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ABSTRACT 

Sparse signal reconstruction is of the utmost importance for efficient medical imaging, 

conducting accurate screening for security and inspection, and for non-destructive testing. The 

sparsity of the signal is dictated by either feasibility, or the cost and the screening time constraints 

of the system. In this work, two major sparse signal reconstruction systems such as compressed 

sensing magnetic resonance imaging (MRI) and sparse-view computed tomography (CT) are 

investigated. 

For medical CT, a limited number of views (sparse-view) is an option for whether reducing 

the amount of ionizing radiation or the screening time and the cost of the procedure. In applications 

such as non-destructive testing or inspection of large objects, like a cargo container, one angular 

view can take up to a few minutes for only one slice. On the other hand, some views can be 

unavailable due to the configuration of the system. A problem of data sufficiency and on how to 

estimate a tomographic image when the projection data are not ideally sufficient for precise 

reconstruction is one of two major objectives of this work.  Three CT reconstruction methods are 

proposed: algebraic iterative reconstruction-reprojection (AIRR), sparse-view CT reconstruction 

based on curvelet and total variation regularization (CTV), and sparse-view CT reconstruction 

based on nonconvex L1-L2 regularization. The experimental results confirm a high performance 

based on subjective and objective quality metrics. Additionally, sparse-view neutron-photon 

tomography is studied based on Monte-Carlo modelling to demonstrate shape reconstruction, 

material discrimination and visualization based on the proposed 3D object reconstruction method 

and material discrimination signatures.  

One of the methods for efficient acquisition of multidimensional signals is the compressed 

sensing (CS). A significantly low number of measurements can be obtained in different ways, and 
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one is undersampling, that is sampling below the Shannon-Nyquist limit. Magnetic resonance 

imaging (MRI) suffers inherently from its slow data acquisition. The compressed sensing MRI 

(CSMRI) offers significant scan time reduction with advantages for patients and health care 

economics. In this work, three frameworks are proposed and evaluated, i.e., CSMRI based on 

curvelet transform and total generalized variation (CT-TGV), CSMRI using curvelet sparsity and 

nonlocal total variation: CS-NLTV, CSMRI that explores shearlet sparsity and nonlocal total 

variation: SS-NLTV. The proposed methods are evaluated experimentally and compared to the 

previously reported state-of-the-art methods. Results demonstrate a significant improvement of 

image reconstruction quality on different medical MRI datasets. 
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 CHAPTER 1- INTRODUCTION 

1.1.  Imaging Models: CT and MRI 

Imaging includes acquisition, processing, interpretation and visualization. Image 

modelling is one of fundamental problems underlying the whole range of imaging tasks [1-4].  The 

models that are studied and developed in this work are designed for reconstructing images obtained 

from two different physical systems, i.e., tomographic and nuclear magnetic resonance. In the 

former, multiple projections of an object under x-ray scan are acquired; and in the latter, scanned 

objects are exposed to magnetic fields and radiofrequency pulses to record magnetic gradients and 

place them into frequency space. As the data primarily serve for human observers the acquired 

signals are to be reconstructed to images such that they represent shapes, textures and structures. 

The quality of reconstructed images at low computation and acquisition is the focus of this work.  

 

1.1.1. CT 

Computed tomography (CT) is an x-ray imaging procedure that is performed by scanning 

objects and creating projections from different view angles followed by mathematical 

reconstruction of scenes from those projections.  CT is used in various fields. An important and 

well-known application is the medical CT. Other examples include security and inspection, non-

destructive testing, biomedical imaging, material science, and geophysics. Figure 1.1 depicts the 

CT system that takes projections from two angles. The system that includes the CT scanner and a 

reconstruction method is called a CT-scanner or CT machine. CT machines have been established 

as an indispensable medical imaging tool for decades, and it is still is a subject of the active 
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research. The modern CT-machines are designed for classical reconstruction methods such as 

filtered backprojection (FBP) [5]. The achievable image quality is proportional to the number of 

angles the projections are taken from, and that in turn is proportional to the ionizing radiation 

patients receive.  In order to obtain an image of a sufficiently high quality, a relatively high number 

of angles is to be used. Another concern is the time and the cost of the procedure. While the time 

is highly reduced by modern technologies as well as a radiation dose related to the x-ray power for 

obtaining a high-quality image, they are still are hindering factors of safe and low cost applications 

of CT. That is specifically true for security and inspection wherein a very high power such as 10-

20 MeV is used for inspection of large cargo containers or turbines.   

 

1.1.1.1. Sparse-view CT 

The main advantage of sparse-view CT (Figure 1.2) is a lower radiation dose and faster 

scanning for higher dimension (≥ 2D) imaging. The challenge here lies in how to accurately 

reconstruct images from severely undersampled projection data. Such reconstruction is known in 

mathematics as an ill-posed problem. In order to improve the reconstruction and regularize the 

solution of an ill-posed problem, it is necessary to use advanced methods such as modern iterative 

CT reconstruction methods with the cost function that includes regularization. 
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Figure 1.1 Computed tomography system: projections from two angles (two views). 

 

 

 

 

Figure 1.2 Sparse-view (few-views): (a) 16 angles; (b) 32 angles. 
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A computed tomography system can be defined as a linear equation: 

 

𝐴x = 𝑏                                                        (1) 

 

where 𝑏 ∈ ℝ𝑁 is the projection data, x ∈ ℝ𝑀 is the reconstruction image, 𝐴 ∈ ℝ𝑁×𝑀 is the 

system geometry matrix. Considering the sparse-view model, the reconstruction problem is ill-

posed for minimizing the least-squares function. As a result, the following cost function with a 

regularization term has been considered: 

 

𝑚𝑖𝑛
𝑥
|𝛷(x)|1    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝑏 − 𝐴x‖2

2 ≤ 𝜎                                      (2) 

 

where 𝛷  is a sparsifying transform, and 𝜎 is an upper bound of the uncertainty in the 

projections (𝑏). Here ℓ1-norm denoted by |. |1 and ℓ2-norm by ‖. ‖2. Total Variation (TV) 

regularization methods [6, 7] is very well suited for edge-preserving imaging problems in sparse-

view settings. A drawback of the TV-based methods is that they produce images with oil-painting 

artifact.  

In the next chapter, we will briefly summarize the classical approach to solving the inverse 

problem and then introduce three sparse-view CT reconstruction methods including AIRR, CTV, 

and Nonconvex L1-L2 CT methods. 
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1.1.2. MRI 

MRI is a powerful non-invasive medical imaging modality. In addition to its nonionizing 

radiation nature, a distinct advantage of MRI compared to other imaging modalities, such as CT, 

x-ray radiography, and nuclear medicine, is that MRI is able to provide superior contrasts based 

on the intrinsic properties of soft tissues.  

Compressed sensing (CS) implies that signals are reconstructed from significantly fewer 

measurements than were traditionally thought necessary (Shannon-Nyquist sampling theorem). 

Magnetic resonance imaging (MRI) are featured by slow data acquisition process. The CS MRI 

has a high potential of significant reduction of the scan time. Twofold benefit from CS MRI is the 

patients’ convenience and the lower cost of the procedure.  Compressed sensing for MRI is 

potentially successful because 1) imagery is inherently compressible in the transform domain (for 

example, wavelet domain), and 2) MRI scanners obtain samples in the spatial-frequency domain.  

 

1.1.2.1. Compressed sensing MRI (CSMRI) 

Compressed sensing [8-10] framework (Figure 1.3) plays an important role in signal 

processing applications now days and shows remarkable results. Signal reconstruction and 

specifically reconstruction of magnetic resonance images is one of those fundamental applications 

especially for very sparse data samples compared to the standard sampling theory. The gain is 

twofold; with the high quality, given the sparse sampling, there is a significant speed up of the 

scan time for magnetic resonance imaging [8,11].  
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Figure 1.3 Compressed sensing MRI framework 

 

Compressed sensing hypothesis [9] makes it possible to recover MR images from vastly 

under-sampled k-space data and the whole process includes encoding, sensing, and decoding 

processes. Most of the compressed MR imaging algorithm try to solve following linear model: 

 

𝐴x = 𝑏                            (3) 

when 

𝐴 = 𝑆𝐹                    (4) 

 

where 𝑆 is a sampling, or a selection matrix, and 𝐹 is a 2D discrete Fourier matrix, and 𝑏 

is the observed k-space data which invades the classical Shannon–Nyquist sampling criterion. 

Having the sparsity assumption of  x̂, one possible solution would be 

 𝑚𝑖𝑛
x
 |x|0  subject to 𝐴x = 𝑏                             (5) 
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Since ℓ𝑜-minimization problem is an NP-hard [12], a more reasonable alternative would 

be  

 𝑚𝑖𝑛
x
 |x|1  subject to 𝐴x = 𝑏                           (6) 

Almost all the recent CS MRI algorithms are the generalized versions of that with different 

regularization and penalty terms. 

He et al. [13] proposed a model for compressed MR imaging using two non-smooth 

regularization terms which reached better accuracies compared to the traditional total variation 

regularization model [14].  Chang et al. [15] proposed partial differential equation (PDE) based 

method to reconstruct MR images. Lysaker et al. [16] improved the quality of reconstructed images 

by introducing fourth-order regularization term in their compressed MR imaging model, but the 

model was too complex to solve for high resolution images.  Lustig et al. [17] reviewed different 

compressed MR imaging steps. They developed the model using the sparsity in a wavelet domain 

and exploited ℓ1-minimization to reconstruct MR image. Jung et al. [18], Ye et al. [19], Candes et 

al. [20], and Chartrand et al. [21], exploited ℓ𝑝-quasinorm minimization model 0 < 𝑝 < 1 using 

the method FOCUSS [22] to reconstruct MR images, but because of non-convexity of their 

objective function, the optimization may not end up with global minima. Trzasko et al. [23] also 

proposed homotopic nonconvex objective function based on ℓ0 minimization model, however it 

has the global minima issue.  

Recent CS MRI strive to find a best combination of sparsifying transforms in order to 

increase the reconstruction quality from a very sparse data space [24-29]. In recent, different 

methods have been presented to reconstruct magnetic resonance images from under sampled k-
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space data. Ma et al., introduced an operator-splitting algorithm, Total variation (TV) compressed 

MR imaging (TVCMRI) [24] for MR image reconstruction. By taking advantage of fast wavelet 

and Fourier transforms, TVCMRI can process actual MR data accurately. Another method 

proposed by Yang et al. [25] solved the same objective function presented in [24] differently. They 

proposed a variable splitting method (RecPF) which is TV-based ℓ1-ℓ2 MR reconstruction. This 

method uses alternating direction method for recovering MRI images from incomplete Fourier 

measurements. The optimization, was solved based on the approach in [26]. A fast composite 

splitting algorithm (FCSA) [27] is proposed by Huang et al.  FCSA is based on combination of 

variable and operator splitting. It splits the variable x, that is an image to reconstruct into two 

variables; and it exploits operator splitting to minimize the regularization terms over the splitting 

variables. Nonlocal total variation for MR reconstruction (NTVMR) [28], and framelet + nonlocal 

TV (FNTV) [29] have been proposed lately. Unlike the immense reputation of all TV-based 

minimization approaches, these methods, which are based on the first order derivatives, have two 

major shortcomings such as oil-painting artifacts, and/or contrast loss [30]. Out of those two 

methods which use nonlocal TV regularization, FNTV functions better in terms of quality.  FNTV 

tries to minimize the combination of nonlocal TV, framelet, and least square data fitting terms 

using the split Bregman method. Recently, Shearlet based methods are proposed for MR 

reconstruction purposes [31, 32]. In [32], a new framework, nonseparable shearlet transform 

iterative soft thresholding reconstruction algorithm (FNSISTRA), is presented by Pejoski et al. 

which used both fast iterative soft thresholding algorithm (FISTA) [34,35] and discrete 

nonseparable shearlet transform (DNST) [33] to solve their reconstruction formulation. They 

modified FISTA algorithm to exploit the 2D DFT of the spatial domain to solve their minimization 

formulation. Not only their result accomplished better signal to noise ratio (SNR) compared to 
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previously shearlet based method [31], but also, they achieved better performance compared to all 

previously mentioned methods.  

In the next chapter, three compressed sensing MRI methods are proposed including CT-

TGV, CS-NLTV, and SS-NLTV.  
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 CHAPTER 2- METHODS 

In this chapter, six methods for CT and MRI reconstruction are proposed. Furthermore, the 

3D object reconstruction method and a novel material discrimination for sparse-view neutron-

photon CT are elaborated.  

 

2.1. Computed tomography reconstruction 

In this section, three proposed CT reconstruction methods including AIRR, CTV, and 

Nonconvex L1-L2 CT and the proposed 3D object reconstruction and material discrimination 

methods in sparse-view Neutron-Photon computed tomography are explained.  

 

2.1.1. Computed tomography method: algebraic iterative reconstruction-

reprojection (AIRR) method 

In this section, we introduce the shearlet regularization in an algebraic iterative 

reconstruction-re-projection (AIRR) for the sparse-view CT reconstruction. When the sparsity 

increases, the reconstruction error causes a large divergence.  The iterative reconstruction-re-

projection (IRR) algorithm [36,37] based on the filtered back projection (FBP) has served initially 

for the sparse-view CT reconstruction. The IRR-TV [38] has had a higher performance on the 

account of the total variation (TV) minimization. In this section, we first review the IRR and then 

introduce the algebraic iterative reconstruction-reprojection with the shearlet regularization in the 

image space. We will show then that a better approximation in the projection space is attained and 

a better quality of reconstruction evaluated by subjective and objective quality metrics is produced 

by the proposed AIRR. 
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2.1.1.1. Traditional IRR method 

The IRR is a transformation reconstruction method which approximates the absent angular 

projections by alternating back-projection and reprojection spaces. It is arithmetically similar to 

the Gerchberg-Papoulis method that iterates in the Fourier space. It is shown that it converges for 

the case of band-limiting data [39, 40].  

The IRR method includes three steps: 

 

𝑔𝑖(𝑟, 𝜃) = ℎ(𝑟) ∗ 𝑝𝑖(𝑟, 𝜃)                      (7)                                                                                          

 

𝑓𝑖(𝑟, 𝜃) = ∫ 𝑔𝑖(𝑥𝑐𝑜𝑠(𝜃) + 𝑦𝑠𝑖𝑛(𝜃))𝑑𝜃
2𝜋

0
                (8),                                                                                            

𝑝𝑟𝑒𝑝
𝑖+1(𝑟, 𝜃) = ∫ 𝑓𝑖(𝑟𝑐𝑜𝑠(𝜃) − 𝑡𝑠𝑖𝑛(𝜃), 𝑟𝑠𝑖𝑛(𝜃) + 𝑡𝑐𝑜𝑠(𝜃))𝑑𝑡

𝐿

−𝐿
                            (9).                                           

 

In the above equations, 𝑔𝑖(𝑟, 𝜃) is the i-th reconstruction of the filtered projection data, 

ℎ(𝑟) is the time-domain filter. 𝑝𝑟𝑒𝑝
𝑖 (𝑟, 𝜃) is the reprojection data computed from (i-1)th 

reconstructed image, 𝑓𝑖−1 .  

The error propagation presented in the back-projection and reprojection iterations is the 

key drawback of the IRR algorithm. In [36], authors combined Eq. (8) and Eq. (9) into one stage 

in the projection space to decrease the interpolation error as follows: 
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𝑝𝑟𝑒𝑝
𝑖+1(𝑟, 𝜃) = 2𝐿𝑠𝑖𝑛(𝜃𝑚)𝑔

𝑖(𝑟, 𝜃) + ∫ ∫
𝑔𝑖(�́�,�́�)

sin (𝜃−�́�)
𝑑�́�𝑑�́�

𝐿 cos (𝜃−�́�−𝜃𝑚)

𝐿 cos (𝜃−�́�+𝜃𝑚)

𝜋

0
               (10),                                       

 

where 𝜃𝑚 = cos−1 (𝑙/𝐿) and 𝐿 is the reconstructed region radius. This technique is 

computationally expensive, and after few iterations the divergence is occurred.   

In [38], Duan et. al utilized the total variation to expand the IRR accuracy by inserting the 

TV step to the technique. The TV-based model is defined as below:  

 

min𝑇𝑉(𝑓)  𝑠𝑡.  𝑀𝑓 = 𝑝                  (11),                                                                                                                             

 

where 𝑀 is a measurement matrix, and 𝑝 is the sparse-view projection. 

 

𝑇𝑉(𝑓) = √(𝑓𝑥,𝑦 − 𝑓𝑥−1,𝑦)2 + (𝑓𝑥,𝑦 − 𝑓𝑥,𝑦−1)2                      (12),    

                                                                     

where 𝑇𝑉(𝑓) is the TV of the 2D image, 𝑓.  The whole procedure is defined then by Eq. 

(13). 

 

𝑓 = 𝑓 − 𝑑
𝜕𝑇𝑉(�̂�)

𝜕�̂�
                                                              (13)     
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where 𝑓 is the reconstructed image from projection 𝑝 obtained by FBP algorithm. The 

IRR+TV method performs better than its traditional counterpart, under the rigorously controlled 

number of iterations. The IRR-TV reconstruction method splits the whole procedure in the image 

and the projection spaces and applies TV in the image domain to attain sparse-view projections. 

While the IRR-TV has a higher performance compared to the traditional IRR algorithm, the 

number of iterations is rigorously controlled for preventing the divergence which occurs after just 

few iterations.  

2.1.1.2. AIRR method 

In the AIRR method, the reconstruction procedure is defined as a linear equation for two 

different cases: a noise-free described by Eq. (14) and the noisy case given by Eq. (15). 

𝐴𝑓 = 𝑏                          (14)                                                                                                                      

𝐴𝑓 + 𝑛 = 𝑏                                               (15)       

                                                                                                      

where 𝐴 ∈ ℝ𝑁×𝑀 is the system geometry matrix, 𝑏 ∈ ℝ𝑁 is the projection data, and 𝑓 ∈

ℝ𝑀 is the reconstruction result,  

The AIRR algorithm includes three processes in each iteration: 

• Iterative Algebraic Reconstruction 

• Shearlet-based denoising 

• Reprojection 
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 Iterative algebraic reconstruction 

The FBP method is replaced by simultaneous algebraic reconstruction technique (SART) 

[41] with a stopping criteria. The SART convergence has been proved in [43].  

The reconstruction of 𝑓 is performed by iterating as follows: 

   

𝑓𝑘+1 = 𝑓𝑘 + 𝜆𝑘𝐶
−1𝑉𝐴𝑇𝑊(𝑏 − 𝐴𝑓𝑘)                             (16)                                                                                   

 

where 𝑉 = 𝑑𝑖𝑎𝑔(1/∑ 𝑎𝑖,𝑗
𝑁
𝑖=1 ) for 𝑗 = 1, . . , 𝑀 and 𝑉 = 𝑑𝑖𝑎𝑔(1/ ∑ 𝑎𝑖,𝑗

𝑀
𝑗=1 ) for 𝑖 =

1, . . , 𝑁.  𝐶 is the exponential weighting matrix which moderates the errors due to large values of  

𝑏 [42, 44].  

  𝐶 = 𝑑𝑖𝑎𝑔(𝑐0, 𝑐1, … , 𝑐𝑖)   𝑤ℎ𝑒𝑛  𝑐𝑖 = 𝑒
−𝐸[𝑏𝑖]                                      (17)                                                                     

Projection values are used to estimate 𝐸[𝑏𝑖]. Algebraic reconstruction is carried out with 

the non-negativity constraint,  �́�(𝑥, 𝑦) = 0 for �́�(𝑥, 𝑦) < 0, when �́� = 𝑓𝑞   if the iteration stops at 

𝑘 = 𝑞. The discrepancy principle criteria is utilized as the stopping condition by obtaining the 

smallest 𝑘 such that  

 

‖𝑊1/2(𝑏 − 𝐴𝑓𝑘)‖
2
≤ 𝜏𝛿                                                               (18),                                                                       

where 𝜏 can be found experimentally.  
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 Shearlet-based denoising 

The discrete shearlet transformation (DST) has been developed in [45, 46, 47, 48]. 

𝜓𝑎,𝑠,𝑡(𝑥) denotes the shearlet basis functions. The continuous shearlet transformation of image 

𝑓(𝑥) is defined as 

 

𝑆𝐻𝜑(𝑎, 𝑠, 𝑡) = ∫ �́�(𝑥)𝜓𝑎,𝑠,𝑡(𝑡 − 𝑥)𝑑𝑥𝑅2
                                                  (19),                                                                     

 

where 𝑠 ∈ 𝑅, 𝑎 ∈ 𝑅, and 𝑡 ∈ 𝑅2 describe the orientation, scale, and location in the spatial 

domain, respectively and �́�(𝑥) ∈ 𝑅2 is a two-dimensional reconstructed image. 

Shearlets are shaped by dilating, shearing and translating the 𝜓𝑎,𝑠,𝑡 ∈ 𝑅
2, as below: 

 

𝜓𝑎,𝑠,𝑡(𝑥) = |𝑑𝑒𝑡 𝐾𝑎,𝑠|
−1

2 𝜓(𝐾𝑎,𝑠
−1(𝑥 − 𝑡))                                 (20)                                                                        

 

𝐾𝑎,𝑠 = (
𝑎 √𝑎𝑠

0 √𝑎
) = 𝐵𝑆 = (

1 𝑠
0 1

) (
𝑎 0
0 √𝑎

)                                  (21),                                                                   

 

where 𝑆 is an anisotropic scaling matrix with a scaling factor 𝑎 > 0 , and 𝐵 is a shear 

matrix with a parameter 𝑠 ∈ 𝑅. 𝐵 and 𝑆 are both invertible matrices, with 𝑑𝑒𝑡 𝐵 = 1.  
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The 𝜓 (mother shearlet function) is a compound wavelet which accomplishes admissibility 

conditions [42, 49]. The Meyer wavelet with a good localization ability in both time and frequency 

spaces is utilized as a mother wavelet for 𝜓(𝜔𝑥) in the shearlet transformation. Besides, Meyer 

wavelet filters are directly defined in the frequency space by Ψ(𝜔) = Ψ1(𝜔𝑥)Ψ2 (
𝜔𝑦

𝜔𝑥
) with 𝜔 =

[𝜔𝑥𝜔𝑦], Ψ1(𝜔𝑥) being Fourier transform of the wavelet function and Ψ2(𝜔𝑦) is a compactly 

supported bump function Ψ2(𝜔𝑦) = 0 ↔ 𝜔𝑦 ∉ [−1,1] [50, 51]. 

Figure 2.1 denotes the shearlet transformation subbands coefficients in the first scale, 

applied to Shepp–Logan phantom image (in the remainder simply called phantom) [53]. 

 

 

 

Figure 2.1 Original phantom and its shearlet transformation coefficients (first scale with four 

different directions) 

 

In [52], Cunha et. al. have demonstrated a good performance of image denoising by 

thresholding the contourlet coefficients. We adopt the thresholding method in [52], for the shearlet 

shrinkage in shearlet-based denoisting step. The threshold is computed as in Eq. (22) 
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𝑇𝑖,𝑗 =
𝜎𝑖,𝑗
2

𝜎𝑖,𝑗,𝑛
2                      (22),                                                                                                                                       

 

where 𝜎𝑖,𝑗,𝑛
2  is the n-th coefficient variance at the i-th shearing direction subband in the j-

th scale, and 𝜎𝑖,𝑗
2  is the noise variance in direction i at scale j. 𝜎𝑖,𝑗

2  is estimated as follows: First, the 

variances are calculated for a few normalized noise images and then to get an estimate of 𝜎𝑖,𝑗
2 , all 

the estimates averaged. The variances of the signal in each subband are computed by utilizing the 

maximum likelihood estimator applied on the neighboring coefficients in a square window. After 

thresholding the coefficients, we reconstruct back (𝑥) ∈ 𝑅2 : 

𝑓 = ∑ 𝑆𝐻�̂�𝜓𝑎,𝑠,𝑡𝑎,𝑠,𝑡                                        (23).                                                                                              

 

 Reprojection 

In the re-projection step, we reproject 𝑓 back to the projection space using the updated 

geometry matrix 𝐴. In each iteration, we modify the geometry matrix and double the number of 

angels of the first sparse-view problem by interpolation. 

If we define the sparse-view problem with 0: 𝑑: 360 angles where 𝑑 is a step size, then we 

reproject 𝑓 back into the projection space utilizing  0:
𝑑

2
: 360 angles with  𝐴𝑛𝑒𝑤 (Figure 2.2).  

𝐴𝑛𝑒𝑤𝑓 = �̂�                                                                                 (24) 

Figure 2.3 shows a pseudo-code of the AIRR method. 
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Figure 2.2 (a) Original views; (b) Angular interpolation of a) for updating the geometry matrix in 

reprojection phase 

 

While ‖𝑊1/2(𝑏 − 𝐴𝑓𝑘)‖
2
> 𝜏𝛿  { 

𝑓𝑘+1 = 𝑓𝑘 + 𝜆𝑘𝐶
−1𝑉𝐴𝑇𝑊(𝑏 − 𝐴𝑓𝑘)  

}          

�́� = 𝑓𝑘+1                                                                                                                                      

𝑆𝐻𝜑(𝑎, 𝑠, 𝑡) = 〈�́�, 𝜓𝑎,𝑠,𝑡〉                                                                                                              

𝑆𝐻�̂� = 𝑆ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒(𝑆𝐻𝜑(𝑎, 𝑠, 𝑡), 𝑇𝛼)                                                                                         

𝑓 = ∑ 𝑆𝐻�̂�𝜓𝑎,𝑠,𝑡𝑎,𝑠,𝑡                                                                                                                       

𝐴𝑛𝑒𝑤𝑓 = �̂�                                                                                    

Figure 2.3 AIRR method 
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2.1.2. Computed Tomography Method: Sparse-View CT Reconstruction using 

Curvelet and TV-based Regularization (CTV) 

In this section, we introduce a new regularization model for CT reconstruction by 

combining regularization based on total variation and the curvelet transform. Combining curvelet 

regularizer, which is optimally sparse with a better directional sensitivity than that of wavelet 

transforms with the total variation was expected to yield a unique regularization model for 

attaining a better reconstruction quality. The Split-Bregman technique has been utilized as a solver. 

The approach makes it easy to incorporate multiple regularization terms including the one based 

on the multiresolution transformation, in our case curvelet, into our optimization process. 

 

CTV Method 

A CT system can be described as a linear problem in two different cases: noise-free (Eq. 

(25)) and noisy (Eq. (26)): 

 

𝐴x = 𝑏                                                 (25) 

𝐴x + 𝑛 = 𝑏                                       (26), 

 

where 𝑏 ∈ ℝ𝑁 is the projection data, x ∈ ℝ𝑀 is the reconstruction image, 𝐴 ∈ ℝ𝑁×𝑀 is the 

geometry matrix, and n is the approximation of the interference of noise, error, and other factors 
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present in a practical imaging process. Assuming noise and the sparse-view scenario, the 

reconstruction process is ill-posed. Therefore, the following cost function has been considered. 

 

𝑚𝑖𝑛
𝑥
|𝛷(x)|1    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝑏 − 𝐴x‖2

2 ≤ 𝜎                             (27), 

 

where 𝛷  is a sparsifying transform and 𝜎 is an upper bound of the uncertainty in the 

projections. The constrained optimization in Eq. (27) is similar to the subsequent unconstrained 

problem [42, 54]: 

 

𝑚𝑖𝑛
𝑥
 |𝛷(x)|1 + 𝜆 ‖𝑏 − 𝐴x‖2

2                                                          (28), 

 

where 𝜆 > 0  is a balancing constant which depends on the sparsity of the image 𝑥 space. 

Considering the problem, the sparsifying term can comprise different regularizers. In this method, 

we formulate the optimization problem using a combination of both curvelet and TV regularizers. 

In the CT reconstruction: 

 

|𝛷(x)|1 = 𝛼𝑇𝑉 (|𝛻𝑥(x)|1 + |𝛻𝑦(x)|1) + 𝛼𝐶
|𝐶(x)|1                     (29), 
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where constants 𝛼𝑇𝑉 and 𝛼𝐶 are the weighting parameters stressing the TV and curvelet 

terms and 𝛻 is the discrete gradient operator and 𝐶 is the curvelet transform. TV is preferably 

suitable if the reconstructed data are piecewise constant throughout the image [56]. Recently, 

curvelet regularizer has been utilized for denoising, and for general applications like inverse 

problems [55, 57]. By taking advantage of a sparsity constraint in the curvelet space, we can 

consider the curvelet regularization as a sparsifying transform. 

Since the proposed formulation include both 𝑙1 and 𝑙2-norm terms that complicates finding 

the solution in a closed-form. The split Bregman method [54] is adopted in this method.  

The optimization problem  

 

x̂ =  𝑎𝑟𝑔𝑚𝑖𝑛
x

|𝛷(x)|1 + 𝜆 ‖𝑏 − 𝐴x‖2
2                                                                  (30) 

is solved by iterating over the following equations: 

 

x(𝑖+1) = 𝑎𝑟𝑔𝑚𝑖𝑛
x

 
𝜆

2
 ‖𝑏 − 𝐴x‖2

2 + 
𝜇

2
 ‖𝑑𝑇𝑉,𝑥

(𝑖) − 𝛻𝑥(x) − 𝑣𝑇𝑉,𝑥
(𝑖) ‖

2

2

+ 

                +  
𝜇

2
 ‖𝑑𝑇𝑉,𝑦

(𝑖) − 𝛻𝑦(x) − 𝑣𝑇𝑉,𝑦
(𝑖) ‖

2

2

+  
𝜇

2
 ‖𝑑𝐶

(𝑖) − 𝐶(x) − 𝑣𝐶
(𝑖)‖

2

2

            (31) 

 

𝑑𝑇𝑉,𝑥
(𝑖+1)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑

 |𝑑|1 +  
𝜇

2
 ‖𝑑 − 𝛻𝑥(x

(𝑖+1)) − 𝑣𝑇𝑉,𝑥
(𝑖) ‖

2

2

                             (32) 
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𝑑𝑇𝑉,𝑦
(𝑖+1)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑

 |𝑑|1 +  
𝜇

2
 ‖𝑑 − 𝛻𝑦(x

(𝑖+1)) − 𝑣𝑇𝑉,𝑦
(𝑖)

‖
2

2

                          (33) 

𝑑𝐶
(𝑖+1)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝑑

 |𝑑|1 +  
𝜇

2
 ‖𝑑 − 𝐶(x(𝑖+1)) − 𝑣𝐶

(𝑖)‖
2

2

                                      (34) 

𝑣𝑇𝑉,𝑥
(𝑖+1) = 𝑣𝑇𝑉,𝑥

(𝑖) + (𝛻𝑥(x
(𝑖+1)) − 𝑑𝑇𝑉,𝑥

(𝑖+1))                                                      (35) 

𝑣𝑇𝑉,𝑦
(𝑖+1) = 𝑣𝑇𝑉,𝑦

(𝑖) + (𝛻𝑦(x
(𝑖+1)) − 𝑑𝑇𝑉,𝑦

(𝑖+1))                                                      (36) 

𝑣𝐶
(𝑖+1) = 𝑣𝐶

(𝑖) + (𝐶(x(𝑖+1)) − 𝑑𝐶
(𝑖+1))                                                          (37) 

 

The general solution for the subproblem (31), needs finding its derivatives roots: 

 

𝐴†(𝑏 − 𝐴x) +
𝜇

𝜆
𝛷†(𝑑(𝑖) − 𝛷(x) − 𝑣(𝑖)) = 0                                           (38) 

 

This equation can be rewritten as: 

 

(𝐴†𝐴 +
𝜇

𝜆
𝛷†𝛷) x = 𝐴†𝑏 +

𝜇

𝜆
𝛷†(𝑑(𝑖) − 𝑣(𝑖))                                       (39) 

 

where 𝛷†, 𝐴†  are the backward sparsifying transformation and the back projector, 

respectively. However, the normal inversion cannot be acquired, since  𝐴 is not a square matrix 
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and 𝛷†𝛷 ≠ 𝐼 , therefore, the conjugate gradient method [58] was selected as a solution for Eq. 

(39). The solution for 𝑑 in Eq. (32 - 34), can be obtained by using a shrinkage operator as follows: 

 

𝑑(𝑖+1) = 𝑠ℎ𝑟𝑖𝑛𝑘 (𝛷(𝑥) + 𝑣(𝑖),
1

𝜇
 )                                                        (40) 

𝑠ℎ𝑟𝑖𝑛𝑘 (𝑘, 𝑡 ) =
𝑘

|𝑘|
 𝑚𝑎𝑥 (|𝑘| − 𝑡, 0)                                                        (41) 

 

where 𝑘 is each of the coefficients for the point-wise shrinkage operator and𝑡 is a threshold. 
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2.1.3. Computed Tomography Method: Sparse-View CT Reconstruction Based on 

Nonconvex L1-L2 Regularization (Nonconvex L1-L2 CT) 

As we discussed in section 2.1.2, a computed tomography system can be defined as a linear 

equation in two different scenarios: noise-free and noisy cases: 

 

𝐴x = 𝑏                                                 (42) 

𝐴x + 𝑛 = 𝑏                                     (43) 

 

The reconstruction problem can be solved using a constrained optimization problem, 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑥

|x|0    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  Ax = 𝑏                              (44), 

A constrained L1-L2 minimization problem can be defined by replacing L0 in Eq. (44) 

with L1-L2: 

𝑚𝑖𝑛
x
 |x|1 − ‖x‖2    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     Ax = b                             (45), 

 

In the optimization problem, to minimize L1-L2, a difference of convex algorithm (DCA) 

[59] is utilized. DCA includes linearization of the nonconvex term (second term) in the cost 

function to raise a new term by solving the L1-norm subproblem 

x𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛
x

  {|x|1 − 〈𝑝
𝑘, x〉   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     Ax = b}                                           (46), 



25 
 
 

where 𝑝𝑘 =
x𝑘

‖x𝑘‖
2

 

The DCA method handles the minimization of a cost function in a form of Q(x) = f(x)-

g(x). f(x) and g(x) are lower semi-continuous convex functions, f - g is a DC decomposition of Q.  

g and f are considered as DC components of Q. In the DCA method, we build two sequences x𝑘 

and z𝑘 as nominees for primal and dual optimal solutions. They are computed by iterating over the 

following equations: 

 

{
z𝑘 ∈ 𝜕𝑔(x𝑘)

x𝑘+1 =  𝑎𝑟𝑔𝑚𝑖𝑛
x

  𝑓(x) − (𝑔(x𝑘) + 〈𝑧𝑘, x − x𝑘〉)  }                                         (47), 

where 𝑧𝑘 is a subgradient of g(x) at x𝑘. The unconstrained minimization for Eq. (45): 

 

𝑚𝑖𝑛
x
𝑖𝑚𝑖𝑧𝑒    

1

2
‖𝑏 − 𝐴x‖2

2 +  λ(|x|1 − ‖x‖2)                                                  (48) 

The unconstrained cost function in Eq. (48) has the following DC decomposition: 

Q(x) =  ( 
1

2
‖𝑏 − 𝐴x‖2

2 +  λ|x|1) − λ‖x‖2                                                              (49) 

 

Considering ‖x‖2 is differentiable with gradient 
x

‖x‖2
 and for x = 0, 0 ∈ 𝜕‖x‖2, the 

following can be written: 
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x𝑘+1 = {

 𝑎𝑟𝑔𝑚𝑖𝑛
x

   
1

2
‖𝑏 − 𝐴x‖2

2 + λ|x|1                                    if    x
𝑘 = 0

 𝑎𝑟𝑔𝑚𝑖𝑛
x

   
1

2
‖𝑏 − 𝐴x‖2

2 + λ|x|1  − 〈x, λ
x𝑘

‖x𝑘‖
2

〉           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                     (50)   

        

In each DCA iteration, the following L1-norm convex subproblem is solved: 

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
x

   
1

2
‖𝑏 − 𝐴x‖2

2 + λ|x|1  − 〈x, 𝑢〉               (51) 

Equation (51) can be solved using alternating direction of multiplier method (ADMM) 

[60]. First Eq. (51) can be rewritten as  

 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
x

   
1

2
‖𝑏 − 𝐴x‖2

2 + λ|𝑣|1  − 〈x, 𝑢〉   𝑠. 𝑡.      x − 𝑣 = 0            (52) 

Then we form a Lagrangian as 

ℒ(x, 𝑣, 𝜌) =   
1

2
‖𝑏 − 𝐴x‖2

2 + λ|𝑣|1  − 〈x, 𝑢〉 + 𝜌
𝑇(x − 𝑣) +

𝜂

2
‖x − 𝑣‖2

2           (53) 

where 𝜂 is the penalty parameter and 𝜌 is the Lagrangian multiplier. ADMM iterations are 

as follows 

{
 
 

 
  x

𝑖+1  =  𝑎𝑟𝑔𝑚𝑖𝑛   ℒ(x, 𝑣𝑖 , 𝜌𝑖)
x

 𝑣𝑖+1 = 𝑎𝑟𝑔𝑚𝑖𝑛   ℒ(x𝑖+1, 𝑣, 𝜌𝑖)
x

𝜌𝑖+1 = 𝜌𝑖 + 𝜂(x𝑖+1 − 𝑣𝑖+1)

               (54) 
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The closed-form solution for 𝑣 in the second step of (54) can be found using a shrinkage 

operator: 

𝑣𝑖+1 = 𝑠ℎ𝑟𝑖𝑛𝑘(
x𝑖+1+𝜌𝑖

𝜂
,
λ

𝜂
)              (55) 

where 

𝑠ℎ𝑟𝑖𝑛𝑘(𝑥, 𝜉) = 𝑠𝑖𝑔𝑛(𝑥𝑛).max {|𝑥𝑛 − 𝜉|, 0}            (56) 

Since matrix A is not a square matrix, and thus the normal inversion cannot be obtained, 

the conjugate gradient method [58] has been chosen as a solution for the first step of Eq. (54). A 

pseudo-code of the solution for each DCA iteration in Eq. (51) is depicted here Figure 2.4. 

 

Define   x0,  𝑣0,  ρ0  

𝐟𝐨𝐫 𝑖 = 1,2,… , 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛  

  x𝑖+1  =  𝑎𝑟𝑔𝑚𝑖𝑛   ℒ(x, 𝑣𝑖 , 𝜌𝑖)
x

      

𝑣𝑖+1 = 𝑠ℎ𝑟𝑖𝑛𝑘 (
x𝑖+1+𝜌𝑖

𝜂
,
λ

𝜂
)                      .                                                                                           

 𝜌𝑖+1 = 𝜌𝑖 + 𝜂(x𝑖+1 − 𝑣𝑖+1) 

𝐞𝐧𝐝 

Figure 2.4 DCA Iteration Solution 
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2.1.4. Computer tomography application 

In this section, we investigate an application of computed tomography with two different 

radiation sources (neutrons and photons) for shape reconstruction and material classification. 

Combining two radiation types by using photon and neutron sources for radiography, rather than 

two identical sources of different energies is expected to improve visualization of objects with 

different attenuation and provide better material discrimination. The concept of using the ratio of 

the radiation transmissions through the object for two photon energies in dual-energy radiography 

can be applied towards the neutron and photon sources as well [61]. Neutrons and photons interact 

differently with matter and thus one can analyze the ratio of numbers of transmitted photons to the 

numbers of transmitted neutrons, in the same geometry of the radiographic system.  
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2.1.4.1. Computed tomography application: sparse-view fan-beam neutron-

photon computed tomography 

In this section, the application of the combined fan-beam neutron-photon computed 

tomography for reconstruction and imaging of 3D scenes has been examined using MCNP5 

computer simulation [62] for objects of simple shapes with different materials. 2D transmission 

projections were determined in fan-beam scans utilizing accelerator-based 2.5-MeV deuterium-

deuterium and 14-MeV deuterium-tritium neutron sources, and high-energy x-ray sources, such as 

1MeV, 6 MeV and 9 MeV. Owing to inherent differences between neutron and photon interactions 

with matter and by applying a developed imaging method, objects and their material compositions 

have been efficiently visualized. 

 

 Neutron-photon configuration  

A tomography model for a combined neutron and photon transmission imaging is shown 

in Figure 2.5. The rotary table rotates about the vertical axis through the center of the scanned 

object and that provides projections from different views. The rotation step is of 5. Photon 

transmission, 𝑇𝑝(𝑥), through a specific material of a given thickness  (𝑥) and the average density 

(𝑝) can be determined from Eq. (57). The mass-attenuation coefficient (𝜇) is dependent on the 

incident photon energy, and 𝐼𝑝(0) is the recorded photon flux without container/objects in 

presence. 

 

𝑇𝑝(𝑥) = 𝐼𝑝(𝑥) 𝐼𝑝(0)⁄ = 𝑒−𝜇𝑝𝑥            (57) 
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Neutron transmission, 𝑇𝑛(𝑥), is evaluated using Eq. (58) that assumes transmission of 

neutrons through a specific material of a given thickness (𝑥) and is dependent on the material’s 

total macroscopic neutron cross-section (Σt), which is dependent on the incident neutron energy: 

 

𝑇𝑛(𝑥) = 𝐼𝑛(𝑥) 𝐼𝑛(0)⁄ = 𝑒−∑ 𝑥𝑡             (58) 

 

One can evaluate the ratio of the photon-to-neutron transmission (𝑅𝑝/𝑛) as 𝑇𝑝(𝑥) 𝑇𝑛(𝑥)⁄ . 

The feature characterizes materials based on the photon mass attenuation coefficient, material 

density, and the total macroscopic neutron cross-section. The feature does not require a priori 

information about the mass of the material present along the radiation beam path. It is possible to 

experimentally determine the transmission values, and consequently the transmission ratios 

without requiring details about the object or its geometry. 

The ideal transmission ratios for a selection of materials are included in Table 2.1 

Transmission ratios were calculated for two cases, (a) using 6-MeV and 9-MeV dual x-ray 

radiography and (b) using 2.5-MeV neutrons and 6-MeV photons. The table illustrates that values 

of 𝑅𝑝/𝑛 are considerably more varied for the neutron-photon radiography than those of dual-energy 

photon radiography for the same materials. This feature makes the neutron-photon technology a 

better candidate for material classification.  
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Table 2.1 Transmission ratios for low-Z and high-Z materials. 

Material 

Dual-energy photon radiography, 

Tp (6 MeV) / Tp (9 MeV) 

Combined neutron-photon radiography, 

Tp (6 MeV) / Tn (2.5 MeV) 

Polyethylene (C2H4) 0.9537 10.7330 

Water (H2O) 0.9553 5.6013 

Aluminum (27Al) 0.9247 3.3370 

Iron (56Fe) 0.9465 2.1702 

Lead (natural) 1.6293 0.0794 

Tungsten (natural) 2.1571 0.0113 

 

 
 

Figure 2.5 The neutron-photon CT geometry: 3D view of the source, scanned object and detector 

array [63] 

 

The three-dimensional model is shown in Figure 2.5. The exterior dimensions of the 

container are (505050) cm3, with 3-cm-thick aluminum walls. The fan beam is generated using 

a lead collimator. The distance between the collimator and the container is 2.39 m. With the given 

geometry, the beam is to be 3-cm-wide, and the detector array is placed 37 cm away behind the 

container wall.   2.5-MeV deuterium-deuterium (DD) and 14-MeV deuterium-tritium (DT) neutron 



32 
 
 

fusion generators are used for modelling, neutron sources. Photon sources are modelled with the 

end energies as high as 0.3 MeV, 1 MeV, 3 MeV, and 6 MeV. 

The size of the detector array is 6 cm x 92 cm. In the image plane that corresponds to 

vertical strips of 3 by 100 pixels. A tomographic 2D projection of 36 pixels by 100 pixels is 

produced by combining transmission data in vertical columns for different orientations of the 

container modelled as a shift of the frame supporting the container.  The container in Figure 2.6 is 

“filled” with objects of various sizes, shapes and materials such polyethylene (poly), iron and lead.  

Details about the objects and geometry are in Table 2.2.  

 

 

Figure 2.6 Objects placed in the container [63] 
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Table 2.2 Container model: geometry of objects. 

Object Quantity Dimensions (cm) 

L-shape 

3 16(H1)  16(W1)  10(H2)  8(W2)  5(T1) 

Parallelepiped 1 10(LP1)  6(WP)  10(T1) 

Parallelepiped 1 6(LP2) 6(WP)  10(T1) 

Parallelepiped 2 6(WP)  6(WP)  5(T2) 

 

 

 

 

 

 

Figure 2.7 Geometry of the reconstruction 
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Two-dimensional CT projections are produced by rotating the container incrementally with 

a step of 5 about its central vertical axis between 0 and 180 . 

 

 CT reconstruction and imaging 

To reconstruct 3D imagery, we use the filtered back-projection (FBP) [64]. The geometry 

and the parameters of the process are shown in Figure 2.7 and Table 2.3. The following steps 

summarize the method:  

Assume that the projection for each slice 𝑃𝛼(𝑒) is sampled with n sampling 

interval (𝑃𝛼(𝑘𝑛)), where 𝑘 = 0 corresponds to the central ray passing through the rotation center 

origin. A slice in computed tomography is a 2D image of the section reconstructed from one 

circular scan that is from a single projection. 

Convolve each modified projection with the filter 𝑔(𝑘𝑛) to generate the corresponding 

filtered projection: 

 

𝑄𝛼𝑖(𝑘𝑛) = (  𝑃𝛼𝑖(𝑘𝑛)
𝑑𝑠𝑜

√𝑑𝑠𝑜2+(𝑘𝑛)2
)⨂ 𝑔(𝑘𝑛)          (59) 

 

𝑔(𝑘𝑛) = {

1

8𝑛2
𝑘 = 0

0 𝑘 = 𝑒𝑣𝑒𝑛

−
1

2(𝑘𝜋𝑛)2
𝑘 = 𝑜𝑑𝑑

                               (60), 
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where ⨂ is the convolution operator. The conventional ramp filter was used for filtering 

the reconstruction noise and image enhancement. Perform a weighted back-projection of each 

filtered projection along the corresponding fan. The reconstructed image is derived from the sum 

of all the back-projections: 

 

(𝑥, y) = ∆𝛼∑
1

𝑈2(𝑥,𝑦,𝛼𝑖)
𝑄𝛼𝑖(𝑒)

𝑀
𝑖=1                                (61) 

𝑈(𝑥, 𝑦, 𝛼𝑖) =
𝑑𝑠𝑜+𝑑𝑡

𝑑𝑠𝑜
                                                    (62), 

 

where U is defined for each pixel (𝑥, 𝑦), the ratio of 𝑠𝑡  (𝑑𝑠𝑜 + 𝑑𝑡) to the source to rotation 

distance (dso). Note that 𝑠𝑡  is the projection of the distance from the source to the pixel (𝑥, 𝑦) on 

the central ray. The 𝑒 is a ray that passes through (𝑥, 𝑦) in the fan for the source located at the 

angle 𝛼𝑖. 

Table 2.3 CT reconstruction parameters 

Parameter Value (cm) 

Distance from source to rotation center (dso) 274 

Distance from rotation center to detector (dod) 55 

Height of detector 92 

Width of detector 6 

Detector pixel size (width  height) 2  0.92 
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2.1.4.2. Computed tomography application: sparse-view cone-beam neutron-

photon computed tomography 

In our previous section, we considered fan beam geometry and models with only few 

materials to investigate the possibility of combined neutron-photon computed tomography and its 

material discrimination ability using traditional filtered back-projection algorithm for 

reconstruction and the ratio of the radiation transmissions for material discrimination. In this 

section, we investigate the ability of the two-source system to precisely reconstruct 3D objects in 

the complex modelled scenes in a cone-beam geometry using our robust regularization formulation 

by combining regularization methods based on curvelet and TV. Then we study the material 

discrimination in the combined source tomography using a novel proposed material discrimination 

method. It uses 2D signatures calculated using both the ratios of transmissions under different 

sources and the neutron transmission through the object’s space voxels. 

 

 Neutron-photon configuration 

Figure 2.8 show the model of the cone beam neutron-photon radiography system. Isotropic 

point sources were used to produce cone beams of neutrons and photons incident on the object 

under scrutiny. Two target configurations were used, each consisting of an aluminum box with a 

set of objects placed inside. The source-to-detector array geometry was set to cover the container 

size used in the study that is 50 cm  50cm  50 cm container which is a regular unit load for air 

cargo. The size, shape and composition of the objects were varied to provide a range of scenarios. 

To generate the 2D radiographic projections, the box was rotated about the central vertical axis 

with angle step increments of 5. 
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Figure 2.8 3D scheme of the neutron-photon system 

 

Figure 2.9 depicts a schematic of the container contents for two models demonstrating 

shapes, orientation, and materials of the objects whose geometric properties are listed in Table 2.4 

and Table 2.5. In two models, the target object is an aluminum container with exterior dimensions 

of 50 cm50 cm50 cm, and walls with a 3cm thickness. The distance from the source to the 

nearest surface of the container was 249 cm. The detector array was placed 30 cm away from the 

back wall of the container. Computations were performed using neutron and photon sources which 

were selected based on commercially available, state-of-the-art systems. For each model, the 

neutron source was defined with an initial energy of 2.5-MeV. Photon sources were defined with 

an initial energy of 6-MeV. The source-to-array geometry was set to cover the container of size of 

50 cm  50 cm  50 cm to study the object reconstruction and material discrimination in an air 

freight container.  If other object dimensions are of interest the geometry can be modified, 

accordingly. The detector array was defined for a 92 cm by 92 cm area (100 pixels horizontally by 

100 pixels vertically).  
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Table 2.4 Model 1: geometry of objects inside container 

(Number) Object Dimensions (cm) 

(1) Cone 6(Diameter)  8(Height) 

(2) L-shape 16(H1)  16(W1)  10(H2)  8(W2)  10(T) 

(3) L-shape 16(H1)  16(W1)  10(H2)  8(W2)  10(T) 

(4) Irregular Body 10.198  13.601  8.732  6.021 

(5) Parallelepiped 6(L)  6(W)  10(T) 

(6) Parallelepiped 10(L)  6(W)  10(T) 

(7) Parallelepiped 6(W)  6(W)  5(T) 

(8) Parallelepiped 6(W)  6(W)  5(T) 

(9) L-shape 16(H1)  16(W1)  10(H2)  8(W2)  10(T) 

(10) Sphere 6(Diameter) 

 

The radiography tallies for both neutrons and photons were computed for a limited number 

of views. 36 projection views were taken for angles ranging from 0 to 180 using 5 increments. 

Model 1 was intended to illustrate the ability of tomographic reconstruction methods to represent 

simple shapes such as a sphere, cone, L-shape, and parallelepiped and to test the separation of 

high-Z and low-Z materials like lead, iron, and polyethylene. The container in Model 2 includes a 

wider selection of materials than that in the Model 1. Additionally, the 1-mm gaps were maintained 

between the parallel faces of objects 2, 3, 4, and the 1-cm gaps were introduced between the 

parallel faces of objects 5, 6, and 8. This was done to test the ability of the reconstruction technique 

to separate objects under sparse-view conditions. 
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Table 2.5 Model 2: geometry of objects inside container 

(Number) Object Dimensions (cm) 

(1) Cone 6(Diameter)  8(Height) 

(2) Parallelepiped 8(L)  9.9(W)  10(T) 

(3) Parallelepiped 7.9(L) 6(W)  10(T) 

(4) Parallelepiped 8(L)  6(W)  10(T) 

(5) Parallelepiped 7(L)  6(W)  10(T) 

(6) Parallelepiped 8(L)  6(W)  10(T) 

(7) Irregular Body 10.198  13.601  8.732  6.021 

(8) Parallelepiped 8(L)  9(W)  10(T) 

(9) Parallelepiped 6(L)  6(W)  10(T) 

(10) Parallelepiped 10(L)  6(W)  10(T) 

(11) Parallelepiped 6(L)  6(W)  5(T) 

(12) Parallelepiped 6(L)  6(W)  5(T) 

(13) L-shape 16(H1)  16(W1)  10(H2)  8(W2)  10(T) 

(14) Sphere 6(Diameter) 
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--------------------------------------------------------------- 

 
 
 

Figure 2.9 Configuration, shapes, and materials of objects placed inside the container; Top: 

Model 1; bottom: Model 2 
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 CT reconstruction and imaging 

2.1.4.2.2.1. Imaging 

Two imaging models have been used in most of the neutron-photon system: noisy and 

noise-free. In the noise-free model, the problem can be defined as a linear equation: 

 

𝐴x = 𝑏                                                             (63) 

 

where 𝑏 ∈ ℝ𝑁 is the projection data, x ∈ ℝ𝑀 is the reconstruction result, and 𝐴 ∈ ℝ𝑁×𝑀 is 

the system geometry matrix, which model either neutron or photon transport in the tomography 

system. This inverse problem in Eq. (63) can be solved by minimizing f(x),  

 

𝑓(x) = ‖𝐴x − 𝑏‖2
2                                      (64) 

 

using gradient descent method. 

In the noisy model, the imaging problem is described by a linear system: 

 

𝐴x + 𝑛 = 𝑏                                               (65) 
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Assuming noise and the sparse-view scenario, the problem is severely ill-posed which 

makes it difficult to solve. Therefore, a different cost function with a regularization term has been 

considered. 

 

𝑚𝑖𝑛
x
|𝛷(x)|1    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝑏 − 𝐴x‖2

2 ≤ 𝜎                            (66) 

 

where 𝛷  is a “sparsifying” transformation which should be convex. The constrained 

optimization is similar to the following unconstrained optimization problem [7, 16]: 

 

𝑚𝑖𝑛
x
 |𝛷(x)|1 + 𝜆 ‖𝑏 − 𝐴x‖2

2                                                      (67) 

 

where 𝜆 > 0  is a balancing constant depends on the sparsity of the underlying image x. 

Considering the problem of sparse-view computed tomography, we have the complete under-

sampling for 𝑁 ≪ 𝑀, so a good regularization term in the reconstruction model will be necessary 

to yield a high-quality 3D reconstruction. 
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2.1.4.2.2.2. Regularization terms 

TV, as a regularizer, is a best match for reconstructing signals which are piecewise constant 

or have low total variations throughout the image [65,66,67].   

 

Total variation (TV)  

The gradient operator (∇) is utilized as the sparsifying transform function (𝛷(x)). 

 

𝛷(x) = ∑√(𝛻𝑥x)2 + (𝛻𝑦x)2 + (𝛻𝑧x)2                                (68) 

 

Wavelet regularizer (W) 

Wavelet regularization has been considered as a regularizer for CT and generally for 

solving the inverse problems in [17,68,69]. Wavelet transform has a better directional sensitivity 

than TV, because it filters the local differences. 

Here the discrete wavelet basis (𝜓) is used as the sparsifying transform function (𝛷). 

 

𝛷(x) = ∑ 〈x, 𝜓𝑚〉𝑚                                                                  (69) 

 

where 𝜓𝑚 is a discrete Daubechies wavelet basis at scale 𝑚 which has been chosen 

experimentally to achieve the best result. 
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CTV  

Unlike wavelets who are limited in representing directions, curvelets have a better sensitivity in 

that respect. They are also sparse in the sense of 𝑙1-norm sparsity, and can be considered almost 

optimal non-adaptive sparse representation of objects with edges. Curvelets have been intensively 

used in various image and video processing applications, fluid mechanics, compressed sensing, 

and generally for solving inverse problems [55,57]. Thus, the curvelet transform suits for sparse-

view CT reconstruction. We use the proposed in this work CTV formulated regularization model: 

 

|𝛷(x)|1 = 𝛼𝑇𝑉 (|𝛻𝑥x|1 + |𝛻𝑦x|1 +
|𝛻𝑧x|1) + 𝛼𝐶(|𝐶x|1)             (70) 

 

where 𝛻 is the gradient operator,  𝐶 is the curvelet transform and constants 𝛼𝑇𝑉 and 𝛼𝐶 are 

the weights assigned for TV and curvelet terms, respectively.  

CTV will be compared to TV and WT regularizers. 

 

2.1.4.2.2.3. Solver 

The constrained optimization problem can be solved using various methods as in 

[42,65,69,71]. The optimization problem (70) has both 𝑙1 and 𝑙2-norm terms thus makes it difficult 

to find a closed-form solution to the equation. The split Bregman method [54] is adopted in this 

paper due to its ease of implementation and iteration speed.  
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The constrained optimization problem Eq. (71):  

 

𝑚𝑖𝑛
𝑥
|𝛷(x)|1   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ‖𝑏 − 𝐴x‖2

2 ≤ 𝜎                             (71) 

is solved by iterating over the following three update equations: 

 

x(𝑖+1) = 𝑎𝑟𝑔𝑚𝑖𝑛
x

 
𝜆

2
 ‖𝑏 − 𝐴x‖2

2 +  
𝜇

2
 ‖𝑑(𝑖) − 𝛷(x) − 𝑣(𝑖)‖

2

2
           (72) 

𝑑(𝑖+1) = 𝑎𝑟𝑔𝑚𝑖𝑛
x

 |𝑑|1 +  
𝜇

2
 ‖𝑑 − 𝛷(x(𝑖+1)) − 𝑣(𝑖)‖

2

2
                 (73) 

𝑣(𝑖+1) = 𝑣(𝑖) + (𝛷(x(𝑖+1)) − 𝑑(𝑖+1))                                           (74) 

 

The increase of 𝜆 causes lesser regularization and the increase of 𝜇 causes more 

regularization and thus in the case of TV the results is expected to be smoothed. Two sub-problems 

of equations (72) and (73) are solved first. The sub-problem (72) should be precisely resolved, that 

requires roots of its derivatives (75):  

 

𝐴†(𝑏 − 𝐴x) +
𝜇

𝜆
𝛷†(𝑑(𝑖) − 𝛷(x) − 𝑣(𝑖)) = 0                            (75) 

This can be rewritten as: 
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(𝐴†𝐴 +
𝜇

𝜆
𝛷†𝛷) x = 𝐴†𝑏 +

𝜇

𝜆
𝛷†(𝑑(𝑖) − 𝑣(𝑖))                            (76)  

 

where 𝛷†, 𝐴†  are the backward sparsifying transformation and the back projector, 

respectively. However, the normal inversion cannot be obtained, because 𝛷†𝛷 ≠ 𝐼 and 𝐴 is not a 

square matrix, so the conjugate gradient method [58] was chosen as a solution for Eq. (76). The 

solution for 𝑑 in Eq. (73), is found using a shrinkage operator as follows: 

 

𝑑(𝑖+1) = 𝑠ℎ𝑟𝑖𝑛𝑘 (𝛷(x) + 𝑣(𝑖),
1

𝜇
 )                                            (77) 

 

where 

 

𝑠ℎ𝑟𝑖𝑛𝑘 (𝑘, 𝑡 ) =
𝑘

|𝑘|
 𝑚𝑎𝑥 (|𝑘| − 𝑡, 0)                                             (78) 

 

Where 𝑡 is the shrinkage threshold and 𝑘 is each of the coefficients for the point-wise 

shrinkage operator. 
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2.2. Compressed Sensing MRI Methods 

In this section, three proposed compressed sensing MRI methods including CT-TGV, CS-

NLTV, and SS-NLTV are explained. 

 

2.2.1. Compressed Sensing MRI Using Curvelet Transform and Total Generalized 

Variation (CT-TGV) 

In this section, we introduce a novel compressed sensing MRI method, CT-TGV that 

exploits adaptively curvelet transform (CT) and total generalized variation (TGV) regulaizers. The 

curvelet transform is optimal sparsifying transform with excellent directional sensitivity than that 

of wavelet transform. The TGV, on the other hand, is based on second order derivatives and can 

selectively regularize at different regularity levels.  We have used a novel approach of combining 

alternating direction method of multiplier (ADMM), adaptive weighting, and splitting variables 

technique to solve the formulated optimization problem. 

 

CT-TGV method 

Magnetic resonance imaging (MRI) model can be defined as follows 

 

𝐴x = 𝑏               (79), 
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 where x ∈ ℝ𝑀 is a MR image, 𝐴 ∈ ℝ𝑁×𝑀 is a measurement matrix with 𝑁 ≪ 𝑀, and 𝑏 ∈

ℝ𝑁 is the observed data. The MR data can be restored by solving the minimization problem 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽(x)    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝐴𝑥 = 𝑏                                     (80), 

𝑤ℎ𝑒𝑛 𝐽(x) =  |𝛷(x)|1                                                                  (81). 

 

Here 𝛷 is a sparsifying transform and 𝐽(x) is regularizing functional. In the compressed 

sensing/compressive sampling (CS) model of MRI, 𝐴 = 𝑆𝐹, where 𝑆 is a selection or sampling 

matrix, 𝐹 is 2D discrete Fourier matrix, and 𝑏 is the observed k-space data. Assuming the sparsity 

of the model, the problem is ill-posed for minimizing the least-squares function. Therefore, the 

following cost function with a regularization term has been considered. 

 

𝑚𝑖𝑛 
x
|𝛷(x)|1  subject to     ‖𝐴x − 𝑏‖2

2 ≤ 𝜎                                (82), 

 

where 𝜎 is the variance of noise in 𝑏.  

The constrained optimization in Eq. (80) is similar to the following unconstrained 

optimization problem [54]: 

 

𝑚𝑖𝑛
x
 |𝛷(x)|1 +

𝜆

2
 ‖𝐴x − 𝑏‖2

2                                                         (83), 
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where 𝜆 > 0  is a balancing constant which count on the sparsity of the underlying MR 

image x  under linear transformation.  

Considering the problem, we propose and formulate the optimization problem using a 

combination of both TGV and curvelet regularizers. The proposed optimization problem to 

reconstruct  x̂:  

 

x̂ =  𝑎𝑟𝑔𝑚𝑖𝑛   𝛼
x

|𝑇𝐺𝑉(x)|1 + 𝛽 |𝐶𝑢𝑟𝑣(x)|1 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2         (84), 

 

where 𝑇𝐺𝑉 is the total generalized variation operator and 𝐶𝑢𝑟𝑣(x) is the combination of 

different subbands of curvelet transform. 𝛼 and 𝛽 are the weighting parameters stressing each of 

two regularization terms. The value of these two parameters in each loop are adaptively derived 

based on the variance of noise present in reconstructed image from the previous iteration. We 

stress more on the curvelet regulaizer term if the estimated variance in each curvelet subband is 

greater than our specified threshold. The variances of the signal in each curvelet subband, 𝜎𝑖𝑗
2  ,are 

calculated by utilizing the maximum likelihood estimator applied on all the coefficients in a square 

neighboring area. 
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2.2.1.1. Total generalized variation – TGV 

Total generalized variation has been introduced to overcome oil painting effects that 

appears when the total variation (TV) process is used [72]. TV, which is based on the first order 

derivatives works well on the images with piecewise constant intensities. Since TGV considers the 

second or a higher order derivatives, it has a potential for preventing the oil painting effects and 

produce sharp edges or, generally, piecewise polynomial intensities.  

Based on the experiments, the third and higher orders total generalized variation are 

comparable to the second order and they are computationally very intensive. Therefore, TGV with 

the second order derivatives have been considered as a good alternative [72,73,74].  

Fig. 13 depicts the comparison of TV vs TGV (2nd order) reconstruction from a noisy MRI 

image. The close ups of selected region display that the reconstruction from total generalized 

variation leads to sharper edge and prevents oil painting effect compared to total variation result. 

The plots on the right in Figure 2.10 show the edge profile.  

The second order TGV regularization can be defined as ℓ1 optimization term:  

 

min
x
 𝛼|𝑇𝐺𝑉(x)|1  =  min

𝐷x=𝑔+𝑟
 𝛼1|𝑔|1

(2,𝑀)
+ 𝛼2|𝐸𝑟|1

(3,𝑀)
                 (85) 

 

Where 𝑔, 𝑟 ∈ ℝ2 are two introduced auxiliary variables showing differentiated 

values, 𝐷x = 𝑔 + 𝑟 and |𝑡|1
(𝑝,𝑀)

= ∑ ∑ |𝑡𝑛+𝑚𝑝|
𝑝−1
𝑚=0

𝑀
𝑛=1 . 
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𝐷 =  (
𝐷ℎ
𝐷𝑣
),                                                                                 (86), 

𝐸𝑇 = (
𝐷ℎ 𝐷𝑣 0
0 𝐷ℎ 𝐷𝑣

),                                                                  (87). 

 

where 𝐷ℎ , 𝐷𝑣 ∈ ℝ
𝑀×𝑀 are horizontal and vertical differential filter matrices. 
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Figure 2.10 1st column: Top: Noisy MRI image, Middle: reconstruction using TV, Bottom: 

reconstruction using TGV; 2nd column: Edge profile for respective images 
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2.2.1.2. Curvelet transform  

Curvelet transform proposed by Candes [75,76] is an efficient geometric multiscale 

sparsifying transform. Unlike wavelets, curvelets have directional sensitivity and anisotropy, 

optimal sparse representation, better ℓ1-norm sparsity, and thus, they can efficiently characterize 

anisotropic features such as edges, arcs and curves. Curvelet transform has been used for image 

denoising, feature extraction and for solving the inverse problem [55,57,70] generally.  

The curvelets at scale 2−𝑗, orientation 𝜃𝑙, and position 𝑘 = (𝑘1, 𝑘2) are defined as  

 

𝜑𝑗,𝑙,𝑘(𝑥) =  𝜑𝑗(𝑅𝜃𝐽(𝑥 − 𝜌𝑘
(𝑗,𝑙)

))                                                 (88), 

 

where 𝜑𝑗 is a “mother” curvelet, 𝜃𝐽 = 2𝜋 ∙ 2
−⌊𝑗/2⌋ ∙ 𝑙 ,  𝐽 = (𝑗, 𝑙) indicating the scale/angle, 

and 

 

𝜌𝑘
(𝑗,𝑙)

= 𝑅𝜃𝐽
−1(𝑘1 ∙ 2

−𝑗, 𝑘2 ∙ 2
−𝑗/2).                                               (89) 

 

𝑅𝜃 = (
cos(𝜃) 𝑠𝑖𝑛(𝜃)
−sin(𝜃) cos(𝜃)

) ,  𝑅𝜃
−1 = 𝑅𝜃

T = 𝑅−𝜃                       (90) 

 

The curvelet transform of function 𝑥 is computed as  
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𝐶𝜑(𝑥)(𝑗, 𝑙, 𝑘) = 〈𝑥, 𝜑𝑗,𝑙,𝑘〉                                                                (91) 

 

The whole process can be performed in the frequency domain, by introducing 2D 

frequency window as 

 

𝑈𝑗(𝜔) =  2
−
3𝑗

4𝑊(2−𝑗|𝜔|)𝑉(
2⌊𝑗/2⌋𝜃

2𝜋
)                                                               (92), 

 

where 𝑊 is the Meyer wavelet window dividing the frequency domain into annuli |𝑥| ∈

[2𝑗 , 2𝑗+1),  and 𝑉 is the angular window dividing the annuli into wedges 𝜃𝐽. Then the curvelets 

can be defined in frequency domain as  

 

𝜑𝑗,𝑙,𝑘(𝜔) = 𝑈𝐽(𝑅𝜃𝐽𝜔)𝑒
−𝑖〈𝜌𝑘

(𝑗,𝑙)
,𝜔〉                                                     (93) 

 

In practical implementations, discrete curvelet transform tiling in the frequency plane is 

based on concentric squares and shears in Cartesian coronae as represented in Figure 2.11. Due to 

the advantages of curvelets as sparsifiers with their detail representation properties, the transform 

is adopted for implementation in our method. We can implement 𝑘-th subband of curvelet 

transform (𝐶𝑘) as a mask in the frequency domain (𝑍𝑘) [54].  
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𝐶𝑘(x) = 𝐹
∗diag(vec(𝑍𝑘))𝐹. x = 𝑃𝑘. x                                   (94), 

 

where 𝐹 is the vectorized form of the discrete Fourier transform operator.  

 

Therefore, the curvelet regularization can be defined as ℓ1 optimization term: 

 

𝑚𝑖𝑛
x
 |𝐶𝑢𝑟𝑣(x)|1  =  𝑚𝑖𝑛

x
 𝛽 ∑ |𝑃𝑘. x|1𝑘 = 𝑚𝑖𝑛

x
 𝛽 ∑ |𝐶𝑘(x)|1𝑘                     (95). 

 

 

Figure 2.11 Tiling of discrete curvelet transform in the frequency plane 
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2.2.1.3. Solution 

The proposed optimization problem is formulated as follows: 

 

 𝑎𝑟𝑔𝑚𝑖𝑛 
x,𝑟

𝛼1|𝑔|1
(2,𝑀)

+ 𝛼2|𝐸𝑟|1
(3,𝑀)

+ 𝛽∑ |𝐶𝑘(x)|1𝑘 +
𝜆

2
 ‖𝐴𝑥 − 𝑏‖2

2                             (96). 

 

The proposed formulation has both 𝑙1 and 𝑙2-norm terms and thus the solution in a closed-

form is difficult to obtain. The alternating direction method of multiplier (ADMM) [60] and 

splitting variables are used to solve the formulated problem as follows: 

 

𝑎𝑟𝑔𝑚𝑖𝑛 
x,𝑟

𝛼1|𝑦1|1
(2,𝑀) + 𝛼2|𝑦2|1

(3,𝑀) + 𝛽∑ |𝑦3(𝑘)|1𝑘 +
𝜆

2
 ‖𝐴𝑥 − 𝑏‖2

2                       (97)                                                          

subject to        𝑦1 = 𝐷x − 𝑟,   𝑦2 = 𝐸𝑟,    𝑦3(𝑘) =  𝐶𝑘(x), 

 

where 𝑦1 ∈ ℝ
2𝑀 , 𝑦2 ∈ ℝ

3𝑀, and 𝑦3(𝑘) ∈ ℝ
𝑀 are auxiliary variables. The Lagrangian 

function for the problem can be written as 

ℒ(𝑥, 𝑟, 𝑦1, 𝑦2, 𝑦3, 𝑢1, 𝑢2, 𝑢3) =                                                                                                                 (98)

=
𝜆

2
 ‖𝐴x − 𝑏‖2

2 + 𝛼1|𝑦1|1
(2,𝑀) +

𝜇

2
 ‖𝐷x − 𝑟 − 𝑦1 + 𝑢1‖2

2 + 𝛼2|𝑦2|1
(3,𝑀)

+
𝜂

2
 ‖𝐸𝑟 − 𝑦2 + 𝑢2‖2

2 + 𝛽∑|𝑦3(𝑘)|1
𝑘

+
Γ

2
∑‖𝐶𝑘(x) − 𝑦3(𝑘) + 𝑢3(𝑘)‖2

2

𝑘
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where 𝑢1 ∈ ℝ
2𝑀 , 𝑢2 ∈ ℝ

3𝑀, and 𝑢3(𝑘) ∈ ℝ
𝑀 are the newly defined scaled dual variables.  

 

Finally, the problem is solved by iterating over the following equations (99-105): 

 

{x(𝑛+1), 𝑟(𝑛+1)}  ≔  𝑎𝑟𝑔𝑚𝑖𝑛 
x,𝑟

ℒ(𝑥, 𝑟, 𝑦1
(𝑛)
, 𝑦2

(𝑛)
, 𝑦3

(𝑛)
, 𝑢1

(𝑛)
, 𝑢2
(𝑛)
, 𝑢3
(𝑛)
)                  (99), 

𝑦1
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦1

ℒ(x(𝑛+1), 𝑟(𝑛+1), 𝑦1, 𝑢1
(𝑛)
)                       (100), 

𝑦2
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦2

ℒ(x(𝑛+1), 𝑟(𝑛+1), 𝑦2, 𝑢2
(𝑛)
)                      (101), 

𝑦3
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦3

ℒ(x(𝑛+1), 𝑦3, 𝑢3
(𝑛)
)                                  (102), 

𝑢1
(𝑛+1)

≔ 𝑢1
(𝑛) + (𝐷x(𝑛+1) − 𝑟(𝑛+1) − 𝑦1

(𝑛+1)
)                     (103), 

𝑢2
(𝑛+1)

≔ 𝑢2
(𝑛) + (𝐸𝑟(𝑛+1) − 𝑦2

(𝑛+1)
)                                                      (104), 

𝑢3
(𝑛+1)

≔ 𝑢3
(𝑛) + (𝐶(x(𝑛+1)) − 𝑦3

(𝑛+1)
)                                        (105). 

 

The minimization solutions for Eq. (100-102) can be found using shrinkage operators 

below: 

𝑦1
(𝑛+1) ≔ 𝑆ℎ𝑟𝑖𝑛𝑘1(𝐷x

(𝑛+1) − 𝑟(𝑛+1) + 𝑢1
(𝑛), 𝜗1)                  (106) 
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𝑦2
(𝑛+1)

≔ 𝑆ℎ𝑟𝑖𝑛𝑘1(𝐺𝑟
(𝑛+1) + 𝑢2

(𝑛)
, 𝜗2)                                   (107) 

𝑦3
(𝑛+1) ≔ 𝑆ℎ𝑟𝑖𝑛𝑘2(𝐶(x

(𝑛+1)) + 𝑢3
(𝑛), 𝜗3)                             (108) 

 

where  𝜗1 =
𝛼1

𝜇
 , 𝜗2 =

𝛼2

𝜂
 , 𝜗3 =

𝛽

Γ
   and 

 

𝑆ℎ𝑟𝑖𝑛𝑘1(𝑥, 𝜉)𝑛 = 𝑥𝑛 . 𝑚𝑎𝑥 {1 − 𝜉(∑ |𝑥𝑛+𝑚𝑝|
𝑝−1
𝑚=0 )

−1
, 0}         (109) 

𝑆ℎ𝑟𝑖𝑛𝑘2(𝑥, 𝜉)𝑛 = 𝑠𝑖𝑔𝑛(𝑥𝑛).𝑚𝑎𝑥{|𝑥𝑛 | − 𝜉, 0}                    (110) 

 

The solution for the sub-problem Eq. (99), requires finding the roots of its derivatives 

which leads to the following: 

 

(
𝜆𝐴𝑇𝐴 + 𝜇𝐷𝑇𝐷 + Γ∑ 𝑃𝑘

∗𝑃𝑘𝑘 −𝜇𝐷𝑇

−𝜇𝐷 𝜇𝐼2𝑀 + 𝜂𝐸
𝑇𝐸
) (

x
𝑟
) =  

(
𝜆𝐴𝑇𝑏 + 𝜇𝐷𝑇(𝑦1 − 𝑢1) + Γ∑ 𝑃𝑘

∗(𝑦3(𝑘) − 𝑢3(𝑘))𝑘

−𝜇(𝑦1 − 𝑢1) + 𝜂𝐸
𝑇(𝑦2 − 𝑢2)

)                (111)   

 

Additionally, 

 



59 
 
 

𝐷𝑇𝐷 =  𝐷ℎ
𝑇𝐷ℎ + 𝐷𝑣

𝑇𝐷𝑣 = Δ                                                  (112), 

 

𝐸𝑇𝐸 =  (
Δ 𝐷𝑣𝐷ℎ

𝑇

𝐷ℎ𝐷𝑣
𝑇 Δ

)                                                         (113), 

 

where Δ, is the Laplacian filter matrix, and as a final step, the vectorized data is divided 

into the blocks of data: 

 

𝑟 ≔ [𝑟ℎ
𝑇 , 𝑟𝑣

𝑇]𝑇 ,  𝑦1 ≔ [𝑦1ℎ
𝑇  , 𝑦1𝑣

𝑇 ]𝑇 , 𝑢1 ≔ [𝑢1ℎ
𝑇  , 𝑢1𝑣

𝑇 ]𝑇,  

𝑦2 ≔ [𝑦2ℎ
𝑇  ,  𝑦2𝑑

𝑇  , 𝑦2𝑣
𝑇 ]𝑇 ,  𝑢2 ≔ [𝑢2ℎ

𝑇  , 𝑢2𝑑
𝑇  , 𝑢2𝑣

𝑇 ]𝑇                                                       (114), 

 

We form the solution as:  

(

𝜆𝐴𝑇𝐴 + 𝜇Δ + Γ∑ 𝑃𝑘
∗𝑃𝑘𝑘 −𝜇𝐷ℎ

𝑇 −𝜇𝐷𝑣
𝑇

−𝜇𝐷ℎ 𝜇𝐼𝑀 + 𝜂Δ 𝜂𝐷𝑣𝐷ℎ
𝑇

−𝜇𝐷𝑣 𝜂𝐷ℎ𝐷𝑣
𝑇 𝜇𝐼𝑀 + 𝜂Δ

)   (

x
𝑟ℎ
𝑟𝑣
) =                            (115) 

(

 
 
𝜆𝐴𝑇𝑏 + 𝜇𝐷ℎ

𝑇(𝑦1ℎ − 𝑢1ℎ) + 𝜇𝐷𝑣
𝑇(𝑦1𝑣 − 𝑢1𝑣) + Γ∑𝑃𝑘

∗(𝑦3(𝑘) − 𝑢3(𝑘))

𝑘

−𝜇(𝑦1ℎ − 𝑢1ℎ) + 𝜂𝐷ℎ(𝑦2ℎ − 𝑢2ℎ) + 𝜂𝐷𝑣(𝑦2𝑑 − 𝑢2𝑑)

−𝜇(𝑦1𝑣 − 𝑢1𝑣) + 𝜂𝐷ℎ(𝑦2𝑑 − 𝑢2𝑑) + 𝜂𝐷𝑣(𝑦2𝑣 − 𝑢2𝑣) )
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2.2.2. Compressed sensing MRI using curvelet sparsity and nonlocal total 

variation: CS-NLTV 

In this section, we introduce a novel CSMRI method, called CS-NLTV that exploits 

curvelet sparsity (CS) and nonlocal total variation (NLTV) regularization. The curvelet transform 

is optimal sparsifying transform with the excellent directional sensitivity than that of wavelet 

transform. The NLTV, on the other hand extends the total variation regularizer to a nonlocal 

variant which can preserve both textures and structures and produce sharper images. We have 

explored a new approach of combining alternating direction method of multiplier (ADMM), 

adaptive weighting, and splitting variables technique to solve the formulated optimization 

problem. 

 

CS-NLTV 

Considering the CSMRI problem defined in section 2.2.1, we propose and formulate the 

optimization problem using a combination of both the nonlocal total variation and the curvelet as 

regularizers. The proposed optimization problem to obtain reconstruction x̂ as follows: 

 

x̂ =  𝑎𝑟𝑔𝑚𝑖𝑛 
x

𝛼|∇𝑤x|1 + 𝛽∑ |𝐶𝑘(x)|1𝑘 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2      (116). 

 

where |∇𝑤x|1 = ∑ |∇𝑤x𝑡|1𝑡  is the nonlocal total variation norm and nonlocal weights 𝑤 are 

computed from image estimate x̂.  𝐶(x) is the combination of different subbands of curvelet 
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transform. 𝛼 and 𝛽 are the weighting parameters stressing two regularization terms. The value of 

these two parameters in each loop, are adaptively derived based on the variance of noise present 

in reconstructed image from previous iteration. We stress more on the curvelet regulaizer term if 

the estimated variance in each curvelet subband is greater than a specified threshold. The variances 

of the signal in every curvelet subband are computed by exploiting the maximum likelihood 

estimator applied on the neighborhood (a square) areas of coefficients. 

 

2.2.2.1. Nonlocal total variation – NLTV 

Nonlocal total variation (NLTV) is defined to describe the patch-level correspondence in 

contrast to the total variation (TV) which is based on the correspondence at the pixel-level [54]. 

For image x, the nonlocal weights can be formed concerning any two spatial nodes 𝑖 and 𝑗,  

𝜛x(𝑖, 𝑗) = 𝑒
−
∫ 𝐺𝜎(𝑡)(x(𝑗+𝑡)−x(𝑖+𝑡))

2𝑑𝑡ℛ1
𝜎2                    (117), 

 

where 𝐺 is a Gaussian kernel with the variance 𝜎2; and ℛ1 characterizes the spatial 

neighborhood around 𝑖 and 𝑗 for similarity consideration. The nonlocal gradient 𝛻𝑤x(𝑖, 𝑗) at 𝑖 is 

described as a vector of all partial derivatives 𝛻𝑤x(𝑖, . ) [72]: 

 

𝛻𝑤x(𝑖, 𝑗) = (x(𝑗) − x(𝑖)) √𝜛x(𝑖, 𝑗) ,   ∀𝑗 ∈ ℛ2                  (118), 
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where ℛ2 is the spatial neighborhood around 𝑖 , whose nonlocal gradient 𝛻𝑤x(𝑖, 𝑗) is 

calculated.  The adjoint of Eq. (118) is derived from the adjoint relationship with a nonlocal 

divergence operator divw  as: 

 

〈𝛻𝑤x , 𝑣〉 = 〈x , div𝑤𝑣〉                (119) 

 

div𝑤𝑣(𝑖, 𝑗) = ∫  (𝑣(𝑖, 𝑗) − 𝑣(𝑗, 𝑖))√𝜛x(𝑖, 𝑗) 𝑑𝑗ℛ2
                           (120). 

 

Given the image x ∈  ℝ𝑀 = ℝ𝑚×𝑛 with ℛ1 = ℝ(2𝑎1+1)(2𝑏1+1), ℛ2 = ℝ(2𝑎2+1)(2𝑏2+1),  

nonlocal total variation weights are defined as 

 

𝜛x(𝑘1, 𝑙1, 𝑘2, 𝑙2) = 𝑒
−
∑ ∑ 𝐺𝜎(𝑧1,𝑧2)(x(𝑘1−𝑎1+𝑧1,𝑙1−𝑏1+𝑧2)−x(𝑘2−𝑎1+𝑧1,𝑙2−𝑏1+𝑧2))

22𝑏1
𝑧2=0

2𝑎1
𝑧1=0

𝜎2   

𝑘1, 𝑘2 = 1,… ,𝑚.   𝑙1, 𝑙2 = 1,… , 𝑛.          (121). 

 

Therefore, nonlocal gradient 𝛻𝑤x ∈  ℝ
𝑚×𝑛×(2𝑎2+1)×(2𝑏2+1)  is as follows: 

𝛻𝑤x(𝑘1, 𝑙1, : , : ) =

[
 
 
 
 (x(𝑘1 − 𝑎2, 𝑙1 − 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 − 𝑎2, 𝑙1 − 𝑏2, 𝑘1, 𝑙1)

(x(𝑘1 − 𝑎2 + 1, 𝑙1 − 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 − 𝑎2 + 1, 𝑙1 − 𝑏2, 𝑘1, 𝑙1)
⋯

(x(𝑘1 + 𝑎2, 𝑙1 − 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 + 𝑎2, 𝑙1 − 𝑏2, 𝑘1, 𝑙1)

⋯
⋯
⋯
⋯

(x(𝑘1 − 𝑎2, 𝑙1 + 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 − 𝑎2, 𝑙1 + 𝑏2, 𝑘1, 𝑙1)

(x(𝑘1 − 𝑎2 + 1, 𝑙1 + 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 − 𝑎2 + 1, 𝑙1 + 𝑏2, 𝑘1, 𝑙1)
⋯

(x(𝑘1 + 𝑎2, 𝑙1 + 𝑏2) − x(𝑘1, 𝑙1))√𝜛x(𝑘1 + 𝑎2, 𝑙1 + 𝑏2, 𝑘1, 𝑙1) ]
 
 
 
 

     (122), 

  



63 
 
 

where 𝛻𝑤x(𝑘1, 𝑙1, : , : ) is a 2D submatrix acquired by stacking the third and fourth 

dimensions of 𝛻𝑤x at 𝑘1𝑡ℎ location in the first and 𝑙1𝑡ℎ location in the second dimension. Figure 

2.12 depicts the comparison of TV vs NLTV reconstruction from a noisy MRI image. 

 

 

Figure 2.12 Left: Noisy MRI image, middle: recovered using TV, right: recovered using NLTV 

for respective image 

 

2.2.2.2. Solution 

Considering the 𝑘-th subband of curvelet transform (𝐶𝑘) defined in section 2.2.1.2 as a 

mask in the frequency domain: 

 

𝐶𝑘(x) = 𝐹
∗diag(vec(𝑍𝑘))𝐹. x = 𝑃𝑘. x                                    (123), 
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The proposed optimization problem has both 𝑙1 and 𝑙2-norm terms and thus the solution in 

a closed-form is difficult to obtain. The alternating direction method of multiplier (ADMM) [60] 

and splitting variables are used to solve the formulated problem as follows: 

 

𝑎𝑟𝑔𝑚𝑖𝑛 
x

𝛼|𝑦1|1 + 𝛽∑ |𝑦2(𝑘)|1𝑘 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2                  (124) 

subject to        𝑦1 = 𝛻𝑤x,   𝑦2(𝑘) =  𝐶𝑘(x), 

 

where 𝑦1 ∈ ℝ
𝑀, and 𝑦2(𝑘) ∈ ℝ

𝑀 are auxiliary variables. The Lagrangian function for the 

problem can be written as below: 

 

ℒ(𝑥, 𝑦1, 𝑦2, 𝑢1, 𝑢2) =                                                                                                                 (125)

=
𝜆

2
 ‖𝐴x − 𝑏‖2

2 + 𝛼|𝑦1|1 +
𝜂

2
 ‖𝛻𝑤x − 𝑦1 + 𝑢1‖2

2 + 𝛽∑|𝑦2(𝑘)|1
𝑘

+
Γ

2
∑‖𝐶𝑘(x) − 𝑦2(𝑘) + 𝑢2(𝑘)‖2

2

𝑘

 

 

where 𝑢1 ∈ ℝ
𝑀 and 𝑢2(𝑘) ∈ ℝ

𝑀 are the newly defined scaled dual variables. Finally, the 

problem is solved by iterating over equations (126-130): 
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x(𝑛+1)  ≔  𝑎𝑟𝑔𝑚𝑖𝑛 
x

ℒ(x, 𝑦1
(𝑛)
, 𝑦2

(𝑛)
, 𝑢1
(𝑛)
, 𝑢2
(𝑛)
)                       (126), 

𝑦1
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦1

ℒ(x(𝑛+1), 𝑦1, 𝑢1
(𝑛)
)                                                  (127), 

𝑦2
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦2

ℒ(x(𝑛+1), 𝑦2, 𝑢2
(𝑛)
)                                                         (128), 

𝑢1
(𝑛+1)

≔ 𝑢1
(𝑛) + (𝛻𝑤x

(𝑛+1) − 𝑦1
(𝑛+1)

)                                                          (129), 

𝑢2
(𝑛+1)

≔ 𝑢2
(𝑛) + (𝐶(x(𝑛+1)) − 𝑦2

(𝑛+1)
)                                                       (130). 

The optimal solution for the sub-problem by Eq. (126) requires finding roots of its 

derivatives that leads to Eq. (131): 

 

𝜆𝐴𝑇𝐴x − 𝜆𝐴𝑇𝑏 + 𝜂 divw(𝛻𝑤x − 𝑦1 + 𝑢1) + Γ(∑ 𝑃𝑘
∗𝑃𝑘𝑘 x + ∑  𝑃𝑘

∗(𝑦2(𝑘) − 𝑢2(𝑘))𝑘 ) = 0  (131). 

Minimization in Eq. (127) and Eq. (128) can be attained by shrinkage operators such as: 

 

𝑦1
(𝑛+1) ≔  𝑆ℎ𝑟𝑖𝑛𝑘(𝛻𝑤x

(𝑛+1) + 𝑢1
(𝑛), 𝜗2)                                                       (132) 

𝑦2
(𝑛+1) ≔  𝑆ℎ𝑟𝑖𝑛𝑘(𝐶(x(𝑛+1)) + 𝑢2

(𝑛), 𝜗2)                                                     (133), 

where  𝜗1 =
𝛼

𝜂
 , 𝜗2 =

𝛽

Γ
   and 

𝑆ℎ𝑟𝑖𝑛𝑘(𝑥, 𝜉)𝑛 = 𝑠𝑖𝑔𝑛(𝑥𝑛).𝑚𝑎𝑥{|𝑥𝑛 | − 𝜉, 0}                                                (134). 
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2.2.3. Compressed sensing MRI based on shearlet sparsity and nonlocal total 

variation: SS-NLTV 

In this section, we introduce a novel CSMRI method, called SS-NLTV that exploits 

shearlet sparsity (SS) and nonlocal total variation (NLTV) regularization. The shearlet transform 

is an optimal sparsifying transform with excellent directional sensitivity compared to that by 

wavelet transform. The NLTV, on the other hand extends the total variation regularizer to a 

nonlocal variant which can preserve both textures and structures and produce sharper images. We 

have explored a new approach of combining alternating direction method of multipliers (ADMM), 

splitting variables technique, and adaptive weighting to solve the formulated optimization 

problem. 

 

SS-NLTV 

Considering the CSMRI problem defined in section 2.2.1, we propose and formulate the 

optimization problem wherein the nonlocal total variation and the shearlets are used concurrently 

for regularization. The proposed optimization problem to obtain reconstruction  x̂ as follows:  

 

x̂ =  𝑎𝑟𝑔𝑚𝑖𝑛 
x

𝛼|∇𝑤x|1 + 𝛽∑ |𝑆𝐻𝑘(x)|1𝑘 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2      (135). 

 

where |∇𝑤x|1 = ∑ |∇𝑤x𝑡|1𝑡  is the nonlocal total variation norm and nonlocal weights 𝑤 are 

computed from image estimate x̂.  𝑆𝐻(x) is the combination of different subbands of shearlet 
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transform. 𝛼 and 𝛽 are the weighting parameters stressing two regularization terms. The value of 

these two parameters in each loop, are adaptively derived based on the variance of noise present 

in reconstructed image from previous iteration. We stress more on the shearlet regulaizer term if 

the estimated variance in each shearlet subband is greater than a specified threshold. The variances 

of the signal in every shearlet subband are computed by exploiting the maximum likelihood 

estimator applied on the neighborhood (a square) areas of coefficients.  

 

2.2.3.1. Shearlet sparsity 

Shearlet transform is introduced and generally has been used for solving the inverse 

problems [42,77]. Let 𝜓𝑎,𝑠,𝑡 be shearlet basis functions, i.e., shearlets. For continuous case, shearlet 

transformation of image 𝑓 is modeled as 

 

𝑆𝐻𝑎,𝑠,𝑡(𝑥) = ∫ 𝑓(𝑥)
ℛ2

𝜓𝑎,𝑠,𝑡(𝑡 − 𝑥)𝑑𝑥                            (136), 

 

where 𝑠 ∈ ℛ, 𝑎 ∈ ℛ, and 𝑡 ∈ ℛ2 are orientation, scale, and location parameters, 

respectively and f(𝑥) ∈ ℛ2 is a two-dimensional reconstructed image. Shearlets are defined by 

dilating, shearing and translating 𝜓𝑎,𝑠,𝑡 ∈ ℛ
2, as presented below: 

 

𝜓𝑎,𝑠,𝑡(𝑥) =  |𝑑𝑒𝑡𝐾𝑎,𝑠|
−
1

2𝜓(𝐾𝑎,𝑠
−1(𝑥 − 𝑡)),         (137) 



68 
 
 

 

𝐾𝑎,𝑠 = (
𝑎 √𝑎𝑠

0 √𝑎
)             (138) 

 

Assume 𝑙 be a function describing piecewise smooth images 𝑙 ∈ 𝐶2(ℝ2) and 𝑙𝑆𝐻𝑝  be the 

shearlet approximation of 𝑙 obtained by taking the 𝑝 largest absolute shearlet coefficients, then 

 

 ‖𝑙 − 𝑙𝑝‖2 ≤ 𝐶𝑝
−2(log 𝑝)3            (139) 

 

as 𝑝 → ∞, while the asymptotic error is 𝐶𝑝−1 for wavelet. Consequently, shearlet 

transform is better in sparsely approximating piecewise smooth images. We can implement 𝑘-th 

subband of shearlet transform (𝑆𝐻𝑘) as a mask 𝑍𝑘 in the frequency domain [54].  

 

𝑆𝐻𝑘(x) = 𝐹∗diag(vec(𝑍𝑘))𝐹. x = 𝑃𝑘. x                             (140) 

 

2.2.3.2. Solution 

Considering the nonlocal TV term |𝛻𝑤x|1 defined in section 2.2.2.1, the proposed problem 

is formulated as follows: 
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 𝑎𝑟𝑔𝑚𝑖𝑛 
x

𝛼|𝛻𝑤x|1 + 𝛽∑ |𝑆𝐻𝑘(x)|1𝑘 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2            (141) 

 

The optimization problem has both 𝑙1 and 𝑙2-norm terms and thus the solution in a closed-

form is difficult to obtain. The alternating direction method of multiplier (ADMM) [60] and 

splitting variables are used to solve the formulated problem as follows: 

 

𝑎𝑟𝑔𝑚𝑖𝑛 
x

𝛼|𝑦1|1 + 𝛽∑ |𝑦2(𝑘)|1𝑘 +
𝜆

2
 ‖𝐴x − 𝑏‖2

2                  (142) 

subject to        𝑦1 = 𝛻𝑤x,   𝑦2(𝑘) =  𝑆𝐻𝑘(x), 

 

where 𝑦1 ∈ ℝ
𝑀, and 𝑦2(𝑘) ∈ ℝ

𝑀 are auxiliary variables. The Lagrangian function for the 

problem can be written as below: 

 

ℒ(𝑥, 𝑦1, 𝑦2, 𝑢1, 𝑢2) =                                                                                                                              (143)

=
𝜆

2
 ‖𝐴x − 𝑏‖2

2 + 𝛼|𝑦1|1 +
𝜂

2
 ‖𝛻𝑤x − 𝑦1 + 𝑢1‖2

2 + 𝛽∑|𝑦2(𝑘)|1
𝑘

+
Γ

2
∑‖𝑆𝐻𝑘(x) − 𝑦2(𝑘) + 𝑢2(𝑘)‖2

2

𝑘

 

 

where 𝑢1 ∈ ℝ
𝑀 and 𝑢2(𝑘) ∈ ℝ

𝑀 are the newly defined scaled dual variables.  
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Finally, the problem is solved by iterating over equations (144-148): 

 

x(𝑛+1)  ≔  𝑎𝑟𝑔𝑚𝑖𝑛 
x

ℒ(x, 𝑦1
(𝑛)
, 𝑦2

(𝑛)
, 𝑢1
(𝑛)
, 𝑢2
(𝑛)
)                       (144), 

𝑦1
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦1

ℒ(x(𝑛+1), 𝑦1, 𝑢1
(𝑛)
)                                                  (145), 

𝑦2
(𝑛+1)

≔ 𝑎𝑟𝑔𝑚𝑖𝑛 
𝑦2

ℒ(x(𝑛+1), 𝑦2, 𝑢2
(𝑛)
)                                                         (146), 

𝑢1
(𝑛+1)

≔ 𝑢1
(𝑛) + (𝛻𝑤x

(𝑛+1) − 𝑦1
(𝑛+1)

)                                                          (147), 

𝑢2
(𝑛+1)

≔ 𝑢2
(𝑛) + (𝑆𝐻(x(𝑛+1)) − 𝑦2

(𝑛+1)
)                                                       (148). 

 

The optimal solution for the sub-problem by Eq. (144) requires finding roots of its 

derivatives that leads to Eq. (149): 

𝜆𝐴𝑇𝐴x − 𝜆𝐴𝑇𝑏 + 𝜂 divw(𝛻𝑤x − 𝑦1 + 𝑢1) + Γ(∑ 𝑃𝑘
∗𝑃𝑘𝑘 x + ∑  𝑃𝑘

∗(𝑦2(𝑘) − 𝑢2(𝑘))𝑘 ) = 0   (149) 

 

Where we can solve it in Fourier domain by multiplying both sides of it by 𝐹: 
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(𝜆𝑆 + 𝜂 𝐹divw𝛻𝑤𝐹
∗ + Γ∑ diag(vec(|𝑍𝑘|.

2 ))𝑘 )𝐹x = 𝜆𝑏 + 𝜂 𝐹divw(𝑦1 − 𝑢1) +

Γ∑ diag(vec(𝑍𝑘))𝐹(𝑢2(𝑘) − 𝑦2(𝑘))𝑘              (150) 

 

Minimization in Eq. (145) and Eq. (146) can be attained by shrinkage operators such as: 

 

𝑦1
(𝑛+1) ≔  𝑆ℎ𝑟𝑖𝑛𝑘(𝛻𝑤x

(𝑛+1) + 𝑢1
(𝑛), 𝜗2)                                                       (151) 

 

𝑦2
(𝑛+1) ≔  𝑆ℎ𝑟𝑖𝑛𝑘(𝑆𝐻(x(𝑛+1)) + 𝑢2

(𝑛), 𝜗2)                                                      (152) 

where  𝜗1 =
𝛼

𝜂
 , 𝜗2 =

𝛽

Γ
   and 

 

𝑆ℎ𝑟𝑖𝑛𝑘(𝑥, 𝜉)𝑛 = 𝑠𝑖𝑔𝑛(𝑥𝑛).𝑚𝑎𝑥{|𝑥𝑛 | − 𝜉, 0}                                                 (153) 
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 CHAPTER 3- EXPERIMENTS AND RESULTS 

In this section, we evaluate the performance of the proposed compressed sensing MRI and 

CT reconstruction methods. Also, we assess the performance of the proposed 3D object 

reconstruction and material discrimination methods in sparse-view neutron-photon computed 

tomography.  

 

3.1. CT reconstruction results 

In this section: First, we evaluate the performance of the proposed AIRR method which 

classified as iterative reconstruction-reprojection (IRR) methods. Second, we assess the 

performance of the proposed CT reconstruction methods including CTV, and Nonconvex L1-L2 

CT. Third, we evaluate the proposed 3D object reconstruction and material discrimination methods 

in sparse-view Neutron-Photon computed tomography.  

 

3.1.1. Algebraic Iterative Reconstruction-Reprojection (AIRR) Method 

For analyses, we use the distance between the reconstructed images and the original 

phantom image. The distance is calculated according to Eq. (154) [38].  

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = (
∑ ∑ (𝑓𝑓𝑖𝑛𝑎𝑙(𝑥,𝑦)−𝑋(𝑥,𝑦))

2𝑙
𝑦=1

𝑙
𝑥=1

∑ ∑ (𝑋(𝑥,𝑦))2𝑙
𝑦=1

𝑙
𝑥=1

)

1

2

            (154),                                                                               
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where 𝑋 is the original 𝑙×𝑙  and 𝑓𝑓𝑖𝑛𝑎𝑙 is the reconstructed phantom images.  

 

We evaluate the AIRR method for the fan-beam sparse-view reconstruction on noise-free 

and noisy projections whose models are defined in Eq. (14) and Eq. (15). In the experiments, 𝑙 = 

256, and for the shearlet-based denoising the number of scales is 3, and the number of directions 

is 4 step. For noise-free and noisy cases, Noise, 𝑛 in Eq. (15) is AWG,  𝜎 = 10. Reconstruction is 

performed from twenty fan-beam projections.  Same as in [38] settings are applied for experiments. 

In Figure 3.1 the distance metrics are shown for the proposed AIRR, IRR and IRR-TV.  The 

proposed AIRR method displays a better performance.  The result does not diverge as fast as for 

other two methods because we update the geometry matrix in the reprojection step. Figure 3.2 

shows how the methods under comparison perform in the presence of noise. The IRR-TV shows 

a better performance in the first three iterations, however it is not stable and as it can be observed, 

the result diverges after few iterations. The AIRR method has outperformed the IRR-TV for noisy 

method as well.  Figure 3.3 illustrates also the phantom image reconstruction for the noise-free 

case.  The AIRR based reconstruction in Figure 3.3 (a) shows a better contrast if compared that to 

IRR-TV. Some visible artifacts in the presence of noise are observed in Figure 3.4.  SSIM [78] as 

a standard metric. Table 3.1 summarizes structural similarity indices [78] which are calculated and 

presented to demonstrate how the structural content is preserved by methods.  The AIRR method 

performs very well on noisy and noise-free models. 
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Table 3.1 Structural similarity indices for methods per noisy and noise-free projections. 

Model 

Method 

Noise-Free Projections Noisy Projections 

Proposed (AIRR) 0.6769 0.6169 

IRR-TV 0.6692 0.5670 

IRR 0.6004 0.5275 

 

Figure 3.1 Distance metric for different number of iterations for noise-free projections per IRR, 

IRR-TV, and AIRR. 
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Figure 3.2 Distance metric for different number of iterations for noisy projections (AWG: 𝜎 =
10) per IRR, IRR-TV, and AIRR. 
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Figure 3.3 (a) Original phantom image 
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Figure 3.3 (b) The AIRR reconstruction from the noise-free sparse-view projections 
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Figure 3.3 (c) IRR-TV reconstruction from the noise-free sparse-view projections 
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Figure 3.3 (d) IRR reconstruction from the noise-free sparse-view projections 
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Figure 3.4 (a) Proposed AIRR reconstruction from the sparse-view noisy projections 
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Figure 3.4 (b) IRR-TV reconstruction from the sparse-view noisy projections 
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Figure 3.4 (c) IRR reconstruction from the sparse-view noisy projections 
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3.1.2. Computed Tomography Methods: CTV and Nonconvex L1-L2 CT 

The CTV and nonconvex L1-L2 CT methods are evaluated for fan-beam geometry on the 

SheppLogan phantom [53] and the “head” phantom [79] (Figure 3.5). Data are of the size of 

256×256 pixels and they are simulated with 100 projections spaced equally. Reconstruction is 

performed using TV-based regularization (TV), wavelet-based regularization (wavelet), curvelet-

based regularization (curvelet). 

 

 

 

 
 

Figure 3.5 Left: SheppLogan phantom, Right: FORBILD head phantom 
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3.1.2.1. CTV 

Figures 3.6 and 3.7 show the reconstruction results by the methods for SheppLogan and 

FORBILD phantoms. The peak signal-to-noise ratios (PSNR) are presented in Table 3.2.   

 

 
 
Figure 3.6 Left to right: SheppLogan phantom reconstruction result using TV, curvelet, wavelet 

and the CTV methods 

 

 

 
 

Figure 3.7 Left to right: FORBILD head phantom reconstruction result using TV, curvelet, 

wavelet and the CTV methods 
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Table 3.2 PSNR (dB) values for the methods in our experiment 

Method SheppLogan phantom FORBILD phantom 

TV 31.4 29.6 

Curvelet 26.6 28.7 

Wavelet 19.2 22.0 

CTV 37.7 36.2 

 

 

3.1.2.2. Nonconvex L1-L2 CT 

Figure 3.8 and Figure 3.9 show the outcomes of the methods, i.e., a substantial reduction 

of visible artifacts by the proposed method. The peak signal-to-noise ratio (PSNR) represents the 

objective metrics presented in Table 3.3, and also demonstrates the high performance achieved by 

the developed method. 

Table 3.3 PSNR (dB) values for the methods in our experiment 

 SheppLogan phantom FORBILD phantom 

Wavelet 19.2 22.0 

Curvelet 26.6 28.7 

TV 31.4 29.6 

CTV 37.7 36.2 

Nonconvex L1-L2 CT  39.8 38.7 
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Figure 3.8 Left to right: SheppLogan phantom reconstruction result using Wavelet, Curvelet, TV, 

CTV, and the Nonconvex L1-L2 methods 

 

 

 

 

Figure 3.9 Left to right: FORBILD head phantom reconstruction result using Wavelet, Curvelet, 

TV, CTV, and the Nonconvex L1-L2 methods 
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3.1.3. Sparse-view fan-beam neutron-photon computed tomography 

3.1.3.1. 3D reconstruction and imaging 

The described method, in section 2.1.4.1.2, based on FBP reconstruction algorithm was 

applied to projections obtained for each source separately. For the goal of object reconstruction 

and material discrimination, the 14-MeV and 2.5-MeV neutron sources and photon sources with 

energy of 1 MeV, 3 MeV, 6 MeV, and 9 MeV were employed. The methods applied were: (a) 

visualization of reconstructed 2D slices as a 3D scene for each source separately, (b) visualization 

in 3D of ratios of reconstructed values obtained by projections generated by two similar sources 

at different energy levels, and (c) visualization in 3D of ratios of reconstructed values obtained by 

projections generated from different radiation sources. We also show how we improve 

representation of objects by combining images by the neutron source and the values of ratio as in 

c). 

Figure 3.10a shows the sinogram (projections) of 2.5-MeV neutron source, and Figure 

3.10b shows one reconstructed 2D slice (#34).  

In the model in Figure 3.11, the container is fully filled with a combination of high-Z and 

low-Z materials to represent a scenario of a cluttered scene.  In this model, iron, aluminum and 

polyethylene cells were placed in a staircase way so that at any angle, the line of the side view 

goes throughout the combination of these materials.  
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3.1.3.2. Material identification 

Results of the study are demonstrated in Figures 3.12 – 3.15. Figure 3.12a shows ratios of 

1-MeV to 9-MeV photon transmissions per voxel. The lead is present in the plot, but the three 

polyethylene cells of different shapes are not because of transparency of low-Z materials for x-

rays. The 3D plot of 14-MeV to 2.5-MeV neutron transmissions is shown Figure 3.12b. Both low- 

or high-Z are visible. The error of the shape reconstruction was calculated as a portion of voxels 

lost/appeared in the objects’ actual voxels. The rate of the error is 55.4% and 21.6% for Figures 

3.12a and 3.12b, respectively. We observe that shapes are better preserved. Although high-Z and 

low-Z materials can be discriminated, but lead and iron are not separated.  The ratio of 

reconstructed values of voxels from 6-MeV photon to 2.5-MeV neutron transmissions can 

visualize differences between low-Z and high-Z materials. It is observed that objects made of low-

Z vanish from the view at the rate reciprocal to the object size and the photon energy. The 

reconstruction errors in Figures 3.13a and 3.13b are is 37.9% and 49.2%, respectively. 

The visualization method proposed here superimposes the reconstruction of the neutron 

source data and the photon-to-neutron transmission ratio data. As a result, in Figure 3.14a shapes 

plus materials can be inspected, efficiently.  The overall error is 18.1%. The same approach for 4-

MeV neutron and 6-MeV photon sources resulted in Figure 3.14b, with the error as high as 21.6%).  

Figure 3.15 shows the result of 3D reconstruction for 2.5-MeV neutron and 6-MeV photon 

sources of the entirely filled-up container.  The CT reconstruction resolves regions of iron, 

aluminum and polyethylene yielding only 2.5% of error. As it can be observed, neutron-photon 

CT allow us to effectively visualize shapes of objects and differentiate materials inside the 

cluttered container. 
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In this section, we investigate the sparse-view CT reconstruction of objects under scrutiny 

in the combined neutron-photon system, the container and the objects of different shapes and 

material composition inside it were ideal. In the next section, the CT reconstruction and imaging 

techniques in the sparse-view conditions such as iterative reconstruction methods will be 

investigated. 

 
(a) 

 
(b) 

 

Figure 3.10 (a) The sinogram and (b) the radiograph for one slice 
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Figure 3.11 Model of the fully filled container [63] 
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(a) 

 
(b) 

Figure 3.12 3D visualization of transmission ratios per voxel using (a) 1-MeV and 9-MeV 

photon sources and (b) 14-MeV and 2.5-MeV neutron sources 
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(a) 

 
(b) 

Figure 3.13 3D visualization of the ratios in the container voxels using transmission data for (a) 

6-MeV photons to 2.5-MeV neutrons, and (b) 9-MeV photons to 2.5-MeV neutrons 
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(a) 

 
(b) 

 

Figure 3.14 Fusion of 3D reconstruction from neutron source and the ratio of the reconstructed 

projections from neutron and photon sources: (a) 2.5-MeV neutron reconstruction and the ratio 

of 6-MeV photon to 2.5-MeV neutron reconstructions; (b) 14-MeV neutron reconstruction and 

the ratio of 6-MeV photon to 14-MeV neutron reconstructions 

 

 

 



94 
 
 

 
 

Figure 3.15 3D reconstruction of a fully filled container model using 2D scans obtained with 6-

MeV photon source and 2.5-MeV neutron source 
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3.1.4. Sparse-view cone-beam neutron-photon computed tomography 

3.1.4.1. 3D reconstruction and imaging 

Two model scenes have been reconstructed using the described iterative reconstruction 

(IR) methods described in section 2.1.5.2.2.2 and the traditional Feldkamp, Davis and Kress (FDK) 

method [80]. The stopping criteria for CTV is defined as ‖𝑏 − 𝐴𝑥‖2
2 ≤ 𝜎.  If  ‖𝑏 − 𝐴𝑥‖2

2 ≤10-4, 

the algorithm terminates. The reconstruction errors are presented in Table 3.4 for FDK, IR+TV, 

IR+W and CTV algorithms for the 2.5-MeV neutron images only.  The error is calculated as a 

percentage of voxels lost/added of the object’s actual voxels.  

Table 3.4 Reconstruction error for neutron sources 

Method 

Reconstruction error 

(Model 1) 

Reconstruction error 

(Model 2) 

FDK 9.2617% 9.8625% 

Regularized Wavelet 8.9713% 9.1264% 

Regularized TV 8.0419% 8.9845% 

CTV 7.6324% 7.9058% 

   

The errors of reconstruction for the 6-MeV photon images have been calculated only for 

high-Z objects (Table 3.5) due to the almost complete transmission of 6-MeV photons through 

low-Z materials as shown in Figure 3.16. 

Table 3.6 demonstrates how the error grows when the number of angles in the sparse view 

is reduced to 18, corresponding to a rotational increment of 10 degrees. Due to the superiority of 

our CTV method, the latter is selected for object visualization. Reconstruction of Model 1 with 36 

angles is shown for photon and neutron sources in Figures 3.16 and 3.17, and for Model 2 in 
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Figures 3.18 and 3.19, and for 18 angles in Figure 3.20, respectively. Three coordinates in Figures 

3.16 – 3.20 are 𝑥, 𝑦, 𝑧 coordinates in the reconstruction space. The reconstruction in Figures 3.16 

– 3.20 is shown after interpolation. 

To summarize, the neutron images represent shapes of low- and high-Z made objects 

equally well under the sparse views as it can be concluded from Tables 3.5 and 3.6. In Table 3.5, 

because of photons penetrate through low-Z materials, the accuracy is calculated for only high-Z 

objects.  The CTV method is capable of separating objects which are close to each other and of 

capturing the main geometric features of objects under the sparse view setting. For the models 

under considerations, 36 angles are a minimum required for separating objects spatially. Table 3.6 

indicates that when the number of angles is reduced to a half of the original number, which is from 

36 angles to 18, the reconstruction error has increased significantly. 

 

  

Table 3.5 Reconstruction error for photon sources 

Method 

Reconstruction error 

(Model 1) 

Reconstruction error 

(Model 2) 

FDK 13.7320% 8.1441% 

Regularized 

Wavelet 

11.4988% 8.8706% 

Regularized TV 10.2682% 6.6953% 

CTV 

 

9.5469% 6.1576% 
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Table 3.6 Reconstruction error for neutron sources using 18 angles 

Method 

Reconstruction error 

(Model 1) 

Reconstruction error 

(Model 2) 

FDK 33.4936% 38.1161% 

Regularized 

Wavelet 

28.8301% 33.5375% 

Regularized TV 25.9895% 29.7274% 

CTV 23.4854% 27.8003% 

 

 

 

 
 

Figure 3.16 3D visualization of the reconstruction for Model 1 using the 6-MeV photon source 
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Figure 3.17 3D visualization of the reconstruction for Model 1 using the 2.5-MeV neutron source 

 

 
Figure 3.18 3D visualization of the reconstruction for Model 2 using the 6-MeV photon source 

 



99 
 
 

 
Figure 3.19 3D visualization of the reconstruction for Model 2 with the 2.5-MeV neutron source 

 

 

3.1.4.2. Material Identification and Object visualization 

 1D signatures 

First, the photon-to-neutron transmission ratio, Rp/n, was evaluated. Figure 3.21 and 

Figure 3.22 plot the values of Rp/n for every voxel of objects/materials in Models 1 and 2, 

respectively. Voxel ordering is based on raster scan for each object.  We refer to these plots as “1D 

material signatures”. Note, that all voxels representing objects composed of the same material 

contribute to the plot. It can be observed that in a simple scene such as the one presented in the 

Model 1, the threshold separating those values pertaining to high-Z materials can be easily 

established for Rp/n. For Model 2, the signatures become closely packed and the average value is 

no longer robust for representing the material. 
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--------------------------------------------------------------- 

 
Figure 3.20 3D visualization of the reconstruction using the 2.5-MeV neutron source for Model 1 

(top) and Model 2 (bottom) with 18 angles (10o increment) 
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Figure 3.21 1D material signatures: Rp/n per material for Model 1 

 

3.1.4.3. 2D signatures 

Now, we introduce 2D material signatures plotted as Rp/n versus Tn values, (Rp/n - Tn) 

for each object voxel. The plot presented in Figure 3.23 illustrates these 2D signatures for Model 

1 materials; values per voxels are represented by point values. 

The means of (Rp/n , Tn) clusters are now moved away from each other, making them 

useful for representing materials. Figures 3.24 and 3.25 respectively display the 2D signatures for 

the high-Z and low-Z materials included in Model 2. The discrimination among high-Z materials 

is apparent. Figure 3.26 shows the 2D signatures for the aggregate of individual high-Z materials 

and grouped low-Z materials used in Model 2. We observe from Figure 3.27 that decoupling for 

materials of close atomic numbers (z) such as graphite (Carbon, z=6) and Boron (z=5) is 

problematic. However, when the difference in atomic numbers is greater than 6, as in the model, 
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partitioning the materials based on 2D signatures promises better accuracy than that based on 1D 

signatures. 

 
--------------------------------------------------------------- 

 
Figure 3.22 1D material signatures: Rp/n per material for Model 2; Top: high-Z materials with 

low-Z materials grouped together; bottom: low-Z materials with high-Z materials grouped 

together 

 

Calculated mean and standard deviation values are listed in Table 3.7. Treating these data 

as a library of materials for objects under inspection, we can calculate the distances in 2D space of 
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2D signatures for each unknown voxel and compare the results to the mean values in the library. 

The minimum value for the unknown voxel establishes the material of the object under inspection. 

This is similar to the k-means clustering [81,82], which would define the mean and standard 

deviation of each cluster using the data from Table 3.7. The objective distance function to 

minimize is 

 

𝐷 = ∑ ∑ ‖𝑥𝑗
𝑖 −𝑀𝑖‖

2𝑛
𝑗=1

𝐶
𝑖=1                                                                (155) 

 

Where 𝑥𝑗
𝑖 corresponds to the signature value in the reconstructed voxel and 𝑀𝑖 is the cluster 

center in the library. 𝐶 is the number of materials (clusters) and 𝑛 is the number of data points in 

each of the respective clusters. Applied to the voxels of objects found using shape reconstruction 

of neutron transmissions, this approach leads to a noisy classification of materials. Post-processing 

of the results, based on majority voting per object, yields the reconstructions for Model 1 (Figure 

3.27) and Model 2 (Figure 3.28 for high-Z materials). In Figures 3.27, 3.28 random colors assigned 

to detected classes. The performance of material classification using 1D and 2D signatures, (i.e. 

Rp/n and (Rp/n – Tn)) can be measured by analyzing the accuracy of forming reconstructed image 

objects. This is done by calculating the percentage of misclassified object voxels to the total 

number of voxels in the reconstructed image objects for Model 1 (Table 3.8) and Model 2 (Table 

3.9). 

Now in order to evaluate the robustness of the proposed 2D signatures, we consider 

modelling in the presence of error due to the electronic noise in the projection space. As we 
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mentioned earlier, our noisy imaging model is described by a linear system in Eq. (65).  In Eq. 

(65), 𝑛 is a additive Gaussian white noise vector with independent identically distributed elements. 

The relative noise level is 10%. Figures 3.29 and 3.30 show the 2D signatures for the high-Z and 

low-Z materials of Model 2 obtained after reconstructing noisy projections. Tables 3.10 and 3.11 

report the reconstruction errors for neutron and photon sources, respectively. Table 3.12 lists the 

material statistics in the presence of noise. By comparing this table to the statistics in the material 

library table (Table 3.7), also from signatures and reconstruction of objects/materials in Figure 

3.31, we can see that this level of noise which is a practical level the variation is not high enough 

to jeopardize the discrimination process.  

Table 3.7 Material Library statistic 

Material Mean Standard Deviation (𝜎1, 𝜎2) 

Lead (2.9637e-11 , 11.2282) (5.6577e-12 , 0.7004) 

Copper (5.9884e-11 , 9.1126) (6.3621e-12 , 0.3297) 

Tungsten (8.5562e-11 , 8.5861) (1.0666e-11 , 0.1696) 

Iron (4.1060e-11 , 8.6169) (1.0143e-11 , 0.4759) 

Salt (4.8912e-11 , 7.5485) (4.8526e-12 , 0.3292) 

Water (4.8841e-11 , 3.6257) (1.5562e-11 , 1.0326) 

Boron (4.4498e-11 , 6.9580) (4.4199e-12 , 0.2679) 

Poly (3.6353e-11 , 4.9068) (3.8372e-12 , 0.4224) 

Graphite (4.5082e-11 , 6.7661) (6.6158e-12 , 0.2183) 

Calcium (2.9765e-11 , 6.3372) (4.2154e-12 , 0.6371) 
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Table 3.8 Material discrimination accuracy using 1D and 2D signatures for model one 

Material 2D Accuracy 1D Accuracy 

2D Overall 

Accuracy 

1D Overall 

Accuracy 

Lead 89.2038% 77.8136 %  

93.1520% 

 

87.3204% Iron 90.2524% 84.1477 % 

Poly 100 % 100 % 

 

Table 3.9 Material discrimination accuracy using 1D and 2D signatures for model two 

Material 2D Accuracy 1D Accuracy 2D Accuracy 1D Accuracy 

Lead 89.7892% 91.6188%  

High-Z 

85.0335% 

 

Low-Z 

60.9938% 

 

 

Overall 

70.6097% 

 

High-Z 

77.4981% 

 

Low-Z 

62.1505% 

 

 

Overall 

68.2895% 

Copper 80.9153% 77.0238% 

Tungsten 88.3264 % 74.8333% 

Iron 81.1032% 66.5166% 

Salt 77.4711% 62.3471% 

Water 93.5522% 81.0249% 

boron 51.2637% 44.0696% 

Poly 81.9953% 85.7179% 

Graphite 54.2694% 41.9689% 

Calcium 67.4109% 57.7743% 

 

Table 3.10 Reconstruction error for neutron sources in the presence of noise 

Method 

Reconstruction error 

(Model 1) 

Reconstruction error 

(Model 2) 

FDK 15.8147% 17.9058% 

Regularized Wavelet 12.9575% 13.9134% 

Regularized TV 11.5469% 13.1270% 

CTV 10.1419% 12.7922% 
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Table 3.11 Reconstruction error for photon sources in the presence of noise 

Method 

Reconstruction error 

(Model 1) 

Reconstruction error 

(Model 2) 

FDK 19.9320% 12.2673% 

Regularized Wavelet 16.6865% 10.6166% 

Regularized TV 14.6974% 9.7893% 

CTV 12.9595% 8.6557% 

 

Table 3.12 Material statistic in the presence of noise 

Material Mean Standard Deviation (𝜎1, 𝜎2) 

Lead (3.0963e-11 , 11.1575) (6.4291e-12 , 1.0598) 

Copper (6.0906e-11 , 9.1119) (6.3528e-12 , 0.4313) 

Tungsten (8.5540e-11 , 8.5713) (1.0920e-11 , 0.3625) 

Iron (4.1141e-11 , 8.6504) (1.0174e-11 , 0.4567) 

Salt (4.9194e-11 , 7.5359) (4.9897e-12 , 0.3513) 

Water (4.9058e-11 , 3.6245) (1.5724e-11 , 1.0396) 

Boron (4.4442e-11 , 6.9513) (4.6190e-12 , 0.3352) 

Poly (3.6339e-11 , 4.8993) (4.2592e-12 , 0.5109) 

Graphite (4.5106e-11 , 6.7855) (6.8916e-12 , 0.2812) 

Calcium (2.9603e-11 , 6.3338) (4.4524e-12 , 0.6757) 
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Figure 3.23 2D signatures (Rp/n - Tn): Model 1 

 

 
Figure 3.24 2D signatures of high-Z materials in Model 2 
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Figure 3.25 2D signatures of low-Z materials in Model 2 

 

 

 
Figure 3.26 2D signature for Model 2, for high-Z materials plus low-Z materials grouped 

together 
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Figure 3.27 Classification result after majority voting/grouping for all materials in Model 1 

 

 
Figure 3.28 Classification result after majority voting/grouping for high-Z materials in Model 2 
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Figure 3.29 2D signatures of high-Z materials in Model 2 in the presence of noise 

 

 

 
Figure 3.30 2D signatures of low-Z materials in Model 2 in the presence of noise 
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Figure 3.31 Classification result after majority voting/grouping for high-Z materials in Model 2 

in the presence of noise 
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3.2. Compressed sensing MRI results 

We evaluate the proposed compressed sensing MRI method on standard 256 × 256 MRI 

images that includes brain, chest, artery, and cardiac images [27] in Figure 3.32 We compared the 

performance of our algorithm with five previously introduced state-of-the-art methods: TVCMRI, 

RecPF, FCSA, FNTV, and FNSISTRA. We considered two different subsampling methods, i.e., 

random variable subsampling and radial subsampling. Figure 3.33 visualizes these two types of 

subsampling. For comparison to the reference methods we demonstrate results at the same number 

of iterations that is 50 iterations as a stopping criteria for all five methods to have a fair comparison.  

To evaluate the performance, we use four different sampling ratios including 15, 20, 25 and 30% 

to acquire the measurement 𝑏, respectively. The performance comparison is done using the SNR 

plots for methods under comparison, where SNR = 10 log10
‖x‖2

2

‖x−x𝑛‖2
2 , x is the original image and 

x𝑛 represents the reconstructed image after 𝑛 interations. SNR values are measured for the above 

quantities of subsampling ratios, with radial and random subsampling. 

 

    

Figure 3.32 Images used to test the performance of the proposed compressed sensing methoda 

and comparison to reference methods: left to right: brain, chest, artery, and cardiac 
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Figure 3.33 Left: random variable subsampling and right: radial subsampling 

 

 

3.2.1. CT-TGV 

We evaluate the proposed CT-TGV method here. For obtaining curvelet transform 

coefficients for realization of the method, we have used the curvelab implementation [83] because 

of the offered fast and efficient implementation. Figures 3.34 – 3.37 show the SNR plots for 

methods under comparison, SNR values are measured for various subsampling ratios, in radial and 

random subsampling types. As it follows from the plots, the CT-TGV method has achieved a better 

performance for both types of subsampling types and the overall performance varies based on the 

subsampling type and the type of the image. We demonstrate the reconstruction results for brain 

image with random subsampling and cardiac image with random subsampling in Figures 3.38 and 

3.39, respectively. Table 3.13 shows improvement of the average SNRs by CT-TGV and five 

reference methods evaluated under random variable and radial subsampling at 20% subsampling 

ratios. number of repeated experiments for computing the average SNRs is 10. The improvement 

of the quality of reconstruction by the proposed CT-TGV method over the best performance among 

the reference methods that is one by the FNSISTRA is clearly shown in table 3.13. The superior 

performance of CT-TGV stems from utilization of total generalized variation which locates 
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sharper edges and suppress artifacts; and due to the exceptional spatial localization and directional 

selectivity of the curvelet transform.  

 

Table 3.13 Improvement of the average signal to noise ratios (SNR) by CT-TGV at 20% random 

and radial sampling ratios 
 

MR 

Image 

TVCMRI RecPF FCSA FNTV FNSISTRA 

 

Random 

Subsampling 

 

 

Brain 9.44 8.88 7.85 4.66 0.86 

Cardiac 6.08 5.40 4.28 2.12 0.82 

Artery 10.94 9.66 6.03 2.43 0.53 

Chest 8.03 7.64 7.39 4.86 0.80 

 

Radial  

Subsampling 

  

Brain 9.80 8.95 7.50 4.26 0.74 

Cardiac 8.92 6.50 4.44 2.73 0.51 

Artery 8.93 6.88 6.30 1.73 0.42 

Chest 8.98 7.39 6.42 4.21 0.48 
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Figure 3.34 The performance of different methods with random subsampling for cardiac and 

brain images 
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Figure 3.35 The performance of different algorithms with radial subsampling for cardiac and 

brain images 
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Figure 3.36 The performance of different algorithms with random subsampling for artery and 

chest images 
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Figure 3.37 The performance of different algorithms with radial subsampling for artery and chest 

images 
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Figure 3.38 Reconstruction of brain image from 20 % random subsampling. a) Original, b) 

TVCMRI, c) RecPF, d) FCSA, e) FNTV, f) FNSISTRA, and g) CT-TGV 
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Figure 3.39 Reconstruction of cardiac image from 20 % random subsampling. a) Original, b) 

TVCMRI, c) RecPF, d) FCSA, e) FNTV, f) FNSISTRA, and g) CT-TGV 
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3.2.2. CS-NLTV 

We evaluate the proposed CS-NLTV method here. For realization of the method we used 

curvelab implementation [83] to obtain curvelet coefficients because of the fast implementation. 

Figures 3.40 and 3.41 show the SNR plots for methods under comparison, SNR values are 

measured for various subsampling ratios, in random subsampling type. As it follows from the 

plots, the proposed CS-NLTV method has achieved a better performance for both types of 

subsampling.  

 

 

Figure 3.40 Performance of methods with random variable subsampling for cardiac and brain 

images. 
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Figure 3.41 Performance of methods with random variable subsampling for cardiac and brain 

images. 

 

 

 

 

 

 

 

 

 

 



123 
 
 

3.2.3. SS-NLTV 

We evaluate the proposed SS-NLTV method here. For realization of the method we used 

shearlab [84] to obtain shearlet coefficients because of the fast implementation. 

Figures 3.42 - 3.45 show the SNR plots for methods under comparison, SNR values are 

measured for various subsampling ratios, in radial and random subsampling types. As it follows 

from the plots, the proposed SS-NLTV method has achieved a better performance for both types 

of subsampling. We demonstrate the reconstruction results for brain and cardiac image with 

random subsampling in Figures 3.46 and 3.47, respectively. Table 3.14 shows improvement of the 

average SNRs by SS-NLTV and five reference methods evaluated under random variable and 

radial subsampling at 20% subsampling ratios. The number of repeated experiments for computing 

the average SNRs is 10. The improvement of the quality of reconstruction by the proposed SS-

NLTV method over a best among the reference methods that is by FNSISTRA is between 0.84 

and 1.30 db. The superior performance of SS-NLTV is derived from utilization of nonlocal total 

variation which locates sharper edges and suppresses artifacts; and it is due to the exceptional 

spatial localization and directional selectivity of the shearlet transform.  
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Table 3.14 Improvement of the average signal to noise ratios (SNR) by SS-NLTV at 20% 

random and radial sampling ratios 

  
MR 

Image 

TVCMRI RecPF FCSA FNTV FNSISTRA 

 

Random 

Subsampling 

 

 

Brain 9.94 9.38 8.35 5.16 1.30 

Cardiac 6.49 5.81 4.69 2.53 1.23 

Artery 11.57 10.29 6.66 3.06 1.16 

Chest 8.27 7.88 7.63 5.10 1.04 

 

Radial  

Subsampling 

  

Brain 10.15 9.30 7.85 4.81 1.09 

Cardiac 9.35 6.93 4.87 3.16 0.94 

Artery 9.35 7.30 6.72 2.15 0.84 

Chest 9.42 7.83 6.86 4.65 0.92 
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Figure 3.42 Performance of methods with random variable density subsampling for cardiac and 

brain images 
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Figure 3.43 Performance of methods with radial subsampling for cardiac and brain images 
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Figure 3.44 Performance of methods with random variable density subsampling for artery and 

chest images 
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Figure 3.45 Performance of methods with radial subsampling for artery and chest images. 
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Figure 3.46 Reconstruction of brain image from 20 % random subsampling. a) Original, b) 

TVCMRI, c) RecPF, d) FCSA, e) FNTV, f) FNSISTRA, and g) SS-NLTV 
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Figure 3.47 Reconstruction of cardiac image from 20 % random subsampling. a) Original, b) 

TVCMRI, c) RecPF, d) FCSA, e) FNTV, f) FNSISTRA, and g) SS-NLTV 
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 CHAPTER 4- CONCLUSTIONS 

Sparse signal reconstruction is used in medical imaging for achieving a higher efficiency 

of modern medical image modalities. However, the data reduction affects the quality of 

reconstructed signals. Medical, security, inspection, and non-destructive testing applications 

demand on high efficiency methods.  

In this work, two major sparse signal reconstruction systems such as compressed sensing 

magnetic resonance imaging (MRI) and sparse-view computed tomography (CT) have been 

investigated. Both imaging modalities are complementary to each other and provide powerful 

means for medical diagnostics.  However, they are expensive for both patients and insurance 

companies, and improving their performance is of a paramount importance.  Although a significant 

contribution to this field has been done by research community, the efforts on improving the 

accuracy while reducing the cost are ongoing. In this work, we have contributed to the field by 

developing a number of high efficiency signal reconstruction techniques for sparse CT and MRI 

reconstruction.    

Three CT reconstruction methods are proposed: algebraic iterative reconstruction-

reprojection (AIRR), sparse-view CT reconstruction using curvelet and total variation based 

regularization (CTV), and sparse-view CT reconstruction based on nonconvex L1-L2 

regularization.  

The AIRR coupled with the shearlet regularization in image space achieves a better 

estimation in the projection space and achieved a better performance based on subjective and 

objective quality metrics.  A unique combination of the curvelet regularizer and TV in the CTV 

method has led to the considerable improvement of the reconstruction quality. The Split-Bregman 
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(augmented Lagrangian) approach has been used as a solver which made it easy to incorporate 

multiple regularization terms including one based on the multiresolution transformation. Also, we 

propose a new nonconvex, Lipschitz continuous and non-smooth regularization model. 

Nonconvex L1-L2 CT method is formulated as a nonconvex constrained L1- L2 minimization 

problem and solved through a difference of convex algorithm and alternating direction of 

multiplier method which generates a better result than L0 or L1 regularizers in the CT 

reconstruction.  

The neutron-photon tomography has been studied based on Monte-Carlo modelling to 

demonstrate shape reconstruction, material discrimination and visualization based on the proposed 

material signatures.  3D object reconstruction and material discrimination methods are proposed 

in sparse-view Neutron-Photon computed tomography (The scenes modelled using MCNP). A 

novel 2D signature based method is proposed for material discrimination in Neutron-Photon CT. 

Based on the proposed 2D signature for material identification, we have created the material 

library. 

Three methods are proposed and evaluated: CT-TGV method exploits adaptively curvelet 

transform (CT) and total generalized variation (TGV) regulaizers. CS-NLTV method employs 

curvelet sparsity (CS) and nonlocal total variation (NLTV) regularization. SS-NLTV uses shearlet 

sparsity (SS) and nonlocal total variation (NLTV) regularization. In the three proposed methods, 

we have explored a novel approach of combining alternating direction method of multipliers 

(ADMM), splitting variables technique, and adaptive weighting to solve the formulated 

optimization problem. The results of the reconstruction obtained by the proposed methods on 
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different medical MRI datasets demonstrate a significant improvement of image reconstruction 

quality compared to the state-of-the-art methods. 
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