists a time-like or null curve
from P1 to P2, which is precisely what we wanted. QED.

We would like the space–time (4.1) to satisfy the weak, dominant,
and strong energy conditions (Hawking & Ellis 1973). Let G be the
Einstein tensor of this space–time. Using the equations for the non-
zero components of the Einstein tensor in Kramer et al. (2003), we
can compute G in the orthonormal basis ωı̂ , where

ω0̂ = dt, ω1̂ = N (tf − t) dχ,

ω2̂ = Z (tf − t) dθ, ω3̂ = Z (tf − t) sin θ dϕ.

In this basis, all off-diagonal terms of G are zero. Thus, all matter
is of Type I (Hawking & Ellis 1973), and the energy conditions will
hold if the following six conditions are satisfied:

G 0̂0̂ � 0, (4.3)

G 0̂0̂ + G 1̂1̂ + G 2̂2̂ + G 3̂3̂ � 0, (4.4)
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Black holes without event horizons 633

G 0̂0̂ + G 1̂1̂ � 0, (4.5)

G 0̂0̂ − G 1̂1̂ � 0, (4.6)

G 0̂0̂ + G 2̂2̂ = G 0̂0̂ + G 3̂3̂ � 0, (4.7)

G 0̂0̂ − G 2̂2̂ = G 0̂0̂ − G 3̂3̂ � 0. (4.8)

The strong energy conditions are equations (4.3) and (4.4), the
weak are equations (4.3), (4.5) and (4.7), and the dominant are
equations (4.3) and (4.5)–(4.8). Computing these expressions with
our metric (4.1), we see that G00 + G11 + G22 + G33 = 0 identically,
and equations (4.3), (4.5), (4.6), (4.7) and (4.8) are equivalent to,
respectively,

3 + 1

Z 2
− 1

N 2

(2Z ′′

Z
− 2Z ′ N ′

Z N
+ (Z ′)2

Z 2

)
� 0, (4.9)

2 − 2

N 2

( Z ′′

Z
− Z ′ N ′

Z N

)
� 0, (4.10)

4 + 2

Z 2
− 2

N 2

( Z ′′

Z
− Z ′ N ′

Z N
+ (Z ′)2

Z 2

)
� 0, (4.11)

2 + 1

Z 2
− 1

N 2

( Z ′′

Z
− Z ′ N ′

Z N
+ (Z ′)2

Z 2

)
� 0 (4.12)

and

4 + 1

Z 2
− 1

N 2

(3Z ′′

Z
− 3Z ′ N ′

Z N
+ (Z ′)2

Z 2

)
� 0, (4.13)

where prime (′) denotes differentiation with respect to χ (everything
is a function of χ ). In the FRW case, N = R0, Z = R0 sin χ , and the
energy condition equations are all are equivalent to

1 + 1

R2
0

� 0.

In other words, in the FRW case, the energy conditions are always
satisfied.

We will now show that if the metric (4.1) defines a universe
that is ‘sufficiently large’, it will automatically satisfy the energy
conditions. Suppose we are given functions N0(χ ) and Z0(χ ) such
that there exist constants R1, R2, ε1, ε2 > 0 with N0(χ ) = R1 and
Z0(χ ) = R1sin χ for 0 � χ < ε1 and N0(χ ) = R2 and Z0(χ ) = R2

sin χ for π − ε2 < χ � π. In other words, N0 and Z0 look like the N
and Z from FRW universes near χ = 0 and χ =π. We then know that
near χ = 0 and π, the energy conditions are satisfied for N = RN0

and Z = RZ0, where R is an arbitrary positive constant. Since the
expressions multiplied by 1

N 2 in the energy conditions are bounded
for χ ∈ [ε1, π − ε2], we may then find a constant multiplier R such
that the metric (4.1) with N = RN0 and Z = RZ0 satisfies all the
energy conditions everywhere. The current observational evidence
indicates that the universe is very close to being spatially flat, so the
actual universe satisfies the ‘sufficiently large’ criterion.

5 A T H R E E - S P H E R E U N I V E R S E C O N TA I N I N G
A B L AC K H O L E BU T H AV I N G N O E V E N T
H O R I Z O N S

We will produce a large class of S3 × R1 space–times which are
in their expanding phase, special cases of the general spherically
symmetric dust solution (Kramer et al. 2003) and which are even-
tually joined to a space–time of the type described in Section 4, so
that they end with a c-boundary of a point (and hence have no event
horizons), and satisfy the energy conditions everywhere.

5.1 General dust solution

The general spherically symmetric pressureless dust solution
(Kramer et al. 2003) is

ds2 = −dt2 + (1 − f 2)−1

(
∂Y

∂χ

)2

t

dχ 2 + Y 2(dθ2 + sin2 θ dϕ2),

(5.1)

where the notation ( ∂Y
∂χ

)t denotes differentiation of Y with respect
to χ where the independent variables are t, χ , θ and ϕ (subscripts to
differentials in general will specify independent variables, with the
assumption that θ and ϕ are always independent), f is an arbitrary
function of χ alone taking values in [0, 1] and Y and t are given,
respectively, by

Y = (1 − cos η)
m(χ )

f (χ )2
(5.2)

and

t = t0(χ ) + (η − sin η)
m(χ )

f (χ )3
. (5.3)

In the above expressions, t0 is an arbitrary function of χ alone, m is
another arbitrary function of χ positive on (0, π), and η is defined by
equation (5.3). The only restrictions on these free functions are that
to maintain the non-degeneracy of the metric in a closed universe, f
should be equal to 1 at one χ -value in the interior of [0, π], at which
point m′, f ′ and t′0 should all be zero. The general dust metric becomes
degenerate whenever Y ′ = 0 and f �= 1 or Y ′ �= 0 and f = 1. Such two-
spheres of degeneracy correspond to shell-crossing singularities,
and if these degeneracy spheres occur before the final singularity at
η = 2π, they will give rise to a breakdown in global hyperbolicity,
as is well known. We will assume that the free functions m, f and t0

are so chosen that this does not occur.
The dust case of the FRW metric (the case where w = 0) is a

special case of this general metric. Letting

f = sin χ, m = Rmax

2
sin3 χ and t0 = 0,

one obtains

t = Rmax

2
(η − sin η), Y = Rmax

2
(1 − cos η) sin χ,

and
(

∂Y

∂χ

)
t
= Rmax

2
(1 − cos η).

The resulting metric is

ds2 = −dt2+
[ Rmax

2
(1 − cos η)

]2

[dχ2 + sin2 χ (dθ2 + sin2 θ dϕ2],

precisely the Friedmann collapsing dust S3 solution.

5.2 The join

We have shown above that equation (2.4) can be joined in a C1

manner to any collapsing dust FRW S3 universe at any time in the
collapsing phase by a suitable choice of the constants R0 and tf. We
will now generalize this construction substantially, joining a certain
class of Tolman–Bondi pressureless dust solutions (including the
FRW S3 collapsing dust solution) to universes of the sort of equa-
tion (4.1), so that we produce a large class of universes which start
with pressureless dust and in the end have no event horizons.

In making this join, we will allow the hypersurfaceJ along which
the two metrics are joined to vary as a free function. For conve-
nience, we will take J to be spherically symmetric, parametrized
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634 F. J. Tipler et al.

as (tJ , χ, θ, ϕ) in the dust universe, where ηJ = ηJ (χ ) is a free
function of χ , and

tJ ≡ t(ηJ (χ ), χ ) = t0(χ ) + (ηJ − sin ηJ )m(χ )

f 3(χ )
. (5.4)

We will also assume that the t, χ , θ , and ϕ coordinates agree
acrossJ . Therefore, we will have six degrees of freedom altogether:
t0, m, f , ηJ , N and Z, all free functions of χ .

To make the join C1, we first must make it continuous across
J . This in particular means that the metric coefficients will agree
along J itself. Therefore, the metric coefficients will agree in all
derivatives along vectors tangent to J , and thus in order to check
that the join is C1, one must only check that the first derivatives of the
metric coefficients agree in a direction independent of the tangent
spaces of J . The direction we choose is (∂/∂t)χ . This direction is
linearly independent of the tangent spaces of J because (∂/∂η)χ is
never tangent to J (since J is parametrized with η a function of
χ ), and(

∂

∂t

)
χ

= f 3

m(1 − cos η)

(
∂

∂η

)
χ

.

Since we are assuming that the coordinates are the same on the
dust universe as on the universe (equation 4.1), the off-diagonal
coefficients already agree (they are 0 on both sides of J ), and gtt

is −1 on both sides of J . Furthermore, since we have spherical
symmetry on both sides of J , we need to check only one of gθθ and
gϕϕ . We are left with four junction conditions:

(Y ′)2

1 − f 2
= N 2(tf − tJ )2 (gχχ continuous), (5.5)

Y 2 = Z 2(tf − tJ )2 (gθθ continuous), (5.6)

2Y ′Ẏ ′

1 − f 2
= −2N 2(tf − tJ )

(
gχχ C1

)
, (5.7)

2Y Ẏ = −2Z 2(tf − tJ )
(

gθθ C1
)
. (5.8)

Here the dot (̇) denotes application of (∂/∂t)χ and the prime (′)
denotes application of (∂/∂χ )t. These tangent vectors arise from
the coordinate system (t, χ , θ , ϕ), and thus they commute with one
another, so that equation (5.7) makes sense.

Therefore, we have six free functions – t0(χ), m(χ ) and f(χ ) on
the Tolman–Bondi side of the join, and ηJ (χ ), N (χ ) and Z(χ ) on
the final singularity side of the join – and four differential equations
relating them. One would expect that these four equations would
determine four of the functions in terms of the other two, and this
is exactly what happens. We find it convenient to choose m(χ ) and
f(χ ) as the arbitrary functions, and expressing all other functions in
terms of these two. After some manipulation of the above equations,
we obtain

(1 + cos ηJ )2

| sin3 ηJ | = C
m

f 3
, (5.9)

t0 = tf +
[

2(1 − cos ηJ )

sin ηJ
− ηJ

]
m

f 3
, (5.10)

N = |Ẏ ′(ηJ , χ )|√
1 − f 2

, (5.11)

Z = |Ẏ (ηJ , χ )|, (5.12)

where C is a constant of integration. Equation (5.9) can be inverted
to give ηJ (χ ). ηJ is then inserted into equations (5.10), (5.11)
and (5.12) to yield t0(χ ), N(χ ) and Z(χ ), respectively, in terms of
the arbitrary functions m(χ ) and f(χ ), and the constants tf and C.
Note that the allowed Tolman–Bondi dust metrics are no longer
completely general, since the function t0 is now fixed rather than
being completely arbitrary. The constants tf and C allow the join to
be made as far in the future in proper time (the constant tf) and in
η time (the constant C) as one wishes. To see the latter, note that
equation (5.9) is of the form F(ηJ ) = Cm/ f 3, where F increases
monotonically from 0 to +∞ as ηJ ranges from π to 2π. Thus, if
we make C arbitrarily large, ηJ can be made arbitrarily close to 2π,
that is, as close as we wish to the final singularity. Furthermore, one
observes that the boundary requirement of t′0 (that it is 0 whenever
Y ′ and hence m′ and f ′ are 0) is automatically satisfied, since by the
junction conditions

t ′
0 = m

f 3

(
m ′

m
− 3

f ′

f

)[
(1 − cos ηJ ) sin ηJ

2 + cos ηJ
− ηJ + sin ηJ

]
.

The join in Section 2 is in fact a special case of this construction.
Consider the FRW choices for m and f:

m(χ ) = Rmax

2
sin3 χ and f (χ ) = sin χ,

then m/f 3 = 1 identically, so that by equation (5.9) ηJ will be a con-
stant, and then by equation (5.10) t0 will be a constant. Choosing tf

appropriately, we may make t0 identically zero, so that our Tolman–
Bondi universe is in fact the FRW collapsing dust universe. As noted
above, we may make the join at any time in the collapsing phase, just
as in the FRW construction of Section 2, and a simple calculation
reveals that the N and Z forced by the join are precisely those which
give the w = −1/3 universe.

5.3 Join with a possible ‘weak’ shell-crossing singularity

In order to make the metric coefficients differentiable across J , we
had to impose four conditions on six functions. We would, however,
like to join a completely arbitrary Tolman–Bondi metric to the metric
(4.1), and this will require eliminating one of the equations. The
junction condition which on physical grounds is the least important
is equation (5.7), the requirement that gχχ be C1. If gχχ is not C1 at
J , then the curvature will be a δ function on J , but this δ function
will correspond to a shell-crossing singularity, a singularity that is
generally agreed to be unphysical. (Note also that requiring gχχ

be C1 across J actually requires that the radii Y of the constant χ

spheres have one of its second derivatives, Ẏ ′, be continuous across
J .) Thus, we drop the junction condition (5.7). A little manipulation
yields

ηJ − 2 tan
ηJ

2
= f 3(tf − t0)

m
, (5.13)

tJ = t0(χ ) + (ηJ − sin ηJ )
m(χ )

f 3(χ )
, (5.14)

N (χ ) = |Y ′(ηJ , χ )|
(tf − tJ )

√
1 − f 2

, (5.15)

Z (χ ) = |Ẏ (ηJ , χ )|. (5.16)
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Black holes without event horizons 635

We proceed as in the previous section, solving first for ηJ and
then substituting this into the other equations. Note that in order
to invert equation (5.13), solving for ηJ , the fact that t0 must be
less than tf (the final t-value of the universe) implies that the left-
hand side should be positive for all values of χ . However, since the
positive values of u − 2 tan (u/2) for u ∈ [0, 2π] are all at least 2π,
we must therefore have the right-hand side being at least 2π for all
values of χ . Since m, f and t0 are all defined on the same compact
interval, we may (and must) choose the constant tf so large that the
right-hand side is always at least 2π. Note that the differentiability
of N in equation (5.15) will be guaranteed when Y ′ = 0 and f = 1
because the value of (Y ′)/(1 − f 2) as χ approaches such a point is
well defined and positive, and thus (tf − t0) will be just the square
root of this positive value. This means that the more standard type
of shell-crossing singularity (Y ′ = 0 but f �= 1, so that gχχ = 0) is
assumed not to occur on J . For this reason, we called the allowed
singularity a ‘weak’ shell-crossing singularity.

Therefore, if we make the appropriate choice of tf as described
above, we may join an arbitrary Tolman–Bondi closed dust metric
to the metric (4.1), provided we allow for a possible shell-crossing
singularity. The only additional restriction we must impose on the
Tolman–Bondi functions m, f and t0 is that they must be chosen to
make the universe ‘sufficiently large’ as discussed in Section 4.

6 B L AC K H O L E S

One interesting consequence of the above constructions is that they
provide examples of space–times satisfying the energy conditions
which can contain black holes, but do not contain event horizons.
In order for this statement to make sense, however, we need a good
definition of a black hole in a closed universe, for in a closed universe
the black hole singularity is actually just a component of the final
singularity (cf. Wheeler & Qadir 1985). We will discuss in detail
three such definitions, the first due to Hayward (1994), the second
due to Tipler (1977), and the third due to Wheeler & Qadir (1985).

In the standard definition of a black hole (cf. Wald 1984, p. 300,
or Misner et al. 1973, p. 924), the black hole B is the space–time
region B ≡ M − J −(I+), where M is the space–time manifold,
I+ is ‘scri plus’ – future null infinity, and J−(S) is the causal past
of a set S, which is to say that J−(S) is the set of all space–time
points p which can be reached by a past-directed time-like or null
curve from S to p. [Discussions of global general relativity and the
definitions of concepts used in this discipline can be found in Wald
(1984, chapter 8; Misner et al. 1973, chapter 34; or Hawking & Ellis
1973; Penrose 1972).] This definition cannot be applied in a closed
universe, because I+ does not exist in a closed universe with a
final singularity. However, this standard definition of a black hole is
never used in practice. When astrophysicists search for black holes,
they look for gravitational fields implying the presence of trapped
or marginally trapped surfaces. In asymptotically flat space–times
(i) all trapped surfaces can be proven to be inside of a black hole (in
the standard definition), and (ii) black holes are expected to evolve
rapidly to a Schwarzschild or Kerr black hole, in which there are
trapped surfaces arbitrarily close to the boundary of the black hole
∂J −(I+) – the event horizon. Now trapped surfaces can be in closed
universes.

6.1 Trapped and marginally trapped surfaces

Thus, the fundamental concept in Hayward’s and Tipler’s defini-
tions of a black hole is that of a trapped surface (cf. Hayward 1994).

χ = 0 χ = π
τ = 0

τ = π

trapped surface
region

initial singularity

final singularity

τ = 2π

Figure 1. Trapped surfaces in the three-sphere FRW dust universe. The
points in the cross-hatched region represent two-spheres which are trapped
surfaces. The leftmost vertical line is the worldline of the origin of spatial
coordinates, and the rightmost vertical line is the worldline of the spatial
antipodal point. As pictured, the trapped surfaces begin with the collapse
of the universe at a conformal time π. The boundary of the trapped surface
region is formed of marginally trapped surfaces. Although it appears that
there are no trapped surfaces through the origin of coordinates, this is an
illusion caused by the fact that all two-spheres are concentric on the origin
of coordinates. If the origin of coordinates were moved half way to the
antipode (to χ = π/2), in the collapsing phase one would see a trapped
surface surface through the original origin of coordinates .

Let S be a compact space-like two-surface embedded in our space–
time manifold. Let P be a point of S. There are precisely two null
directions normal to S at P. Suppose furthermore that these null
directions can be expressed as two vector fields N+ and N− defined
on all of S. We can choose both of N+ and N− to be future-directed.
Now, allowingS to evolve along N+ and N−, we can measure its area
at every instant, and logarithmically differentiate the resulting func-
tion with respect to the evolution parameter. Call these quantities
θ+ and θ−, respectively.

Definition 1. S is called a (future) trapped surface if both θ+ <

0 and θ− < 0. If one of these quantities is zero and the other is
negative, then S is called a marginally trapped surface.

The intuition here is that light rays emitted from a trapped sur-
face will converge, no matter whether they are sent ‘outwards’ or
‘inwards’. This is certainly a necessary property of a black hole, and
it would be sufficient if it were not for the fact that the cosmologi-
cal singularity produces a wealth of trapped surfaces as the universe
collapses. In an FRW closed universe, for example, there is a trapped
surface passing through every spatial point in the collapsing phase,
as shown in Fig. 1. As illustrated in that figure, the size of the trapped
surfaces will approach zero even in the conformally related space–
time, as the spatial size of the universe approaches zero. A universe
which collapses into an Omega Point will also have trapped surfaces
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τjoin

χ = 0 χ = π
τ = 0

τ = π

trapped surface
region

initial singularity

τ

infinity

χ = π − τjoin /2

χ = τjoin /2

Figure 2. Trapped surfaces in a three-sphere FRW dust universe joined to
an Omega Point metric. The size of the trapped surfaces does not approach
zero in the conformally related metric, which is pictured.

passing through every spatial point in the collapsing phase, as illus-
trated in Fig. 2 though there is a lower bound to the size of the trapped
surfaces in the conformally related space–time, a lower bound that
depends on the conformal time of the join. In order to distinguish
these cosmological trapped surfaces from non-cosmological ones –
black hole type trapped surfaces – we need additional criteria.

6.2 Hayward’s black hole definition

Marginally trapped surfaces are important because in some sense
they are where the horizon of a prospective black hole should be.
To distinguish trapped surfaces arising from black holes from those
arising from the collapse of the universe, therefore, Hayward con-
siders what should be happening in a neighbourhood of a marginally
trapped surface which arises because of a black hole. Without loss
of generality let θ+ = 0, θ− < 0 along the marginally trapped sur-
face S. N+ can then sensibly be called ‘outward’, and N− ‘inward’.
Outward-directed light rays run instantaneously parallel to the sur-
face, and inward-directed light rays converge. In the case of black
hole based marginally trapped surfaces, however, we would like
to say that outward light rays just outside S diverge, while out-
ward light rays just inside S converge. This can be accomplished
mathematically by extending the embedding of S to a ‘double-null
foliation’ (cf. Hayward 1994 and Ashtekar & Krishnan (2004)) in
the direction of N+ and N−, extending θ+ appropriately, and com-
puting the sign of L−θ+, where L− denotes the Lie derivative in the
direction of N−.

Definition 2. A marginally trapped surface with θ+ = 0 (respec-
tively θ− = 0) is called inner if L−θ+ (respectively L+θ−) is posi-
tive, outer if L−θ+ (respectively L+θ−) is negative, and degenerate
otherwise.

As it makes sense, inner marginally trapped surfaces correspond
to cosmological collapse, and outer marginally trapped surfaces cor-
respond to non-cosmological collapse, that is, to the marginally
trapped surfaces we would expect to find inside black holes.

As mentioned above, in asymptotically flat space–times, all the
trapped surfaces are inside the black hole, and furthermore, all
future-directed causal (time-like or null) curves from any trapped
surface Ti can also be shown to be inside the black hole. Thus, if
B is the black hole region, we must have J+(∪i Ti ) ⊂ B in order to
capture the astrophysically defining feature of a black hole in a black
hole definition applicable to a closed universe. Also, in asymptot-
ically flat space–times, any space–time point p whose causal fu-
ture eventually enters the causal future of a trapped surface can be
proven to be inside a black hole. This means that we should also
include in the black hole B all points p such that null generators of
∂J+(p) eventually become null generators of ∂J +(∪Ti ), or intersect
J+(∪i Ti) in its acausal initial boundary. This gives

Definition 3. (Hayward) a black hole is the set J +(J +(∪Ti )) ∪
{p| null generators of ∂J+(p) eventually become null generators
of ∂J +(∪Ti ) or intersect ∂J +(∪Ti ) at points where this boundary
is acausal, where ∪Ti is the union of all outer marginally trapped
surfaces.

Eardley (1998), however, has shown that the set of marginally
trapped surfaces are ill behaved, and in fact marginally trapped
surfaces do not have a smooth limit when they are deformed to-
wards the horizon in asymptotically flat space–times. Nevertheless,
Eardley proposed simply identifying the black hole region with the
union of all marginally trapped surfaces, thereby avoiding the com-
plication with precisely defining the points p in the black hole but
not in J+(∪iTi). Eardley’s proposal has been followed by the more
recent results of Andersson et al. (2005) and Schnetter & Krishnan
(2006). The non-smoothness of the set of marginally trapped sur-
faces, however, does suggest that there may be a problem with
Hayward’s definition.

6.3 Tipler’s black hole definition

Tipler’s (1977) criterion is related to Hayward’s, but perhaps is a
bit simpler (see Hayward 1994 for a short discussion of how these
criteria relate), and refers only to the trapped surfaces, omitting the
marginally trapped surfaces.

Instead of using a double-null foliation to test whether a given
marginally trapped surface corresponds to the cosmological collapse
or to a local black hole, Tipler instead supposes that the marginally
trapped surface in question is contained in the boundary of a space-
like hypersurface with boundaryT whose interiorT −∂T is foliated
by trapped surfaces. He then (assuming without loss of generality
that θ+ = 0, θ− < 0) makes the following.

Definition 4. If the family of null vectors N− (which are all on ∂T )
point in the direction of T , then all trapped surfaces which can
be obtained from trapped surfaces in T by an acausal homotopy
foliated by trapped surfaces will be called non-cosmological.

In particular, any trapped surface in T is non-cosmological in
this case. Thus, black hole type trapped surfaces would be non-
cosmological trapped surfaces, and we have

Definition 5. (Tipler) a black hole is the set J +(J +(∪Ti )) ∪ {p|
null generators of ∂J+(p) eventually become null generators of
∂J +(∪Ti ) or intersect ∂J +(∪Ti ) at points where this boundary is
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Black holes without event horizons 637

acausal, where ∪Ti is the union of all non-cosmological trapped
surfaces

6.4 Hayward–Tipler black holes in Tolman–Bondi closed
universes

Specializing to the Tolman Dust case, we already have a convenient
foliation by two-spheres, and we will use this foliation to assist in
evaluating the two definitions outlined in the previous section.

First of all, note that the normal bundle to this foliation is spanned
by the vector fields ∂/∂t and ∂/∂χ . Therefore, we may set

N± = ∂

∂t
±

√
1 − f 2

Y ′
∂

∂χ
,

since ∂/∂t is future-directed and g(∂/∂t, N±) = 1. Since the area of
the two-sphere at (t, χ ) is 4πY2, we can then easily compute

θ± = N±[log(4πY 2)] = 2 f 3

(1 − cos η)m

(
cot

η

2
±

√
1 − f 2

f

)
.

Note that in order for the two-sphere at (t, χ ) to be marginally
trapped, we are forced to have θ+ = 0 and θ− < 0 (since θ+ > θ−).

Let us consider first Tipler’s definition. ChooseT to be a constant-
t hypersurface. An example of a vector pointing in the direction of
T is ν = −(θ+)′ (∂/∂χ ) (here primes are as in the join conditions
above), since θ+ will decrease to become negative on T , where the
two-spheres will be trapped surfaces. Thus, a sufficient condition for
cosmological trapped surfaces in a neighbourhood of a marginally
trapped surface at (t, χ ) is

0 < g(ν, N−) = (θ+)′
Y ′√

1 − f 2
.

Expanding this a bit, letting Q = m/f 3, ignoring positive multipliers
and using the fact that θ+ = 0, we obtain the condition

Y ′√
1 − f 2

[
t ′
0 + (η − sin η)Q ′

4 f 4 Q
− f ′

f 2
√

1 − f 2

]
> 0.

We now consider how Hayward’s definition applies. We are taking
the derivative in the N− direction of θ+, and determining its sign.
To that end, we will have a Hayward black hole type marginally
trapped surface if

0 > L−θ+ =

1

Y ′

{
1

2 f 3 Q

(
f ′

f
− Q ′

Q

)
−

√
1 − f 2

2 f 6 Q2
[t ′

0 + (η − sin η)Q ′]

}
.

6.5 Black holes in a joined universe

Now let us suppose that we are looking for a black hole in a pressure-
less dust universe which can be joined to the N–Z universe defined
above. We first consider the case of the differentiable join. Leaving
m and f free as in our derivation of the join conditions, we compute
Tipler’s criterion to be

Y ′√
1 − f 2

[
(T + η − sin η)Q ′

4 f 4 Q
− f ′

f 2
√

1 − f 2

]
> 0,

and Hayward’s to be

1

2Y ′ f 3 Q

[
f ′

f
− Q ′

Q
− Q ′(T + η − sin η)

√
1 − f 2

Q f 3

]
< 0,

η

infinity

cosmological trapped surfaces

black
hole
trapped
surfaces

time of
maximum
expansion

first black hole trapped surface

BH and
cosmic
trapped
surfaces
merge

Figure 3. Black hole and cosmological trapped surfaces in a three-sphere
Tolman–Bondi dust universe which is joined to an Omega Point universe. The
points in the cross-hatched region represent two-spheres which are trapped
surfaces. The black hole trapped surfaces are centred at the origin of coor-
dinates, and they form long before the global collapse of the universe. The
two types of trapped surface merge as the collapse proceeds, and become
indistinguishable.

where T(χ ) is defined as

T = 3 sin ηJ

2 + cos ηJ
− ηJ .

It is clear that we can choose m, f and tf in the C1 join in such
a way that the resulting joined universe contains black holes in
either the Hayward or the Tipler sense, and satisfies the energy
conditions. A black hole whose centre is at the origin of coordinates
in such a joined universe is pictured in Fig. 3. Note that we show
only the spherically symmetric trapped surfaces. There may exist
non-spherically symmetric marginally trapped surfaces extending
outside the cross-hatched region, though we believe these do not
exist.

6.6 Wheeler’s black hole definition

Following Wheeler & Qadir (1985), we will consider black holes
in the spherically symmetric dust universe to be regions in which
the universe is collapsing much faster than elsewhere. An intuitive
measure of the rate of collapse of the universe in any region is
a measurement of the elapsed time between the initial and final
singularities.

We can use physical models to approximate the elapsed time
between singularities in black hole regions. For simplicity, we will
consider a one solar mass black hole. Misner et al. (1973) give
the time for a particle to fall from radius Ri to the singularity in a
standard Schwarzschild black hole as π(R3

i /8GM)1/2. Taking Ri to
be the Schwarzschild event horizon Ri = 2GM/c2, we have that the
elapsed time from the penetration of the event horizon to the final
singularity is approximately thorizon = 5 × 10−6 s (M/M�). A dust
cloud generating such a black hole would have a total lifetime of
twice this, giving us the elapsed time from initial to final singularity
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as

ttotal = 10−5 s

(
M

M�

)
(6.1)

in the vicinity of a black hole.
Misner et al. (1973) cite the illustrative time that might be ex-

pected to elapse from the beginning to the end of a typical closed
FRW universe (without black hole regions) as

ttotal = 60 × 109 yr = 1.8 × 1017 s.

Combining this result with the above calculation, we conclude that
the elapsed time between initial and final singularities in the vicin-
ity of a 1-M� black hole will be of the order of 1022 times smaller
than that in non-black hole regions of the universe. Since an upper
bound to the mass of a black hole in the current epoch of uni-
verse history is believed to be 1010 M�, we would expect that the
elapsed time between the initial and final singularities inside the
largest black hole in existence today would be of the order of 1012

times smaller than that in non-black hole regions of the universe,
since by equation (6.1), a black hole lifetime scales linearly with its
mass.

The elapsed time from the beginning to the end of the universe
along any time-like curves of constant χ can be obtained from
equation (5.2) by computing t(2π, χ ) − t(0, χ ). Thus, the total
time elapsed from initial to final singularity along a time-like curve
of constant χ is simply 2π m(χ )/f(χ )3. Therefore, we can assert
that if χ a corresponds to a black hole region of some hypersurface
and χb corresponds to the cosmological region, we should obtain
that

ttotal(χb)

ttotal(χa)
= m(χb)/ f (χb)3

m(χa)/ f (χa)3
> 1013. (6.2)

To apply this notion of black holes in the dust universe to our
joined metric, we consider any two-sphere with coordinate radius
χ a to be inside a black hole if equation (6.2) is satisfied when χb

is the coordinate radius of a two-sphere whose size evolves like
the two-spheres of spherical symmetry in an FRW universe. It will
be sufficient that there exist a pair of two-spheres with coordinate
radii χa and χb such that equation (6.2) is satisfied. Alternatively,
we could simply restrict attention to 1-M� black holes and fix χb.
An elementary calculation shows that a solar mass black hole is a
two-sphere with radius corresponding to the radial value χ = 10−23.
A third way of picking the pair of two-spheres is to require that the
χ a two-sphere is the ‘largest’ two-sphere in the universe ‘today’.
This would mean that the χ a two-sphere is an extremal – maximal –
two-sphere embedded in the three-sphere corresponding to ‘today’.
We have to require the two-sphere to be extremal since one can
construct a non-extremal two-sphere of arbitrary size embedded in
a three-sphere.

Wheeler & Qadir (1985) point out that the natural meaning of
‘today’ – the choice of a space-like hypersurface though the Earth –
is the constant mean curvature hypersurface through the Earth today.
Tipler (1994, p. 440) has shown that if the strong energy condition
holds, and if the universe began close to homogeneity and isotropy,
an Omega Point space–time can be uniquely foliated by constant
mean curvature hypersurfaces, so Wheeler’s proposal does indeed
define a unique ‘today’ over the entire universe. (Tipler also shows
that a constant mean curvature hypersurface probably coincides with
the rest frame of the CBR (cosmic background radiation) at any
event, so Wheeler’s ‘today across the entire universe’ is even easy
to locate experimentally.) Putting all of these criteria together yields

Definition 6. (Wheeler) a black hole is the set of all space–time
points p such that J +(J +(p) ∩ J −(S)) ⊂ J −(S), where S is any
two-sphere with coordinate radius χa for which equation (6.2) holds
when χ b is the coordinate radius of a maximal two-sphere in the con-
stant mean curvature hypersurface which includes the two-sphere
with coordinate radius χ a.

It is clear that since equation (6.2) does not depend on the function
t0, just on the functions m and f, it is possible to construct even in
the case of the C1 join a universe which is essentially a closed dust
FRW everywhere outside a small black hole by Wheeler’s definition,
a black hole which is centred at the origin of coordinates χ = 0.

7 QU I N T E S S E N C E A N D R E C O L L A P S E

The ‘no event horizon solution’ to the black hole information prob-
lem requires that the universe recollapse to a final singularity be-
fore black holes have time to evaporate. However, the best observa-
tions (Bahcall et al. 1999), independently confirmed by a number
of groups, indicate that the universe is currently accelerating. Fur-
thermore, the observed structure is best explained (given a Hubble
constant of 65 ± 5 km s−1-Mpc and spatial flatness) via a � cold
dark matter model (Turner & White 1997). If this acceleration were
to continue – as it would if it were due to a positive cosmological
constant – then the universe would expand forever, and our proposed
solution to the black hole unitarity problem would be incorrect: uni-
tarity would be violated.

However, Barrow (1987), see also Burd & Barrow (1988) was
the first to point out that an accelerating universe today need not
preclude a recollapse in the far future of a closed universe. Since the
acceleration of the scalefactor R is given by equation (2.3), namely
R̈ = −(4πG/3)R(ρ + 3p) = −(4πG/3)R(1 + 3w)ρ, acceleration
today implies that w < −1/3 today (the data give w < − 5/9 today
at the 95 per cent confidence level (Turner 1999), but if eventually
w > −1/3 for all time greater than some far future value tfuture,
then the recollapse theorems of Barrow et al. (1986) will apply, and
recollapse will occur.

Thus, unitarity implies that the observed acceleration ‘today’
(meaning most of past proper time) cannot be due to a positive cos-
mological constant, but must instead be due to quintessence. This
is of course the general expectation of cosmologists, since the only
plausible non-zero values of the cosmological constant are near the
Planck density of (1019 GeV)4, or near the density of the SM Higgs
field at its minimum ∼ (200 GeV)4, whereas the observed density
of the material causing the acceleration is of the order of the closure
density, (10−3 eV)4 (Weinberg 1989; Carroll, Press & Turner 1992).

The ‘standard model’ of quintessence (Carroll 1998; Turner 1999)
is a scalar field φ with a very shallow potential V(φ) in the present
epoch, resulting in scalar field excitations of very small mass, mφ ≡√

V ′′(φ)/2 � H0 ∼ 10−33 eV. Since we know very little more than
this about V(φ), the potential could have a minimum around which
the field will oscillate in the far future. In such a case, in the far
future the leading term in the expansion of the potential about the
minimum would be 1

2 m2
φφ2, yielding (Turner 1983) an oscillation

frequency ω = mφ and w → 0 in the far future where mφ � H(t).
With such a potential for the quintessence, recollapse would occur,
since the curvature term in the Friedmann equation decreases as R−2

whereas the quintessence term would eventually decrease like the
matter, R−3.

These potentials yield the most popular current models of
quintessence, since such potentials are suggested by supersymme-
try. There are many exponential potentials which allow recollapse,
as established by Barrow (1987). For example, if the potential dies
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off sufficiently fast with φ, then in the far future, the density will
drop off as R−6 as does a massless scalar field, the universe will
become matter and then curvature dominated in the far future, and
recollapse will result.

In summary, there are many quintessence models consistent with
all current observations which allow recollapse in the far future.
Thus, the scenario of horizon elimination proposed in this paper is
consistent with all current astronomical observations.

8 C O N C L U S I O N

The ‘holographic principle’ (Birmingham 1999; Easther & Lowe
1999; Kraus & Balasubramanian 1999) claims that all physics on
a manifold – especially quantum gravity – can be completely de-
scribed by a theory defined only on the boundary of that manifold.
This is a completely reasonable principle in the case that the bound-
ary of the manifold is a Cauchy surface for the manifold, because in
this situation the data on the boundary uniquely determine the mani-
fold and the properties of all physical fields defined on the manifold.
For a classical black hole which forms by collapse in an asymp-
totically flat space–time and then settles down to a Schwarzschild
exterior in the far future, the black hole event horizon is indeed a
Cauchy surface for the interior. More generally, if the space–time
is globally hyperbolic, we would expect the event horizon to still
be a Cauchy surface for the black hole interior. If we include the
c-boundary points in anti-deSitter space, then the Cauchy horizons
surrounding a region plus the points on the c-boundary where the
horizon generators terminate form a Cauchy surface for the interior
space–time region enclosed by the Cauchy horizons; once again we
would expect the holographic principle to be valid.

However, there are problems with the holographic principle in
the case of black holes which evaporate to completion. Since the
entire space–time is no longer globally hyperbolic, it is not clear
that the event horizon is a Cauchy surface for the interior. There
are problems with the c-boundary completion: looked at from in-
side a black hole, the c-boundary inside a spherically symmetric
black hole is a two-sphere [the TIPs (Terminal Indecompressible
Pasts) define a two-sphere], whereas looked at from the future after
the evaporation is complete, the c-boundary is a single point [the
TIFs (Terminal Indecompressible Futures) define a point], that is,
the causal completion does not define the boundary of the interior
manifold uniquely. Even if the event horizon were actually a Cauchy
surface for the black hole interior, the information can never leave
the horizon to the exterior space–time, since the event horizon gen-
erators must terminate at the singularity which ends the black hole
evaporation.

This problem is obviated in an Omega Point space–time. The
null generators of the black hole apparent horizon will actually be a
Cauchy horizon for the entire space–time, for it can be shown that
∂I+(p) is a Cauchy surface for the entire space–time for any point
p in the space–time (lemma 1 in Tipler 1994, p. 436). Thus, the
holographic principle is true for all manifolds which are future sets
(sets for which I+(S) ⊂ S). In particular, for all points pi we wish to
include in ‘black holes’ (by any of the definitions given above), the
boundary ∂I+(∪ pi) will be a Cauchy surface for the space–time,
and so the holographic principle will hold for the surfaces of black
holes in Omega Point space–times.

Another area of general relativity that is naturally complemented
by the no-event-horizon resolution of the black hole information
problem is the computation of gravitational radiation from collid-
ing black holes. Matzner et al. (1996) have noted that the computer
simulation of a black hole collision is much simpler if characteristic

evolution is used in the black hole exterior, because in asymptotically
flat space–times, the characteristic formulation can be compressed.
In an Omega Point space–time, the characteristic formulation is au-
tomatically compressed: the null boundary ∂I+(p) of any point p in
an Omega Point space–time has been shown by Tipler to be a com-
pact Cauchy surface (Tipler 1994, p. 436), as we pointed out above.
We conjecture that the calculation would be even easier done in an
Omega Point background space, such as the spherically symmet-
ric Omega Point space–times exhibited in Sections 2 and 4. In an
Omega Point space–time, it is not necessary to add the c-boundary
points to compress characteristic null surfaces like ∂I+(p). This is
important, because as York has recently emphasized, in general co-
ordinate systems, the initial value problem cannot be well posed in
general relativity. However, Tipler has shown (Tipler 1994, p. 440)
that Omega Point space–times which satisfy the strong energy con-
dition and begin in a ‘crushing’ singularity (all FRW singularities
are of this type, as are all ‘stable’ singularities) possess a unique
foliation by constant mean curvature hypersurfaces, and York has
shown that the initial data problem is well posed on such a hyper-
surface. [If the universe is currently accelerating, the strong energy
condition will not hold everywhere, but nevertheless a constant mean
curvature foliation will still exist, (Tipler 1994, p. 439). However,
the foliation may only be unique in the very early universe and in
the very late universe where the strong energy condition will hold.]
As we have emphasized repeatedly, we define black holes opera-
tionally in terms of trapped surfaces, just as is done by the groups
trying to compute the amount of radiation emitted from colliding
black holes. Locally, their calculations of the black hole surfaces
would be the same in an asymptotically flat space and in an Omega
Point space–time. No quantum effects would affect the location or
the size or the existence of trapped surfaces evolved in the black
hole collision calculations.

Finally, we point out that many of the well-known difficulties
associated with doing quantum field theory in curved space–times
disappear in Omega Point space–times. As we mentioned in Sec-
tion 1, Omega Point space–times necessarily are foliated by com-
pact Cauchy surfaces, and in space–times with compact Cauchy
surfaces – that is, in closed universes – there exists a natural unitary
equivalence class of quantum field theory constructions, specifi-
cally, those constructed from all the Hadamard vacuum states (Wald
1994, p. 96). [Roughly speaking, a ‘Hadamard state’ is one in which
the short-distance singularity structure of the two point function in
curved space is the same as it is in Minkowski space (Wald 1994,
pp. 92–95).] In space–times without a compact Cauchy surface,
there are no unitarily equivalent representations of the quantum
field algebra, and it was this fact which led many relativists to give
up the postulate of unitarity. In an Omega Point space–time, it is not
necessary to give up unitarity.

It is not even necessary to give up the notion of ‘particle’ or
‘vacuum state’ in a curved Omega Point space–time, as many rela-
tivists have previously believed (e.g. Wald 1994, p. 59 and p. 96).
The method of Hamiltonian diagonalization (Wald 1994, p. 65) will
define a unique vacuum and Fock space with respect to any given
Cauchy surface, and we pointed out above that a unique foliation of
the space–time by a constant mean curvature exists in a physically
realistic Omega Point space–time (unique except possibly in the pe-
riods where the universe is accelerating). These constant mean cur-
vature hypersurfaces are the natural ‘rest frame’ of the universe, and
are the natural corresponding frames to the global Lorentz frames
in a Minkowski space. In FRW universes, the constant mean curva-
ture hypersurfaces are the ‘rest frames’ of the CBR – observers on
worldlines normal to these hypersurfaces would measure isotropic
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CBR temperature. With respect to such a unique global foliation,
the notion of ‘particle’ and ‘vacuum state’ is defined and is unique
in a curved space–time, and such notions must be defined if the
quantum field theory in a curved space–time is to be a legitimate
low energy limit of the (still unknown) quantum theory of gravity.

Weinberg (1995, p. 2) has pointed out that quantum field theo-
ries are regarded today as ‘mere effective field theories’, just low-
energy approximations to a more fundamental theory. Quantum field
theories are not themselves fundamental, but we use them only be-
cause any relativistic quantum theory will closely approximate a
quantum field theory when applied to particles at a low enough en-
ergy. If this is true, then quantum particles are more fundamental
than quantum fields, and thus a semiclassical theory like the quan-
tum field theory in a classical curved space background must contain
a natural definition of the more fundamental entity, the particle.

In short, assuming the universe to end in a c-boundary which
is a single point – assuming the universe to be an Omega Point
space–time – solves the black hole information problem, allows the
standard concepts of relativistic quantum mechanics to be carried
over into curved space–times, simplifies the characteristic initial
value problem, and is consistent with all astronomical observations.
The actual universe may indeed be an Omega Point space–time.
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