

Background

Frequency is a fundamental physical quantity of electromagnetic wave

Maintenance of THz frequency metrology is required for various THz applications

Advent of practical CW-THz sources (THz-QCL, UTC-PD, RTD, etc)

Precise frequency measurement of CW-THz wave is required!

However, techniques of frequency measurement in THz region have been underdeveloped yet.

Conventional method (1)

Frequency calibration based on water vapor absorption

Simple

Pressure broadening of absorption line, discrete distribution

Conventional method (2)

Electrical heterodyned method

Optical interferometric method

Difficult to cover all frequency region of THz wave (0.1~10THz)

→Requirement of new method optimized for THz wave!

Optical comb and THz comb

Accurate, stable, broadband selectivity, high spectral purity, and absolute frequency calibration

Principle

Determination of order of m

Shift of ML freq. by δf (f \otimes f+ δf)

$$m = \frac{\left| \delta f_b \right|}{\left| \delta f \right|}$$

Change of beat freq. by δf_b $(f_b \otimes f_b + \delta f_b)$

$$f_x = mf - f_b \qquad (\delta f_b / \delta f > 0)$$

$$f_x = mf + f_b \qquad (\delta f_b / \delta f < 0)$$

2. Ti:S-laser-based THz spectrum analyzer

Laser source for PC-THz comb

Stability of mode-locked frequency

Stability and accuracy of PC-THz comb is equal to those of Rb freq. standard

Experimental setup

Observation of beat signal (1)

(90GHz freq. multiplier source)

Observation of beat signal (2)

(90GHz freq. multiplier source)

Linewidth

Signal-to-noise ratio

Linewidth < 1Hz

Detection limit = 25nW

Observation of beat signal (3)

(90GHz freq. multiplier source)

Laser control : OFF

Laser control: ON

Observation of beat signal (4)

(freq. multiplier source wave)

Freq. modulation of test source(100GHz±87.6kHz@0.5Hz)

Determination of absolute frequency

~Shift of ML frequency by 100Hz~

$$m = \frac{\delta f_b}{\delta f}$$

$$= \frac{454,027.976 - 333,027.731}{81,823,857 - 81,823,757}$$

$$= 1210.00245$$

$$f_x = mf + f_b$$
= 1210 * 81,823,757 + 454,027.976
= 99,007,119,997.976 Hz

error=2.004Hz

Setting freq. of test source=99,007,200,000 Hz

Frequency tuning of test source

Precision=2.8*10⁻¹¹

3. Fiber-laser-based THz spectrum analyzer

~simple, compact, inexpensive, and robust system~

Er-doped fiber laser

Temp. control (Peltier)

Stabilization system of ML frequency

Photograph and cost of home-build fiber laser

COST			
OSC	¥ 700,000		
EDFA	¥ 650,000		
Control electronics	¥ 400,000		

Autocorrelation signal and spectrum

Average power = 90mW@1550nm or 10mW@775nm Mode-locked frequency = 56MHz

Stability of ML frequency of fiber laser

Experimental setup

Observation of beat signal (1)

(80GHz active frequency multiplier)

Linewidth

Linewidth < 1Hz

Signal-to-noise ratio

Detection limit = 2.5nW

Comparison of f_b beat signal

Bowtie-type LTG-GaAs PCA

Frequency tuning of test source

(active frequency multiplier)

Mean precision=2.2*10-11

Experimental setup for UTC-PD

Real-time monitoring of beat signal

80GHz active freq. multiplier (2.5 mW)

Freq. span = 2 kHz

Peak
Lin

H1 S2
S3 FC
RR

Center 366,7 kHz
+Res BM 188 Hz

VBM 188 Hz

L

Ref 213.5 mV

Rtten 16 dB

Peak
Lin

Span 2 kHz
Span 2 kHz
Span 2 kHz

Sweep time=165 ms, RBW=100 Hz

120GHz UTC-PD (0.1 mW)

Freq. span = 1.5 MHz

Sweep time=20 ms, RBW=10 kHz

Comparison with conventional method

	Conventional methods		
	Heterodyning	Interferometric	Proposed method
	method	method	
Principle	Electric heterodyning	Optical Interferometry	PC-THz comb
Range	< 2THz	>several THz	0.1THz∽10 THz
Frequency accuracy	10 ⁻¹¹	10 ⁻⁹	10 ⁻¹¹
	(depending on local	(depending on	(depending on
	oscillator)	interferometry)	PC-THz comb)
Detector	Antenna	Bolometer (cooling)	PCA
Mixer	SIS, bolometer, etc (cooling)	Beamsplitter	POA
Apparatus	Complicated	Complicated	Simple