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Abstract
FTP-like Streams for the

9P File Protocol

John Floren

Supervising Professor: Dr. Muhammad Shaaban

The Plan 9 operating system from Bell Labs has broken a great deal of new ground in
the realm of operating systems, providing a lightweight, network-centric OS with private
namespaces and other important concepts. In Plan 9, all file operations, whether local or
over the network, take place through the 9P file protocol. Although 9P is both simple and
powerful, developments in computer and network hardware have over time outstripped the
performance of 9P. Today, file operations, especially copying files over a network, are much
slower with 9P than with protocols such as HTTP or FTP.

9P operates in terms of reads and writes with no buffering or caching; it is essentially a
translation of the Unix file operations (open, read, write, close, etc.) into network messages.
Given that the original Unix systems only dealt with files on local disks, it seemed that
it may be necessary to extend 9P (and the file I/O programming libraries) to take into
consideration the fact that many files now exist at the other end of network links. Other
researchers have attempted to rectify the problem of network file performance through
caching and other programmer-transparent fixes, but there is a second option. Streams (a
continuous flow of data from server to client) allow programmers to read and write data
sequentially (an extremely common case) while reducing the number of protocol messages
and avoiding some of the problems with round-trip latency.

By adding streaming to the 9P protocol and extending the regular POSIX I/O functions,
this work allows programmers to perform sequential file operations at speeds much closer
to those of HTTP. Files are transferred using out-of-band TCP connections between the
client and server. In tests, streaming allowed files to be transferred at equal or superior
speeds to HTTP.
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Chapter 1

Introduction

Plan 9 from Bell Labs is a research operating system, originally conceived in the late 1980s
with the aim of fixing the problems in UNIXTM[11]. Among other things, it features a
single filesystem protocol, 9P, which is used to access all resources on the system, includ-
ing control files for devices, the network stack, the windowing system, and the archival
backup system. All of these files are made available by file servers, which are mounted to
a namespace at the kernel level and then accessed using 9P messages.

However, while 9P provides a unified way to access the many devices and resources
available on a Plan 9 system, it lacks in some aspects. 9P operates by sending a message
requesting an operation, then waiting until the reply is received–it is, at its core, a syn-
chronous process. In general, each 9P message sent corresponds to a function call made
by the user program, making 9P a Remote Procedure Call (RPC) system. Although this is
effective when used with local devices and file servers, it becomes problematic when deal-
ing with file servers separated from the client by high-latency connections. Every read or
write request must wait (with the process blocked) for the entire Round-Trip Time (RTT)
between the client and server before any data comes back. With the rising prominence of
the Internet, it has become apparent that accessing and transferring files from distant Plan
9 systems using 9P is extremely slow and inefficient, requiring far more time to complete
a file transfer than the more popular Hyper-Text Transfer Protocol (HTTP) or File Transfer
Protocol (FTP).

Where 9P operates in terms of “chunks” of a file, requested and delivered one piece
at a time, HTTP and FTP deal with entire files at once. When a file is requested from an
FTP server in passive mode, the FTP server and the client negotiate a separate, new TCP
connection to be used to transfer the file all at once [12]. In HTTP, when a GET request is
sent over the connection, the entire file is returned immediately (although a specific portion
of the file can also be requested, which will also be sent immediately regardless of size)
[5]. Because FTP and HTTP push data directly to a TCP connection rather than waiting for
it to be requested like 9P, they avoid many of the issues of latency.

This work proposes and implements a method for alleviating the latency problems in
9P. The solution, called “streams” in this text, operates by taking a leaf from FTP’s book:
it allows the creation of a new TCP connection to transfer file data. These streams, made
available to programmers through library functions, can be used in any situation in which
sequential reading or writing of a file occurs. Rather than attempting to improve perfor-
mance with programmer-transparent adjustments behind the scenes, streams extend the
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POSIX-style file I/O API to put explicit control in the hands of the programmer. As the
results show, the introduction of streams to 9P allows Plan 9 to transfer data using 9P just
as quickly as with HTTP.

The rest of this document is structured as follows: Chapter 2 describes the background
and motivation for this work, introducing Plan 9 and 9P, discussing the latency problem
inherent in 9P (with measurements in comparison to HTTP), and presenting a condensed
description of streaming 9P. Chapter 3 delves into previous work in the area of file protocol
design, with particular attention paid to the problems of latency and bandwidth. Chapter
4 describes the high-level design of streaming 9P, explaining the programmer’s interface
to the system and the format of the 9P messages used to negotiate a stream. In Chapter
5, the actual implementation of streaming 9P is explained, showing how each part of the
system (from user libraries to kernel functions) operates, and describing the compatibility
functionality that was also included. Chapter 6 discusses the general methods for modifying
user programs and 9P servers to use streams and explains how two specific programs, cp
and exportfs, were modified in such a fashion. Chapter 7 contains the results obtained
by testing streaming 9P, regular 9P, and HTTP at several different latencies and file sizes.
Finally, Chapter 8 concludes the subject, analyzing the results and suggesting future areas
of development.
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Chapter 2

Background and Motivation

This work deals with the Plan 9 operating system and its 9P protocol. To provide back-
ground on the work, this chapter describes the Plan 9 operating system, the 9P protocol,
and the latency problem inherent in 9P. Initial tests, performed to get an idea of the issue,
are discussed, and a solution to the problem is proposed.

2.1 The Plan 9 Operating System

Plan 9 is an operating system developed by AT&T’s Bell Labs beginning in the late 1980s
[11]. In that time period, computers were beginning to move from large, expensive, mono-
lithic devices which served many users to small, cheap graphical systems, which every
person in an organization could have on their desks.

The UNIXTMoperating system, also from Bell Labs, had been developed almost two
decades earlier, in the time where hardware consisted of large, slow computers, text-only
terminals, and little to no networking. Since its development it had been extended to run on
microcomputers, network with other systems, and display bitmapped graphics. However,
these additions came late and from a variety of sources. The original UNIX system had
been tiny, tightly-designed, and rather consistent; the later additions made it much less
so. Networking was added by using sockets, which behaved partially like files but not
completely. The graphical user interface, in the form of the X Window System, was bulky,
inefficient, and prone to crashing.

The designers of UNIX then decided it was time to begin again. Rather than fix UNIX,
they began work on a new operating system, Plan 9. As Rob Pike said, “The problems with
UNIX were too deep to fix, but some of its ideas could be brought along” [11]. Among the
objectives of this new operating system were:

• Access all resources as files.

• Use a standard protocol, 9P, to access these files.

• Allow resources to be joined and rearranged by each process in a single, private,
hierarchical name-space.

Particular emphasis was also placed on networking, graphics, and overall simplicity.
Development has continued at varying speeds over the past 20 years, through the first public
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release in the mid-1990s and the open-sourcing of the project in the early 2000s. Today,
Plan 9 has a small but loyal following of developers and users who continue to improve
and extend the project while remaining true to the original design mandates.

Having described the general background of Plan 9, it is useful to examine a few specific
aspects of the system which will make subsequent explanation simpler. First, the general
organization of computer networks under Plan 9 is described, and then a more detailed
description of the 9P protocol is given.

2.1.1 Organization of Plan 9 Networks

Since Plan 9 was designed with networking and personal computers in mind, it exhibits a
much more distributed nature than most operating systems. Plan 9 works best when used
as a network of computers operating in different roles. The four basic roles are CPU server,
auth server, file server, and terminal [11]. Figure 2.1 shows an example of a complex Plan
9 network, including CPU servers, file servers, and terminals.

Figure 2.1: A Plan 9 network[11]

The purpose of a CPU server is to provide massive processing power when needed.
CPU servers are typically the fastest, most expensive systems in a Plan 9 network, with
high-end processors and large amounts of RAM. A CPU server might not have a hard drive
at all, instead mounting the file system from the file server.

Auth servers provide authentication for the network. They store user information and
passwords on a small disk and authenticate users who wish to access files on the file server,
connect to the CPU server, etc.. Auth servers are generally small and low-power; the
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Sheeva Plug series of miniature computers, for example, have proven to be a popular choice
as auth servers.

File servers are computers with large disk storage capacities, running disk-based file
systems. Current file servers actually run two file systems, called Fossil and Venti. Venti
is a block-based archival storage, while Fossil acts as the front-end to Venti. Typically,
every day any new or changed data blocks are written to Venti and replaced in the Fossil
storage with pointers to Venti blocks, which are never deleted. The two file systems in
combination provide daily snapshots of the file tree, ensuring that important information
can be retrieved if accidentally deleted. CPU servers, auth servers, and terminals all connect
to the file server to store data.

Terminals are typically cheaper desktop PCs with large screens intended for direct use
by users. The user works at a terminal, which mounts the file root from the file server
after authenticating with the auth server. In this way, the same configuration and files are
available to a user regardless of the actual terminal he may be using. If the processor or
memory of the terminal prove insufficient, users of a terminal may use the cpu command
to execute commands on the CPU server (compilation, for example).

It is not strictly necessary to have all of these components as separate computers. It is
quite common to have one system perform as a CPU, auth, and file server all at once; given
the existence of a CPU server, it is not strictly necessary to have terminals, as users can
also use the drawterm program to connect directly to the CPU server and work on it.

All components of a Plan 9 network communicate using the 9P protocol, which is de-
scribed in the following section.

2.1.2 The 9P Protocol

The Plan 9 operating system serves all file operations using the 9P protocol. The contents
of the local disk, the contents of removable media, remote file servers, and even device
drivers such as the VGA and hard drive devices are accessed via 9P. It is essentially a
network-transparent set of file operations.

In Plan 9, client programs access files using function calls in the C library, such as
open, close, read, write, create, and stat. When a program calls one of these functions, the
C library in turn generates an appropriate system call. Those system calls which operate on
files in turn call functions in the appropriate kernel device depending on the file selected; in
the case of files which exist on file servers (rather than generated in the kernel), the function
call is translated into 9P messages and sent to the appropriate file server.

9P messages come in pairs: a client sends a T-message (such as Tread) and receives
an R-message (such as Rread) in response. The only exception is Rerror, which may
be sent in response to any T-message. A complete list of 9P messages is shown in Table 2.1
[2]. Although there are not many 9P messages, the set of messages is sufficient to perform
all file operations necessary to Plan 9.

All connections are initiated with the exchange of a Tversion/Rversion pair. In
this exchange, the client and server insure that they are both speaking a compatible version
of the 9P protocol. At the time of writing, the most recent version was called “9P2000”,
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Table 2.1: Default 9P Messages

Message Name Function
Tversion/Rversion Exchanges client/server 9P version numbers
Tauth/Rauth Authenticates client with server
Rerror Indicates an error (includes error string)
Tflush/Rflush Aborts a previous request
Tattach/Rattach Establishes a connection to a file tree
Twalk/Rwalk Descends a directory hierarchy
Topen/Ropen Opens a file or directory
Tcreate/Rcreate Creates a file
Tread/Rread Reads data from an open file
Twrite/Rwrite Writes data to an open file
Tclunk/Rclunk Closes an open file
Tremove/Rremove Removes a file
Tstat/Rstat Requests information about a file
Twstat/Rwstat Changes information about a file

with an earlier version “9P” long deprecated. If either the client or the server returns a
version that the other does not understand, no communication can be performed.

Once the protocol version has been established, a client typically sends a Tattach
message to attach to a specific file tree. Then, the client is free to Twalk, Tstat, Topen,
etc.all over the file tree.

When a user opens a file, the client program makes an open() system call, which
is translated into a 9P message, Topen, which is sent to the file server. The file server
responds with an Ropen message when the file has been opened. The client then sends
Tread and Twrite messages to read and write the file, with the server responding with
Rread and Rwrite. When the transaction is completed, the client sends Tclunk and
receives Rclunk in return, at which point the file is closed.

Although 9P is a very simple protocol which works well for many uses, it does have
disadvantages. The next section describes the disadvantage of interest to this work and
compares 9P’s performance to that of HTTP.

2.2 Motivation

The T-message/R-message model of 9P is conceptually very simple. Data are sent only
when requested by the client; there is no read ahead, buffering, or inherent caching. In
1995, when files were small and networks tended to be local within an organization, this
was not a problem. Today, files may regularly stand in the range of gigabytes. Large
files are very frequently transferred over high-latency networks, such as a trans-continental
Internet link.
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Anecdotal evidence indicates that downloading a file from a Plan 9 server to a Plan 9
client using 9P is several times slower than downloading the same file via HTTP. If a large
file is being transferred from one Plan 9 system to another using 9P, it is often faster to
cancel the transfer half-way through, move the file to the httpd directory, and download it
over http instead.

Another example is the simple case of playing an MP3 file from a remote machine. If
the file is accessed via 9P, playback stutters every few seconds, because the player applica-
tion issues read calls for the next chunk of the file and runs out of audio to play while it is
still waiting for the new chunk to arrive. If, however, the file is fetched via HTTP and piped
to the music player ("hget http://server/file.mp3 | games/mp3dec"), play-
back continues smoothly.

The performance of 9P is also of interest in the use of Plan 9 on supercomputers, where
it is essential to be able to transfer data quickly. Supercomputing operations in particular
must distribute large amounts of information to a large number of nodes as quickly as
possible. While the internal networks of supercomputers have extremely low latency, the
use of Tread/Rread pairs adds to the congestion of the network, injuring performance.
Using streams to transfer data sets and executable programs between supercomputer nodes
could have a huge impact on the time a computation takes, in a field where small delays
add up fast.

2.2.1 Initial Testing

With this in mind, a number of tests were made to compare the transfer speeds of HTTP
and 9P. Two Plan 9 computers, one running as a CPU/auth/file server and one running as
a standalone terminal, were connected via a network consisting of a 100 Mbit switch and
a 10 Mbit hub, with a Linux computer acting as a gateway between the switch and the
hub. The Linux computer was configured using the netem kernel extensions to induce
delay between the two halves of the network. The use of a 10 Mbit hub served to reduce
the available bandwidth, which in combination with the artificially-induced latency was
intended to resemble an Internet connection. Figure 2.2 illustrates the testing setup used.
The testing procedure used is also described more thoroughly in the Results section of this
document.

The tests consisted of using 9P and HTTP to transfer several randomly-generated files
across the network. Files sized 10 MB, 50 MB, 100 MB, and 200 MB were used. The
Linux bridge was set to provide three different round-trip latencies for the three different
tests: no induced latency (approx. 500 µs round trip), 15 ms latency, and 50 ms latency.

As Table 2.2 and Figure 2.3 show, there was very little difference between 9P and HTTP
when latency was low–in fact, 9P slightly outperformed HTTP. This behavior is desirable
and should be preserved in any modifications.

However, when 7.5 ms of latency was introduced in each direction (total RTT of 15
ms), 9P fell badly behind (see Table 2.3 and Figure 2.4). While HTTP took only 1.13 times
as long to copy a 200 MB file with 15 ms RTT versus 500 s RTT, 9P took 2.83 times as
long.

Table 2.4 and Figure 2.5 show the results of the final test, with a RTT of 50 ms. Note
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Figure 2.2: Local network for simulating latency

Table 2.2: HTTP vs. 9P, no induced latency, average RTT 500 µs

File Size (MB) 9P (sec.) HTTP (sec.)
10 10.60 11.91
50 51.96 62.04
100 103.64 124.80
200 208.81 249.50

that it took HTTP about 250 seconds to copy a 200 MB file with no induced latency, and
required less than twice that time (400 seconds) to copy the same file with 25 ms of latency
in each direction. 9P, on the other hand, went from a speedy 208 seconds to about 1,512
seconds–over 25 minutes.

Given that latencies on the Internet can easily reach or surpass the times tested here—at
the time of writing, the RTT from Rochester, NY to Livermore, CA was around 90 ms—it
became clear that 9P was not suitable for transferring data across the Internet. The gap
between standard 9P and HTTP increases with latency; since the speed of light imposes a
certain latency on all operations, 9P had to be modified to achieve better performance in a
world where files may increasingly be stored thousands of miles away.

Having illustrated the latency problem inherent in 9P in this section, the next section
discusses the method by which this work proposes to alleviate that problem—streams.
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Figure 2.3: HTTP vs. 9P, 500 µs RTT

Table 2.3: HTTP vs. 9P, induced latency of 15 ms RTT

File Size (MB) 9P (sec.) HTTP (sec.)
10 29.57 14.08
50 147.44 70.81
100 296.06 140.38
200 590.94 281.63

2.3 Streams for 9P

The primary reason for 9P’s poor performance over high-latency network connections is the
RPC nature of 9P. When a program wishes to read a piece of a file from a remote server,
it must send a Tread message, and then wait for the server to reply with an Rread, as
illustrated in Figure 2.6. The program ends up blocked for twice the latency of the network
connection; in the meantime, it accomplishes nothing. As the tests in the previous section
showed, this is acceptable over local networks, but rapidly becomes problematic over even
the fastest Internet links.

Many programs operate on files in a simple sequential manner. For instance, the cp
program reads 8 kB at a time from the source file and writes it out to the destination file.
Editors read in files from start to finish; audio and video players start at the beginning of a
file and continually read through it as they play. Therefore, it makes sense to consider the
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Figure 2.4: HTTP vs. 9P, 15 ms RTT

Table 2.4: HTTP vs. 9P, induced latency of 50 ms RTT

File Size (MB) 9P (sec.) HTTP (sec.)
10 76.16 19.43
50 374.07 98.88
100 747.13 197.90
200 1512.31 400.00

sequential case for optimization.
When a file is read in a purely sequential fashion, it becomes unecessary to specify the

next offset into the file from which to read. The next read always takes the bytes directly
following the first read. In its unmodified state, 9P makes absolutely no concession to the
case of sequential file reading or writing; it requires a specific offset to be specified every
time a file is read or written, and it will never send data that is not specifically requested by
a Tread message.

In considering the specific case of 9P, it became evident that an entire file could be read
sequentially without sending Tread requests each time a program needed the next piece
of data. In fact, sequentially reading the entire file could be accomplished by sending a
single request, then receiving the whole file at once, which is the model HTTP and FTP
utilize (see Figure 2.7).

To improve the performance of sequentially reading files over a 9P connection, it was
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Figure 2.5: HTTP vs. 9P, 50 ms RTT

determined that a new style of file interaction would be implemented, called streams. A
stream is a separate TCP connection opened specifically to transfer a single file, very similar
to FTP’s passive mode. Streams are negotiated using 9P messages over the existing 9P
connection, but actual data transfer takes place out-of-band over the TCP connection rather
than the shared 9P connection.

Although the possibility of converting Plan 9 to use HTTP rather than 9P was consid-
ered, it was rejected for several reasons. First, completely replacing 9P with HTTP would
require significantly more work, as 9P is thoroughly integrated into the entire system. Sec-
ond, 9P is better suited for use with Unix-style file systems, while HTTP is primarily for
serving mostly static files to web browsers and other similar clients.

As the next chapter shows, using streams to improve performance over high-latency
connections is a departure from most other file protocol work. In general, previous re-
searchers have focused primarily on finding ways to improve the performance of the proto-
col transparently so as not to require any changes in applications; some of these efforts are
discussed and contrasted to streaming 9P.
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Figure 2.6: The 9P file reading model

Figure 2.7: The HTTP file reading model
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Chapter 3

Previous Work

File system performance over low-bandwidth and high-latency links has been an area
of concern for decades. Many researchers have worked to improve performance using
caching, while others have taken different approaches, looking to reduce protocol overhead
or adopt new, more effective methods.

3.1 Parallel cp

One early attempt at solving the problem of high-latency 9P file transfers was the fcp
program [1]. Since a process that reads or writes a file must wait in the blocked state until
the reply comes back from the server, fcp starts multiple processes to fetch and write
data concurrently . The source file is divided into n sections and a process is forked for
each section. Each process then reads its section from the source file and writes it to the
appropriate part of the destination file.

Although fcp provides a significant performance improvement when copying large
files over high-latency network connections, its multi-process approach is too complex. It
should not be necessary to implement multiple processes simply to read a file.

3.2 FTP

The File Transfer Protocol, FTP, is one of the earliest networked file protocols. Its primary
use is to transfer files between computers, rather than allow read/write access to remote
files. In the context of this work, its most salient feature is its passive mode. In passive
mode, when a client requests a file, the server replies with a TCP port. The client then
connects to the port and retrieves the file data through the resulting connection [12].

FTP’s passive mode is very similar to the streaming extension proposed in this work.
The primary difference is that 9P is designed as a more general file access protocol, with
the streaming extension providing a method for reading and writing files sequentially while
maintaining the generality of the rest of 9P.
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3.3 Op

In 2007, Francisco Ballesteros et. al. [4] presented their work on a high-latency system.
Their ongoing project is called Octopus, a distributed system built on top of Inferno, which
in turn is derived from Plan 9. A replacement for the 9P protocol was written which com-
bines several file operations into two operations, Tput/Rput and Tget/Rget. Thus, a
client may send a single Tget request to open a file, get the metadata, and read some of
the data.

The Op system was implemented using a user-mode file server, Oxport, and a user-
mode client, Ofs. Oxport presents the contents of a traditional 9p-served file tree via Op.
Ofs then communicates with Oxport using Op; Ofs provides the exported file tree to clients
on the local machine. When a user program, such as cat, attempts to read a file that actually
resides on a remote machine, the 9P commands are sent to Ofs. Ofs then attempts to batch
several 9P messages into a single Op message; a call to open() normally sends Twalk
and Topen messages, but Ofs will batch them both into a single Tget message to walk
to the file, open it, and fetch the first MAXDATA bytes of data. Metadata from files and
directories is also cached locally for the duration of a “coherency window” in the interest
of reducing network read/writes while not losing coherency with the server file system.

The Op protocol showed significant reductions in program run-time latency. An lc
(equivalent to ls) that originally took 2.3 seconds to complete using original 9P took only
0.142 seconds with a coherency window of 2 seconds. The bandwidth was improved by
orders of magnitude when building software using mk.

While Op gave good results, its design is not optimal. The Op protocol is only spo-
ken by Oxport and Ofs. As user-level programs, they incur more overhead than in-kernel
optimizations. Also, when the functionality is implemented as a transparent operation, it
does not allow the programmer to choose between traditional 9P-style operations and Op;
a separate streaming system would give that additional flexibility. Op also saw poorer per-
formance than regular 9P on low-latency links, which are the norm in supercomputers; as
Plan 9 expands into supercomputing and across the global Internet, it needs an improved 9P
protocol that can work well over both high- and low-latency connections. Finally, Op was
optimized for small files, having a relatively small MAXDATA (the amount of data that can
be transferred in one Rget message). Op would still need to execute many Tget requests
to transfer a large file, which is one of the cases of interest in this thesis.

3.4 NFS

The NFS protocol version 4 utilizes a similar strategy to Op with its COMPOUND RPCs,
which allow clients to batch up several RPCs into one message. Thus, a client could read
from a file in one RPC by sending a LOOKUP, OPEN, and READ all in a single COM-
POUND RPC [13]. Although this helps with the latency problem, clients would still have to
issue multiple READ commands to fetch the entirety of a large file, at which point latency
issues would arise again.
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NFS 4 also implements a feature called open delegations, which allows a client com-
puter to manage open and close requests locally. Essentially, the server delegates control
over a file to the client. Programs on the client can open, close, read or write the file without
the client being required to write back the changes when the programs close the file. This
means that a file can be read, written, and read back multiple times without as much data
flushing as would normally occur, avoiding performance problems when the connection to
the server has high latency. However, as the NFS specification illustrates, the semantics of
open delegations are complex; the streaming extensions to 9P are singificantly simpler.

3.5 HTTPFS

Oleg Kiselyov in 1999 presented a paper [6] describing his work on a file system based on
HTTP. This file system, HTTPFS, is capable of reading, writing, creating, appending, and
deleting files using only the standard GET, PUT, HEAD, and DELETE requests.

The HTTPFS consists of two components, a client and a server. The client can in
fact be any program which accesses files; such a program is converted to an HTTPFS
client by linking with a library providing HTTPFS-specific replacements for the regular
file system calls, such as open, read, close, etc.. These replacement functions simply call
the standard system calls, unless the filename given begins with http://. If a URI is
given, the function instead creates an appropriate HTTP request and sends it to the server.
For example, calling:

open("http://hostname/cgi-bin/admin/MCHFS-server.pl/README.html", O RDONLY) [6]
causes the client to send out a GET request for that file. When the file is received, the client
caches it locally; reads and writes then take place on the locally cached copy.

Kiselyov wrote an example HTTPFS server, called MCHFS. MCHFS acts much like a
regular web server, allowing any browser to get listings of files. However, it also allows the
user to access the entire server filesystem under the path component DeepestRoot, for
example:

open("http://hostname/cgi-bin/admin/MCHFS-server.pl/DeepestRoot/etc/passwd", O RDONLY). [6]
An interesting factor of the HTTPFS design is its approach toward caching and concur-

rency. When a file is opened, the entire file is fetched via HTTP and cached locally. All
reads and writes to that file then take place on the local copy. Finally, when close() is
called, the local copy is written back to the server using PUT.

In some ways, HTTPFS is quite similar to the goal of this thesis. It reads the entire re-
mote file at once and then redirects reads and writes to the local copy. However, as with Op,
it does not give the user any choice: all HTTP-served files are read all at once and cached
locally, while all other files are accessed traditionally. The goal of 9P streams is to allow
the programmer a clear choice in accessing files, either by the traditional open/read/write
methods, or using streams.
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3.6 LBFS

The Low-Bandwidth File System (LBFS) adapted typical caching behavior for low-bandwidth
operations [9]. The most salient change was the use of hash-indexed data chunks. LBFS
clients maintain a large local file cache; files are divided into chunks and indexed by a hash.
These hashes are then used to identify which sections of a file have been changed and avoid
retransmitting unchanged chunks. When reading a file, the client issues a GETHASH re-
quest to get the hashes of all chunks in the file, then issues READ RPCs for those chunks
which are not already stored locally. This technique provided excellent results but the en-
tire premise is rapidly becoming far less important; bandwidth is rarely a problem today.
LBFS made no provisions to account for latency, which remains a problem over long links
due to the limitations of switching technology and the speed of light.

3.7 Transparent Informed Prefetching

Patterson, Gibson, and Satyanarayanan in 1993 experimented with the use of Transparent
Informed Prefetching (TIP) to alleviate the problems of network latency and low band-
width. With TIP, a process informs the file system of its future file accesses. For instance,
the make program prepares a directed acyclic graph of dependencies, including files; this
list of files would be sent to the filesystem for pre-fetching. In testing, separate processes
were used to perform pre-fetching from local disks and Coda file servers. Results showed
significant (up to 30%) reduction in execution times for programs such as make and grep
[10].

3.8 Parallel File Systems

Other researchers have applied parallelism to the task [7, 3]. Filesystems such as PVFS
stripe the data across multiple storage nodes; a client computer then fetches chunks of files
from several different computers simultaneously, reducing the impact of latency and the
bottleneck of bandwidth to some extent. Others [8] spread data across the disks of the
client nodes and index it using a metadata server.

A simple parallel file transfer program already exists in Plan 9: the fcp program uses
several threads, each copying its own portion of the file—but it is unreasonable to expect
every program to implement multi-threaded file reading to cover the holes in 9P. Parallel
file systems in general are frequently not an option; often, only one computer is available
to serve files. The complexity of coordinating multiple servers and having the client deal
with all of these servers makes a simpler solution desirable.
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3.9 Summary

Clearly, while caching and other file system modifications have been successful, the general
theme has been one of operating in a user-transparent fashion. The results of this is that be-
havior can sometimes be unclear, unexpected, or inconvenient (cache coherency problems,
etc.). By providing a clear choice to the programmer, such problems can be avoided, al-
lowing the programmer to choose streams where high-speed sequential reads are necessary
and traditional I/O elsewhere. The next chapter describes the interface that is provided to
the programmer and the 9P message formats which are used to set up a stream.
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Chapter 4

Streaming 9P Design

In the previous chapter, other attempts to improve file protocol performance over high la-
tency connections were described. Some found success by grouping messages, while oth-
ers performed transparent pre-fetching and caching. However, rather than use a transparent
method for improving performance, this work uses an explicitly-requested external transfer
method, called streaming.

As described in an earlier section, streams are separate TCP connections used to transfer
file data sequentially. The client requests a stream using a new 9P message, Tstream, and
the server replies with an IP address and a TCP port. The file is then transferred out-of-band
over the TCP connection, allowing for higher transfer rates.

The high-level design of the streaming extension for 9P can be described in two parts.
The first is the set of functions by which programmers use streaming, and the second is
the actual format of the 9P messages sent between the client and the server; both parts are
described in this chapter. Finally, an earlier, rejected design is discussed. Actual imple-
mentation details are described in the next chapter.

4.1 Library Interface

Streams are made available to the programmer through the C library, libc. There are two
ways in which programmers may use streams: in a regular (client) program, or in a file
server.

Regular programs such as cp or an MP3 player utilize streams using the library func-
tions stream, sread, swrite, and sclose. These routines initialize a stream, read
from a stream, write to a stream, and close a stream, respectively, and are shown in Table
4.1. The functions use a data structure called Stream, shown below.

Table 4.1: Streaming Library Function Prototypes

Stream* stream(int fd, vlong off, char isread)
long sread(Stream* s, void *buf, long n)
long swrite(Stream* s, void *buf, long n)

int sclose(Stream* s)
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typedef struct Stream {
int ofd; // The underlying file being streamed
int conn; // The TCP connection
char *addr; // The server’s IP and port
vlong offset; // Current offset into the file
char isread; // Read/write flag
char compatibility; // Compatibility mode flag

} Stream;

Program 1: Stream data structure

The stream function serves to initialize a stream. It takes as arguments a file descrip-
tor, a file offset, and a flag to indicate if the stream should be for reading or writing. The
function operates on a file which has already been opened using the open call. stream
is the only function which required a new system call, as described in the Implementation
section. It returns a structure containing the underlying file descriptor, a file descriptor
pointing to the TCP stream which was established, a string containing the address of the
server, the current read/write offset in the file (used for compatibility), a flag describing the
stream as read or write type, and a flag indicating if the stream should be used in compati-
bility mode.

Reading from a stream is accomplished by passing a Stream structure to the sread
function. The sread function reads up to the specified number of bytes from the stream
and stores them into the specified buffer. This function is in fact simply a call to the standard
read function which reads the next n bytes from the stream’s TCP connection.

Writing to a stream, as with reading, is accomplished by calling the existing write
library call to write the given data to the stream’s TCP connection.

The sclose function simply manages the task of closing the TCP connection and
freeing memory. It essentially reverses the actions performed by the stream function and
shuts down an existing stream. The sclose function does not close the underlying file
upon which the stream is based; rather, it only removes the stream.

4.2 Message Format

9P clients and servers communicate using a set of machine-independent messages, which
can be sent over the network. Streams are established through the use of a new pair of
messages, Tstream and Rstream, which are formatted as shown in Table 4.2. Numbers
in brackets represent sizes in bytes.

Table 4.2: 9P Streaming Messages

size[4] Tstream tag[2] fid[4] isread[1] offset[8]
size[4] Rstream tag[2] count[4] data[count]
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Each message consists of a string of bytes, with the size defined by the size element
at the beginning. The tag field is common to both messages and is used by the client to
identify the messages as belonging to the same conversation.

The Tstream message specifies an fid, a flag for reading or writing, and an offset
into the specified file. An fid is a 32-bit integer used to identify a specific active file on
the file server and is in many ways analogous to a file descriptor in a user program.

The Rstream message is returned by the file server and contains a network address
string in the data field, the length of which is defined in the count field. The network
address is in the format “tcp!x.x.x.x!yyyyy”, where x.x.x.x is the server’s IP and yyyyy is
a TCP port on the server. This network address is used by the client to connect to the file
server, creating a TCP stream over which file data is sent.

4.3 Rejected Designs

The original proposal for this work involved sending stream data over the same channel as
other 9P messages. Rather than negotiating a separate data stream, it would have involved
removing the restriction that a T-message can receive only a single R-message. A client
would send a single Tstream message, which would receive an unknown number of
Rstream messages in return, each carrying a portion of the requested file. This was
rejected for a number of reasons: flow control, kernel structure, and overhead.

The first reason was flow control. The 9P stream would be sharing a single TCP con-
nection with any other number of potential programs. If the streaming program was slow
to read its data from the connection, many Rstream messages would accumulate in the
input buffer, eventually filling it and preventing any other programs from receiving mes-
sages. Although the Rstream messages could have been removed from the queue and
placed in a memory buffer, the same slow-reading program could cause the buffer to grow
quickly to unmanageable size if a very large file was streamed.

The second reason involved the structure of the kernel’s mount device. This device was
designed specifically to receive exactly one reply per request sent. When a reply is read, the
mount device searches for the program which has been in the wait state pending the reply
and wakes it; this works because 9P messages are sent as a result of blocking library calls.
However, in the case of streams the process would not be waiting for a reply, because the
stream function is non-blocking. Modifying devmnt to allow multiple replies would
have been complex and potentially buggy, and the flow control problems described above
would still exist.

The final reason was overhead. Using multiple discrete R-messages to simulate a con-
tinuous flow of data means that each chunk of data has an extra overhead of message
headers attached. Additionally, most non-local file transactions take place over TCP, which
is already a streaming protocol. Using 9P to simulate the behavior of TCP on top of an
existing TCP-enabled system becomes ridiculous, and was abandoned in favor of simply
using TCP directly.

This design was rejected only after significant work had been applied to its implemen-
tation. Through time, testing, and deeper thought, the weaknesses outlined above became
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clear, and the final design arose as the successor, whose implementation is discussed in the
next chapter.

4.4 Summary

In this chapter, the high-level design of the streaming 9P extension was described. The
programmer’s interface in the C library and the format of the 9P messages involved were
described. An earlier design, eventually rejected, was also discussed. In the next chapter,
concrete details about the implementation of streaming 9P are discussed.
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Chapter 5

Implementation

The implementation of streams in 9P introduced changes in essentially every part of the
Plan 9 system, with modifications in user programs, 9P servers, the C library, the kernel
system calls, and the kernel device drivers. Given that the adaptation of user programs and
user-level 9P servers must be done for every program individually, it is covered in the next
chapter. This chapter focuses on the C library and the kernel.

Figure 5.1: The client-side streaming software stack

The general structure of the streaming system on the client side is illustrated in Figure
5.1. At the top is user code, which calls functions in the C library. The library function
stream in turn calls the pstream system call, which then deals with device-specific
streaming functions based on which files are being accessed. On the server side is simply
the 9P server, which is dealt with in the next chapter.

5.1 The C Library

The C library, also known as libc, provides an interface between user code and the kernel.
It contains system calls such as read and open as well as a number of utility functions
(strcmp, dial, etc.). The source for libc is located in /sys/src/libc on Plan 9.

Files were added to the 9sys/ subdirectory to define the stream, sclose, sread,
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and swrite functions, described in the previous chapter. Since most of the complex-
ity resides in the kernel, these functions turned out to be quite simple and are therefore
reproduced in their entirety here.

Stream*
stream(int fd, vlong offset, char isread) {

Stream *s;
s = mallocz(sizeof(Stream), 1);
int r;

s->addr = malloc(128);
s->isread = isread;
s->ofd = fd;
s->offset = offset;
r = pstream(fd, s->addr, offset, isread);
if (r == -1) {

// The server is not 9P2000.s compatible!
s->compatibility = 1;
return s;

}
if (s->addr == nil) {

/* Error */
return nil;

}

s->conn = dial(s->addr, 0, 0, 0);

return s;
}

Program 2: The stream function call

The function in Program 2, stream, serves to set up a stream. It initializes a Stream
structure, then makes the pstream system call. If the system call returns -1, the stream is
set to compatibility mode; otherwise, the addr member of the Stream struct will contain
an IP address. If an IP address is returned, the stream function calls dial to make a new
network connection to that address, which is then stored in the Stream structure; all future
stream reads and writes then take place through this connection.

The sread and swrite functions are nearly identical, the only difference being the
use of pread or pwrite. As the functions show, if the compatibility bit is not set, data
will be read from the TCP connection; otherwise, data will be read from the underlying
file descriptor of the stream. Note that the offset is maintained in the Stream structure,
allowing the stream to operate independently of any separate read or write calls issued on
the file descriptor.

The task of the sclose function is merely to simplify the process of closing a stream.
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long
swrite(Stream *s, void *buf, long len) {
int n;

if (s->isread == 0) {
if (s->compatibility == 0)

n = pwrite(s->conn, buf, len, -1LL);
else

n = pwrite(s->ofd, buf, len, s->offset);

s->offset += n;
return n;

} else {
return -1;

}
}

Program 3: The swrite function

long
sread(Stream *s, void *buf, long len) {

int n;

if (s->isread == 1) {
if (s->compatibility == 0)

n = pread(s->conn, buf, len, -1LL);
else

n = pread(s->ofd, buf, len, s->offset);

s->offset += n;
return n;

} else {
return -1;

}
}

Program 4: The sread function
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int
sclose(Stream *s)
{
if (!s->compatibility)

close(s->conn);

free(s->addr);
free(s);
return 0;

}

Program 5: The sclose function

It closes the TCP connection and then frees the previously-allocated memory regions as set
up by the stream function.

It was also necessary to modify several functions in the C library which convert 9P’s
struct representation to machine-independent messages and vice-versa. More specifically,
cases were added to the convS2M, convM2S, and sizeS2M functions to handle the new
Tstream and Rstream messages.

5.2 System Calls

One system call was added to the kernel. This system call, pstream, acts as an inter-
face between the libc stream function and the actual stream-setup functions in individual
drivers. It takes as arguments a file descriptor, a buffer into which it should store a dial
string, an offset, and the “isread” flag as passed to the stream library call. It was neces-
sary to add information about this system call to both the C library and the kernel itself.

The system call number for pstream, number 52, was defined in the sys.h header
file. The function prototype for the system call was also defined in /sys/include/libc.h.
These were the only changes necessary to make libc aware of the existence of a new system
call named pstream.

Because the pstream system call operates on files, its definition was placed in the
sysfile.c file in the kernel source. This file contains the implementations of system
calls such as open, read, and write. The syspstream function, which was written
to implement the behavior of the pstream system call, parses the arguments given and
converts the file descriptor to a channel. It then calls a device-specific stream function
based on the type of device to which the channel points.

5.3 Device-specific Functions

Each device must implement its own function to handle streams. However, in Plan 9,
remote file systems are always connected to the local namespace using the devmnt device;
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thus, to test the most important cases (high-latency Internet links), it was necessary to do
a full implementation of streaming only for the devmnt device. All other devices merely
contain stub functions; these stub functions return -1, indicating that the device does not
support streaming and that compatibility mode should be used.

5.3.1 Devmnt

The devmnt device serves as an interface between the local namespace and 9P file sys-
tems. It converts read and write requests from multiple programs into 9P messages and
multiplexes them over a single channel, which may be either a network connection or a
local pipe.

To add streaming functionality to devmnt, a new function, mntstream, was written.
This function is called by the pstream system call to set up a new stream. When executed,
it creates a new 9P request message of type Tstream, which is then populated with the
file descriptor of the desired file, the offset, and a flag indicating if the stream is read-type
or write-type. It then transmits the 9P message to the server and waits for a reply.

When the reply is received, the incoming Rstream message contains a string specify-
ing an IP and port which can be connected to. However, devmnt does not connect to the
remote system itself; rather, it passes the dial string back up to the libc function stream,
which makes the connection.

5.4 Compatibility Mode

In designing and implementing streaming 9P, it was clear that not all 9P servers could be
immediately modified to handle streaming, and that not all kernel devices were suited for
streaming data. Thus it was necessary to design a compatibility mode, which would allow
streaming-enabled programs to read data from a non-streaming server or device transpar-
ently.

The first step was the implementation of compatibility mode in the libc functions. When
a stream is configured, the pstream system call may return -1, specifying to the stream
function that streaming is not supported on the specified file. No error is raised, however.
Instead, a flag is set in the Stream struct to designate the stream as requiring compatibility
mode. Rather than reading from a network connection, sread and swrite read directly
from the originally-specified file descriptor if a stream is set in compatibility mode. Al-
though it offers no speed improvement, this allows programmers to use streams in their
programs without the need for extensive error-checking and extra code.

At a lower level, the capability of a 9P server to stream is determined at the exchange of
Tversion and Rversion messages. The devmnt device, which handles connections
to all non-kernel file systems, identifies itself as speaking the 9P2000.s protocol. The
definition of the Tversion message means that 9P2000.s is compatible with 9P2000,
so non-streaming servers accept this version and report back as speaking 9P2000. How-
ever, streaming servers will also answer with 9P2000.s. When the mntstream function
is later called to set up a stream, the version reported by the server is checked. If the server
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reported its version as 9P2000, compatibility mode is used; if it reported 9P2000.s, a
Tstream message is sent to establish a stream.

5.5 Organization Overview

Figure 5.2, on the following page, shows a high-level view of the way a stream is config-
ured. Different levels of implementation are indicated in different colors.

As the flowchart shows, a user program calls the stream function, giving it a file
descriptor and other arguments. In turn, stream calls the pstream system call, passing
along the appropriate arguments. The pstream system call does little more than call the
device-appropriate streaming function based on the location of the selected file–in the case
of the example in the flowchart, mntstream.

The mntstream function checks if the remote server supports streaming. If the server
does not support streaming, mntstream returns -1. The -1 return value is passed back
up through pstream to stream, which configures the stream structure in compatibility
mode and returns.

If, on the other hand, the server supports streaming, mntstream sends a Tstream
message to the server requesting a new stream. The server in turn prepares a TCP port
for the file transfer and replies with an Rstream message. When it receives the reply,
mntstream extracts the given IP and port number, then returns to pstream, which
returns to stream. stream then connects to the server, which begins reading from the
connection or sending data over it, depending on the stream type. At this point, the stream
function returns to the user program and the stream is ready to be used.

5.6 Summary

This chapter described the implementation of streaming in Plan 9 and the 9P protocol, from
the kernel level to the C library functions used by programmers. The next chapter describes
the methods for modifying existing programs and file servers to take advantage of streams.
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Figure 5.2: Streaming organization flowchart
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Chapter 6

Modifying Existing Programs

Streams are used by regular user programs (such as cp) and by 9P servers (such as exportfs,
which serves the namespace of a CPU server). The functions described in the previous sec-
tion are utilized by these programs to request and use streams. In order to test the newly-
implemented streaming capabilities, the cp command and the exportfs file server were
both modified in order to accept streams; their specific changes are described after the
general section.

6.1 General Modification Practices

There are two classes of programs which must be modified to use streams: user programs
(clients) and 9P servers. A separate strategy is needed for each different type of program,
but the same general practices should be applicable to nearly all cases.

In modifying user programs, the process is extremely simple. The programmer must
first identify places where the program accesses a file sequentially. Then, after the file is
opened using the open function, the programmer inserts a call to the stream function
requesting a read or write stream, as appropriate. After the stream is established, existing
read or write calls are changed to sread and swrite calls. Finally, when the stream
is no longer needed, the sclose function is called to shut down the stream.

Modifying 9P servers is more complex, but not excessively so. Although the design
can vary, in general a 9P server has a function to accept incoming 9P messages and call an
appropriate handler function to reply. A new handler function must be added to reply to
stream requests. The function should begin listening on a random open port, then create
a Rstream message containing the IP and port number and send the reply to the client.
It then must wait for a connection on that port; when the connection is established, it
begins either reading from or writing to that TCP connection from the appropriate file. The
handler function should be launched by the server as a separate process to allow further 9P
messages to be processed.
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6.2 cp

In Plan 9, cp is a very simple program. Before modification, it simply opened the source
and destination files, then read 8 KB at a time from the source and wrote it to the desti-
nation. This proved to be very simple to rewrite for streaming. First, calls to stream
were added after the source and destination files were opened. Then, the calls to read
and write were simply replaced by equivalent calls to sread and swrite. Thanks to
streaming compatibility mode, it was possible to make these changes to cp and still ac-
cess files from non-streaming sources without any special knowledge on the part of the
programmer.

6.3 exportfs

The exportfs file server provides an external interface to the namespace of a CPU server.
It was chosen for modification due to its simplicity.

The basic structure of exportfs is this: It listens on a specific port for incoming
connections. When an incoming connection is established, the server then forks a process
to listen on that connection for incoming 9P messages. As messages come in, their mes-
sage types are used to select an appropriate handler function. In the case of the Topen,
Tread, and Twrite messages, which are likely to take longer, the handler function is
called slave. This function and its sub-fuction blockingslave fork a separate pro-
cess for each message to prepare a response while the main thread continues to reply to
other messages. The new process then enters a message-specific function handler to make
its response.

Given that streaming a file may require a very long time (in the case of a 2 gigabyte file,
for example), it was clear that the handler should be forked as a separate process, similar to
that of Tread or Twrite. To that end, the blockingslave function was modified so
that in the case of a Tstream message, the slavestream function would be executed
in a new process.

The slavestream function was a modification of the existing slaveread function.
When called, it begins listening on a random, unused TCP port. It then takes the IP address
of the server and the port on which it is listening and places them into the data field of the
Rstream reply message, which it then transmits. Having told the client where to connect,
slavestream then waits for a connection on the specified port. Once the connection is
made, it enters a loop. Depending on whether the stream type is read or write, it either
reads from the selected file and writes to the TCP connection (in the case of a read stream),
or reads from the TCP connection and writes to the selected file (in the case of write). If
it is a read stream, the loop ends when the source file has been fully read and transmitted.
In the case of a write stream, the loop ends when the client closes the TCP connection,
signaling the end of the stream.
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Chapter 7

Results

Having implemented streaming functionality in the Plan 9 system, it was necessary once
again to run tests and compare the results to those gathered before. Using the modified
exportfs and cp programs, described in the previous chapter, several different files
were transferred over the network at varying latencies.

The same network setup used for initial testing (Figure 7.1) was re-used to test stream-
ing 9P. Specifically, the client computer (named “illiac”) was an IBM Thinkpad T22 laptop
with a Pentium III processor and 512 MB of RAM running a streaming-enabled Plan 9
terminal kernel; it used the laptop’s local hard drive as the filesystem root. The server
(named “p9”) had dual Pentium III processors and 1 GB of RAM running a stock Plan 9
cpu/auth/fileserver kernel. The configuration of the server was changed to use the modified
exportfs executable; otherwise, no special changes were necessary. The server also ran
the Plan 9 HTTP server.

7.1 Transfer Speed Test

As before, the same set of randomly-generated 10 MB, 50 MB, 100 MB, and 200 MB files
were transferred over the network with round-trip latencies of 500 µs, 15 ms, and 50 ms.
Each file was transferred five times; the mean transfer times and the associated standard
deviations are shown in the results tables. On the client computer, the server’s namespace
was mounted using the command import p9 / /n/p9, which mounted the server’s
root directory to the local directory /n/p9; the import command specifically connected
to the exportfs service running on the server.

In order to transfer a file from the server to the client using the streaming copy program,
scp, a command such as scp /n/p9/usr/john/random10M /dev/null was used. Similarly,
the command cp /n/p9/usr/john/random10M /dev/null was used to transfer the same file
using the non-streaming copy program. To transfer the files using HTTP, the hget program
was utilized, with the command line hget http://p9/random10M > /dev/null fetching the
remote file and directing the output to the null device. The times were gathered using the
Plan 9 time command (also present in Unix), which reports the elapsed time required to
complete the execution of a program.

Table 7.1 and Figure 7.2 show the resulting transfer times when no artificial latency
was induced (average round-trip time 500 µs). At such a low latency, 9P, streaming 9P,
and HTTP all performed approximately the same, with streaming 9P and HTTP within a
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Figure 7.1: Network for simulating artificial latency

standard deviation of each other. One interesting result from these tests is the performance
of 9P vs. HTTP and streaming 9P as the file sizes increase. For small file sizes, over the low
latency connection, 9P outperformed HTTP and streaming 9P. However, when the file sizes
rose past 100 MB, streaming 9P and HTTP were faster than regular 9P. This indicates that
the additional time required to set up a separate stream and the slight overhead incurred by
the sread and swrite functions may make streaming slightly less efficient than regular
9P when transferring small files over low-latency connections.

Table 7.1: HTTP vs. 9P vs. Streaming 9P, no induced latency, average RTT 500 µs

9P (sec.) HTTP (sec.) Streaming 9P
File Size (MB) mean std. dev. mean std. dev. mean std. dev.

10 10.91 0.51 12.66 0.37 12.71 0.31
50 59.21 2.34 62.75 0.33 62.11 0.29

100 126.96 5.72 125.30 0.58 125.58 0.58
200 262.40 0.37 251.41 0.59 251.53 0.87

When the latency was increased to 15 ms round-trip, as shown in Table 7.2 and Figure
7.3, regular 9P immediately fell significantly behind HTTP, while streaming 9P maintained
almost exactly the same performance as HTTP. Differences between the transfer speeds of
the two protocols were small enough to be considered mere experimental variance.

Figure 7.4 and Table 7.3 show the results at 50 ms induced round-trip latency. As in
the previous test, streaming 9P and HTTP took almost exactly the same amount of time to
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Figure 7.2: HTTP vs. 9P vs. Streaming 9P, 500 µs RTT

transfer the same data, remaining within a standard deviation of each other.
The results cited above clearly show that streaming 9P is competitive with HTTP and

can easily outperform regular 9P. Indeed, when the standard deviations of the tests involved
are considered, it is fair to say that HTTP and 9P experienced essentially the same perfor-
mance. The results also show that the addition of streaming does not cause any loss of
performance over low-latency links, an especially important consideration in the context of
supercomputing specifically and local networking in general.

Since it is quite likely that multiple programs may stream files at the same time, another
test was performed to compare the scalability of streaming 9P.

7.2 Concurrency Test

In order to test the performance of multiple programs streaming files simultaneously, the
previous test was repeated “concurrently”. The commands which had previously been is-
sued one at a time, for example time cp /n/p9/usr/john/random10M /dev/null, were fol-
lowed by a & character, which caused the command to be executed in the background and
allowed for the execution of multiple client programs at the same time.

Tests were performed using two, four, and eight simultaneous client programs on the
client PC. For the test, a round-trip latency time of 50 milliseconds was used with a file size
of 10 MB. The execution times for each instance of the programs were averaged to get the
results shown in Table 7.4 and Figure 7.5.
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Table 7.2: HTTP vs. 9P vs. Streaming 9P, Average RTT 15 ms

9P (sec.) HTTP (sec.) Streaming 9P
File Size (MB) mean std. dev. mean std. dev. mean std. dev.

10 30.85 1.34 14.47 0.55 14.41 0.11
50 156.29 2.84 71.41 0.41 70.91 0.51

100 319.88 5.8 144.44 0.50 142.10 1.07
200 647.22 1.87 286.56 2.06 284.60 0.61

Table 7.3: HTTP vs. 9P vs. Streaming 9P, 50 ms RTT

9P (sec.) HTTP (sec.) Streaming 9P
File Size (MB) mean std. dev. mean std. dev. mean std. dev.

10 75.15 0.41 19.58 0.23 19.88 0.12
50 379.67 2.04 96.71 0.46 96.83 0.66
100 767.93 5.19 193.10 1.40 193.23 0.58
200 1543.12 0.62 385.292 1.85 386.02 1.77

As the results show, all three protocols experienced increased transfer times as the num-
ber of concurrent transfers increased. Streaming 9P and HTTP both showed approximately
the same level of scalability within the limited confines of this test, with performance de-
creasing in a slow and linear fashion.



35

Figure 7.3: HTTP vs. 9P vs. Streaming 9P, 15 ms RTT

Table 7.4: 10 MB file transfer speeds with multiple concurrent clients

Number of Clients Streaming 9P (sec.) HTTP (sec.) 9P (sec.)
2 30.96 28.51 79.75
4 53.28 52.53 100.81
8 104.24 101.93 158.53
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Figure 7.4: HTTP vs. 9P vs. Streaming 9P, 50 ms RTT

Figure 7.5: 10 MB file transfer speeds with multiple concurrent clients
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Chapter 8

Conclusions

8.1 Conclusions

As initially stated, the existing 9P file protocol experiences poor file transfer performance
over high latency network connections, which are common on the Internet. When trans-
ferring over a typical Internet connection, 9P often takes several times as long as HTTP.
The problem exists because of the design of 9P; to read data, a request message is sent
by the client, which must then wait the entire round-trip time of the connection to receive
the data in a response message. This induces a long wait every time a program wishes to
read or write data. The HTTP and FTP protocols are focused specifically on reading and
writing files sequentially, a very common access case. 9P, on the other hand, provides no
concessions to the sequential file access method.

In order to correct the latency problem, this work proposed a separate method for se-
quentially reading or writing files called streaming. The streaming operations augment the
existing POSIX-style file I/O operations, such as opening or reading a file, with additional
operations designed specifically for sequentially reading or writing files. This streaming
functionality was implemented in 9P by using in-band protocol messages to negotiate an
out-of-band TCP connection for transferring file data. This method of operation mimics
that of FTP in passive mode. Specifically, the client computer sends a Tstream message
to the server, which responds with an Rstream message containing an IP address and
TCP port. The client then connects to that IP and port and either reads a file or writes out
data over the TCP connection. By adding streaming functionality to 9P, this work:

• Extended Plan 9’s file operations to specifically include sequential file operations

• Allowed files to be transferred at speeds comparable to HTTP and FTP

• Presented ways in which existing programs may be easily modified to use the new
functionality

Modifications were inserted at all levels of the Plan 9 system, including new C library
functions, a new system call, and additional handler functions in kernel devices. The end
result was a simple system which allows programmers to read and write files sequentially
using streams with minimal program modifications. Using the stream library function,
client programs request a read stream or a write stream, then read or write data from or
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to that stream using the sread or swrite functions before finally closing the stream
with the sclose function. In turn, 9P file servers implement additional functionality to
understand the stream initialization

Experimental results were promising. File transfer times using 9P were found to be
comparable with those of HTTP when used over high latency links. At the same time, no
degradation in performance was found when using streams over low latency (local) con-
nections. Additionally, tests with multiple programs streaming simultaneously indicated
that streaming 9P was approximately as scalable as HTTP, with a slow loss in performance
as the number of client programs increased.

The experimental implementation demonstrated in this document appears to be reason-
ably strong. With the implementation of “compatibility mode,” programs using the new
streaming extensions may access files on non-streaming servers transparently. Although
true streaming currently occurs only when a file resides on a remote system, there is no
need for the programmer to distinguish between local and remote files; as with the rest of
Plan 9, the actual physical location of the file is immaterial to the user.

The new streaming 9P extensions stand to improve significantly the quality of user ex-
perience in the Plan 9 system. By allowing 9P to compete with HTTP for file transfers over
high-latency connections, the usability of the protocol is enhanced at little to no cost to
the end users and programmers. The addition of streaming to 9P may also prove useful in
supercomputing applications, where large files are routinely transferred; although the laten-
cies involved are small, the use of streaming could reduce network overhead by replacing
repeated Tread/Rread messages with simple TCP connections.

8.2 Future Work

Future work in this area would begin with the conversion of more file servers and user
programs to use streams. Any file server which is commonly accessed over a network
connection (rather than locally through a system pipe) would benefit from the addition of
streaming capability. Specifically, the disk-backed file servers Fossil and Venti are ideal
targets for streaming. When a Plan 9 system such as a terminal mounts a root file system, it
typically connects to a remote Fossil server; providing streaming within Fossil would allow
users to experience more efficient file accesses in almost all of their files.

The image and document viewers could benefit from streaming file accesses, since they
often read large files sequentially. The MP3 decoder is another obvious client program
that could use streams, since it must be able to access file data quickly enough to continue
playing without pausing. As the introduction chapter explains, playing MP3 files with 9P
over the Internet causes skipping in playback; using streams should eliminate that problem.

Additionally, it may be advantageous to modify other kernel devices (beyond the already-
modified devmnt) to support streaming; for example, the audio device may benefit from
the use of streams. Testing would be required to determine if such a modification is feasible
or useful.
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