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Reference structure tomography
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Reference structure tomography (RST) uses multidimensional modulations to encode mappings between radi-
ating objects and measurements. RST may be used to image source-density distributions, estimate source
parameters, or classify sources. The RST paradigm permits scan-free multidimensional imaging, data-
efficient and computation-efficient source analysis, and direct abstraction of physical features. We introduce
the basic concepts of RST and illustrate the use of RST for multidimensional imaging based on a geometric
radiation model. © 2004 Optical Society of America
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1. INTRODUCTION
A reference structure is a modulation of radiation proper-
ties such as absorption, permittivity, and polarization.
Physically, it is a material distributed in the radiation
space between an object and a measurement system. It
may be introduced artificially or discovered and exploited
in its natural form. We consider primarily the former
case. Reference structure tomography (RST) embodies
the use of reference structures for object analysis. Object
analysis may include imaging, by which we mean estima-
tion of a density function over the object-embedding
space; parameter estimation, as in location, orientation,
size, velocity, or trajectory; or classification, as in object
identity, type, or group.

Precursors to RST exist in tomography, inverse prob-
lems, and imaging systems. Conventionally, computed
tomography refers to multidimensional object reconstruc-
tion from line integrals.1 The concept has been general-
ized to include a variety of projective and computational
systems. For example, geometric tomography deter-
mines source shapes from geometric projections,2 and dis-
crete tomography estimates source densities in matrix
form from row and column sums.3 RST utilizes projec-
tions mediated by reference structures.

Coded-aperture imaging is the most direct antecedent
of RST.4–12 In a coded-aperture system, a two-
dimensional (2D) mask modulates projections from source
points onto a detector array, and the impulse response is
equal to the aperture. Deconvolution of the detected 2D
signal on the aperture pattern produces a focused image.
This approach is particularly attractive where lens fabri-
cation is difficult, as in x-ray imaging. RST extends the
physical interface of coded apertures to three-dimensional
(3D) modulation, generalizes the logical structure of
coded-aperture systems to multidimensional segmenta-
tion of the source space, and integrates projections from
distributed sensor components. The use of 3D modula-
tion extends the range of realizable transformations be-
yond the circulant structures of conventional coded-
aperture imaging.

Heavy-ion reconstruction approaches in x-ray
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crystallography13–16 are another RST precursor. Heavy-
ion methods use strong scattering centers as holographic
references for phase retrieval in multidimensional mo-
lecular tomography. There is little freedom in designing
holographic references to improve reconstruction further
because the ion positions are chemically determined.
Furthermore, estimating the ion positions is a particular
challenge for these methods. In the RST paradigm one
can imagine creating molecular binding sites within arti-
ficial nanostructures as a means of prescribing reference
structures for molecular analysis.

While we believe that the RST approach is applicable to
most radiation imaging modalities, we focus particularly
on optical systems. Multidimensional optical imaging
usually relies on pointwise scanning. Leading technolo-
gies in scanned multidimensional microscopes include
those in confocal,17–21 multiphoton,22 near-field23 and
optical-coherence tomography24 systems. Conventional
tomographic algorithms have been adopted successfully
in optical imaging by use of high-depth-of-field interfero-
metric imaging systems,25–27 coded-aperture systems,28

and focal systems.29,30 Moreover, the use of complex 3D
reference structures with volume holographic filters has
emerged in scanning microscopies.31–33 In RST we ex-
plore the potential of using reference structures for the
additional purposes of accelerating data acquisition and
simplifying temporal correction.

Multidimensional optical components and multidimen-
sional object analysis are the primary physical distin-
guishing features of RST. Where conventional design of
an optical system tends to emphasize planar modulation
transverse to the propagation direction, reference struc-
tures modulate fields along the direction of propagation
as well as in transverse directions. Where conventional
design emphasizes mappings between object and image
planes embedded in volume spaces, RST considers map-
pings between all points in the space embedding both the
object space and the measurement space. The physical
features lead to new algorithmic approaches that also dis-
tinguish RST, including emphasis on anisomorphic map-
pings between object and measurement spaces and on
basis-state-based object analysis.
2004 Optical Society of America
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Preliminary RST studies have recently been reported
elsewhere, including multidimensional imaging with geo-
metric reference structure,34,35 data-efficient sensing with
coded apertures,36 and direct estimation of object size
with random reference structures.37 We introduce and il-
lustrate the basic RST concepts in the rest of the paper.
We introduce in Section 2 geometric RST, which assumes
ray propagation, and use it to illustrate the principles and
approaches in the design of reference structures and the
use of reference structures in object analysis. Section 3
discusses the codesign of object analysis and RST with a
limited number of sensors. Some simulated experiments
to illustrate the RST potential are presented in Section 4.
We conclude with a discussion of these results in Section
5.

2. GEOMETRIC REFERENCE STRUCTURE
TOMOGRAPHY
RST characterizes objects measured by use of radiation
fields. A radiation field model describes how object infor-
mation is transformed into measurements. The descrip-
tion of a radiation field model includes (1) the parameters
that describe the field, (2) the relationship between the
object and field states, (3) how the field propagates, (4)
how the field is modulated by the reference structure, and
(5) how the field state is transduced into a measurement
state. Field parameters may be real or complex numbers
and may include descriptions of polarization, spectral,
and coherence properties. The relationship between the
object state and the field may be local and linear or it may
be quite complex. Field propagation may be described by
simple projections or by wave propagation. Although all
of these possibilities may be included in field models for
RST, this paper focuses on a simple geometric field model.
The geometric model is not universally applicable or
unique, but it is quite useful and is adequate for present-
ing the basic concept of RST.

The geometric model makes the following assumptions:

1. The field is described by a non-negative real inten-
sity value at each point in space.

2. The object density at each point contributes addi-
tively to the field at that point.

3. The field propagates along straight rays, and the
amplitude of a ray is the sum of all object density points
along the ray.

4. A reference structure can block or attenuate a field
ray.

5. A measurement point sums the amplitude of all
rays incident on it.

The geometric model is formalized with a visibility func-
tion or impulse response. The visibility v(r1 , r2) is de-
fined on any pair of points in the object-embedding space.
The visibility describes the contribution of the field at
point r2 to the field at point r1 . While the impulse re-
sponse for a general field model may be complex or vector
valued, the visibility under the geometric model is as-
sumed to be real and non-negative. We say that r2 is vis-
ible from r1 if and only if v(r1 , r2) is nonzero.

We consider RST under the geometric model by using
distributions describing the object state @ f(r)#, the mea-
surement state @m(r)#, and the reference structure [F(r)].
If the reference structure is perfectly absorbing, F(r) may
represent a surface contour of the reference structure. In
other cases, such as partial absorbers, we may consider
F(r) as a volume distribution. To simplify our descrip-
tion of the basic RST concepts we do not consider the ma-
terial’s properties in detail.

The reference structure distribution induces, by obscu-
ration or absorption, a nontrivial visibility function
v(r1 , r2). In the case of obscuration, the visibility func-
tion may take Boolean values only. In the 2D illustration
in Fig. 1, we have v(P, R) 5 0 since points P and R are
invisible to each other, and v(P, Q) 5 1 and v(R, Q)
5 1 since Q is visible from both points P and R. In gen-
eral, for any pair of points r1 and r2 , v(r1 , r2) is 0 if and
only if the line segment between r1 and r2 intersects F(r).
The visibility function in this case can be simply deter-
mined by the boundary of the occlusion, i.e., the opaque
reference structure F(r). Calculation of the visibility of
such a model by use of level sets is discussed in Ref. 38.
In the case of continuous absorption, the reference struc-
ture F(r) may be described as a density function and the
visibility function may take the form

v~r1 , r2! 5 expS 2E
r1

r2

F~r!drD . (1)

Under the assumption that the object state f(r) and the
measurement state m(r) are linearly proportional to the
radiation field at the corresponding points, the visibility
defines the object-measurement mapping according to

m~ri! 5 E
R3

v~ri , r!f~r!dr, (2)

where m(ri) is the state of the ith detector positioned at
ri .

The measurement field is in all cases discretely
sampled at selected locations. Transformation of Eq. (2)
into discrete form introduces some clarifications and new
terminology. Rather than considering a continuous vis-
ibility function, we may consider the visibility as a family
of functions v(ri , r) centered on the measurement points
ri . The measurements may be parameterized as

Fig. 1. Visibility modulated by an opaque geometric reference
structure, F(r).
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mi 5 E
S2

dsE
0

`

v~ri , ri 1 as!f~ri 1 as!a2da, (3)

where s is a point on the unit sphere S2 centered at ri .
In the case of opaque reference structures, the Boolean-

valued visibility function v induces a discrete partition of
the object domain. Specifically, a signature vector x(r) is
associated with each point r in the object domain, indicat-
ing the visibility of the point to all the detectors. The ith
element of x(r) is v(ri , r). It is equal to 1 if and only if
point r is visible to the detector located at ri . Contigu-
ous points with the same signature form a cell that we re-
fer to as a signature cell. The object domain is parti-
tioned into signature cells. There may be more than one
cell with the same signature, as can be seen in Fig. 2.

The reference structure and the domain partition may
be described geometrically as follows. Consider the case
that the detectors, the reference structures, and the object
domain are well separated spatially as in Fig. 2. For
each sensor located at ri , a reference projection sphere Si

2

centered at ri of nonzero radius can be chosen so that it
does not intersect the object or other spheres Sj

2. Define
the local visibility function on Si

2, vi(s) 5 v(ri , s), s
P Si

2. It partitions the sphere Si
2 into transparent and

opaque spherical cells, corresponding to value 1 or 0.
The partition of Si

2 is the reference structure projected
onto the sphere along the rays from the ith detector.
Conversely, the opaque–transparent partition patterns on
the reference projection spheres, i.e., the local visibility
functions, specify the domain segmentation introduced by
the reference structure, as illustrated by the signature
cells in Fig. 2. Rays from each sensor passing through its
reference projection sphere partition the object domain
into regions visible or invisible to the sensor. The joint
partitions from all the sensors segment the object space
into signature cells. In Fig. 2 cells with signature 000
are invisible to all three sensors, and cells with signature
110 are visible to the first two sensors but invisible to the

Fig. 2. Object domain, signature-cell segmentation by an
opaque geometric reference structure.
third. In RST implementation sensors and reference
structure may be integrated, for example, a sensor may
act as an occlusion to another sensor.

With the signature cell segmentation, the source-
measurements mapping of Eq. (2) can be represented in
discrete form. Let Cj be the jth cell with signature x j
and volume vj . Then

mi 5 (
j

x ijvjfj , (4)

where x ij is the ith element of signature x j and

fj 5
1

vj
E

Cj

f~r!dr (5)

is the average of the source-distribution function over the
cell Cj . Equation (4) can be written in matrix form as

m 5 XDwf, (6)

where m 5 @mi# is the measurement vector, X 5 @x ij# is
the signature matrix, Dw is the diagonal weight matrix
with entries of the volume vector @vj#, and f 5 @ fj# is the
source distribution discretized over the cells.

The sensors and reference structure will be designed
with respect to the type of object analysis and the class of
objects under consideration. In the case of parameter es-
timation, for example, f is a parameterized vector and Eq.
(6) may be a system of nonlinear equations for the param-
eters. In the case of imaging, the density-distribution
function f(r) may be represented as a linear combination
of prescribed basis functions f(r) 5 ( j51:Kcjbj(r). Equa-
tion (6) becomes the linear equation for the coefficients,

m 5 XDwBc, (7)

where the (i, j) element of B is the average value of basis
function bj over cell Ci ; see Eq. (5). When the character-
istic functions of the signature cells are used as basis
function, i.e., bj(r) 5 @r P Cj#, B is the identity matrix.
There are a few drawbacks to the use of such basis func-
tions. Only piecewise functions on the cells can be rep-
resented exactly. The number of signature cells could
grow exponentially with the number of detection points.
We say that objects of interest are compressible with re-
spect to a prescribed set of basis functions if the objects
can be represented by a small number of the basis func-
tions. In that case, the number of sensors may be made
as small as K, the dimension of the prescribed basis func-
tions, and the sensor configuration and the reference
structure may be designed to make the matrix product
XDwB well conditioned and well structured for efficient
and robust image reconstruction. We discuss modal ob-
ject analysis further in Section 3.

3. MODAL IMAGING BY REFERENCE
STRUCTURE TOMOGRAPHY
Consider imaging reconstruction, i.e., the estimation of a
density function over the object domain. Assume that
the density function f(r) is in a vector space of finite di-
mension, such as in the case of a band-limited object.
The object-density function is reconstructed by solving
the system of linear Eqs. (7). When the object dimension
K is reasonably small, one can employ as few as K sen-
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sors. The goal of reference structure design is to make
the matrix product XDwB nonsingular and well-
conditioned. The ith row of X corresponds to the local
visibility function of the ith sensor and specifies the inte-
gration of the density function over the signature cells
visible to the sensor. Note that matrix B changes with
the domain partition because the (i, j) element is the in-
tegration of the jth basis function over the i signature cell.
For a well-conditioned linear problem, one may also find
once and for all the inverse response in the coefficient
space to the measurement at each sensor.

Let Q be the product of the matrices XDwB as they
have been defined in Eq. (7). The matrix Q is a quadra-
ture matrix; the (i, j) element Qij corresponds to the defi-
nite integral of basis function Bj evaluated at the visibil-
ity domain of sensor i,

mi 5 E
V

hi~r !f~r !dr 5 E
V

hi~r !(
j51

n

cjBj~r !dr

5 (
j51

n

cjE
V

hi~r !Bj~r !dr,

where hi(r) is the visibility function from sensor i at lo-
cation r and Bj(r) is the jth function from a family of ba-
sis functions such that object-density function f(r)
5 ( j51

n cjBj(r).
Matrix Q connects the visibility partition cells on the

one side and the basis functions on the other side. The
representation of the object function under a selected ba-
sis either extends or limits the scope of object-
reconstruction precision. The object reconstruction is
limited by the number M of measurements. An impor-
tant purpose of object estimation is to exploit the poten-
tial within the representation scope by using additional
information about the object function. A successful RST
setting represents the set of basis functions chosen ad-
equately, and the transformation matrix Q is of full rank
and well conditioned. In addition, the RST design should
be describable by a transformation matrix Q that is ame-
nable to efficient solving, but we will address this issue
elsewhere.

We therefore solve for the coefficients of a compressed
representation of the object-density function. It is more
efficient and accurate to use matrix Q directly, rather
than its factors, matrices X, Dw , and B. Signature ma-
trix X may consist of a potentially large number of col-
umns (one column for each segmentation cell in the object
region).

When the linear system is of full rank or is consistently
overdetermined—that is, there are at least as many sen-
sor measurements as basis functions—the solution result
recovers the coefficients of the basis that approximate the
object density. In the case of an inconsistent, overdeter-
mined linear system due to noise in the measurements or
a basis selection that does not represent the object ex-
actly, one may seek the solution of the least-squares error.

When the dimension of object space is higher than the
dimension of measurement space, Eq. (6) becomes under-
determined. An underdetermined linear system of equa-
tions has infinitely many solutions. For selection of the
right solution and recovery of a good approximation of the
object-density function, the dimension or scope of the so-
lution space should be reduced by additional constraints,
such as knowledge about the object that is independent of
the measurements. Usually these additional constraints
are based on the physical properties of the object space.
Examples of such knowledge are nonnegativity con-
straints about the object-density function, bounds to its
total energy or variability, bounds in the spectral band-
width, etc. For instance, the nonnegativity of a density
function can be imposed by the following constraints:

0 < DwBc < eTm. (8)

The inequalities define a bounded convex set when B is of
full-column rank, which is a necessary condition to be sat-
isfied by the reference structure design. In fact, the dis-
cretized object vector is an approximation to the original
object function, in terms of a set of P piecewise-constant
basis functions, each of which has its support over a sig-
nature cell. In this setting, B is the identity matrix. In
the case when f is not in the column space of B and the
linear system in Eq. (7) cannot be satisfied, the system of
equations can be replaced by the inequalities

~1 2 t!m < XDwBc < ~1 1 t!m, (9)

where t is an upper bound on the relative elementwise er-
ror in the approximate representation. One may be able
to obtain similar inequalities based on an absolute error
bound. The set of inequalities in relation (9) defines a
convex set of feasible solutions. Although it is un-
bounded in general because it contains the affine solution
space of Eq. (7), the nonnegativity constraints and the up-
per bound of relation 8 make the convex cone bounded.
Similarly to the ideal case, the object estimates are re-
stricted within the conjunction of the bounded convex set
defined by the nonnegativity constraints in Eq. (7) and
the convex set defined by the representation approxima-
tion bounds (9).

The final estimate of the object-density function is se-
lected on the basis of certain evaluation criteria for object
reconstruction. For example, it may be desirable to se-
lect a feasible solution with the minimal reconstruction
residual m 2 XDwBc in some sense subject to the con-
straints described above. In the 2-norm, the estimate re-
sults in the least-squares problem of minimizing the ob-
jective function mincim 2 XDwBci2 with linear
constraints.

The design of an effective compressive RST setup re-
quires the determination of the number and position of
sensors and occlusions to segment the object region, and
the choice of the set of functions that form a basis in
which the objects can be expressed concisely and effi-
ciently. In practical terms, RST design requires the
placement of sensors and occlusions to segment the object
region uniformly and in such a way that the evaluation of
the basis functions in the sensor visibility regions will
form a nonsingular quadrature matrix. The complexity
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as well as special characteristics of the object function de-
termine the choice of the family of functions to form a ba-
sis and its cardinality (dimension). The basis cardinality
in turn determines the number of sensors required. The
larger the basis cardinality, the more detail of the object
can be reconstructed. However, large bases require a
large number of sensors and elaborate segmentation of
the object region.

The challenging issue is the choice of a minimal basis
that approximates the object instances to be encountered
in adequate detail. To select the proper basis, statistical
knowledge of the object-density function is required. As-
suming that the cardinality of the chosen basis is larger
than the number of sensors M, if the rank of Q is not full,
then the position of the sensors and occlusions is not ad-
equate to support the chosen set of basis functions. The
singular-value decomposition of the quadrature matrix Q
is an indicator of the quality of the overall RST setup.

In summary, object estimation is determined by the
RST structure, the object representation model, and the
model minimizing the reconstruction deviation. The ob-
ject representation model, when there is not enough
a priori knowledge, is involved primarily in object estima-
tion. A linear representation model may entail searching
for the appropriate basis functions and selecting among
or reconstructing on them and may further involve a
hierarchical learning process based on measurement
statistics.

4. NUMERICAL SIMULATIONS
We present image reconstruction simulations to illustrate
RST implementation and considerations regarding RST
design and object estimation. We consider a 2D object
space observed from measurement points also in the
plane through a 2D reference structure. Simulations are
implemented in MATLAB. The object domain is the unit
square @20.5, 0.5# 3 @20.5, 0.5#. We consider M sensors
located regularly around a circle of radius Rm 5 A2 cen-
tered at the origin. The occlusions are also regularly
placed around a concentric circle of radius Ro 5 7A2/12
within the sensor circle.

A sample signature cell partition introduced by such a
reference structure is shown in Fig. 3. That RST setup
consists of M 5 40 sensors and 30 occlusions. The sen-
sors are located on the circumscribed circle with their po-
sitions denoted by the open circles. The occlusions—
denoted by solid circles—define the occlusion boundary
lines that segment the object space, which is the square
plate in the middle. Different gray-scale partitions of the
object space correspond to different visibility signatures.
Both sensors and occlusions are positioned at regular an-
gular intervals that have been slightly perturbed to gen-
erate an irregular partition. The partition shown con-
sists of 16,292 cells with 16,286 unique signatures. One
major target of reference structure design is to achieve
partitions with uniform average cell size and a large num-
ber of unique signatures.

We focus on reconstruction experiments in two dimen-
sions with compressive systems, as introduced in Section
3. We start by generating a reference structure and cal-
culating the visibility polygons for each sensor. We then
calculate the integrals for each basis function on the vis-
ibility area of each sensor, thus forming matrix Q, and
similarly the integral of the object-density function to cal-
culate the sensor measurements m. Finally we solve the
resulting least-squares optimization problem minciQc
2 mi2 with linear constraints (1 2 t)m < Qc < (1
1 t)m and Bc > 0 and with t 5 0.01 by use of a
primal–dual iterative solver for quadratic programming
problems with linear constraints from ILOG® CPLEX®.

The columns of matrix B are discretizations of the 2D
Daubechies wavelet-basis-functions set. More specifi-
cally, matrix B is formed by the Kronecker product of dis-
cretizations of the 1D cubic, Daubechies-wavelet func-
tions at a certain level, shifted and dilated to support the
domain [20.5, 0.5].2 We use only the compressive part of
the basis set at a certain level, that is, the basis functions
corresponding to the average (low-pass) set of coefficients
at that level and not the functions corresponding to the
detail (high-pass) set of coefficients of the same or prior
levels. See Fig. 4 for a pictorial representation of the 2D
cubic Daubechies wavelet basis. The choice of the wave-
let basis itself has been arbitrary, and alternative wave-
lets or other functions that form a basis of the space
spanned by the object-density functions of interest can be
used. An ideal basis set can represent the intended
object-density functions adequately with a small number
of functions. Since such bases are problem-domain spe-
cific and can adversely influence the performance of im-
age reconstruction, we choose a generic basis formed by
the cubic Daubechies wavelet functions. In the case that
a wavelet basis is chosen, matrix B need not be formed
explicitly, as products with this matrix correspond to a 2D
wavelet transform synthesis that can be calculated in lin-
ear complexity, memory space, and computational time.

Fig. 3. Sample two-dimensional object domain partition in-
duced by a reference structure.
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Fig. 4. Pictorial representation of the two-dimensional cubic Daubechies wavelet basis of cardinality 64. The intensity of each image
has been enhanced to utilize the full gray scale and is not consistent from image to image.

Fig. 5. Simulated band-limited object-density function used in our reconstruction; on the left is the original, in the middle is the rep-
resentation in the Daubechies cubic wavelet basis, and the resulting reconstruction is on the right.

Fig. 6. Detail from the clown image used in our reconstruction; on the left is the original, in the middle is the representation in the
Daubechies cubic wavelet basis, and the resulting reconstruction is on the right.
We performed two different kinds of reconstruction
simulations. In the first one we reconstructed a band-
limited function and in the second, we reconstructed an
image fragment. The two reconstructions required dif-
ferent approaches in sampling and representation, so we
used two different reference structure designs. The
band-limited object-density function can be adequately
approximated by a level 3 wavelet; thus it requires a



1146 J. Opt. Soc. Am. A/Vol. 21, No. 7 /July 2004 Brady et al.
much smaller number of sensors than the image fragment
density function. For the latter, we used a level 1 ap-
proximation wavelet basis.

The band-limited object-density function used for the
first reconstruction simulation experiment is shown on
the left in Fig. 5. It was generated by f(x, y)
5 u(j(kajk exp@22pi( jx 1 ky)#u. The coefficients ajk were
randomly generated with normal distribution. The sum-
mations were limited to six terms to simulate a band-
limited function. The representation of the object-
density function in the compressive Daubechies cubic-
wavelet basis of level 3 is shown in the middle of Fig. 5.
The reference structure setting consisted of 64 sensors
and an equal number of circular occlusions. The point
sensors were the vertices of a regular polygon concentric
with the object region that had been slightly perturbed by
a random variable of normal distribution. Similarly, all
occlusions were of identical radius and appeared at equi-
angular positions at distance 7&/12. Note that the num-
ber of basis functions used for the sample reconstruction
was also equal to the number of sensors. The subimage
on the right of Fig. 5 illustrates object estimation with the
minimal 2-norm residual subject to nonnegativity con-
straints.

The image fragment object-density function used for
the second reconstruction simulation experiment is
shown on the left in Fig. 6. It is a 32 3 32-pixel detail of
the ‘‘clown’’ test image that comes with MATLAB. The
projection of the object-density function in the compres-
sive Daubechies cubic-wavelet basis of level 1 is shown in
the middle of Fig. 6. The reference structure setting was
identical in all aspects to that of the previous example
(Fig. 5), the only difference being the number of sensors
and circular occlusions was 324. The subimage on the
right of Fig. 6 displays the reconstructed object-density
function resulting from the minimization of the 2-norm
residual subject to nonnegativity constraints.

One would expect that a setup with the number of sen-
sors equal to the cardinality of the basis—assuming that
it is described by a nonsingular transformation matrix—
and all object states adequately expressed by the chosen
basis would be reconstructible. In reality, though, we
saw that the matrix Q could be badly conditioned owing
to noise in the sensor-reading–object-density-function in-
tegration. Thus we resorted to solving an optimization
problem for the image reconstruction.

5. DISCUSSION
RST introduces and utilizes known multidimensional ob-
jects to analyze unknown multidimensional objects. This
work presents a simple geometric model of RST and in-
troduces the concept of compressive measurement in to-
mographic systems, but does not cover the full range of
RST concepts. One aspect of RST neglected here is obvi-
ous: We do not consider wave-theoretic models of the ra-
diation fields. Another important aspect of RST left un-
covered is subtler: Reference-structure-based object-
space segmentation may be implemented on object-
configuration spaces rather than naı̈ve object-density
spaces.
Wave-theoretic and coherence models of RST substan-
tially increase both the complexity and the applicability of
the model. Diffraction effects will limit the resolution of
RST-based imaging to wavelength scales and will reduce
the spatial bandwidth of object-space segmentation.
Wave models also change the fundamental structure of
the object-measurement mapping in cases where coher-
ence and phase properties of the field are preserved.
Such cases introduce a nonlinear mapping at the mea-
surement interface (the measurement is generally propor-
tional to the square of the field). This nonlinearity can
be used to develop holographic models of RST.

The general problem of attempting to reconstruct an
arbitrary object-density function from sensor measure-
ments can be ill-posed and numerically ill-conditioned.
However, for special cases, a priori knowledge of the ob-
ject composition and structure can be utilized in the RST
design to transform the reconstruction problem into a
well-posed and well-conditioned procedure. Such ab-
straction to higher levels may also resolve nonlinearities
implicit in the impulse-response model for object–
radiation coupling. Moreover, the computational com-
plexity of the reconstruction may be reduced substantially
because of the reduction in ambiguity and the processing
of higher-level abstractions in lower-dimensional spaces.
In essence, RST permits the decoupling of the density es-
timation from target estimation. With RST we may di-
rectly estimate abstract and nonlocal object characteris-
tics of a target with the appropriate reconstruction
procedures. While these abstract measures may not be
direct measures of ideal descriptors, the challenge of in-
verting them to obtain such measures may be substan-
tially less than the joint challenges of object-density esti-
mation and subsequent target estimation from image
data. For instance, in many surveillance-type applica-
tions we want only to locate the position and the cardinal-
ity of a specified target without reconstructing the whole
object scene. More generally, we may need to estimate
only some aspects of the object, such as its position or
size. Similarly, we may want only to classify an object
among a set of predetermined targets, for instance, deter-
mining the shape or orientation of the object among a dis-
crete set of shapes or orientations.
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