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Abstract
Chez Scheme is now over 20 years old, the first version having been
released in 1985. This paper takes a brief look back on the history
of Chez Scheme’s development to explore how and why it became
the system it is today.

Categories and Subject DescriptorsD.3.4 [Programming lan-
guages]: Processors—compilers, incremental compilers, optimiza-
tion, interpreters, memory management (garbage collection), run-
time environments; D.3.2 [Programming languages]: Language
classifications—applicative (functional) languages, Scheme

General Terms Algorithms, design, languages, performance, re-
liability

Keywords Chez Scheme, Scheme implementation

1. Introduction
Chez Scheme Version 1 was completed in 1984 and released in
1985. I am amazed to find myself working on it still more than
two decades later. If asked in 1985 to look forward twenty years, I
would have said that Chez Scheme and Scheme itself would have
long since found their way into the bit bucket of history. After all,
the oldest languages then were no older than Scheme is today, and
many languages had come and gone. Many languages have come
and gone since, but Scheme, with its roots in the circa-1960 Lisp,
lives on. The user community now is larger and more diverse than
ever, so with any luck, the language and implementation will last at
least another two decades. It’s a scary thought.

Longevity is tied to adaptability, and the current version of Chez
Scheme is, to be sure, much different from its 1985 counterpart.
It implements a much larger and different language and sports
a much richer programming environment. The compiler is much
more sophisticated, as is the storage management system. Whereas
the initial version ran on one architecture and under one operating
system, the system now supports a variety of different computing
platforms and has supported many others at one time or another.

Still, the principles behind Version 7 are the same as those
behind Version 1. Our primary objectives remain reliability and
efficiency. A reliable system is one that correctly implements the
entire language and never crashes due to a fault in the compiler
or run-time environment. An efficient system is one that exhibits
uniformly good performance in all aspects of its operation, with a
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fast compiler that generates fast code and does so for the widest
variety of programs and programming styles possible. While we
have added many new features over the years, and improved the
system’s usability with better feedback and debugging support, we
have always done so in a way that took our primary objectives into
account.

The paragraphs above first appeared in the preface of theChez
Scheme Version 7 User’s Guide[21], which was published in 2005.
The user’s guide goes on, of course, to document the language as it
exists today, and says no more about the history of the system. The
purpose of this paper is to explore that history, to answer how and
why the system came to be what it is today.

The remainder of the paper begins with a brief description of
the systems that, in one way or another, were precursors to Chez
Scheme (Section 2). It then describes the motivations behind the
initial and successive versions of Chez Scheme and some of the
more important new language features or implementation tech-
niques that appeared in those versions (Sections 3 through 10). The
paper concludes with some parting remarks (Section 11).

2. Precursors
Chez Scheme did not materialize out of a vacuum. What follows is
a description of several Scheme or Lisp systems I worked on before
Chez Scheme, systems that influenced the design and implementa-
tion of Chez Scheme in one way or another.

2.1 SDP

Scheme Distributed Processes [13] (SDP) was a multi-threaded im-
plementation of Scheme written in 1980–81 by fellow Indiana Uni-
versity graduate student Rex Dwyer and me. The system was pri-
marily a vehicle for investigating the Distributed Processes model
of concurrency proposed by Per Brinch Hansen [34]. It grew out
of an assignment given to us by Dan Friedman in his graduate pro-
gramming languages seminar, which he taught using the book he
and Bob Filman were writing on concurrent programming tech-
niques [32].

SDP supported a large subset of the 1978 (revised report) ver-
sion of Scheme [52]. In addition to its parallel processing exten-
sions, SDP also supported arrays, a partial application mechanism,
dskin anddskout functions for loading and saving definitions,
and even a structure editor. SDP departed from Scheme’s seman-
tics by distinguishing false from the empty list and also by requiring
that the cdr of a list also be a list. SDP was written entirely in Sim-
ula [3] and took advantage of Simula’s run-time system, including
most importantly its garbage collector.

Although none of the code of SDP survived into any of the
Scheme systems I wrote later, it provided me my first experience
with Scheme and with implementing a Lisp dialect of any kind.



2.2 Z80 Scheme

In 1981, while working as systems programmers in the academic
computing center at IU, George Cohn and I decided to create
an implementation of Scheme for the Z80 microprocessor. In so
doing, George could teach me how to program in Z80 assembly,
and I could teach him about Scheme. George was an incredible
programmer, and I learned a lot from him in what I am sure was the
better end of the bargain.

We coded the Z80 Scheme system entirely in Z80 assembly un-
der the CP/M [48] operating system. The system supported most if
not all of the 1978 version of Scheme, including full continuations.
All values took up exactly 32 bits (two sixteen-bit words) or were
made up of linked chains of 32-bit values. With all objects aligned
on 32-bit boundaries, we were able to use the low-order two bits of
each word for tagging and garbage collection. The system was in-
terpreted and included a simple mark-sweep collector and free-list
allocator.

About a year later, we created a second version of the Z80
Scheme system, making two major changes. First, we converted
the collector into a mark-sweep-compact collector, reinventing the
“two-finger” compaction algorithm apparently first proposed by
Daniel Edwards [49]. This algorithm actually ran faster than the
original, and it allowed us to use faster inline allocation. Second,
we eliminated support for full continuations so that we could use a
traditional recursion stack. Because the stack and heap grew toward
each other, compacting the heap also ensured that the system did
not run out of either stack or heap space before memory was truly
exhausted. Overall, this system was much faster than the original,
but I regretted losing support for full continuations.

We also attempted a compiler for the Z80 Scheme system. We
designed a Scheme Assembly Language analogous to the Lisp 1.5
Lisp Assembly Language (LAP) [45], implemented it as a set of
library routines to save code space, and generated from the Scheme
source what amounted to a series of calls to these library routines.
Sadly, because of the library-call overhead, the system ran no faster
than the straight interpreter, and the generated code was larger than
the original source code, so we abandoned the compiler.

2.3 C-Scheme

In 1982 I also began the implementation of a new dialect of
Scheme, Curry Scheme (later abbreviated C-Scheme) [14]. The
system employed a preprocessor, written in Scheme and boot-
strapped via the Z80 Scheme system. The preprocessor performed
macro expansion and also took care of currying both applications
andlambda expressions. This was my first experience writing a
macro expander and also my first experience with bootstrapping.
The run-time system and interpreter were initially implemented in
Pascal on the Z80 but were later recoded in C on the VAX. The
storage management system employed thebig bag of pages(Bi-
BOP) representation of memory, in which memory is broken up
into fixed-size segments and a separate segment table is used to
identify the type of object contained in each segment [51]. Ob-
jects larger than a segment were supported by allocating two or
more consecutive segments. Unboxed native integers (fixnums)
were supported by leaving empty the lowest and highest portions
of the virtual memory address space and setting the corresponding
segment table entries to the type code for fixnums.

Although Chez Scheme had not yet even been conceived,
C-Scheme was an important step toward Chez Scheme. Chez
Scheme’s initial run-time system borrowed heavily from that of
C-Scheme, and C-Scheme was used to bootstrap the first version
of the Chez Scheme compiler.

2.4 Data General Common Lisp

In an incredible coincidence, I happened to be in Dan Friedman’s
office just before heading to graduate school at the University
of North Carolina in 1982 when Jed Harris of Data General in
Research Triangle Park called to ask Dan if he knew of anyone
who might be interested in coming to North Carolina to help them
initiate a Common Lisp effort. Dan put me on the phone, and Jed
and I arranged to meet after I got settled. I hired on as a contract
employee and served by myself as the entire DG Common Lisp
group for about a year, with Jed looking over my shoulder from
time to time. The plan was to adapt the work I had done for C-
Scheme into a run-time system, with an interpreter for the core
of Common Lisp, then graft a compiler on at some later time. By
the end of the year, I had written a storage management system,
I/O system, interpreter, and various primitives in DG’s proprietary
systems programming language. At that point, several other people
were hired on, the Spice Lisp compiler was brought in from CMU
to be combined with the run-time system, and I backed off to
occasional consulting so that I could focus more attention on my
PhD research.

During the summer of 1984, I was asked to work full time
at DG to repair the storage management system, which had been
replaced with one that ran two orders of magnitude slower than
my original and crashed during the second collection cycle. Simply
reverting to my earlier code was not an option, as by now new
object types had been added and the representations of some others
had changed. Besides, although my old collector was faster than
the one that replaced it, it was still pretty slow, taking something
like one or two minutes to collect an 8MB heap on DG’s flagship
MV/10000 computer. (Don’t laugh. We had reports of other, much
slower collectors outside of DG.) So I was asked to make one that
was much faster. Unfortunately, I had only until the end of July
to make it all happen, as DG had plans to demo their Common
Lisp at the co-located Lisp and Functional Programming and AAAI
conferences in early August. On the other hand, I was given an
outstanding partner, Rob Vollum, which made the task a lot easier,
and more pleasant. Working 18 hour days, we had a solid storage
management system with a fast collector just in time for the demo.

We gained most of the performance by leaving in place (but still
tracing) all of the system data structures in what became known
as the static part of the heap. This was a poor variant of genera-
tion scavenging [43, 54], about which I had not yet heard, but it
was still fairly effective. The BiBOP representation inherited from
C-Scheme allowed us to avoid tracing segments that contain no
pointers, e.g., those containing strings, and we also collected these
segments infrequently to avoid bringing them into memory if they
had been paged out. The end result was a collector that averaged
around 15 seconds to collect an 8MB heap—very slow by today’s
standards, but respectable at the time.

By all accounts, the demo at LFP and AAAI was a success.
Unfortunately, as I understand the situation, the marketing division
within DG that had bid and won the right to sell the Common Lisp
product shortly thereafter received a lucrative contract for some
different effort, and the Common Lisp product never really saw the
light of day. I learned a lot from the project, however, that I was able
to use in my work on Chez Scheme. In addition to gaining valuable
experience with storage management, I remember being impressed
by the seriousness with which DG approached quality assurance
and became a firm believer in the development of extensive test
suites. Also, although I did not have a chance to work with the
compiler directly, I did write code for handlinglambda lists, an
unpleasant task that helped push me toward a more minimalist
approach to language design in later years.



3. Chez Scheme Version 1
During the relative respite from DG in Fall 1983 and Spring 1984,
I worked in earnest on the design of a parallel implementation of
Scheme for my advisor’s (Gyula Mago’s) cellular computer [44],
which had been my intent from the day I decided to go to school at
UNC. Since there was actually no machine yet, I also started writ-
ing a simulator (in Scheme, naturally). Unfortunately, C-Scheme
wasn’t fast enough, although it was faster than the other Scheme
systems I tried. I ported the simulator to Franz Lisp [33], which was
a good system, but was frustrated by its poor handling of function
arguments—which the compiler seemed to punt to the interpreter—
and by a lack of consistent semantics between the compiler and in-
terpreter. So I decided to undertake, in parallel with my research
work, the design and construction of a compiler for Scheme, which
eventually became Chez Scheme.

As part of the design process, I profiled the C-Scheme imple-
mentation and discovered that most of the time was spent in vari-
able lookups and stack-frame creation. It dawned on me that the
typical implementation model for Scheme was all wrong: by heap
allocating environments and call frames, it made closure creation
fast at the expense of the more common variable references, and it
made continuation operations fast at the expense of the more com-
mon procedure calls. In our second Z80 Scheme implementation,
we opted to sacrifice full continuations to enable stack allocation of
stack frames, and the designers of T had done likewise [47], but I
wasn’t willing to go that route with Chez Scheme. Instead, I started
to think about ways to make continuations “pay their own way,” and
at the same time, shift the burden somehow from closure access to
closure creation.

The solution for continuations seemed obvious: use a stack for
procedure calls, implement continuation capture by copying the
stack into a heap-allocated data structure, and implement contin-
uation reinstatement by copying the stack copy back to the stack.
With environments still heap allocated, variable values would never
be stored directly on the stack, and there would be no concern about
making multiple copies of mutable variables. On the other hand,
my ultimate goal was to use traditional stack frames in which local
variables were stored on the stack, and I wasn’t sure how this was
going to work out.

Solving the closure issue was a bit trickier. While researching
how other systems had coped with similar problems, I ran across
a book on the implementation of Algol 60 by Brian Randell and
Lawford Russell [46], which described the use of displays for
speeding access to the free variables of a local function. Adisplayis
a bank of memory locations or registers, each pointing to one of the
frames whose variables make up the current lexical environment.
Displays weren’t directly usable for my purposes, but I was able
to make several adjustments and from the display model derived
the notion of adisplay closure, a heap-allocated vector-like object
holding a code pointer and the values of the free variables [16].
In addition to allowing constant-time access to all variables, it
had the added benefit that closures hold on to no more of the
environment than they require, which had the potential to make
garbage collection more effective.

Assigned variables were a problem with this representation,
since a variable’s value could potentially appear in multiple clo-
sures. I dealt with this by “boxing” assigned variables, i.e., replac-
ing each assigned variable’s value with a pointer to a heap-allocated
single-celled object, or box, holding the actual value. (A variable is
assumed to be assigned if it appears on the left-hand side of an as-
signment somewhere in its scope.) I learned later that Luca Cardelli
used a similar flat representation of closures in his ML implemen-
tation [11]. In ML, variables are immutable, so there is no need for
the compiler to introduce boxes. One can view the introduced boxes
as a form of MLref cell, however, the difference being that, in ML,

the programmer must introduce theref cells explicitly, whereas, in
Scheme, the compiler introduces the boxes implicitly.

Boxing assigned variables also solved the stack problem, be-
cause it allowed the values (or boxed values) of local variables to
be stored directly in a stack frame without concern for the fact that
the frame might be copied as a result of a continuation capture.

With the new closure and continuation models, the cost of cre-
ating a closure became proportional to the number of free vari-
ables, but the cost of accessing a variable’s value became small
and constant—one memory reference if no assignment to the vari-
able appears within its scope, otherwise two. The cost of creating
or reinstating a continuation became proportional to the size of the
stack, but call frames became stack rather than heap allocated, sav-
ing linkage overhead, reducing the frequency of garbage collection,
and allowing common portions of a frame to be reused when mul-
tiple non-tail calls were made. The use of assigned variables also
became more costly, but assigned variables are (and should be) used
infrequently in Scheme, so that was not much of a concern. A big-
ger concern was that proper treatment of tail calls became poten-
tially more costly. The callee’s arguments must be placed in the
same locations as the caller’s local variables to prevent the stack
from growing, but the caller’s locals are generally needed to pro-
duce the callee’s arguments. The simple solution used in Version 1
was to place the callee’s arguments above the caller’s locals and
shift them down just before transferring control to the callee.

As I became excited by the new closure and continuation mod-
els, my primary motivation for developing Chez Scheme shifted
from building a tool for use in my research to proving that my new
ideas could be used to build a fast and reliable Scheme implemen-
tation for use by others as well as me. Because I had found other
systems to be lacking in reliability as well as speed, I refocused
my efforts on building a system that was not only fast but also reli-
able, with full type and bounds checking, including stack overflow
checking, even in compiled code. The new focus turned out to be
a strong motivator, and by the start of Summer 1984 I had an in-
terpreter and run-time system, much of which was copied from C-
Scheme but incorporating ideas borrowed from my DG Common
Lisp storage manager. I had also written the compiler’s front end,
including the assignment and closure conversion passes needed to
implement the new models. Unfortunately, I had to take a break
when the call came from Data General to work on their storage
manager, and I was not able to work on it again until that fall.

When I returned to work on Chez Scheme that fall, I shored
up the run-time system and, with the help of fellow UNC graduate
student Bruce Smith, added a bignum arithmetic package. This left
only one major task, the construction of the compiler back end.
I had originally intended to follow Lisp tradition and provide an
interpreter for interactive use, but Luca Cardelli visited and showed
off his slick interactive, incremental compiler for ML, and I was
inspired to go the same route for Chez Scheme. This made the back
end more difficult, since I could not use the system assembler and
linker, which would have been too slow even without the process-
creation overhead, but instead had to write my own. In the end,
these turned out to be pretty straightforward, but at the time it
seemed an immense challenge, and I put it off for quite a while.
Finally, however, by the end of 1984, Version 1 of Chez Scheme
was complete.

The compiler and portions of the run-time system were written
in Scheme and bootstrapped using C-Scheme. The remainder of the
run-time system was written in C and assembly. The system sup-
ported only one architecture, the VAX, and one operating system,
BSD Unix.

In a high-level sense, the compiler was naive. It handled a small
set of core forms and did only one thing that could charitably be
called a high-level “optimization:” it treated the variables bound by



a direct lambda application as local variables to avoid the cost of
allocating a closure and calling that closure. As I tell my compiler
students now, there is a fine line between “optimization” and “not
being stupid.” This was really an instance of the latter.

My focus was instead on low-level details, like choosing effi-
cient representations and generating good instruction sequences,
and the compiler did include a peephole optimizer. High-level opti-
mization is important, and we did plenty of that later, but low-level
details often have more leverage in the sense that they typically
affect a broader class of programs, if not all programs.

One important representation hack was the inclusion of a code-
pointer slot as well as a value slot in each symbol to improve the
speed of calls to globally bound procedures, including primitives.
By maintaining a separate code-pointer slot through which global
calls jump unconditionally, the compiler doesn’t have to generate a
procedure? check at each global call. The slot is initialized when
the symbol is created or assigned to the address of a trap handler
that patches up the code pointer and completes the call, if the value
is a procedure, or signals an error, if the value is unbound or not
a procedure. After the first successful call, the trap handler is thus
bypassed and control passes directly to the called procedure.

It is possible to extend this idea to multiple code pointers for
different interfaces, thus avoiding argument count checks as well. I
decided not to do this in Version 1 for several reasons: (a) the extra
code pointers would bloat the size of a symbol or require the use
of an auxiliary data structure, (b) handling multiple code pointers
would add complexity to the compiler and storage management
system, (c) the savings in run time would have been less significant,
since argument-count checks were cheaper than type checks, which
involved a segment-table indirect, and (d) the savings in code size
would have been less significant, since the argument-count checks
were performed at the entry point, not at the call site, and call sites
are typically more numerous than entry points.

This is the way that decisions with Chez Scheme have usually
gone, especially in the early days. We pick the low-hanging fruit,
that which is easy and yields the biggest savings, leave the rest
for later, if ever, and move on to pick the low-hanging fruit on
some other tree. There’s no point in trying to achieve perfection in
one aspect of performance when something easier of even greater
benefit is waiting to be done.

Although I don’t recall the details now, Version 1 outperformed
the other Scheme and Lisp systems to which I had access, in spite
of the complete type and bounds checking, so I felt that the new
closure and continuation representations had proven themselves. I
distributed a half dozen copies of Version 1 in Spring 1985, through
UNC, and feedback from the users was positive as well.

4. Chez Scheme Version 1.1
During Spring 1985, Bruce Smith and I created a reference man-
ual [31]. I converted many of the example programs in the refer-
ence manual into the start of a test suite and then augmented the
test suite with many additional tests. I found and fixed a few bugs
during this process, and by summer completed Version 1.1 of the
system. At the same time, my wife Susan Dybvig and I started Ca-
dence Research Systems to distribute and further develop the sys-
tem. Susan’s MBA degree and prior experience with a small soft-
ware company complemented my training and experience, and we
managed to make our first commercial shipments of Version 1.1
that summer. All of our profits then and since have been reinvested
to pay for the costs associated with development—mostly labor.

Susan also obtained a contract with Prentice-Hall to publish
our reference manual. Prentice-Hall chose the titleThe Scheme
Programming Language, in an obvious attempt to capitalize on the
success ofThe C Programming Language[39], which they also
published. I was pleased with this, but it raised the bar considerably

Release year:1984 (Version 1.0), 1985 (Version 1.1)

Language: R2RS compatibility, fixnums, bignums, ratios,
flonums, simple macros, saved heaps, saved executables,
engines [27, 35], trace support, multiple waiters and cafés,
primitive macro system, timer and keyboard interrupts,
property lists, primitiveformat, dynamic-wind, fluid
binding

Implementation: incremental compiler (no interpreter),
custom linker, flat (“display”) closures, stack-based
representation of control, boxing of assigned variables,
BiBOP typing with reserved (16-bit) fixnum range,
stop-and-copy collector, code pointers cached in symbol
code-pointer slot, peephole optimization

Documentation: Chez Scheme Reference Manual Version
1.0 [31], Unix manual page

Platforms: Vax BSD Unix

Version 1 Highlights

in my mind, and I ended up rewriting most of the text before the
book was finally published in 1987. Unfortunately, my coauthor,
Bruce Smith, was not able to spend much time on the effort, and
I eventually asked for and received his permission to complete the
project on my own. I am eternally grateful for his critical early
contributions both to the system and to the book.

Initially, I wrote all of our code and documentation and we ad-
ministered our business using a home-built Z80 PC, which with its
8Mhz Z80H processor, 128K of RAM, and 20MB hard disk was ac-
tually faster for those purposes than either the new IBM PCs or even
the VAX systems I had used at UNC. (To be fair, I had customized
my copy of Gosling’s Emacs to emulate WordStar, the word pro-
cessing system we used on the Z80. That slowed Emacs down con-
siderably and probably accounts for why the VAX seemed slower.)
Builds and testing were done on a VAX computer at the Microelec-
tronics Center of North Carolina (MCNC), to whom, in exchange,
we provided a free license for Chez Scheme. We eventually pur-
chased a Sun workstation and moved our development work to that
platform, and we bought or were provided with other systems from
time to time, but we continued to barter for or borrow time from
clients for builds and testing on platforms we did not have in house.

The first Sun workstation we bought was their lowest-end sys-
tem. I would have liked a faster system with more memory, of
course, had we been able to justify the cost. On the other hand,
I considered having a low-end machine an advantage of sorts: if I
could make Chez Scheme run well on it, Chez Scheme would run
well on anything.

5. Chez Scheme Version 2
In Fall 1985, we moved to Bloomington Indiana, where I joined
the faculty at Indiana University. Development was largely put on
hold during the academic year while I prepped and taught a full-
year compiler course and one other course. Sometime during the
spring semester, however, George Davidson of Sandia National
Laboratories, who had been using Chez Scheme for several months,
asked us to create a cross-compiler from the VAX to an embedded
MC68000-based system. It was a great opportunity to work on an
MC68000 code generator, which later allowed us to port the system
to the Sun, Apollo, and a couple of other platforms. I decided to
hire a graduate student from my compiler class to help me over the
summer with the project.

The compiler class was full of really good students, but one
stood out (literally as well as figuratively) above the rest. Bob Hieb



Release year:1987

Language: R3RS compatibility, internal definitions, EPS
macros,extend-syntax, case-lambda, optimization
levels, fixnum operators, 19-bit fixnums, pretty-printer,
user-defined structures, user-defined error handlers

Implementation: multiple back ends, multiple operating
systems, automatic closing of files by the collector,
optimizingletrec expressions and loops, inlining of
primitives, destination-driven code generation [30]
(obviating peephole optimizer), faster compiler, faster
collector

Documentation: The Scheme Programming Language[15],
Unix manual page

Platforms: Vax BSD Unix, Apollo Domain/IX, Sun-3 SunOS,
Alliant, VAX VMS

Version 2 Highlights

was 6 feet 6 inches tall, with broad shoulders, bushy hair, a full
beard, sharp features, and a typical outfit consisting of flannel shirt,
jeans, and boots. He looked more like a lumberjack than a computer
scientist (I learned later he had spent ten years as a carpenter),
but his performance in the class demonstrated great potential, so I
offered him the job. He gladly accepted, and we ended up working
together for seven fruitful years before his untimely death in 1992.

After completing the MC68000 cross compiler, Bob and I
worked together on other aspects of the implementation. We imple-
mented different optimization levels, which were really just flags
telling the compiler it could do certain things. At optimization level
1, it was allowed to spend more time. At optimization level 2, it was
allowed to assume that the global names of primitives were indeed
bound to those primitives. At optimization level 3, it was allowed
to generate unsafe code. We also introduced some code into the
compiler to optimize letrec expressions, optimize loops, and inline
most simple primitives

Since the compiler was coded in Scheme and benefited from its
own optimizations after bootstrapping, these improvements made
the compiler itself faster. In fact, the optimizations more than made
up for the extra work done by the compiler to implement the op-
timizations. This was a good thing, because we were concerned
about compiler speed (the compiler was, after all, used interactively
and for loading source files) as well as effectiveness. At some point
we actually instituted the following rule to keep a lid on compila-
tion overhead: if an optimization doesn’t make the compiler itself
enough faster to make up for the cost of doing the optimization, the
optimization is discarded. This ruled out several optimizations we
tried, including an early attempt at a source optimizer.

We also worked on the collector to see if we could improve its
performance. There were slim pickings in terms of the algorithm,
which was already as tight as we knew how to make it. We were,
however, able to pick up (according to a comment in the code) from
“10 to 33 percent improvement” by defining a key routine as a C
preprocessor macro instead of as a C function.

In addition to work on porting and making the system faster,
we also adopted some new language features, including support
for low-level expansion-passing-style macro definitions [24, 25],
and high levelextend-syntax macro definitions [41]. We did not
adopt hygienic macro expansion [41, 42] until much later because
of the quadratic expansion cost and other limitations of the mecha-
nism that we did not solve until much later.

We also added a new feature for creating “variable arity” proce-
dures, i.e., procedures with multiple interfaces, a generalization of

optional arguments. Acase-lambda expression is like alambda
expression but has multiple clauses pairing a formal-parameter
list with a body. When a procedure created withcase-lambda is
called, the appropriate clause is selected based on the number of
actual parameters received. Our original design called for the re-
placement of the dot interface with a different syntax that allowed
one or more of the cases to accept an indefinite number of argu-
ments without committing to any particular representation of these
arguments. This effectively removed lists from the interface, along
with various difficulties that lists can cause with optimizing calls to
procedures of indefinite arity [26, 28]. We backed off of this feature
and instead settled on a less radical version in which the formal-
parameter list of each clause is a normallambda formal-parameter
list.

Version 2 was released in 1987, about the same time asThe
Scheme Programming Languagewas published by Prentice-Hall.

6. Chez Scheme Version 3
Between the releases of Version 2 and Version 3 we continued to
tweak the compiler and run-time system to improve performance,
but most of our time was spent on ports to a pair of new RISC
architectures, improving the interoperability of Chez Scheme with
other languages and processes, and improving the overall usability
of the system.

One change that improved both performance and usability was
the adoption of a new continuation mechanism. In Versions 1 and 2,
capturing a continuation meant copying the entire stack, and rein-
stating a continuation meant copying it all back, which meant that
continuation operations could become inordinately expensive. We
solved this problem with a new segmented stack approach that Bob
and I developed with Carl Bruggeman, another of my graduate stu-
dents [36]. This mechanism eliminates the need to copy the stack
when a continuation is captured and reduces the amount copied to
a small constant number of words (or at most the size of the largest
frame) when a continuation is reinstated, without adding any over-
head to normal procedure calls and returns. The mechanism also
supports automatic stack-overflow recovery so that stack space is
never exhausted as long as heap space remains available to be allo-
cated.

By good fortune rather than design, the new continuation mech-
anism also enabled us to modify the trace package, in response to a
request by Olivier Danvy, to reflect the difference between non-tail
calls (by increasing the trace display nesting level and displaying
the return value) and tail-calls (by doing neither). The challenge is
recognizing which calls to traced procedures are non-tail calls and
which are tail calls, and at first we were stumped. If the trace pack-
age were built into an interpreter, the interpreter could track this in-
formation, but we had no interpreter. Instead, the trace package op-
erates by embedding each traced procedure in another procedure, a
trace wrapper that takes care of printing the trace information. The
solution is for the trace package to maintain a trace-continuation
variable that always holds the continuation of the last traced call.
Each trace wrapper compares its own continuation against the trace
continuation. If they are the same, a tail call has occurred, and if
they are different, a non-tail call has occurred. For non-tail calls
only, the trace wrapper sets the trace continuation to the new current
continuation before applying the embedded procedure and restores
the old trace continuation after. With the segmented-stack repre-
sentation of continuations, the comparison of continuations can be
done with a singleeq? test, i.e., a pointer comparison.

The first of our RISC ports was to the Motorola MC88000 and
was done at the behest of Sam Daniel at Motorola, who championed
Chez Scheme at Motorola for many years and even managed to
convince Motorola to market Chez Scheme on their Delta Series
MC68000 and MC88000 series machines for a short while. The



MC88000 is one of the most difficult ports we have undertaken, and
it took the combined efforts of three people (I had recruited Carl as
well as Bob to help) over most of a summer to do the job. This was
partly because its RISC architecture was radically different from
the CISC VAX and MC68000 architectures, but mostly because
the operating system, C compiler, and even the hardware were still
under active development at the time of the port. Naturally, this
meant dealing with several compiler and operating system bugs, but
the biggest challenges were hardware bugs. One was challenging,
in part, because it went into hiding when we set breakpoints or
single-stepped the code. It turned out to be a race condition with
a missing scoreboard (busy) check on a move from the hardware
return-address register into our own return-address register. By the
time we proceeded from the breakpoint or single-stepped the code,
the register was no longer busy and our code ran without problems.
When run at full speed, however, our code would occasionally try
to access the register too soon and, instead of being forced to wait,
would get the wrong (old) value, usually causing a procedure to
return (eventually) to the caller’s caller rather than to its own caller.

The other port was to the Sparc architecture, and that went
much more smoothly, because we had already ported to one RISC
architecture, the operating system was essentially the same as for
the MC68000 Sun systems, and the tools and hardware were more
stable.

Interoperability with other processes and other languages within
the same process was a priority for some of our users. This
prompted us to add tools for loading foreign object files and in-
voking entry points in those files, with automatic conversion of ar-
gument and return value data types to and from the C and Scheme
representations. These tools were modeled after similar features in
the implementations of other Lisp dialects. We also added support
for running other programs in subprocesses and interacting with
them via Unix pipes.

Most of the new code we wrote for Version 3, and for all of the
other new versions, was written in Scheme, and some that was orig-
inally written in C has since been converted to Scheme, where it can
be coded in a more abstract style that is less likely to be affected by
changes in the system, e.g., to object representations. The largest
piece of code we converted while working on Version 3 was the
Chez Scheme reader, which implements the Schemeread proce-
dure and is also used when loading or compiling source programs.
We expected that the reader would be somewhat slower, but not by
enough to justify leaving the reader in C. The Scheme-coded reader
actually turned out to be faster, despite the fact that the Scheme ver-
sion used mutually tail-recursive routines for lexical analysis while
the time-critical portions of the C version usedwhile loops. Al-
though the difference was probably partly due to the relative ease
with which we could tune the Scheme code, it was nice to know
that Chez Scheme’s compiler was starting to get to the point where
it could actually compete with C compilers, which have a much eas-
ier job to do. The Scheme-coded reader became even faster in the
next release, when we made significant improvements in register
allocation, including allocating registers to procedure arguments.

Version 3 was released in 1989.

7. Chez Scheme Version 4
Shortly after Version 3 was released, we began a major overhaul
of the system, changing the way it represents Scheme values and
rewriting major portions of the compiler and storage management
system. In so doing, we intended to remove some object-size limi-
tations and, as always, to improve performance and reliability. We
also wanted to leave the system with a stronger foundation that
took into account the system modifications we had already made
or knew we wanted to make in the future. A system that isn’t over-
hauled from time to time can fall under its own weight as new fea-
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tures are grafted onto a foundation that wasn’t originally designed
to support them.

We had stuck with the BiBOP mechanism adopted from C-
Scheme through the first three major releases of Chez Scheme.
Because type information is stored in a separate table, the BiBOP
mechanism allowed us to use native representations for fixnums
and pointers and to avoid taking up space in any data structure for
type information. On the other hand, the cost of doing a type check
was rather high. It involved extracting a segment address from the
address of an object, using this as an index into the segment table,
and doing a test and branch.

We were also just feeling the effects of another problem, caused
by rapid increases in typical physical memory and backing store
sizes. These increases created corresponding pressure to increase
the maximum sizes of strings and vectors. This meant increasing
the size of the fixnum range, since indices into these objects are
represented as fixnums for efficiency. At the same time, the in-
creases in typical physical memory and backing store sizes also
meant that processes were using a larger percentage of the virtual
memory address space. Unfortunately, our fixnum range was ob-
tained, as described in Section 2.3, by sacrificing a portion of this
address space. Increasing the fixnum range to allow larger strings
and vectors would decrease the amount of space to put them in.
This problem forced us to consider moving away from the BiBOP
model and toward a tagged pointer model.

The BiBOP model has many benefits that we were reluctant
to lose, however. By segregating objects containing pointers from
objects not containing pointers, it allows the garbage collector to
avoid sweeping objects, like strings, that don’t contain pointers.
More generally, it allows the collector to use different methods
for sweeping different types of objects, which in turn permits the
use of more clever representations for some objects, like I/O ports
containing “next” pointers into the middle of their string buffers or
closures containing code pointers into the middle of a code object.
It allows dynamically generated or loaded code to be placed in
different segments within the heap, so that code pages can be given
different protections from pages containing only data. It also allows
the storage manager to handle “holes” in the virtual address space
gracefully; holes can occur when the O/S or some other language
run-time has reserved space for some other purpose.

Ultimately, we decided to switch to a hybrid model [23] that
uses tagged pointers to distinguish specific types of objects and
also BiBOP for its various benefits. We no longer used the BiBOP
mechanism to segregate objects by specific type but rather by char-
acteristics of interest to the collector, such as whether they contain
pointers and whether they are mutable. For our implementation of
tagged pointers, we adopted the low-tag model used by T [47], with



a different assignment of tags. The hybrid mechanism allowed the
fixnum size to be increased to 30 bits and type checking overhead to
be reduced in many cases, without sacrificing virtual address space
or the benefits of the BiBOP mechanism described above.

Changing object and pointer representations affected the com-
piler in various predictable ways. For example, it had to generate
different code for accessing or mutating objects, performing arith-
metic, and type checking. The change also allowed us to switch to
inline allocation. Because different types of objects were no longer
distinguished by the type of segment they resided in, we were able
to allocate most objects (all but code objects) into a single area of
memory, then segregate the objects that survive their first collec-
tion. This meant we needed only one allocation pointer, which we
could put into a register, and the allocation code sequences became
small enough to justify inlining certain allocation operations, such
as pairs and closures. This gave a significant boost to the perfor-
mance of many programs.

These changes were just one task of several we undertook while
rewriting the compiler. Another task was to replace the list struc-
tures used to represent intermediate code with compiler-specific
record structures, or c-records. Because each c-record is a flat struc-
ture rather than a linked list, this reduced the size of the intermedi-
ate code and the cost of accessing the subexpressions of each inter-
mediate form. At the same time, it allowed us to reduce dispatching
overhead. Reliability increased as well because the shape of each
record is checked statically at the creation and dispatch sites and
also because the c-records are immutable, preventing inadvertent
modification.

Another task was to replace our local register allocator with
an intraprocedural register allocator. At the same time, we altered
Chez Scheme’s calling conventions to allow procedure arguments
to be passed in registers. Prior to Version 4, all arguments were
passed in stack locations. While this was common at the time
on CISC architectures, which supported many operations directly
on memory and did so with relative efficiency, it was certainly
not a good idea on the RISC architectures. With a language that
emphasized procedure calls over loops as the basic mechanism
for repetition, we needed a mechanism that handled calls well.
Unfortunately, the register allocation literature was focused almost
exclusively on generating good code for traditional (Fortran) loop-
based programs and either did not address procedure calls or did so
in a cursory manner. We briefly considered adapting graph coloring
register allocation [12] to our needs, but it offers no special help
for calls, and the potential compile-time cost was beyond what
was reasonable for an interactive system based on incremental
compilation.

So Bob and I developed our own register-allocation algorithm.
The algorithm assigns registers first to the incoming arguments,
then on a first-come, first-served basis to the bindings found in a
bottom-up pass starting with the leaves of a procedure’s abstract
syntax tree. So that registers containing values that are no longer
needed can be used for other values, the algorithm employs an in-
expensive form of live analysis for the register values only, allow-
ing the use of cheap fixnum logical operations. The initial version
of the algorithm saved and restored live register values around each
non-tail call. Once the algorithm was working, we gathered various
sorts of dynamic information for a set of benchmark programs, in-
cluding our own compiler. Based on this information, we switched
to a “lazy save” strategy in which live register values are saved as
soon as but not before a call is inevitable. We also added a shuf-
fling mechanism used at each call. The shuffler reorders arguments
at each call site to reduce the number of register saves and allow
argument values to be placed directly in their outgoing register or
stack locations, with few or no extra moves. Shuffling obviated the
shifting of tail-call arguments described in Section 3. The regis-
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ter allocation algorithm, though designed primarily to be fast, was
surprisingly effective. A refined version of the algorithm was pub-
lished several years later [7].

Yet another task was to improve the compiler’s support for in-
lining primitive operators to allow partial inlining of operators that
cannot be fully inlined. We used this to inline safe versions of a
number of primitives that defer to out-of-line error handlers and to
inline the fixnum case for various generic numeric operators, like+.
The same mechanism allowed us to introduce some mundane but
useful program transformations, like one that replaceseqv? calls
with cheapereq? calls when one argument is constant and compa-
rable witheq?.

The final compiler task was to improve support for floating-
point operations and add support for complex operations. We added
a set of new flonum operators, likefl+, which are inlined in un-
safe code and partially inlined in safe code. We added a similar set
of “complex flonum” operators, likecfl+, that work on combina-
tions of flonums and inexact complexnums. In supporting complex
operations, a major challenge was to devise an efficient represen-
tation of inexact complexnums. We didn’t want the extra indirects
involved with representing them as a pair of pointers to flonums,
but we also wanted to avoid the cost of allocating a flonum object
when extracting the real or imaginary part.

We were able to avoid both the indirects and the allocation over-
head with a simple hack that also cut the size of our flonums in half.
Because the collector moves objects as it works, it needs space in
each object to leave behind a forwarding marker and address. This
is a problem for floating-point numbers, because any marker we
choose may be indistinguishable from raw floating-point data. On
systems supporting IEEE floats, we considered encoding forward-
ing addresses as bit patterns that correspond to NaNs, but found
that some architectures and operating systems don’t document the
set of NaNs that might be produced by their instructions and li-
braries. Thus, additional space had been included in each flonum
for the forwarding marker and address. The hack was to remove
this space and modify the collector so that it never stores a forward-
ing address in a flonum. A flonum might be replicated, of course,
if two pointers to it exist, but causes no particular difficulties. The
replication is detectable viaeq?, but this does not violate the se-
mantics ofeq?, which is always allowed to return#f when given



two numeric arguments. Once we made this change, we were able
to represent inexact complexnums as pairs of double floats (aka.
flonums) and employ simple pointer arithmetic for extracting the
real and imaginary parts.

The changes in representation of Scheme values, the addition
of new complex number types, and the elimination of forwarding
addresses from flonums caused us to make a few adjustments to the
collector, but these were relatively minor. The major challenge we
set for ourselves was to convert our stop-and-copy collector into
a generational collector [43, 54]. As with our value-representation
changes, this conversion was motivated by the increase in typical
physical memory sizes. As memory sizes increased, the size of
a typical heap grew, and the cost of collection grew with it. We
turned to generational collection to reduce the cost. Generational
collection is based on the theory that older objects, having survived
through multiple collections, are less likely to be garbage than
younger objects, and thus need not be collected as often.

Our variant [23] employs several generations, the number of
which is determined when the system is built. Five generations are
used by default, where generation 0 is the youngest, generation 3
is the oldest collectible generation, and 4 is a static generation con-
taining code in the initial heap, after system and application “boot”
code is loaded. New objects are allocated into generation 0, and ob-
jects are promoted to a higher generation when they survive a cer-
tain number of collections in a younger generation. The frequency
with which each generation is collected and the number of collec-
tions an object must survive before being promoted to a higher level
can be set by the programmer. The default is to collect generation
n every4n times the collector is run, so generation 0 is collected
every time, generation 1 every fourth time, generation 2 every 16th
time, and generation 3 every 64th time. This rather arbitrary strat-
egy was initially just a hack for testing, but it turned out to work
well, indeed better than several more elaborate strategies we tried,
so it has been the default ever since. It does a good job in practice
of reducing the average time for a collection without the potential
problems associated with the “premature tenuring” [54] of dynam-
ically allocated objects into a generation that is never collected.

I have no record of the performance benefits from the various
changes we made during the overhaul, but the overall improvement
in run-time speed was about 50%. Perhaps more impressively, the
speed of the compiler improved by 30%, despite the addition of the
new register allocation passes.

Although most of our changes for Version 4 had to do with the
overhaul, we also added several new features. One of these fea-
tures was a new inspector, with both programmatic and interactive
interfaces. The inspector allows programmers to view and mod-
ify, where appropriate, the contents of any object, including most
importantly the continuation of an error or keyboard interrupt. To
support the listing of source information and the proper labeling by
variable names of values saved in a continuation or closure, we had
to make additional changes to the compiler so that it would track
source information through the various passes. This turned out to be
a mostly straightforward process of adding a source field to each c-
record, propagating the information through each pass, and finally
associating the information with the addresses of the entry and re-
turn points in the generated code object. Support for inspection was
made without any sacrifice in performance, so we were able to re-
main true to our priorities while addressing an obvious deficiency
in the system.

8. Chez Scheme Version 5
We were all set to begin work on Version 5 over the summer of
1992 when Bob Hieb was killed in a car accident that also claimed
the life of his daughter Iva. This tragic event could have derailed
the development of Chez Scheme, but I dealt with my grief partly
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by engaging in a mad rush to complete the development work we
had started or planned for Chez Scheme as well as some unfinished
research work at IU.

Carl Bruggeman was particularly helpful with the latter, as he
stepped in to work with me on finishing thesyntax-case macro
system which had been at the core of Bob’s PhD research. We
completed work on the system and a pair of technical reports
describing the system [17, 37] that same year and published a
journal article that combined parts of the two technical reports a
year later [29]. I incorporated thesyntax-case system into Chez
Scheme and also published a portable version, which has been kept
in sync with the Chez Scheme version ever since.

Most of the other system changes I made in 1992 were routine
improvements in code generation, compile-time checking, and the
like, but one major task was the optimization of local calls. Up to
that point, most local calls involved aprocedure? check and an
indirect jump through the procedure’s closure. The only exceptions
were direct calls recognized as the equivalent oflet expressions
and calls participating in loops that the compiler recognized as
such. Global calls were actually cheaper, because the code-pointer
hack described in Section 3 obviated theprocedure? check.

To optimize local calls, I modified the compiler to record when
an unassigned variable is bound bylet- or letrec directly to a
lambda or case-lambda expression, then to generate more effi-
cient code for calls made through such variables. In particular, the
compiler eliminates theprocedure? check, replaces the closure
indirect with a jump into thelambda body (past the argument-count
check or directly into the appropriatecase-lambda body), passes
a closure pointer only if the procedure has free variables, and, for
“rest” arguments, allocates the list at the call site where the num-
ber of arguments is known and no loop is needed. In many cases,
a procedure is called only in this manner. If it has no free vari-
ables, the closure is never used, so the compiler eliminates both the
closure-creation code and thelet- or letrec-binding for it. The
compiler arranges for more procedures to fall into this category by
recognizing when the only need for the closures in a group of mu-
tually recursive procedures is to hold onto the closures of the other
procedures.

The local-call optimizations made a large difference—from 15–
50%—with versions of our benchmarks in which global calls to
user-defined procedures had been converted into local calls by
wrapping each benchmark in alet expression. Once again, the
bootstrapped compiler benefited from its own optimizations, as the
compiler became about 25% faster on average.

In retrospect, these optimizations don’t seem very difficult, and
the students in my graduate compiler class are able to implement



them over the course of a couple of weekly assignments. At the
time, however, I found them extremely challenging. Of course, I
didn’t have an assignment description telling me how to proceed,
and my intermediate language was more complex. Another reason
for the difficulty is that I shoe-horned the optimizations into ex-
isting compiler passes, when I probably should have added one or
more separate passes. Extra passes aren’t as costly as I believed at
the time, and the reduced complexity and relative ease with which
the compiler could have been modified in later years would have
more than made up for the modest compile time cost.

In 1993, I recruited one of my graduate students, Mike Ashley,
to work with me on support for multiple return values. We wanted a
mechanism that, as with our continuation mechanism, pays its own
way in the sense that the efficiency of normal, single-value returns
and return points is unaffected. We also wanted the mechanism to
signal an error whenever the wrong number of values is received.
We were able to accomplish both goals with a mechanism that
handles both multiple- and single-value returns and return points
efficiently [2].

I also recruited another of my graduate students, Oscar Waddell,
to port Chez Scheme to the Alpha processor running Digital’s
OSF/1 operating system. This was the first of many projects that
Oscar and I worked on together. In addition to the Alpha port
itself, the most useful thing to come out of this project was the
elimination of assembly code from the system source. We had been
using a combination of machine-dependent m4 [40] macros and
mostly machine-independent assembly files to reduce the amount
of assembly code involved in porting to a new architecture, but this
was difficult to work with and did not completely relieve us from
having to deal with the many idiosyncrasies of assembler syntax.
We replaced the assembly code with code written in a machine-
independent assembly-like language implemented by feeding code
into our compiler’s code generator.

One other Version 5 change is worth mentioning, for those who
like simple but effective hacks. This particular hack reduced the
cost of creating a generated symbol, orgensym, by a factor of 25.
The hack is to delay generation of the gensym’s name until the
first time it’s printed, so that(gensym) becomes a cheap inline
allocation operation. Most gensyms created, e.g., during macro
expansion, are never printed, so the savings are real and have a
significant impact on programs that use gensyms heavily.

9. Chez Scheme Versions 6
System development continued at a rapid pace between Versions 5
and 6. We added support for tracking source-file information
through the reader, expander, and compilation process so that the
inspector can display original source code rather than expander
output. We also added support for disjoint record types, one-shot
continuations [4], modules [56], and one of my favorite new lan-
guage features, datum comments. A datum comment, using the
syntax#;, comments out an entire S-expression, so that, for ex-
ample,(a #;b c) reads as(a c). The need for such a thing
occurred to me after watching people use quote marks to comment
out top-level expressions and be frustrated when the same trick
didn’t always work away from the top level.

We also added support for calling Scheme from C, which set
up the possibility of nested Scheme/C calls. We avoided diffi-
culties with continuations by saving the C stack context (using
setjmp) before calling into Scheme. This context is restored (us-
ing longjmp) on the first return from Scheme, at which point the
context is also marked invalid along with any dynamically subordi-
nate contexts. An attempt to return to an invalidated context causes
an error to be signaled. This allows arbitrary continuation opera-
tions to be performed on the Scheme side as long as no attempt
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is made to return a second time to a C frame or to a frame nested
dynamically within it on the C stack.

Bob Burger, another of my graduate students, was hired to
port Chez Scheme to two new architectures, the HP PA-RISC
architecture under HP/UX and the PowerPC architecture under
AIX. I also incorporated several refinements that Bob made to
a floating-point printer I had written in 1990 based on a paper
by Guy Steele and Jon White [53]. Bob’s improvements made
the algorithm simpler and more efficient [5]. Bob’s PhD research
was on profile-driven dynamic recompilation [6], and though we
have never adopted the dynamic recompilation support, we did
incorporate Bob’s profiling support into Chez Scheme with the help
of Mike Ashley.

One of our goals for Version 6 was to provide a complete run-
time system to simplify the delivery of compiled Chez Scheme
programs. No run-time system for Scheme would be complete
without eval, so we decided to include an interpreter that we had
quietly slipped into the system back in Version 2 to help with
cross compilation. With the interpreter and the rest of the run-time
system, we had 99% of a working Scheme system, so we decided
to include the read-eval-print loop and release the run-time system
with interpreter as a complete, separate system. The system is built
from the same sources as Chez Scheme, with only the compiler
left out. We named the system Petite Chez Scheme, since without
the compiler it is smaller than the system as a whole. We couldn’t
resist making a few tweaks to the interpreter to speed it up before
releasing the system. We get a lot of positive feedback about the
interpreter’s speed, and people are often surprised to learn that it
is written in Scheme. For some reason, they think an interpreter
written in C should be faster, although an interpreter written in
Scheme and compiled by a good Scheme compiler can leverage
off of the built-in support for proper treatment of tail calls and
continuations, as well as compiled library code.

Of course, as always, we also worked on improving the speed of
compiled code. We had written a source optimizer many years ear-
lier but abandoned it because it failed our performance test, i.e., did
not make the bootstrapped compiler’s code enough faster to over-
come the extra passes involved. In early 1996, however, an advance
copy of the paper, “Flow-directed inlining,” by Suresh Jagannathan
and Andrew Wright [38] spurred us into action. The paper was
interesting because it claimed some impressive improvements in
speed for a set of substantial Scheme programs. What made it espe-
cially interesting was that these improvements were accomplished
with an optimizer that ran as a prepass to the Chez Scheme com-



piler. Some of the gains turned out to be due to the conversion of
global calls into local calls, triggering the local-call optimizations
described in Section 8, but even after adjusting for this, the results
were too good to ignore. While the compile-time cost of their anal-
ysis was impractically large for our compiler, we now knew that
good gains were there to be had, if we could figure out how.

Mike Ashley had already been working on a flow analyzer of his
own, and he adapted it to implement an algorithm similar to that of
Jagannathan and Wright’s. He was actually able to improve slightly
on their results, but although his flow analyzer was substantially
faster, it was still impractical for our purposes.

So Oscar Waddell and I set out to create our own inliner, with
the constraint that it should be fast and linear. We hoped it would
also yield results “in the same ballpark” as those that had been
achieved with the flow-directed inliners. After months of work, we
had an inliner that performed even better than we’d hoped, generat-
ing at least comparable code for all of the benchmarks and actually
beating the flow-directed inliners soundly in a few cases [55]. One
reason was the “on-line” nature of our algorithm, which allowed
the inliner to make decisions based on subexpressions that it had al-
ready transformed, while the flow-directed inliners ran the analysis
“off-line,” i.e., entirely before any transformations occurred. An-
other reason was the approach we used in deciding when to inline
and when not to. The inliner simply makes all inlining attempts and
cuts them off when the size of the residual code or the time taken on
the attempt exceeds a predetermined limit. Before settling on this
no-nonsense approach, we tried several heuristics to limit code size
and inlining time, but heuristics inevitably inhibit or allow more in-
lining than they should. We incorporated the inliner into the Chez
Scheme compiler and also use it as an interpreter prepass in Petite
Chez Scheme.

During this time, Oscar Waddell had been tapped to lead the
development of a GUI API to support the use of Scheme in teach-
ing as part of an NSF-supported educational infrastructure project.
The initial name for this system was “Bob.” I think this was a take-
off on the short-lived Microsoft product of the same name, but I’m
not sure. In any case, the name didn’t stick, and the name Scheme
Widget Library was adopted instead. Abbreviated SWL and pro-
nounced “swill,” the name still reflected Oscar’s poor opinion of
the system in the early going. The system turned out really nice
in the end, however, and includes an interactive development en-
vironment for Scheme as well as tools to build graphical applica-
tions. Oscar put in the bulk of the work, with several other people
contributing as well, especially Carl Bruggeman, Bob Burger, Erik
Hilsdale, and John Zuckerman. John LaLonde of Abstrax, Inc., also
supported the project, and we borrowed some ideas from a system
he had written some years earlier while working at Motorola. The
system is now distributed with Chez Scheme, and I have made a
few minor contributions of my own. Many programmers still use
Chez Scheme withemacs, and true power users like me use it with
vi, but many others use SWL as their interface to Chez Scheme or
Petite Chez Scheme, especially under Windows and the Mac.

10. Chez Scheme Version 7
Although many years passed between the releases of Version 6 and
Version 7, we were not idle and put out several minor releases. We
added a variety of new features, like logical operations on bignums,
file compression, support for Scheme shell scripts including script
compilation, Windows registry primitives,eq? hash tables, and
apropos. We extended gensyms to allow the creation of globally
unique identifiers, added record inheritance, and added support for
automatically loading heap and boot files based on application ex-
ecutable names. In a fit of madness, I also implemented Common
Lisp format, which is potentially quite useful, but even after im-
plementing it I can never remember which directive is which and

Release year:2005

Language: multithreading,expand/optimize, letrec*,
apropos, meta definitions,import extensions,eq? hash
tables, heap/boot search paths, registry primitives,format,
support for scripts,compile-script, record inheritance,
nongenerative record types,let-values, bignum logical
operations, generalizedsyntax-case patterns,
visit/revisit, more foreign/external interface
improvements, file compression, gensyms UIDs

Implementation: thread support, incompatible record checks,
letrec/letrec* violation checks [57], compile-time
format-string checks and compilation,unquote and
unquote-splicing extension to zero+ subforms, various
run-time library and code generation improvements,
syntax-case performance improvements, improved
bignum arithmetic speed

Documentation: The Scheme Programming Language, 3nd
Edition [20], Chez Scheme Version 7 User’s Guide[21]
(both documents available online), Unix manual page

Supported machines:Sparc Solaris (32- and 64-bit, threaded
and nonthreaded), Intel 80x86 Linux (threaded and
nonthreaded), Intel 80x86 Windows 95/98ME/NT/2000/XP
(threaded and nonthreaded), Apple PowerPC MacOS X
(nonthreaded)

Version 7 Highlights

especially which combinations of colon and at-sign modifiers to
use to accomplish a particular task. I had intended to implement
something less elaborate but didn’t know where to stop.

In addition to these relatively minor changes, Oscar and I ported
the system for the first time to a 64-bit architecture and created a
multithreaded version of the system based on Posix Threads that al-
lows applications to make use of multiple processors and processor
cores. The 64-bit port, which targeted the 64-bit Sparc architecture,
should have been relatively straightforward, but we were tripped
up by a number of 32-bit dependencies. You might think someone
who experienced the transition from 16-bit microprocessor address
spaces to 32-bit address spaces would have avoided such dependen-
cies, but of course, I never dreamed Chez Scheme would be around
long enough for this to be a concern. At least we’re ready now for
the transition to 128-bit address spaces.

The thread system posed numerous challenges, particularly in
making portions of the system thread-safe. Fortunately, several of
our earlier design decisions simplified other aspects of the project.
Our decision to stick with BiBOP and segmented memory made
doling out individual allocation areas to each thread trivial. In-
dividual allocation areas are essential to avoid synchronizing on
every allocation operation, which would be a performance disas-
ter. Our segmented representation of stacks also helped, since the
stack-overflow recovery mechanism allows each thread to start with
a small stack that grows by adding new segments as needed. Our
model for initiating collections also helped. Collections are trig-
gered via an interrupt, and the interrupt is set by the segment-level
allocator based on the number of bytes that have been allocated
since the last collection. This generalized nicely to allow multiple
threads to synchronize for collection. When a thread receives the
collect interrupt and other threads are still active, it waits for the
other threads. When the last active thread synchronizes, blocks, or
exits, the collection is initiated.

Tracking assignments into older generations turned out to be a
problem, however. Generational collectors must be informed when-



ever a location within an older-generation object contains a pointer
to a younger generation so that it can be traced during a collec-
tion of the younger generation. Our collector uses a modified card-
marking [50] system in which this information is stored in a global
table. Unfortunately, storing the information is not an atomic op-
eration, and synchronizing on every mutation operation is too ex-
pensive, even if one believes programs should do without mutation
whenever possible. We addressed this issue by maintaining a log
of mutated locations at the end of the local allocation area, with
the log pointer growing toward the allocation pointer, as the second
version of the Z80 Scheme system had done for the stack and al-
location pointers. Synchronization need not occur until the log and
allocation pointers meet up, at which point the logged entries are
scanned to record information about pointers from older to younger
generations, and a new allocation area is obtained if necessary.

11. Parting remarks
Developing a system like Chez Scheme is a process of successive
refinement. Even had I known in 1983 what I know today, it would
still have been unimaginably difficult to create Chez Scheme, as
it exists today, in one continuous development effort. Had I tried
anything like that, I would likely have abandoned the effort before
it was fairly begun. Instead, I started with a simple model for
representing Scheme values, a small compiler that performed little
optimization, a simple stop-and-copy garbage collector, and a small
run-time system. From there it grew, and shrank, as features were
added, extended, removed, and replaced.

Of course, for this decades-long development effort to succeed,
we have had to do some often unpleasant things, like discard code
we thought was clever, rewrite code we hoped never to look at
again, fix bugs promptly even when inconvenient, and extend the
test suite whenever a new feature is added. Had we not done so, the
system would have become filled with useless, crufty, buggy, and
untested code, making it difficult to maintain and extend, and mak-
ing even the fun parts of the job, like writing new code, unpleasant.

Our priorities have become more refined over time as well, es-
pecially where efficiency is concerned. I’ve always believed that
efficiency is not merely a matter of the speed of compiled code,
but also a matter of compile time, memory usage, and overall sys-
tem responsiveness. Over the years, I have come to believe that
uniformity and continuity of performance are important as well. I
have also become much more concerned about handling large pro-
grams or programs that operate on large amounts of data. Beyond
efficiency and reliability, additional priorities have emerged, such
as standards conformance, ability to interact gracefully with code
written in other languages, and overall system usability.

Even after two decades of refinement, the system is no where
near what I’d like it to be. There are numerous ways in which the
performance can be improved, numerous places where the code
could be cleaner, and numerous features I’d like to add or extend.
Our to-do list has hundreds of entries, ranging from straightforward
chores to research projects. I’m not complaining. If the to-do list is
ever empty, I’ll know it’s time to pack it in.
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