FANDOM


Epsilon Array Notation Edit

Definition Edit

Use the operator :=:= to represent assignment of equality, and :∈: to represent assignment of membership (i.e., assigning the property of set membership to an object)

Create a set ArAr: 0:∈Ar[A]:∈ArAAr[A1,A2]:∈ArA1,A2Ar0:Ar[A]:ArAAr[A1,A2]:ArA1,A2Ar

Create a set Ar2Ar2: [0]:∈Ar2[A]:∈Ar2AAr2[A1,A2]:∈Ar2A1,A2Ar2[0]:Ar2[A]:Ar2AAr2[A1,A2]:Ar2A1,A2Ar2

Create a set BrBr: [A]:∈BrAAr2[A1,A2]:∈BrA1,A2Br[A]:BrAAr2[A1,A2]:BrA1,A2Br

Define (A,n)(A,n): (A,1):=A(A,n+1):=[(A,n),A](A,1):=A(A,n+1):=[(A,n),A]

Define Reduce(A,n)Reduce(A,n): Reduce([A1,A2],n):=Reduce([A1,Reduce(A2,n)],n)A1,A2BrReduce([[A,[0]]],n):=Reduce(([A],n),n)AArReduce([A],n):=Reduce([Reduce(A,n)],n)ABrReduce(A,n):=AAAr¬ABrReduce([A1,A2],n):=Reduce([A1,Reduce(A2,n)],n)A1,A2BrReduce([[A,[0]]],n):=Reduce(([A],n),n)AArReduce([A],n):=Reduce([Reduce(A,n)],n)ABrReduce(A,n):=AAAr¬ABr

Define εm(A,n)εm(A,n): ε1(0,n):=n+1ε1([A,[0]],n):=εn(A,n)AArε1(A,n):=ε1(Reduce(A,n),n)ABrεm+1(A,n):=ε1(A,εm(A,n))ε1(0,n):=n+1ε1([A,[0]],n):=εn(A,n)AArε1(A,n):=ε1(Reduce(A,n),n)ABrεm+1(A,n):=ε1(A,εm(A,n))

ε(A,n):=ε1(A,n)

Explanation Edit

Explanation here later

Analysis Edit

ε(0,n)f(0,n)ε([0],n)f(1,n)ε([[0],[0]],n)f(2,n)ε([[[0],[0]],[0]],n)f(3,n)ε([[0]],n)f(ω,n)ε([[[0]],[0]],n)f(ω+1,n)ε([[[[0]],[0]],[0]],n)f(ω+2,n)ε([[[[[0]],[0]],[0]],[0]],n)f(ω+3,n)ε([[[0]],[[0]]],n)f(ω2,n)ε([[[[0]],[[0]]],[0]],n)f(ω2+1,n)ε([[[[[0]],[[0]]],[0]],[0]],n)f(ω2+2,n)ε([[[[0]],[[0]]],[[0]]],n)f(ω3,n)ε([[[[[0]],[[0]]],[[0]]],[0]],n)f(ω4,n)ε([[[0],[0]]],n)f(ω2,n)ε([[[[0],[0]],[0]]],n)f(ω3,n)ε([[[0]]],n)f(ωω,n)ε([[[[0]]],[0]],n)f(ωω+1,n)ε([[[[0]]],[[0]]],n)f(ωω+ω,n)ε([[[[0]]],[[[0]]]],n)f(ωω2,n)ε([[[[0]]]],n)f(ωωω,n)ε([[[[[0]]]]],n)f(ωωωω,n)

Community content is available under CC-BY-SA unless otherwise noted.