

HUMAN HEALTH | ENVIRONMENTAL HEALTH

Flat Panel Detector Technology

F. Ghelmansarai 08/14/2009

Topics of Discussion

- Introduction
 - Technical history
 - How it works
- Description of the main components of a-Si FPDs
 - Scintillator
 - a-Si panel
 - Read-out electronics
 - Image calibration/correction
- Direct and indirect FPDs
- Applications of FPDs
- FPD performance comparison vs other X-ray detectors / technologies
- Conclusions

Technical History

- Idea of flat panel detectors (FPDs) derived from the LCD monitor screens
 - used thin film transistor switches to illuminate sequential pixels on LCD screen
 - arranged in a 2-D array on a glass substrate
 - charge is sent to a pixel of interest to make it glow. Reverse happens for indirect FPDs
- Photodiode arrays are predecessors to FPDs. Use of semiconductors as photo-detectors or as a switch for read out, started with photodiode arrays.
- A layer of X-ray sensitive scintillator is placed over the Si photodiode. This combination is called Linear Diode Array (still popular in some applications like baggage inspection).
- Charge Coupled Devices (CCDs) with scintillator layer were next optical sensors used for X-ray detection. CCD technology could not make large area image sensors.
- ➤ CMOS with scintillator layer is similar to CCDs x-ray detectors (with a difference in readout mechanism). Both CCD and CMOS are susceptible to radiation damage.
- FPDs are using amorphous materials
 - construction of large area sensors possible
 - very resistant to radiation damage

HUMAN HEALTH [BNWRÖRRERTAL HEALT

Scintillator absorbs X-Ray photons and converts them to light.

Photodiode array absorbs light and converts it into an electronic charge. Each photodiode represents a pixel or picture element.

Charge at each pixel is read out by lownoise electronics.

Main Components of a-Si FPD =

Properties of Scintillators

HUMAN KEALTH [ENMRONNERTAL HEALT

- Converts x-rays to light
- Scintillators used in many X-ray detectors including Image intensifiers, linear diode array, x-ray Vidicon, and a-Si flat panels.
- Main properties of scintillators influencing in imaging system performance are:
 - a) Conversion Efficiency
 - X-ray quantum efficiency
 - Light conversion per X-ray photon
 - b) MTF / spatial resolution
 - c) Light output spectrum
 - d) Light decay / after glow
- ► CsI:Tl and Gd_2o_2S :Tb (Gadox) are mainly used in the FPDs.

Vapor grown

- Grows with needle structure
- ➤ TI doped for green emission

Scintillator: Gadox Options for KV and MV Applications

- Fine particles (powder) deposited on a substrate
- Used for MV and KV X-ray imaging
- Application and system requirements determine the scintillator type.

No	Scintillator	Normalized Sensitivity@ 70kV
1	Kodak Lanex Fast	1.00
2	Kodak Lanex Fine	0.15
3	AGFA 1070mg/cm ²	1.12
4	AGFA 1240mg/cm ²	1.16
5	AGFA 2770mg/cm ²	1.27
6	AGFA 2970mg/cm ²	1.23
7	AGFA CurixRed	1.13
8	Kyokko DRZ_High	1.43
9	Kyokko DRZ_Plus	1.02
10	Kyokko DRZ_Std	0.82
11	Kyokko Pl200	1.42
12	AST Inspex_HE	1.29
13	AST SecureX HB	1.16
14	AST Inspex_M	1.29
15	AST MedeX Portal	1.74

Commercial Gadox Screen Evaluation: Presented in AAPM 2007

Scintillator: Cover and high energy build up plate

- Cover
 - Used to seal the scintillator and panel array elements
 - Must be:
 - Hermetic for Csl
 - x-ray transmissive
 - match coefficient of thermal expansion of substrate
- High energy / MV build up plate
 - Generates high speed electrons to increase sensitivity
 - Reduce X-ray scatter

Structure of a-Si Flat Panel Detector

- Flat panel detector is fabricated in large sizes using thin film technology on glass panels.
- Contains arrays of pixels.
- Each pixel consists of an a-Si photodiode connected to a TFT.
- a-Si photodiodes are sensitive to visible light
- Generated charges are transferred to readout circuits by TFT.

a-Si Panel: Readout Electronics

Panel readout

- Scan line activated and FET is turned on. Photodiode is charged.
- Scan line deactivated and FET is turned off (Scan lines are turned on sequentially).
- Light creates electron-hole pairs in photodiode (partially discharge).
- For turned-on row, all photodiodes are re-charged in parallel and amount of charges for each diode transferred by data lines to readout electronics.
- Amount of discharge is measured by readout electronics.

Pipe-lined Readout

- Contains three simultaneous processes.
- ➤ The longest process dictates the scan line time.

Detector after row/column bonding and housing

a-Si flat panel with read-out electronics

a-Si detector after housing

Calibration / Correction

- Difficulties caused by amorphous silicon compared to single-crystal silicon
 - 100 to 1000 x increase in defects
 - mobility reduced by ~ 1000 x (affects switching speeds)
 - defects give rise to complicated lag and offset behaviors
- Difficulties are overcome by
 - calibration
 - careful management of detector timing for all applications
- Calibration Images
 - Offset: corrects for the dark current of each pixel
 - Gain: homogenize differences in pixel sensitivities and X-ray beam non-uniformity
 - Bad pixel map: software correction of defective pixels

Offset Image

Gain Image

BPM Image

Calibration /Correction (cont.)

Fully Corrected Flat Field Image

Direct and Indirect FPDs

- Indirect a-Si FPD construction was needed due to inefficient absorption of x-rays by silicon. But some materials like Selenium have much better stopping power. Se also has photo-conductive properties. This resulted in construction of Direct type FPD.
- On absorption of x-ray energy, a-Se produces charge pairs.
- No separate scintillator is required.
- With a bias voltage, electron and holes travel to respective electrodes. TFT structure is similar to indirect type and storage capacitor for each pixel is provided.

- Lateral spread of light is absent for a-Se FPD (there is no scintillator). The resolution is determined by pixel geometry.
- Se has a limited stopping power and therefore it mainly used for low energy X-ray (up to about 100 150 kV).
- At higher X-ray energy, Se layer thickness would become impractically thick. Hence, alternative materials like CdTe, Hgl₂ and Pbl₂ are being explored as they have better stopping power.

Detective Quantum Efficiency (DQE): measure of image quality

- DQE measures the transfer of signal and noise for a detector
- DQE defined as:

$$DQE = \frac{SNR^2 \text{ at detector output}}{SNR^2 \text{ at detector input}}$$

SNR = signal to noise ratio

DQE(f) is used as object-independent indicator of detector contrast to noise ratio performance.

Applications of a-Si FPDs

- Medical
 - Diagnostic X-ray imaging
 - Radiography
 - Human
 - Veterinary
 - Fluoroscopy
 - Cardiovascular (cardiac catheterization, angiography)
 - Surgery (Surgical C-arms)
 - Gastrointestinal
 - Mammography
 - Radiation Oncology
 - Simulation CBCT
 - Image guided radiation therapy
 - Radio surgery
 - Proton Therapy
 - Dental
 - Cone Beam CT and Panoramic
 - Biomedical Tissue Characterization
- Industrial NDT
 - Dynamic Imaging
 - Static Imaging

Medical Diagnostics Systems

Medical Customer Benefits

Radiography & Mammography Clinical

New Applications

Computer Aided Det.

Dose 😎

Exam Time \checkmark

Film/Chemical Cost 🕕

Productivity

Fluoroscopy

Image Quality

Radiation Therapy

Image Quality Dose 💛 **New Applications Effective Treatment**

Patient Positioning Time

Industrial NDT Applications and Benefit of Using FPDs

Dynamic Imaging

- Microelectronics inspection (2D and 3D CBCT imaging)
 - Wide dynamic range and bit depth: detect tiny voids in µBGA and lack of solder wetting.
 - Large SNR: Low dose 2D and 3D Cone Beam CT
 - Large area detector: enables large PCB inspection
 - Fast frame rate: real time imaging and faster CBCT acquisitions
 - High quality CBCT with improved contrast, less noise and reconstruction artifacts
- Welding inspection
 - Wide dynamic range and bit depth
 - Large SNR
 - High quality low dose imaging (Increase efficiency and decrease re-work time, reduce operator exposure dose)
 - Maintaining high image quality at Wide range of X-ray energies for various pipe sizes/thicknesses
 - X-ray energy range from kV to MV
- Casting inspection
- X-ray Crystallography
- Neutron Imaging
- Metrology
- Wheel inspection

Industrial NDT Applications and Benefit of Using FPDs

Static Imaging

- Low performance film replacement applications in Portable security, Field pipeline inspection, Composite structure (Aerospace, Automotive)
 - Higher dynamic range and bit depth
 - High SNR
 - Excellent image quality
 - Compensate the aging of isotopic radiation source
 - Potential of replacing isotopic sources with low power/low energy portable X-ray source
 - Higher productivity
 - Faster image acquisition and processing (shorter exposure time and no developing need)
 - Increase efficiency and decrease re-work time. On-site image analysis
 - Maintaining high image quality at Wide range of X-ray energies for various applications
 - Increased operator safety: Significant reduction in exposure time and exposure dose
 - Environmentally friendly (no use of chemical).

Industrial Customer Benefits

Productivity

Image acquisition time 😎

Image quality

Static Imaging

Image processing time 🔱

Dose \checkmark

Operator safety

End User care

On-site image analysis 🕕

Efficiency 1

New applications

Dynamic Imaging

Efficiency

New applications

2-D Image Quality

3-D Image Quality

Dose \checkmark

New Advanced Applications

- Medical
 - Diagnostic X-ray
 - Digital Tomosynthesis
 - Dual energy subtraction / Energy resolved method
 - Will have applications in NDT such as baggage inspection
 - Multi-modality imaging
 - Breast digital subtraction angiography
 - Replacing fan beam CT with Cone beam CT using FPD (like dental CBCT)
 - Radiation therapy
 - Image guided radiation therapy
 - Dose guided radiation therapy / Linear accelerator physics QA
 - Radio-surgery

Imaging Technology Comparisons

- Dynamic Imagining
 - FPD vs X-ray Image Intensifier (II)
- Static Imaging
 - FPD vs Computed Radiography (CR)
 - FPD vs Film

Performance Comparison: FPD vs II

System Simplification

Performance Comparison: FPD vs II (cont.)

Geometrical distortion of II

Comparison of geometrical distortion and brightness non-uniformity between a 12 inch image intensifier and 8 inch flat panel detector.

Vignetting of II

Performance Comparison: FPD vs II (cont.)

Image format

- Veiling glare of II
- Blooming of II
- Size / weight
- FPD distortion free and not subject to magnetic fields due to moving metal parts
- Image Lag

HUMAN HEALTH FENVIRONALENTAL HEALT

Protective Layer

Phosphor Layer

Support

Performance Comparison: FPD vs CR

a-Si FPD	CR
Higher DQE. Better image quality at lower radiation dose	Lower DQE
Higher dynamic range	Lower dynamic range
Static and real time dynamic imaging	Static imaging only (no dynamic/real time applications). Require manual processing.
Capable of Fluoro, CBCT, and advanced applications	No potential for advanced application
Higher productivity	Lower productivity
Higher cost	Lower cost

Performance Comparison: FPD vs Film

- Film is very similar to CR (except film is used in place of phosphor plate)
- Film has the same disadvantages of CR plus it requires dark room and chemical for developing film

Comparison of visibility of wire type IQIs according to EN 462-1 for film (left) and FPD (right) at 8mm wall thickness. The higher SNR of the FPD allows to detect the wire W19 (50 µm diameter) at a pixel size of 200µm.

Performance Comparison: FPD vs Film (cont.)

System Simplification

Conclusions

- FPDs are digital detectors used in medical and industrial NDT applications and are replacing existing film, CR, and II technologies.
- FPDs benefits are increased productivity and better end user care compared to other technologies.
- Higher quality of FPDs resulted in new application development in X-ray imaging.
- Flat panel technology is the clear long term solution for most X-ray applications.

Thank You

References:

- 1. Baim DS, *Grossman's Cardiac Catheterization, Angiography, and Intervention*, Lippincott Williams & Wilkins; Seventh Edition.
- 2. Seibert JA, *Flat-panel detectors: how much better are they?*, Department of Radiology, University of California Davis Medical Center, http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2663651
- 3. Zscherpel U, *Possibilities and Limits of Digital Industrial Radiology,* International Symposium on Digital industrial Radiology and Computed Tomography, June 25-27, 2007.
- 4. Wang J Blackburn TJ, 'X-ray Image Intensifiers for Fluoroscopy The AAPM/RSNA Physics Tutorial for Residents Vol 20 (5).