
 1

 
 

A Comparison of Induction-Detection NMR and Force-
Detection NMR on Micro-NMR Device Design 

 
 
 

Wen-Chieh Lin and Gary K. Fedder 
 

March 2001 
CMU-RI-TR-01-06 

 
 
 
 
 
 

The Robotics Institute 
School of Computer Science 
Carnegie Mellon University 

Pittsburgh, PA 15213 
 
 

Abstract 
 
Nuclear Magnetic Resonance (NMR) is widely used in medical diagnostics and chemical 
analysis. Due to rapid growing of the NMR applications, the conventional NMR systems 
may not fulfill the need of all applications. The development of a micro-NMR device 
would not only benefit the original NMR applications but could also open a door for new 
NMR applications. Two approaches for building a NMR system, Induction-Detection 
Nuclear Magnetic Resonance (IDNMR) and Force-Detection Nuclear Magnetic 
Resonance (FDNMR) are explored and compared in this paper. The comparison result 
shows that the FDNMR approach outperforms the IDNMR approach in signal-to-noise 
ratio when the sample radius is below 410 µm for protons and 1900 µm for chlorides. 
This suggests that the FDNMR approach is more appropriate for making the micro-NMR 
device. 
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I. Introduction 
 
    Nuclear magnetic resonance is a physical phenomenon that occurs when the nuclei of 
certain atoms are immersed in a static magnetic field and exposed to a second excitation 
magnetic field. Some nuclei experience this phenomenon, and others do not, dependent 
upon whether they possess a property called spin. The macroscopic effect of spins of 
nuclei can be considered as a magnetization induced by the sample, which can be 
manipulated by the excitation magnetic field under certain conditions. Depending on 
different excitation schemes, two major approaches are used to sense the motion of the 
magnetization. In induction-detected nuclear magnetic resonance (IDNMR), the 
excitation magnetic field oscillates with a specific frequency, the Larmor frequency, and 
a coil is used to sense the motion of the magnetization. In force-detection nuclear 
magnetic resonance (FDNMR), the excitation magnetic field oscillates with frequency 
modulated around the Larmor frequency, and a specially designed mechanical structure 
whose motion is coupled with the oscillation of the magnetization is used to sense the 
motion of the magnetization. The IDNMR approach is adopted in almost all NMR 
systems conventionally. On the other hand, the FDNMR approach, although first 
suggested by a group in Pisa early in the 1960s, had not been used until Sidles’ proposal 
[1] in 1991, which made the revival of FDNMR approach [2].  
 
    One of the most important applications of NMR is magnetic resonance imaging (MRI), 
which is widely used in medical diagnostics. Another important application of NMR is 
spectroscopy, which is a technique that can determine a sample‘s chemical composition. 
It is widely used in research laboratories to analyze the chemical or biological samples. 
NMR can also be used as a detection mechanism, such as oil well logging where 
companies used it to characterize earth strata. In addition to these applications, more and 
more applications of NMR will be explored as NMR development makes these systems 
more affordable and accessible. 
 
    As the applications of NMR expand, the demand of more appropriate and convenient 
equipment designed for a specific application is increasing. For example, in some 
applications of chemical or biological analysis, such as microspectroscopy and NMR-
detected microseparation, the test samples are very small—typical volume is around or 
below a microliter. To exploit these volume-limited samples efficiently, the usual NMR 
device, which is designed for large samples, is not appropriate. An important feature of 
NMR is that its signal-to-noise ratio (SNR) is linearly dependent on the volume of the 
sample. Therefore, a micro-NMR device designed for micro-samples is necessary. 
Conventional NMR equipment, including desktop NMR equipment, are relatively large 
and their applications are limited because of the size. The development of a highly 
integrated micro-NMR device could further expand the application realm of NMR [3]. 
 
    Toward the goal of making a micro-NMR device that integrates the full function of the 
NMR system, some researchers have started the development from the NMR probe 
(microcoil) design, which is critical for a micro-NMR device since the SNR of the device 
is mostly determined by the probe design. Peck et al. [4] first used a micromachining 
technique to fabricate a 100 µm inner diameter planar spiral microcoil on a gallium 
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arsenide substrate. The microcoil was used in 1H NMR spectroscopy experiments with a 
7.05 T static magnetic field. To reduce the resistance of the coil, which improves the 
SNR of the system, the microcoil was made of gold. A single-shot SNR of 2.5 was 
achieved in the experiments. A further improvement of single-shot SNR to 25 using a 60 
µm inner diameter microcoil, which was optimized in geometry design for maximizing 
SNR, had been reported later [5]. 
 
    Recently, Boero et al. [6][0] integrated the microcoil with CMOS integrated circuits 
for NMR signal detection and amplification. They used the device as an NMR 
magnetometer, which is commonly used for high-precision measurements of static 
magnetic field. In this special application of NMR, a fixed and sensitive sample is used 
and the static magnetic field strength is obtained by measuring the resonance frequency 
of magnetization of the sample. Although a full integration of an NMR system, including 
probe, amplifier and signal processing circuits, has not been achieved, the partial 
integration done by Boreo et al. shows a promising way to reach the final goal. 
 
    Similar to the development of conventional NMR system, all developments of a micro-
NMR device so far are following the mainstream IDNMR approach. Although there is a 
much richer study of development of a micro-NMR device based on the IDNMR 
approach, we would like to know if FDNMR is a better approach to build a micro-NMR 
device. In this paper, we will provide an initial evaluation of these two approaches. We 
first briefly review the working principles of IDNMR and FDNMR in section II and III. 
Their design considerations for making an NMR device are also discussed. In section IV, 
we compare the SNR performance of IDNMR and FDNMR due to scaling. Finally, we 
conclude in section V with a comparison and discuss the future work of development of 
the micro-NMR device. 
 
 
II. Induction-Detection Nuclear Magnetic Resonance 
 
1. Principles of IDNMR 
 
    NMR is a quantum phenomenon. When atoms possessing spin property are placed in a 
static magnetic field 0B , the nucleus of each atom has a magnetic moment whose 

orientation is quantized. The number of quantized states is defined by a half-integer sI , 

called spin number. For 1H nucleus (proton), the spin number is 2
1  and thus the 

orientation can be either parallel (- 2
1 ) or antiparallel ( 2

1 ) to the static field with parallel 

case having slightly lower energy. In the thermal equilibrium state, the number of protons 
in lower energy state is only slightly larger than that in higher energy state since the 
energy difference is very small compared to the average thermal energy of the system. 
The energy difference can be calculated by 0hvE =∆ , where h  is the Planck constant, 

and 0v  is the transition frequency. One of the unique features of the magnetic resonance is 

that the transition frequency πγ 2/00 Bv ⋅= , called the resonance frequency or Larmor 

frequency, is proportional to the applied field and the gyromagnetic ratio, which is a 
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property of the atoms—in this case, γ  is the gyromagnetic ratio of the protons. It is this 
property that makes the NMR capable of detecting or analyzing the chemical composition 
of a sample. Protons may be excited into the higher energy state if an electromagnetic 
wave is applied to the system, provided that its frequency v obeys the Bohr relationship 

hvE =∆  and that a proper arrangement is used. A usual way to do this is applying an 
excitation magnetic field whose direction is perpendicular to the static magnetic field and 
its magnitude oscillates at the Larmor frequency 0v . 

    The macroscopic effect of nuclear spins, when only a static magnetic field exists, can 
be considered as a magnetization whose direction is collinear with the static magnetic 
field and its value can be obtained from a general expression of the Curie law,   
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where volumeatomsN /  is the number of atoms per unit volume, h is the Planck constant 

divided by π2 , Bk  is the Boltzmann constant ( 123103806.1 −−×= JKkB ), and T is the 
absolute temperature in kelvin. If an oscillation field is added, the magnetization is 
subjected to a precessional motion around 0B . This motion can be explained on the basis 

of the angular momentum theorem and occurs at a frequency equal to the Larmor 
frequency. The angle between the magnetization and 0B  is determined by the amplitude 

and duration of the oscillation field 1B .   
 
 
 
 
 
 
 
 
 

            
 

Fig. 1. The evolution of magnetization and emf signal during an excitation pulse. (a) the equilibrium 
state: when only 

0B  exists (pulse off), 
0M is collinear with 

0B . (b) when the pulse is just on, 
1B  

perturbs 
0M  and causes it precess around 

0B  with frequency ov . (c) After a very short period, 
0M is 

displaced onto the coil plane. (d) Once the pulse is off, 
0M starts to back to the equilibrium state and 

the induced emf signal is exponentially decayed. (e) After a relaxation period, 
0M recovers to the 

equilibrium state.  The emf signal in the dashed line represents that the coil is served as an excitation 
coil when the pulse is on and no signal is detected until the pulse is off. 
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    An IDNMR system requires a static magnetic field, an rf coil, and electronics to run 
the experiment and analyze the data. The static magnetic field is often contributed by a 
permanent magnet that provides strong field intensity at the range of several Teslas. The 
rf coil generates the oscillation magnetic field, 1B , that is transverse on the plane 

perpendicular to 0B , which we call the coil plane. In the pulse NMR approach, which is 

commonly used in IDNMR systems, the excitation field is turned on and off by a pulse 
signal. When the pulse is on, the rf coil generates the oscillation field which displaces the 
magnetization onto the coil plane; when the pulse is off, the rf coil detects the 
electromotive force (emf) induced by the precession of magnetization1. Fig. 1 shows the 
magnetization at different states of excitation and the emf signal sensed by the rf coil. 
The emf signal is at maximum when the magnetization is displaced on the coil plane and 
its amplitude starts to decay once the pulse is off because the magnetization starts to back 
to the equilibrium state at that moment. The pulse width that exactly causes 0M  to 

precess in the coil plane, is called a 2π  pulse, since 0M  makes a 2π  angle with 0B . 

Therefore, the emf signal sensed by the coil is an exponentially damped sinusoidal signal 
whose frequency is close to the Larmor frequency. The detected emf signal is called the 
free induction decay (FID). It is actually a synthesis of signals contributed by each part of 
the sample. For a uniform static magnetic field, the signal coming from each part has the 
same frequency, and the synthesized FID signal has a single frequency constitution, i.e., 
the Larmor frequency. Thus, atoms of specific elements can be detected by analyzing the 
frequency spectrum of the FID. If a linear-gradient magnetic field is used, the position 
information can be encoded in the field gradient. The frequency spectrum of the FID 
would reflect the positional information of the atoms. Depending on whether a 1-D 
gradient or 2-D gradient field is used, an NMR spectroscopy or “magnetic resonance 
imaging” (MRI) can be obtained. 
 
2. The SNR of IDNMR and the modeling of microcoil 
      
   The SNR is an accepted standard for measurement quality of an NMR system. Hoult 
and Richards [8] developed a concise closed-form expression for the IDNMR SNR.  
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The numerator of Eq. (1) represents the emf voltage induced in the coil following the 
application to the sample of a 2π  excitation pulse. The emf voltage is determined by the 
sample characteristics and coil characteristics. The former includes the Larmor frequency 
in radians 0ω , the magnetization magnitude 0M , and the sample volume sV ; the latter 

includes the magnitude of the transverse magnetic field 1B  induced in the rf coil by a 
unit dc current I . This equation assumes the same coil is used for both excitation and 
detection. The denominator of Eq. (1) is the thermal noise measured over a defined 

                                                 
1 For some NMR experiments, two or more rf coils may be used: some for excitation and others for pickup. 
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spectral bandwidth ( f∆ ) at sample temperature (T ). The thermal noise is induced by the 

coil resistance coilr . 

 
   The coil design is a critical part to achieve a high SNR in building an NMR device. 
Specifically, the SNR of a microcoil in the NMR device is determined by the electrical 
property of the coil. A good model of the microcoil is important. The electrical model of 
a 3-layer planar microcoil will be described here. Also, the geometry design 
considerations of the microcoil will be briefly discussed.  
 
 
  
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. A circular planar microcoil consists of three layers connected in parallel. 

 
    Fig. 2 shows a microcoil consisting of three layers that are connected by wires. On 
each layer, there are turnsN  turns. nR , inR , and outR  are the center radius of the coil at the 

thn turn, the inner coil radius, and the outer coil radius, respectively. Here we define the 
coil sensitivity as the magnitude of the magnetic field generated by a unit dc current I  in 
the coil. The coil sensitivity calculated on the axis of the coil center with distance Z  
from the coil center is [20]  
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From Eq. (2), we can approximate the effective sample volume by bounding it within the 
cylindrical region whose bottom and top are above and below the coil surface by half of 
the inner coil radius, respectively. This is because the coil sensitivity drops approximately 
30 percent at the positions 2inRZ ±= . Thus, the sample volume is defined as 

3
ins RV ⋅= π . For conservative design, the sensitivity of the whole coil is represented by 

its minimum value at 2inRZ ±= .  The inductance of the microcoil is approximated by  
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    Detailed calculation of the resistance of the coil should take into account the 
conductive losses of the coil as well as magnetic (eddy current) and dielectric losses in 
the sample and surrounding structures. For microcoil design, since the sample volume is 
very small (microliter or less), the dielectric losses in the sample can be ignored and the 
conductive losses becomes the major source of the noise [9]. When calculating the 
conductive losses, both the dc resistance and ac resistance, including the skin effect and 
proximity effect, should be considered; however, if the wire width/height of the coil is 
less than twice the skin depth, these two effects are negligible [10]. For aluminum, which 
is commonly used as the material of metal layers in CMOS process, the skin depth is 12 
µm at 50 MHz, and 37 µm at 5 MHz. Hence, under the skin depth, the value of coil 
resistance approaches its dc resistance,  
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where σ  is the conductivity of the wire, wireA  is the cross-sectional area of the coil wire 

and layersN  is the number of metal layers of the microcoil. The amplitude of the emf 

signal is then given by [0] 
 

                                                    sVM
I

B
EMF 0

1
0ω=                                                       (5) 

 
    Using Eq. (3) and Eq. (4), the quality factor can be obtained by coilcoil rLQ ⋅= 0ω . In 

macro-scale coils, this emf voltage is further amplified by the quality factor when the 
voltage is measured at the terminals of the coil; however, this is usually not the case in 
the microcoil since its quality factor is often smaller than one. Hence, the main 
considerations of microcoil design are how to reduce the coil resistance and increase the 
coil sensitivity. Regarding the first consideration, the coil wire (track) should have the 
cross-sectional area as large as possible, and the total wire length as short as possible. For 
this reason, we adopt the three-layer coil to increase the cross-sectional area. For the 
second consideration, an intuitive thinking is the outer turns of the coil contribute less for 
the coil sensitivity, but would increase the coil resistance; however, decreasing the 
number of coil turns reduces sensitivity. A better way to resolve the problem is to 
increase the height of the coil wire, which can reduce the coil resistance and maintain the 
coil sensitivity.  
 
3. The SNR of IDNMR due to scaling 
 
    A scaling law of SNR regarding the change of the coil size will be derived here. Since 
the scaling is the main interest, we can exclude other factors unrelated to scaling in Eq. 
(1) and express it as follows: 
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To further simplify Eq. (6), the geometry of the coils must be specified. The planar 
circular microcoil as shown in Fig. 2 will be considered here2. Using Eq. (2), the coil 
sensitivity due to scaling is expressed as follows: 
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where we assume that the radius of each turn does not vary significantly and is 
approximated as an average coil radius R . L  represents the length scale of a coil. 
Similarly, the coil resistance due to scaling is obtained by 
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Combining Eqs. (6)~(8), the SNR equation regarding the scaling is expressed as 
 

                                                    
3L

AN
VSNR wireturns
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    The number of turns of coil is related to the cross-sectional area of the coil wire 
( wireA ). If wireA  is scaled with the coil size, then turnsN  is fixed; however, if for some 

reason, e.g., a fabrication constraint in manufacture process, wireA  can’t be increased 

arbitrarily, then it should be considered as a constant when scaling. In this case, turnsN  

would increase proportionally to the coil size. Another consideration is the sample 
volume. Usually, we can obtain as much sample as we want. Under this condition, the 
sample volume can be scaled with the coil size. In some cases, however, the sample 
volume is limited, e.g., the microspectroscopy of some biological samples or real time 
analysis of fluid samples. Taking into account these conditions, the scaling law of SNR 
based on Eq. (9) is shown in Table 1.  
 

Sample Volume βLSNRi ∝  
Scaled Fixed 

Scaled 
2
5=β  2

1−=β  Cross-sectional 
Area of Wire Fixed 2=β  1−=β  

Table 1: Scaling law of SNR under different conditions 

                                                 
2 Although the scaling for a solenoidal coil is not shown here, the same scaling law can be obtained by 
similar derivation. 
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It is interesting to note that shrinking the coil size doesn’t always win. The best coil is 
always one that exactly fits the sample. 
 
    Another interesting question here would be: does the SNR benefit from the 
replacement of a single coil with a coil array? From the previous derivation, we know 
that  
 
                                                           βLKSNRi ⋅=                                                      (10) 

 
where K  is a constant and β  is as defined in Table 1. If we replace a coil with N  small 
coils to form a coil array, which occupies the same area as that by the original one, the 
SNR of each individual coil is 
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where sSNR  and oSNR  are the SNR of the small coil and original coil, respectively. 

Assuming the interaction between the magnetic fields of these small coils is negligible 
and the noise in every small coil is uncorrelated with one another, the total SNR of the 
coil array is 

                                         ostotal SNRNSNRNSNR
β−

=⋅=
1

                                     (12) 

 
The effect of using a coil array regarding the scaling of the coil size can be summarized 
in Table 2. The result shows that if the sample volume is limited, the total SNR of the coil 
array increases as the number of coils increases; however, if the sample volume can be 
scaled with the size of the coil, using a coil array would decrease the SNR instead. The 
results in Table 1 and Table 2 actually reflect an important fact of the NMR system: its 
SNR is highly dependent on the sample size.  
 

Sample Volume αN
SNR

SNR

o

total ∝  Scaled Fixed 

Scaled 
4
3−=α  4

3=α  Cross-sectional 
Area of Wire Fixed 

2
1−=α  1=α  

Table 2: Scaling of the SNR when a coil array is used 

  
 
III. Force-detection Nuclear Magnetic Resonance 

 
    Conventionally, the NMR has been developed almost entirely with magnetic induction 
as the means of detection; however, magnetic induction is not the only way to detect 
magnetic resonance. Sidles [1] first proposed to couple the harmonic motion of the 
nuclear spin to the motion of a mechanical oscillator. Based on Sidles’ proposal, the first 
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experiment, which is now called magnetic resonance force microscopy (MRFM), was 
achieved by Rugar et al. [11]. In the experiment, the electron spin resonance (ESR) was 
detected. They used cyclic adiabatic fast passage to modulate the equilibrium longitudinal 
magnetization at the audio frequency resonance of a sample-on-cantilever assembly. A 
large static magnetic field gradient, induced by the nearby ferromagnetic particle, was 
used to provide the magnetic force and to vary the resonance condition across the sample. 
Since then, the method has been extended to 1H NMR [12] using ultra-thin cantilevers 
and to 1F NMR [13] at low temperature. Recently, Leskowitz et al. [14] proposed a force-
detection NMR method without field gradient. In contrast to other FDNMR methods, 
their method is characterized by better observation of magnetization, enhanced 
resolution, and no gradient (BOOMERANG). In the following, we will briefly review the 
principles of FDNMR and BOOMERANG, and discuss about the design considerations 
in BOOMERANG. 
 
1. Principles of FDNMR 

  
The force detected in FDNMR [15] is given by 
 
                                                             )( BmF ⋅∇=                                                       (13) 
 
where m is a magnetic moment due to nuclear spins, and B  is an inhomogeneous 
magnetic field. The spin magnetic moment is sV0Mm = , where 0M is the nuclear 

magnetization of the sample and sV  is the sample volume. From Eq. (13), we know that a 

field gradient is needed to generate the force. Also, an excitation scheme of 
magnetization is needed to retain the resonance that is coupled to the resonance of the 
mechanical oscillator. Based on these considerations, a basic configuration of FDNMR 
consisting of a cantilever, an rf coil, and a ferromagnetic particle is shown in Fig. 3. In 
addition, a magnetic field along the z direction, which is not shown in the figure, is used 
to polarize the nuclei in the sample. The rf coil mounted close to the sample provides an 
oscillating field to excite magnetic resonance. In the absence of rf excitation, a strong 
field gradient generated by the nearby ferromagnetic particle causes a measurable 
deflection of the cantilever. The deflection can then be sensed by a fiber-optic 
interferometer. When the rf coil turns on, a special modulation technique is applied to 
cause the magnetization to oscillate along the z direction. The resonant frequency of the 
cantilever is designed as the same frequency of the oscillation of the magnetization. By 
sensing the vibration frequency of the cantilever, the magnetization due to electron or 
nuclear spins can be detected. 
 
 
 
 
 
 
 

Fig. 3. A basic configuration of FDNMR 
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     The modulation scheme is based on the adiabatic fast passage [16] method. Under the 
adiabatic condition, the nuclear magnetization, viewed in a reference frame rotating at the 
frequency of the rf excitation, can be made to follow the direction of the effective field 

effB , where 

 
                                                zxB ˆ)(ˆ 01 γω−+= BBeff                                                 (14) 

 
Here, 0B  is the magnitude of the static field, 1B  is the amplitude of the applied rf 

magnetic field, which, in the rotation frame, is a constant field in the x̂  direction, ω  is 
the rf frequency, and γ  is the gyromagnetic ratio.    Rather than set the rf frequency 

around the Larmor frequency ( 0B⋅≅ γω ) as in IDNMR, the rf frequency in FDNMR is 

modulated as )()( 0 tt ωωω ∆+=  ( 00 B⋅= γω  is the Larmor frequency; tcωω sinΩ=∆ , 

cω  is the cantilever resonance frequency). The effB  reduces to 

 

                                                 zxB ˆ
)(

ˆ1 γ
ω t

Beff

∆−=                                                       (15) 

 
If the frequency modulation is at a sufficiently slow rate so that the adiabatic condition is 
satisfied [16], the nuclear magnetic moment will follow the direction of effB . 

Additionally, if the peak frequency deviation ( Ω ) is large enough, the effective magnetic 
field, effB , will oscillate almost parallel to the ẑ direction. The magnetic moment, 

according to the adiabatic condition, would oscillate in the same manner. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. The vector diagram of effB and m  

 
This creates a cyclic force on the sample and causes the cantilever to vibrate. In this case, 
since the field gradient is along the ẑ direction only, the generated force given by Eq. 
(13) can be simplified as  

m

x

z
 

0M−

0M

γ
ω∆

effB

effB

m

m



 12

                                                      
z

B
tmtF z

zz ∂
∂

= )()(                                                      (16) 

 
where )(tmz , as shown in Fig. 4, is given by 
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2. Principles of FDNMR without Field Gradient – BOOMERANG [14] 
 
    The basic idea of BOOMERANG is to switch the roles of magnetic field and magnetic 
moment in conventional FDNMR3. That is, the gradient of the sample field (magnetic 
moment) is used to generate the force instead of the gradient of the magnetic field. 
Reflecting the exchange of roles, the magnet in BOOMERANG is mounted on a 
mechanical structure, such as cantilever or membrane, while the sample is not fixed and 
can be replaced freely for different experiments. In conventional FDNMR, due to the 
field gradient, only a slice of sample on which the magnetic field is uniform is used in 
detection; however, since the magnetic field in BOOMERANG is homogeneous across 
the sample, the signal from the whole sample can be utilized. This makes BOOMERANG 
have higher sensitivity than the conventional FDNMR. In the following, the design 
equations used in BOOMERANG will be briefly reviewed.  
 
    Consider a spherical sample shown in Fig. 5. The exterior field of the sample is the 
same as that of a point dipole at its center. In this case, the force dF on a ferromagnetic 

sensor dipole d  aligned along the z -axis and located at arbitrary position r in the field 

of the sample dipole s  is given by [14] [17] 

 

      



 −+−=⋅∇=

∧
z

r
F ds

dd ˆ)cos153(sin)cos159(cos
4

)( 22
4

0
0 θθθθ

π
µµ s        (18) 

 
 
 
 
 
 
 
 
 

Fig. 5.  A sensor dipole in the gradient field of a sample dipole 

 

                                                 
3 If we observe from Eq. (13), m and B are interchangeable. 
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For a uniformly magnetized spherical sample, the total magnetic force between sample 
and surroundings is obtained by replacing d  in Eq. (18) with the dipole element dd , 

and integrating over the surroundings. Since we are interested in generating the force that 
oscillates along the z -axis, we will only consider the z -component of dF  hereafter. 

From Eq. (18), we know that the z -component of dF  is a function of θ , and has its 

direction of force toward the sample for a cone region defined by °≤ 2.39θ . We can 

design the magnet shape to fully utilize this region to maximize the magnetic force. 
When this is the case, a conical magnet would be the best choice; however, for the 
simplicity of fabrication, a cylindrical magnet detector is adopted in BOOMERANG. 
Since the spherical sample of volume sV  has uniform magnetization 0M , s  in Eq. (18) 

can be replaced by sVM 0 , and the magnetic force ( z -component) between the sample 

and the detector magnet can be calculated as 
 

                                       

max

00

2
4

00

    

)cos159(cos
4

R

MVM

dV
r

MVM
F

dsF

V d
ds

d

µκ

θθ
π

µ

=

−= ∫
                          (19) 

 
wher dV  is the volume of the detector magnet with magnetization dM , maxR  is the 

distance from the center of the sample to the near face of the detector magnet, and Fκ  is 
a dimensionless constant that characterizes the geometry of the particular design.  
 
3. Design considerations in BOOMERANG 
 
    The main design issues in BOOMERANG are the magnet design and mechanical 
structure design. The magnet design actually consists of the detector magnet and the 
magnet that is used to polarize the nuclei in the sample. For the latter one, the design 
objective is to building a homogeneous field across the sample such that the whole 
sample can be fully used. For the detector magnet design, its shape is important. The 
radius of the cylindrical magnet is limited by maxR because of the limited cone region 

( °≤ 2.39θ ).  Here, maxR is dominated by the radius of the spherical sample ( sR ) and 

must include the headroom for the oscillation of the mechanical structure. The height of 
the magnet is the only unconstrained factor for optimization of the SNR of the system. 
Although the optimum height may not seem clear here, an intuitive thinking4 about the 
height is: if the height is too large, the additional mass of the mechanical oscillator 
contributes less to the magnetic force but reduces the quality factor, which decreases the 
SNR of the system. On the other hand, if the height is too small, the weak magnetic force 
will cause a poor SNR. Thus, there exists an optimum value of height that maximizes the 
SNR of the system. 

                                                 
4 This is similar to coil sensitivity and coil resistance dilemma in the microcoil design. The height of the 
magnet is analogous to the outer radius of the coil. 
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Fig. 6.  A cantilever implementation of BOOMERANG: (a) side-view, (b) top-view 

 
    To further clarify the design issues, a BOOMERANG implementation based on the 
cantilever structure is discussed here. Fig. 6 shows the configuration of the 
implementation. The material of the detector magnet and the surrounding magnet are the 
same and the gap between them is small as shown in Fig. 6(b). The reason for setting a 
small gap is to make the generated field across the sample as uniform as possible. 
Assume the quality factor Q  and the resonance frequency f of the cantilever are given. 
The length of the cantilever, which is modeled as a uniform beam with concentrated load 
at the free end is determined by [18] 
 

                                                    3

1

3

2

)
236.0

()
2

732.1
(

cd mm

EI

f
l

+⋅
=

π
                                   (20)   

 

where E  is the modulus of elasticity, 123
bb twI ⋅=  is the area moment of inertia of the 

beam with width bw  and thickness bt , dm  and cm  are the mass of detector magnet and 

cantilever, respectively. The spring constant k  is approximated by dividing the end-load 
by the maximum deflection at the end of the cantilever: 
 

                                                          
3

3

l

EI
k =                                                                  (21) 

The effective mass of the cantilever is calculated as 
 

                                                        cdeff mm
f

k
m 236.0

)2( 2
1

+=
⋅

=
π

                           (22) 

 
and the damping constant of the cantilever is given by 
 

                                                              
Q

f
mB effdamp

⋅= π2
                                            (23) 

 
The major noise source in BOOMERANG is the Brownian motion of the mechanical 
oscillator, which is similar to the thermal noise in IDNMR. The Brownian noise is:  

(a) (b) 
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                                                           fTBkF dampBf ∆= 4                                            (24) 

 
where Bk  is the Boltzmann constant, T is the absolute temperature, and f∆  is the 
detection bandwidth of the system. Combining Eqs. (19) through (24), the SNR of 
BOOMERANG based on a cantilever oscillator can be expressed as 
 

                                                  
max

0

)236.0(8 RmmTk

MMV

f

Q
SNR

cdB

dosf
f +

=
π

µκ
                     (25) 

 
where the detection bandwidth is assumed to be limited by the quality factor ffQ ∆= . 
The maximum deflection due to force F is obtained by  
 

                                                        
k

F
QZ =max                                                  (26) 

 
 
IV. Comparison of the SNR of IDNMR and FDNMR due to Scaling  
 
    After studying the scaling properties of SNR of IDNMR and FDNMR, one might ask: 
which approach should be adopted in building a micro NMR device? A comparison result 
of these two approaches is provided based on the scaling properties and design 
considerations described in last two sections. All geometry parameters are scaled except 
the cross-sectional area of coil wire and the thickness of cantilever, which are fixed since 
they can’t be scaled arbitrarily in a microfabrication process. The aspect ratios of scaled 
parameters to the controlled variable are listed in Table 3. The aspect ratio used in 
IDNMR is chosen from our simulation results for microcoil design, while those used in 
FDNMR is a numerical example used in BOOMERANG. An additional assumption for 
FDNMR is that the quality factor and resonance frequency of the cantilever are also 
fixed. The detection bandwidth of IDNMR is assumed as 1000 Hz.   
 

 IDNMR FDNMR 
Non-scaled parameters 5.0=thick  µm 

 5=width  µm 
1000=∆f Hz 

5=bt  µm  

100=Q   
500=f Hz  

Values of the scaled 
parameters when controlled 
variable sR =1 µm 

(aspect ratio to sR  ) 

25.1=outR  µm 15/2=bw  µm 

32=dR  µm 

53=dh µm 

1517max =R µm 

Controlled variables  
sin RR =  sR  

Table 3: Assumptions for non-scaled and scaled parameters used in comparison 
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For the material property, the material of coil used in IDNMR is aluminum 
(conductivity 71055.3 ×=σ 11 m−− ⋅Ω ); in FDNMR, the material of the detector magnet 
and cantilever are cobalt platinum (density 3cmg 11=dρ , residual induction 0.45 

T [19]) and silicon dioxide (density 3cmg 5.2=ρ , the modulus of elasticity 
GPa 60=E ), respectively. Two samples are used in the comparisons: one is the proton 

sample, and the other is the chloride sample (1% KCl  by mass in OH 2 ). The static 
magnetic field that polarizes the nuclei of the samples is 1 T , and the sample temperature 
is 290 K .    

 

Table 4: Comparison of IDNMR and FDNMR on the proton sample 
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Fig. 7.  SNR plot of IDNMR and FDNMR for the proton sample 

 
 

Sample 
radius (m) 

SNR emf 
(V) 

SNR Force 
(N) 

Deflection 
(m) 

Magnet 
Radius (m) 

Cantilever 
length (m) 

1.00E-04 1.68E-05 1.90E-13 1.52E-03 2.31E-16 2.53E-13 6.67E-05 6.50E-04 
1.00E-03 1.76E-03 2.09E-10 4.80E-03 2.31E-14 2.54E-14 6.67E-04 1.40E-04 
1.90E-03 6.38E-03 1.44E-09 6.62E-03 8.34E-14 1.34E-14 1.27E-03 9.13E-05 
1.00E-02 1.77E-01 2.11E-07 1.52E-02 2.31E-12 2.54E-15 6.67E-03 3.02E-05 

Table 5: Comparison of IDNMR and FDNMR on the chloride sample 

 
 

Sample 
radius (m) 

SNR emf 
(V) 

SNR Force 
(N) 

Deflection 
(m) 

Magnet 
Radius (m) 

Cantilever 
length (m) 

1.00E-04 1.48E+00 1.67E-08 1.31E+01 1.99E-12 2.19E-09 6.67E-05 6.50E-04 
4.10E-04 2.65E+01 1.31E-06 2.65E+01 3.35E-11 5.35E-10 2.73E-04 2.54E-04 
1.00E-03 1.55E+02 1.84E-05 4.14E+01 1.99E-10 2.19E-10 6.67E-04 1.40E-04 
1.00E-02 1.56E+04 1.85E-02 1.31E+02 1.99E-08 2.19E-11 6.67E-03 3.02E-05 
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Fig. 8.  SNR plot of IDNMR and FDNMR for the chloride sample 

 
    Table 4 and Fig. 7 shows the comparison result on the proton sample. In Fig. 7, we 
find that the FDNMR approach has higher SNR when sample radius is less than 410 µm. 
For chlorides, a similar result is also obtained, which shows the SNR of FDNMR is better 
than IDNMR as long as the sample radius is less than 1900 µm. A model validation 
problem should be noted here. Since we model the cantilever as a beam with a 
concentrated load at its free end, the radius of the detector magnet mounted on the 
cantilever should be much less than the cantilever length. Because we limit the frequency 
and quality factor of the cantilever in assumptions, the cantilever length calculated in Eq. 
(20) is not always practical5. Therefore, when viewing the result in Table 4 and Fig. 7, the 
data for which the sample radius is greater than 410 µm can only be considered as a trend 
of the curve, not the real data. Even though, the result in Table 4 is still useful because 
the valid region covers the main design range of a microcoil. Similarly, we can consider 
the comparison data for the chloride sample only valid when the sample radius is less 
than 410 µm.  
 
    A great advantage of FDNMR over IDNMR is its higher SNR for NMR experiments 
with small sample size and low Larmor frequency 0ω , which corresponds to low static 

magnetic field 0B or low gyromagnetic ratio γ . This feature can be observed from their 

SNR expressions. In Eq. (1), the SNR is proportional to 2
0ω  ( 00 ω∝M ), and in Eq. (25), 

it is proportional to 0ω .  If we observe Fig. 7 and Fig. 8 at small radius, the ratio of the 

SNR of FDNMR to that of IDNMR for chloride is almost 10 times the SNR ratio for 
protons. The ratio of FDNMR SNR to IDNMR SNR is proportional to the gyromagnetic 
ratio of protons to chlorides ( Tsrad 10675.2 8 ⋅×=Hγ , Tsrad 10621.2 7 ⋅×=Clγ ).  

 
    Another advantage of FDNMR is its frequency modulation scheme. Using this 
modulation scheme, the resonance frequency of the mechanical structure can be designed 

                                                 
5 This problem can be improved by increasing the thickness of the cantilever such that the geometry of the 
cantilever is more realistic when the dimension is enlarged with the sample radius. 
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with a very high quality factor, which is not possible for the micro NMR device 
implemented by the inductively detected approach.  
 
 
V. Conclusion 
 
    The development of a micro-NMR device could reduce the cost and enhance the 
flexibility of the NMR system. This not only improves the SNR of the NMR systems for 
micro-samples but also provide the opportunities to explore new applications of the 
NMR. While most research on micro-NMR adopts the traditional approach—IDNMR to 
develop their system—the initial evaluation in this paper shows that FDNMR provides 
better SNR performance for building the micro-NMR device, especially for low static 
magnetic field or samples of low gyromagnetic ratio. 
    Although FDNMR is a promising method for micro-NMR sensing, some issues need 
to be considered for the implementation. First, how is the structure realized using MEMS 
techniques? The whole system consists of two magnets, a cantilever, and a microcoil. It is 
more complicated than the system that is designed using the IDNMR approach, in which 
the fabrication of a microcoil and the electronics is much easier, but circuit design is 
more complicated. Second, what material is suitable for making the magnets? A material 
must be found that has low-density, high residual induction and is also appropriate for the 
fabrication process. Finally, how much uniformity of magnetic field across the sample 
can be achieved with the annular slot between two magnets? This is important in 
BOOMERANG since we can utilize the signal coming from the whole sample only when 
the magnetic field across the sample is uniform. 
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