Dynamic Vectorization in the E2 Dynamic Multicore

Architecture
To appear in the proceedings of HEART 2010

Andrew Putnam
Microsoft Research

ABSTRACT

Previous research has shown that Explicit Data Graph Exe-
cution (EDGE) instruction set architectures (ISA) allow for
power efficient performance scaling. In this paper we de-
scribe the preliminary design of a new dynamic multicore
processor called E2 that utilizes an EDGE ISA to allow for
the dynamic composition of physical cores into logical pro-
cessors. We provide details of E2’s support for dynamic re-
configurability and show how the EDGE ISA facilities out-
of-order vector execution.

Categories and Subject Descriptors

C.1.2 [Computer Systems Organization]: Multiple Data
Stream Architectures—single-instruction-stream, multiple-
data-stream processors (SIMD), array and vector proces-
sors; C.1.3 [Computer Systems Organization]: Other Ar-
chitecture Styles—adaptable architectures, data-flow archi-
tectures

General Terms
Design, Performance

Keywords
Explicit Data Graph Execution (EDGE)

1. INTRODUCTION

Chip designers have long relied on dynamic voltage and

frequency scaling (DVES) to trade off power for performance.

However, voltage scaling no longer works as processors ap-
proach the minimum threshold voltage (V,,,;,) as frequency
scaling at V,,,;, reduces both power and performance lin-
early, achieving no reduction in energy. Power and perfor-
mance trade-offs are thus left to either the microarchitecture
or the system software.

When designing an architecture with little (if any) DVFS,
designers must choose how to spend the silicon resources.
Hill and Marty [6] described four ways that designers could
use these resources: (1) many small, low performance, power
efficient cores, (2) few large, power inefficient, high per-
formance cores, (3) a heterogeneous mix of both small and
large cores, and (4) a dynamic architecture capable of com-
bining or splitting cores to adapt to a given workload. Of
these alternatives, the highest performance and most energy
efficient design is the dynamic architecture. Hill and Marty
characterized what such a dynamic processor could do but
did not describe the details of such an architecture.

Aaron Smith
€ Microsoft Research
anputnam@microsoft.com aasmith@microsoft.com

Doug Burger
Microsoft Research
dburger@microsoft.com

TFlex [9] is one proposed architecture that demonstrated a
large dynamic range of power and performance by combin-
ing power efficient, lightweight processor cores into larger,
more powerful cores through the use of an Explicit Data
Graph Execution (EDGE) instruction set architecture (ISA).
TFlex is dynamically configurable to provide the same per-
formance and energy efficiency as a small embedded proces-
sor or to provide the higher performance of an out-of-order
superscalar on single-threaded applications.

Motivated by these promising results, we are currently
designing a new dynamic architecture called E2 that uti-
lizes an EDGE ISA to achieve high performance power effi-
ciently [3]. The EDGE model divides a program into blocks
of instructions that execute atomically. Blocks consist of a
sequence of dataflow instructions that explicitly encode re-
lationships between producer-consumer instructions, rather
than communicating through registers as done in a conven-
tional ISA. These explicit encodings are used to route operands
to private reservation stations (called operand buffers) for
each instruction. Registers and memory are only used for
handling less-frequent inter-block communication.

Prior dynamic architectures [7, 9] have demonstrated the
ability to take advantage of task and thread-level parallelism,
but handling data-level parallelism requires dividing data into
independent sets and using thread-level parallelism. In this
paper we focus on efficiently exploiting data-level parallelism,
even without threading, and present our preliminary vector
unit design for E2. Unlike previous in-order vector ma-
chines, E2 allows for out-of-order execution of both vectors
and scalars.

The E2 instruction set and execution model supports three
new capabilities that enable efficient vectorization across a
broad range of codes. First, by slicing up the statically pro-
grammed issue window into vector lanes, highly concurrent,
out-of-order issue of mixed scalar and vector operations can
be achieved with lower energy overhead than scalar mode.
Second, the statically allocated reservation stations permit
the issue window to be treated as a vector register file, with
wide fetches to memory and limited copying between a vec-
tor load and the vector operations. Third, the atomic block-
based model in E2 permits refreshing of vector (and scalar)
instruction blocks mapped to reservation stations, enabling
repeated vector operations to issue with no fetch or decode
energy overhead after the first loop iteration. Taken together,
these optimizations will reduce the energy associated with
finding and executing many sizes of vectors across a wide
range of codes.

Control

Instruction
Window
32 x 54b

Operand Operand S
Buffer Buffer 2 [0-15]

32 x 64b 32 x 64b 16 x 64b

Registers

L2 L2

Instruction

Instruction
11 Window
32 x 54b

HE-JEEa" - --

Operand Operand Registers
Buffer Buffer [16-31]
32 x 64b 32 x 64b 16 x 64b

L2 L2

Cache === = =

- JRE-dFE=" -] - -

Core 32 KB

Core

Instruction
Window
32 x 54b

Operand
Buffer
32 x 64b

Operand
Buffer
32 x 64b

Registers
[32-47]
16 x 64b

L2 L2

Core

I e R

Core

Branch

| Instruction
Window

32 x 54b

L2 L2

Predictor

Operand
Buffer
32 x 64b

Operand
Buffer
32 x 64b

Load/Store
Queue

y aueq * g€ aueq g aue] "Tauel”

Registers
[48-63]
16 x 64b

Memory L1 Data Cache
Interface

Controller

32KB

Figure 1: E2 microarchitecture block diagram. In vector mode, each core is composed of four independent vector lanes,
each with a 32-instruction window, two 64-bit operand buffers, an ALU for both integer and floating point operations,
and 16 registers. In scalar mode, the ALUs in lanes 3 and 4 are powered down, and the instruction windows, operand
buffers, and registers are made available to the other two lanes.

2. THE E2 ARCHITECTURE

E2 is a tiled architecture that consists of low power, high
performance, decentralized processing cores connected by
an on-chip network. This design provides E2 with the bene-
fits of other tiled architectures - namely simplicity, scalabil-
ity, and fault tolerance. Figure 1 shows the basic architecture
of an E2 processor containing 32 cores, and a block diagram
of the internal structure of one physical core.

A core contains N lanes (in this paper we choose four),
with each lane consisting of a 64-bit ALU and one bank
of the instruction window, operand buffers, and register file.
ALUs support both integer and floating point operations, as
well as fine-grained SIMD execution (eight 8-bit, four 16-
bit, or two 32-bit integer operations per cycle, or two single-
precision floating point calculations per cycle). This innova-
tion of breaking the window into lanes allows for high vector
throughput with little additional hardware complexity.

E2’s EDGE ISA restricts blocks in several ways to sim-
plify the hardware that maps blocks to the execution sub-
strate and detect when blocks are finished executing. Blocks
are variable-size: they contain between 4 and 128 instruc-
tions and may execute at most 32 loads and stores. The hard-
ware relies on the compiler to break programs into blocks
of dataflow instructions and assign load and store identifiers
to enforce sequential memory semantics [12]. To improve
performance, the compiler uses predication to form large
blocks filled with useful instructions. To simplify commit,
the architecture relies on the compiler to ensure that a sin-
gle branch is produced from every block, and to encode the
register writes and the set of store identifiers used.

E2 cores operate in two execution modes: scalar mode
and vector mode. In scalar mode, any instruction can send
operands to any other instruction in the block, and all but

two of the ALUs are turned off to conserve power. In vec-
tor mode, all N ALUs are turned on, but instructions can
only send operands to instructions in the same vector lane.
The mode is determined on a per-block basis from a bit in
the block header. This allows each core to adapt quickly to
different application phases on a block-by-block basis.

2.1 Composing Cores

One key characteristic that distinguishes E2 from other
processors is the ability to dynamically adapt the architec-
ture for a given workload by composing and decomposing
cores. Rather than fixing the size and number of cores at de-
sign time, one or more physical cores can be merged together
at runtime to form larger, more powerful logical cores. For
example, serial portions of a workload can be handled by
composing every physical core into one large logical proces-
sor that performs like an aggressive superscalar. Or, when
ample thread-level parallelism is available, the same large
logical processor can be split so each physical processor can
work independently and execute instruction blocks from in-
dependent threads. Merging cores together is called compos-
ing cores, while splitting cores is called decomposing cores.

Logical cores interleave accesses to registers and memory
among the physical cores to give the logical core the com-
bined computational resources of all the composed physical
cores. For example, a logical core composed of two physi-
cal cores uses an additional bit of the address to choose be-
tween the two physical caches, effectively doubling the L1
cache capacity. The register files are similarly interleaved,
but since only 64 registers are supported by the ISA, the
additional register file capacity is powered gated to reduce
power consumption.

Each instruction block is mapped to a single physical pro-

cessor. When composed, the architecture uses additional
cores to execute speculative instruction blocks. When the
non-speculative block commits, it sends the commit signal
along with the exit branch address to all other cores in the
logical processor. Speculative blocks on the correct path
continue to execute, while blocks on non-taken paths are
squashed. Details of this process are discussed further in
section 2.2.1.

Core composition is done only when the overhead of chang-
ing configurations is outweighed by the performance gains
of a more efficient configuration. Composition is always
done at block boundaries and is initiated by the runtime sys-
tem. To increase the number of scenarios in which composi-
tion is beneficial, E2 provides two different ways to compose
cores, each offering a different trade-off in overhead and ef-
ficiency.

Full composition changes the number of physical cores
in a logical core, and changes the register file and cache
mappings. Dirty cache lines are written out to main mem-
ory lazily. Logical registers and cache locations are dis-
tributed evenly throughout the physical cores. Cache lines
are mapped via a simple hash function, leading to a larger
logical cache that is the sum of the cache capacities of all
physical cores.

Quick composition adds additional cores to a logical pro-
cessor, but retains the same L1 data cache and register map-
pings, and does not write dirty cache lines out to main mem-
ory. This leaves the logical processor with a smaller data
cache than possible with full composition, but ensures that
accesses to data already in the cache will still hit after com-
posing. Quick composition is the most useful for short-lived
bursts of activity where additional execution units are use-
ful, but where the overhead of reconfiguring the caches is
greater than the savings from a larger, more efficient cache
configuration.

Decomposition removes physical cores from a logical pro-
cessor and powers the removed cores down to conserve en-
ergy. Execution continues on the remaining physical cores.
Decomposition requires flushing the dirty lines of each cache
being dropped from the logical processor and updating the
cache mapping. Dirty cache lines in the remaining cores are
written back only when a cache line is evicted.

2.2 Speculation

It has long been recognized that speculation is an essential
piece of achieving good performance on serial workloads.
E2 makes aggressive use of speculation to improve perfor-
mance. A combined predicate-branch predictor [5] specu-
lates at two levels. First, it predicts the branch exit address
for each block for speculation across blocks. Second, it pre-
dicts the control flow path within blocks by predicting the
predicate values.

2.2.1 Speculation Across Blocks

Predicting the branch exit address allows instruction blocks
to be fetched and begin executing before the current block
has completed. The oldest instruction block is marked as
non-speculative, and predicts a branch exit address. This ad-
dress is fetched and begins executing on another physical
core in the logical processor or on the same physical core if
there is available space in the instruction window.

The taken branch address often resolves before the block
completes. In this case, the non-speculative block notifies
the other cores in the logical processor of the taken address.

Component Parameters Area (mm?) % Area
Instruction Window 32x54b 0.08 2%
Branch Predictor 0.12 3%
Operand Buffers 32x64b 0.19 5%
ALUs 4 SIMD, Int+FP 0.77 20%
Register File 64 x 64b 0.08 2%
Load-Store Queue 0.19 5%
L1 I-Cache 32kB 1.08 28%
L1 D-Cache 32kB 1.08 28%
Control 0.19 5%
Core 3.87 100%
L2 Cache 4MB 100

Table 1: E2 core components, design parameters, and
area.

The oldest instruction block then becomes the non-speculative
block. Any blocks that were not correctly speculated are
squashed. This taken branch signal differs from the commit
signal. The taken branch allows the next block to continue
speculation and begin fetching new instruction blocks. How-
ever, register and memory values are not valid until after the
commit signal.

2.2.2 Speculation Within a Block

There are three types of speculation within an instruction
block. Predicate speculation uses the combined predicate-
branch predictor to predict the value of predicates. Mem-
ory speculation occurs in speculative blocks when the spec-
ulative block loads values from the L1 cache that may be
changed by less-speculative blocks. Load speculation occurs
when the load-store queue (LSQ) allows loads to execute be-
fore stores with lower load-store identifiers have executed.

In all three cases, mis-speculation requires re-execution of
the entire instruction block. This is relatively lightweight
and only requires invalidating the valid bits in all of the
operand buffers, and re-loading the zero operand instruc-
tions.

2.3 Area and Frequency

We developed an area model for the E2 processor using
ChipEstimate InCyte [4] and an industry-average 65nm pro-
cess technology library. The design parameters and compo-
nent areas are shown in Table 1. Each E2 core requires 3.87
mm?, including L1 caches.

Frequency estimates are not available using our version of
InCyte. However, the microarchitecture does not have any
large, global structures and uses distributed control through-
out the chip. Because of this, we expect that E2 will achieve
a comparable frequency to standard cell ARM multi-core
processor designs, which range from 600 to 1000 MHz in
65nm [2].

3. EXECUTION PIPELINE

E2’s execution is broken into three primary stages: in-
struction fetch, execute, and commit. This section first de-
scribes the behavior of each stage when operating in scalar
mode, then describes the differences between scalar and vec-
tor mode.

3.1 Fetch

One of the primary differences between E2 and conven-
tional architectures is that E2 fetches many instructions at

once, rather than continually fetching single instructions. In-
structions Blocks of up to 128 instructions are fetched from
the L1 instruction cache at a time and loaded into the instruc-
tion window. Instructions remain resident in the window un-
til block commit (or possibly longer, as described in section
3.3.1).

Physical cores support one 128-instruction block, two 64-
instruction blocks, or four 32-instruction blocks in the win-
dow at the same time. Instruction blocks begin with a 128-bit
block header containing: the number of instructions in the
block, flags for special block behavior, and bit vectors that
encode the global registers written by the block and the store
identifiers used. Instructions are 32-bits wide, and generally
contain at least four fields:

e Opcode [9 bits]: The instruction to execute along with
the number of input operands to receive.

e Predicate [2 bits]: Indicates whether the instruction
must wait on a predicate bit, and whether to execute
if that bit is true or false.

e Target 1 [9 bits]: The identifier of the consumer for the
instruction’s result. If the consumer is a register, this
field is the register number. If the consumer is another
instruction, this field contains the consumer’s instruc-
tion number (used as an index into the operand buffer)
and whether the result is used as operand 0, operand 1,
or as a predicate.

o Target 2 / Immediate [9 bits]: Either a second instruc-
tion target, or a constant value for immediate instruc-
tions.

The instruction window is divided into four equal banks
with each bank loading two instructions per cycle. Instruc-
tions that do not require input operands, such as constant
generation instructions, are scheduled to execute immedi-
ately by pushing the instruction number onto the ready queue.

3.2 Execute

Execution starts by reading ready instruction numbers from
the ready queues. Operands, the opcode, and the instruction
target fields are forwarded to either the ALUs, register file
(for read instructions), or the load-store queue (for loads
and stores). The target field is used to route the results (if
any) back to the appropriate operand buffer (or to the regis-
ter file, in the case of writes).

When results are forwarded back to the operand buffers,
the targeted instruction is checked to see which inputs are
required, and which operands have already arrived. If all
operands for the instruction have arrived, the instruction num-
ber is added to the ready queue. Execution continues in this
data-driven manner until the block is complete.

Like other EDGE and dataflow architectures, special han-
dling is required for loads and stores to ensure that memory
operations follow the program order semantics of imperative
language programs. E2 uses the approach described in [10],
where the compiler encodes each memory operation with a
sequence identifier to denote program order that the microar-
chitecture uses to enforce sequential memory semantics.

Not all instructions in a block necessarily execute because
of predication, so the microarchitecture must detect block
completion. Blocks are considered complete when (1) one
(and only one) branch has executed, and (2) all instructions
that modify external state (register writes and stores) have
executed. The compiler encodes the register writes and store

Element Size Minimum (1 ALU) Maximum (4 ALUs)

8-bit 8 32
16-bit 4 16
32-bit

2 (1 single fp) 8 (4 single fp)
1 4

64-bit

Table 2: Supported vector operations

identifiers in the instruction block header so that the microar-
chitecture can identify when criteria (2) is satisfied.

3.3 Commit

During execution, instructions do not modify the architec-
tural state. Instead, all changes are buffered and commit to-
gether at block completion. Once the core enters the commit
phase, the register file is updated with all register writes, and
all stores in the load-store queue are sent to the L1 cache be-
ginning with the lowest sequence identifier. Once all register
writes and stores have committed, the core sends a commit
signal to all other cores in the same logical processor.

3.3.1 Refresh

One important commit optimization, called refresh, occurs
when the instruction block branches back to itself. Rather
than loading the instructions again from the L1 instruction
cache, the instructions are left in place and only the valid
bits in the operand buffers and load-store queues are cleared.
This allows the instruction fetch phase to be bypassed en-
tirely. Instructions that generate constants can also pin val-
ues in the operand buffers so that they remain valid after re-
fresh, and are not regenerated each time the instruction block
executes.

3.4 Vector Mode

Vector mode execution divides each processor core into N
(in this paper 4) independent vector lanes. When operating
in vector mode, instructions can only target other instruc-
tions in the same vector lane, eliminating the need for a full
crossbar between operand buffers and ALUs. Each lane con-
sists of a 32-entry instruction window, two 64-bit operand
buffers, 16 registers, and one ALU.

E2 supports vector operations on 64-bit, 128-bit (padded
to 256-bits), and 256-bit wide vectors. Each ALU supports
eight 8-bit, four 16-bit, or two 32-bit vector operations. Four
ALUs enable E2 to support up to 32 vector operations per
cycle per core. 64-bit vector operations utilize a single ALU,
where as 128- and 256-bit vector operations utilize all four
ALUs. Table 1 lists the number of parallel vector operations
supported for each vector length and data element size.

Instruction blocks containing vector instructions are lim-
ited to 32 instructions which is the size of the instruction
window for each vector lane. Vector instructions issuing in
lane 1 are automatically issued in the other three lanes and
scalar instructions are always assigned to lane 1.

In vector mode, the sixty-four 64-bit physical registers (RO
- R63) are aliased to form sixteen 256-bit vector registers
(VO - V15). We divide the physical register file into four
banks to support single cycle access for vectors.

3.4.1 Memory Access in Vector Mode

E2 cores operate on vectors in 256-bit chunks, which en-
ables efficient exploitation of data-level parallelism on small
and medium-length vectors. Operating on larger vectors is

done using multiple instruction blocks in a loop, using the
efficient refresh mode to bypass instruction fetch and the
generation of constants (section 3.3).

Splitting larger vectors among multiple instruction blocks
could introduce a delay between loads of adjacent chunks
of the same vector, as those loads are split among multiple
instruction blocks. To mitigate this delay, E2 employs a spe-
cialized unit called the memory interface controller (MIC).
The MIC takes over control of the L1 data cache, chang-
ing part of the cache into a prefetching stream buffer [8, 11].
Stream buffers predict the address of the next vector load
and bring that data into the cache early. This ensures that the
vector loads in subsequent instruction blocks always hit in
the L1 cache.

Since vector and scalar operations are mixed in instruction
blocks, part of the cache still needs to operate as a traditional
cache. Rather than halve the size of the cache, the set asso-
ciativity of the cache is cut in half — converting those ways
into the memory for a stream buffer. On vector loads, the
cache checks the stream buffer. On scalar loads and stores,
the cache checks the cache in the same manner, albeit with a
reduced number of sets to check.

Vector store instructions are buffered in the stream buffer
until block commit, at which point they are written directly
out to main memory.

4. EXAMPLE: RGB TO Y CONVERSION

In this section we give an example to explain how a pro-
gram is vectorized on E2. Figure 2 shows the C code and
corresponding vectorized assembly for a RGB to Y bright-
ness conversion which is commonly used to convert color
images to grayscale. Each pixel in an image has a triple
corresponding to the red, green, and blue color components.
Brightness (Y) is computed by multiplying each RGB value
by a constant and summing the three results. This program
can be trivially parallelized to perform multiple conversions
in parallel since each conversion is independent.

4.1 C Source

Each RGB component is represented by a vector and point-
ers to these vectors, along with a pointer to the preallocated
result vector Y, and the number of vectors to convert are
passed to the function as arguments (lines 4-5). The con-
stants for the conversion are also stored in vectors (lines 7-
12). Each vector is 256-bits wide and the individual data
elements are padded to 64-bits since their type is a 32-bit
single precision float. The conversion is done using a simple
for loop (lines 14-16). To simplify the example we do not
unroll the loop to fill the block.

4.2 Assembly

The assembly listing is given in lines 18-51. Instructions
are grouped into blocks by the compiler (one block for this
example) and a new block begins at every label (line 18).
The architecture fetches, executes, and commits blocks atom-
ically. By convention we use Rn to denote scalar registers,
Vn to denote vector registers, and Tn to denote temporary
operands. The scalar and vector registers are part of the
global state visible to every block. The temporary operands
however are only visible within the block they are defined.
The only instructions that can read from the global register
file are register READ instructions (lines 19-27). However,
most instructions can write to the global register file.

O Y Sy G G G
SORXTIOANR LN = ORI R W —

\S}
—

// numVectors > 0

// y = r x .299 + g » .587 + b *

void rgb2y (int numVectors,
__vector float *r, __vector float =xg,
__vector float xb, __vector float =y)

.114;

{

__vector float yr
0.299f, 0.299f

__vector float yg
0.587f, 0.587f

__vector float yb
0.114f, 0.114f

{ 0.299f, 0.299f,

0.587f, 0.587f,

0.114f, 0.114f,

}i
= {
b
= {
}i
(int 1 = 0; 1 < numVectors; i++)

for
y[i] = r[i] » yr + g[i] » yg + b[i] *» yb;

}

_rgb2y:
read
read
read
read
read
read
read
read
read

r3
r4
r5
r6
r7
r8
v0
vl
v2

numVectors
address of
address of next g
address of next b
address of y

// 1

vector yr

vector vyg

vector vb

€30,
£20,
€21,
€22,
t32,
€31,
€1,
3,
€5,

next r

//

// RGB
vl tO,
vl t2,
vl t4,
vimul
vimul
vimul
vfadd
vfadd

to Y conversion
t20 [0]
t21 [1]
t22 [2]
te, tO,
t7, t2,
t8, t4,
t9, te6,
t10, t8,

// vector load

tl
t3
t5
t7
t9

// vector fp mul

/7

vector fp add

// store result in Y
multi t40, t31, #32
add t41, t32, t40
vs 0(t41l), tl0 [3] // vector store

// loop test
tlt tl14, t31,
ret_t<tld>
br_f<tl4> rgbly
addi r8, t31, #1
addi r4, t20, #32
addi r5, t21, #32
addi r6, t22, #32

t£30

Figure 2: C source code and E2 assembly listing for a
vectorized RGB to Y brightness conversion.

Vector instructions begin with ’v’ (lines 30-37 and 42). All
load and store instructions are assigned load-store identifiers
to ensure sequential memory semantics (lines 30-32 and 42).
That is a load assigned IDO must complete before a store
with ID1.

Most instructions can be predicated and predicates are only
visible within the block they are defined. Predicated instruc-
tions take an operand representing true or false that is com-
pared against the polarity encoded into the predicated in-
struction (denoted by _t and _f). The test instruction in line
45 creates a predicate that the receiving instructions (lines
46-47) compare against their own encoded predicate. Only
instructions with matching predicates execute.

HEHBEE
HEBEE
HEBEE
HEBEE
HEBEE
HEBEE
zlz|z|=z
HEBEE
HEBE
>[> > |>
>[> > >

Figure 3: One possible schedule for Figure 2.

Blocks are limited to a maximum of 128 scalar instruc-
tions. When using vector instructions blocks are limited to
a total of 32 scalar and vector instructions. Block _rgb2y
contains a mix of 27 scalar and vector instructions.

4.3 Instruction Schedule

Figure 3 gives one possible schedule for the example in
Figure 2. We assume a three cycle 32-bit floating point mul-
tiply, and that all loads hit in the L1 cache and require three
cycles. The architecture is capable of fetching eight instruc-
tions per cycle and thus requires four cycles to fetch the 27
instruction block. In cycle one, eight register read instruc-
tions are fetched which are all available for execution in the
following cycle since they have no dependencies. Two reg-
ister reads can execute per cycle requiring five cycles to read
all the global registers. In cycle two, registers R4 (line 20)
and R8 (line 24) are read and the resulting data is sent to the
vector load (line 30), multiply immediate (line 40), and add
immediate (line 48) instructions. Since each of these instruc-
tions is waiting on a single operand, they are now all ready
and begin executing in cycle three. Execution continues in
this dataflow fashion until the block is ready to commit in
cycle 17.

5. CONCLUSION

In this paper we described the E2 architecture — a new
dynamic multicore utilizing an Explicit Data Graph Exe-
cution (EDGE) ISA, designed to achieve high performance
power efficiently. As an EDGE architecture, E2 efficiently
exploits instruction-level parallelism through dataflow exe-
cution and aggressive speculation. In addition, we have de-
scribed how the architecture adapts to handle data-level par-
allelism through vector and SIMD support. This vector sup-
port can be interspersed with scalar instructions, making E2
more flexible than traditional vector processors, and more
capable than traditional scalar architectures.

We have developed an architectural simulator for E2 using
SystemC and a new compiler backend with the Microsoft
Phoenix software optimization and analysis framework [1].
We are currently developing a cycle accurate FPGA imple-
mentation that when combined with our industrial strength
compiler, will allow us to perform a detailed exploration and
evaluation of the architecture.

Many challenges lay ahead. To be compelling as an accel-
erator, we must demonstrate that E2 provides better perfor-
mance, power efficiency, and programmability than special-
ized accelerators such as GPUs and dedicated vector pro-
cessors. E2 may also excel as a general-purpose proces-
sor, in which case we must show that it provides compelling

enough power/performance gains over current static multi-
core architectures to justify a transition to a new ISA.

E2’s performance and power efficiency are built on its
ability to compose and decompose cores dynamically, so
the correct policies and mechanisms for managing dynamic
composition will require careful consideration. Ideally we
would like to leave all decisions about composition to the
runtime system, freeing the programmer completely from
reasoning about the underlying hardware.

Finally, there is a wide variety of application domains where
E2’s ability to trade-off power and performance could be
useful, ranging from embedded devices to the data center. In
the months ahead we plan to examine a diverse set of work-
loads and investigate how broadly an E2 processor can span
the power-performance spectrum.

6. REFERENCES

[1] Microsoft Phoenix.
http://research.microsoft.com/phoenix/.

[2] ARM. Cortex-A9 MPCore technical reference
manual, November 2009.

[3] D. Burger, S. W. Keckler, K. S. McKinley, M. Dahlin,
L. K. John, C. Lin, C. R. Moore, J. Burrill, R. G.
McDonald, W. Yoder, and the TRIPS Team. Scaling to
the End of Silicon with EDGE architectures. IEEE
Computer, 37(7):44-55, July 2004.

[4] Cadence. Cadence InCyte Chip Estimator, September
2009.

[5] H. Esmaeilzadeh and D. Burger. Hierarchical control
prediction: Support for aggressive predication. In
Proceedings of the 2009 Workshop on Parallel
Execution of Sequential Programs on Multi-core
Architectures, 2009.

[6] M. D. Hill and M. R. Marty. Amdahl’s law in the
multicore era. IEEE COMPUTER, 2008.

[7] E. 1pek, M. Kirman, N. Kirman, and J. F. Martinez.
Core Fusion: Accommodating software diversity in
chip multiprocessors. In International Symposium on
Computer Architecture (ISCA), San Diego, CA, June
2007.

[8] N. P. Jouppi. Improving direct-mapped cache
performance by the addition of a small
fully-associative cache and prefetch buffers.
SIGARCH Computer Architecture News, 18(3a), 1990.

[9] C. Kim, S. Sethumadhavan, D. Gulati, D. Burger,

M. Govindan, N. Ranganathan, and S. Keckler.
Composable lightweight processors. In Proceedings of
the 40th Annual IEEE/ACM International Symposium
on Microarchitecture, 2007.

[10] S. Sethumadhavan, F. Roesner, J. S. Emer, D. Burger,
and S. W. Keckler. Late-binding: enabling unordered
load-store queues. In Proceedings of the 34th Annual
International Symposium on Computer Architecture,
pages 347-357, New York, NY, USA, 2007. ACM.

[11] T. Sherwood, S. Sair, and B. Calder. Predictor-directed
stream buffers. In Proceedings of the 33rd Annual
ACM/IEEE International Symposium on
Microarchitecture, 2000.

[12] A. Smith. Explicit Data Graph Compilation. PhD
thesis, The University of Texas at Austin, 2009.

