Neuroscientists decode brain speech signals into written text

Study funded by Facebook aims to improve communication with paralysed patients

The study recording brain signals sent to trigger organ movement is considered a breakthrough.
The study recording brain signals sent to trigger organ movement is considered a breakthrough. Photograph: yacobchuk/Getty/iStockphoto

When Stephen Hawking wanted to speak, he chose letters and words from a synthesiser screen controlled by twitches of a muscle in his cheek.

But the painstaking process the cosmologist used might soon be bound for the dustbin. With a radical new approach, doctors have found a way to extract a person’s speech directly from their brain.

The breakthrough is the first to demonstrate how a person’s intention to say specific words can be gleaned from brain signals and turned into text fast enough to keep pace with natural conversation.

In its current form, the brain-reading software works only for stock sentences it has been trained on, but scientists believe it is a stepping stone towards a more powerful system that can decode in real time the words a person intends to say.

Doctors at the University of California in San Francisco took on the challenge in the hope of creating a product that allows paralysed people to communicate more fluidly than using existing devices that pick up eye movements and muscle twitches to control a virtual keyboard.

“To date there is no speech prosthetic system that allows users to have interactions on the rapid timescale of a human conversation,” said Edward Chang, a neurosurgeon and lead researcher on the study published in the journal Nature Communications.

The work, funded by Facebook, was possible thanks to three epilepsy patients who were about to have neurosurgery for their condition. Before their operations went ahead, all three had a small patch of tiny electrodes placed directly on the brain for at least a week to map the origins of their seizures.

During their stay in hospital, the patients, all of whom could speak normally, agreed to take part in Chang’s research. He used the electrodes to record brain activity while each patient was asked nine set questions and asked to read a list of 24 potential responses.

With the recordings in hand, Chang and his team built computer models that learned to match particular patterns of brain activity to the questions the patients heard and the answers they spoke. Once trained, the software could identify almost instantly, and from brain signals alone, what question a patient heard and what response they gave, with an accuracy of 76% and 61% respectively.

“This is the first time this approach has been used to identify spoken words and phrases,” said David Moses, a researcher on the team. “It’s important to keep in mind that we achieved this using a very limited vocabulary, but in future studies we hope to increase the flexibility as well as the accuracy of what we can translate.”

Though rudimentary, the system allowed patients to answer questions about the music they liked; how well they were feeling; whether their room was too hot or cold, or too bright or dark; and when they would like to be checked on again.

Despite the breakthrough, there are hurdles ahead. One challenge is to improve the software so it can translate brain signals into more varied speech on the fly. This will require algorithms trained on a huge amount of spoken language and corresponding brain signal data, which may vary from patient to patient.

Another goal is to read “imagined speech”, or sentences spoken in the mind. At the moment, the system detects brain signals that are sent to move the lips, tongue, jaw and larynx – in other words, the machinery of speech. But for some patients these signals may not suffice, and more sophisticated ways of reading sentences in the brain will be needed.

While the work is still in its infancy, Winston Chiong, a neuroethicist at UCSF who was not involved in the latest study, said it was important to debate the ethical issues such systems might raise in the future. For example, could a “speech neuroprosthesis” unintentionally reveal people’s private thoughts?

Chang said that decoding what someone was trying to say was hard enough, and that extracting their inner thoughts was virtually impossible. His device only works thoughts are turned into signals to drive muscles involved in speech.

“I have no interest in developing a technology to find out what people are thinking, even if it were possible,” he said. “But if someone wants to communicate and can’t, I think we have a responsibility as scientists and clinicians to restore that most fundamental human ability.”

A civil conversation…

… has never been more important in American public life. Guardian journalism, driven by fact-based reporting, offers an independent voice of reason at a time when the national conversation is divisive and embittered. At a time of acrimony, America is in need of public civility. For 200 years Guardian journalism has been committed to giving expression to hope, not hate, and choosing fairness over fear.

More people are reading and supporting The Guardian’s independent, investigative journalism than ever before. And unlike many news organisations, we have chosen an approach that allows us to keep our journalism accessible to all, regardless of where they live or what they can afford. But we need your ongoing support to keep working as we do.

The Guardian will engage with the most critical issues of our time – from the escalating climate catastrophe to widespread inequality to the influence of big tech on our lives. At a time when factual information is a necessity, we believe that each of us, around the world, deserves access to accurate reporting with integrity at its heart.

Our editorial independence means we set our own agenda and voice our own opinions. Guardian journalism is free from commercial and political bias and not influenced by billionaire owners or shareholders. This means we can give a voice to those less heard, explore where others turn away, and rigorously challenge those in power.

We need your support to keep delivering quality journalism, to maintain our openness and to protect our precious independence. Every reader contribution, big or small, is so valuable. Support The Guardian from as little as $1 – and it only takes a minute. Thank you.