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When thin brittle rods such as dry spaghetti pasta are bent beyond their limit curvature, they
often break into more than two pieces, typically three or four. With the aim to understand these
multiple breakings, we study the dynamics of a rod bent just below its limit curvature and suddenly
released at one end. We find that the sudden relaxation of the curvature at the newly freed end
leads to a burst of flexural waves, whose dynamics are described by a self-similar solution with
no adjustable parameters. These flexural waves locally increase the curvature in the rod and we
argue that this counter-intuitive mechanism is responsible for the fragmentation of brittle rods under
bending. A simple experiment supporting the claim is presented.

PACS numbers: 62.20.Mk, 46.50.+a, 46.70.De

The physical process of fragmentation is relevant to
several areas of science and technology. Because different
physical phenomena are at work during the fragmenta-
tion of a solid body, it has mainly been studied from a sta-
tistical viewpoint [1–5]. Nevertheless a growing number
of works have included physical considerations: surface
energy contributions [6], nucleation and growth proper-
ties of the fracture process [7], elastic buckling [8, 9],
and stress wave propagation [10]. Usually, in dynamic
fragmentation, the abrupt application of fracturing forces
(e.g. by an impact) triggers numerous elementary break-
ing processes, making a statistical study of the fragments
sizes possible. This is opposed to quasi-static fragmen-
tation where a solid is crushed or broken at small ap-
plied velocities [11]. Here we consider such a quasi-static
experiment whereby a dry spaghetti is bent beyond its
limit curvature. This experiment is famous as, most of
the time, the pasta does not break in half but typically in
three to ten pieces. In this Letter, we explain this multi-
ple failure process and point out a general mechanism of
cascading failure in rods: a breaking event induces strong
flexural waves which trigger other breakings, leading to
an avalanche like process.

Let us consider a rod which is held at both ends and
bent quasi-statically with an increasing, uniform curva-
ture. It breaks at time t = 0 when its curvature κ0

reaches its limit value κ∗: a dynamic crack crosses the
weakest section and breaks the rod in two halves. As
the rod was initially bent with uniform curvature, the
location of this first failure point is that of the strongest
defect. We shall not further discuss this initial breaking
event, but instead focus on the subsequent dynamics of
either half of the rod, for t > 0, and show that this dy-
namics generically leads to new breaking events at later
times.

Since we are not interested in the statistics of the initial
breaking event, we introduce and analyze throughout this
Letter a model problem in which the release of a rod

mimics the initial breaking event. Both problems indeed
obey the same equations but the advantage of the model
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FIG. 1: The dynamics of a rod fragment following the initial
breaking event in a brittle rod is modelled by releasing at time
t = 0 a rod with fixed length L, initial curvature κ0 and no
initial velocity.

problem is that the length L of the fragment is known
in advance. In the model problem, the rod is initially
uniformly bent and at rest. This is achieved by clamping
one end and applying a moment M0 at the other end: M0

plays the role of the internal moment transmitted across
the section that is about to fail, see Fig. 1. At time t =
0, this end is suddenly released as the applied moment
M0 is removed instantaneously. The rod no longer is in
equilibrium and we study its subsequent dynamics.

The dynamics of thin rods are described by the cele-
brated Kirchhoff equations [12] which in the limit of small
planar oscillations take the form:

L4 κ,s4(s, t) + T 2 κ,t2(s, t) = 0, (1)

where a comma in indices denotes a partial derivative.
Here, we have introduced a typical time T built from
the rod mechanical properties: T = L2/γ where γ =
√

EI/(ρA), with E the Young’s modulus, ρ the mass
density, A the area and I the principal moment of inertia
of the cross section. For a rod with circular cross section
of radius r, I = πr4/4 and γ = c r/2, where c =

√

E/ρ is
the sound velocity in the material. Note that T is directly
proportional to the period of the fundamental mode of
free oscillations of the rod [13], Tfree = 1.79 T .

Equation (1) calls for some remarks. First, we are
only interested in planar configurations of the rod. Con-
sequently the geometry of the rod at any time t is pa-
rameterized by a single unknown function, its curvature
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κ(s, t) as a function of its arc-length s. Second, we have
introduced the equations for rods in the limit of small
oscillations, which can seem a rather restrictive assump-
tion. The purpose is merely to avoid unessential compu-
tational difficulties in the presentation. In fact, we did
take these nonlinearities into account in the numerical
simulations presented below. Third, the small amplitude
oscillations of a rod are classically studied in terms of
the transverse displacement y(s, t). Here, the important
variable which is connected to the failure of the rod in
flexion is the curvature κ(s, t), which was therefore cho-
sen as the unknown in Eq. (1).

On Eq. (1), we impose clamping conditions at s = L:
κ,s2(L, t) = 0, κ,s3(L, t) = 0, and free boundary condi-
tions at s = 0: κ(0, t) = 0, κ,s(0, t) = 0. These four
boundary conditions in s associated with the two initial
conditions κ(s, 0) = κ0 and κ,t(s, 0) = 0 (uniform curva-
ture κ0, no initial velocity) warrant, in principle, a unique
solution κ(s, t) to Eq. (1).

A key remark must be made here, which is at the heart
of the rich dynamics of the released rod. These initial
and boundary conditions are inconsistent: the curvature
κ(0, t) at the free end has to be κ0 6= 0 at initial time
t = 0, while the free end condition requires that it van-
ishes at any time t > 0. This inconsistency can be under-
stood easily: the initial configuration with uniform cur-
vature κ0 violates the constitutive relation of the rod (the
curvature is proportional to the internal moment, even in
the dynamic theory of rods) and must therefore vanish
near a free end. This is a typical boundary layer situ-
ation: the assumptions underlying the derivation of the
Kirchhoff equations break down in some domain where
the solution is sought (here, at small times and in the
vicinity of the free end) — an example of a boundary
layer arising for similar reasons in a static problem is
the eversion of an elastic ball [14]. A detailed analysis
of this boundary layer will be presented in a separated
paper [15]. Here, it is sufficient to remark that in order
to solve this boundary layer, one has to restore in one
way or another the small thickness r of the rod into the
equations — for instance by taking into account the finite
time needed for the initial crack to propagate through a
cross-section of the rod, leading to a decrease of M0 over
a small but finite timescale Ts = r/c ∼ 1 µs for spaghetti,
where c is the typical speed of propagation of the trans-
verse dynamic crack. Being based on the length-scale r,
this boundary layer characterizes the rod dynamics over
typical times Ts and in a region of size ∼ r around the
free end. The ratio of this timescale to the ‘macroscopic’
timescale introduced before reads T/Ts = 2 (L/r)2, that
is the square of the (large) aspect ratio of the rod. Since
L/r ∼ 250 for spaghetti pasta, there are three to four
orders of magnitude between Ts and T . As long as one is
not interested in describing the dynamics of the rod over
timescales as short as Ts, one can disregard the details
of this boundary layer.

The inconsistency in the boundary and initial condi-

tions of Eq. (1) is therefore solved by noticing that the
initial curvature κ(L, t) relaxes from its initial value, κ0,
to zero over the short timescale Ts ≪ T . This simple
remark has two crucial consequences. First the relax-
ation of κ(L, t), being very abrupt, generates a burst of
flexural waves which are strong enough to break the rod,
as we explain below. Second, the separation of scales
Ts ≪ T can be utilized to derive an analytic solution
to our problem in the so-called intermediate asymptotic
regime

Ts � t � T (2)

which we study here. Solutions of the regularized prob-
lem are indeed described in the limit t � Ts by self-
similar solutions [16]. Owing to the obvious scaling
s ∼ L

√

t/T , we seek a solution of Eq. (1) in the form
κ(s, t) = κ0 u(ξ), where the self-similarity variable is
ξ = (s/L)/

√

t/T = s/
√

(γ t). Note that we have fac-
tored out the initial curvature κ0, as we discuss the small
amplitude limit of the Kirchhoff equations [17]. The
boundary conditions for u(ξ) are derived from those for
κ: u(0) = 0, u′(0) = 0 and u(+∞) → 1. Substitut-
ing this self-similar form of κ(s, t) into Eq. (1) yields the
following equation for the self-similar solution u(ξ):

4 u′′′′(ξ) + ξ2 u′′(ξ) + 3 ξ u′(ξ) = 0 (3)

Imposing that u(ξ) tends toward a constant for ξ → +∞
implies that u′′(0) = 0, as shown with the help of an
integral of motion. This last condition, in addition to
the previous ones, yields a unique self-similar solution to
Eq. (3):

κ(s, t) = 2κ0 S

(

1√
2π

s√
γ t

)

, (4)

where we have introduced the Fresnel sine integral,
S(x) =

∫ x

0
sin(π

2
y2)dy, arising in diffraction theory.

Equation (4) does not describe a progressive wave with
constant velocity, s ∼ c t, but instead a self-similar so-
lution s ∼ √

γ t. This reflects the dispersive nature of
Eq. (1).

Bent rods that are suddenly released at one end are
all described in the intermediate regime (2) by the same
universal solution (4) independently of the material prop-
erties, of the details of the initial release or breaking (as
long as they take place over a short timescale Ts ≪ T )
and even of the boundary conditions imposed at the other
end s = L, which have not been used to derive Eq. (4).
This universal solution is plotted in Fig. 2, bottom, along
with a numerical solution of the Kirchhoff equations —
including nonlinearities omitted in Eq. (1). This numeri-
cal solution features, as expected, the self-similar regime
for Ts � t � T in which a burst of flexural waves emit-
ted from the released end s = 0 travels along the rod
with a square root time dependence. The self-similar
solution (4) accurately describes the rod dynamics un-
til reflections on the clamped end s = L take place, for
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FIG. 2: Top: numerical solution of the nonlinear Kirchhoff
equations for an initial half-circle configuration, κ0 = π/L.
The curvature at the free end κ(0, t) relaxes to zero within
the first few time steps (inner solution of the boundary layer
problem) while it is given in the intermediate regime (2) by
the universal self-similar solution (4) (outer solution). At later
times, for t ∼ T , reflections take place on the clamped end s =
L. Bottom: self-similar solution describing the intermediate
regime with ξ = s/

√
γ t.

t ∼ T . At these large times, the rod dynamics can be
obtained by numerical integration of the Kirchhoff equa-
tions using the self-similar solution (4) as initial value.
This self-similar solution being universal, the behaviour
of the rod at long times remains universal (it only de-
pends on the boundary condition at s = L).

A key property of the self-similar solution (4) is that
the curvature κ(s, t) is locally significantly larger than
the initial curvature κ0. Indeed, for ξ = 2

√
π, the self-

similar solution reaches its maximum, where the curva-
ture is 1.428 times its initial value κ0. This coefficient is
universal, being twice the maximum of the Fresnel sine
integral. It characterizes the maximum of curvature in
the intermediate regime (4). At later times, t ∼ T , the
superposition of the initial burst and its reflection on the
clamped end further increase the curvature locally: nu-
merically, we have found that the curvature reaches a
value as high as 3.12 κ0 for t = .144 T and s = L, see
Fig. 4.

The increase of κ(s, t) is rather unexpected. Indeed,
one could imagine the motion of the rod to be essentially
given by its fundamental mode of oscillation around the
straight configuration: κ(s, t) ∝ κ0 cos(2π t/Tfree), where
Tfree = 1.79 T is the period of free oscillations. This sim-
ple picture misleadingly suggests that, after the release of
the rod, its curvature remains bounded by its initial value
κ0 at all times, and reaches this value every half-period,
when the rod is bent the other way around. In fact, the
quick initial relaxation of the nonzero curvature κ(0, t) at
the free end sends a burst of flexural waves, something
that is not captured by the fundamental mode only. This
burst is responsible for the subsequent increase of curva-
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FIG. 3: A dry spaghetti can be broken by releasing one of
its ends. The pasta is first bent into an arc of circle with
a curvature slightly below its limit curvature. The lower
end is clamped. The upper one is suddenly set free at time
ta = 0. Selected frames shot with a fast camera at 1000 Hz:
(a) release ta = 0, (b) intermediate frame tb = 0.0159 T , (c)
frame just before rupture tc = 0.0509 T , and (d) after rupture
td = 0.0596 T . Numerical simulations based on the nonlin-
ear Kirchhoff equations are superimposed, without any ad-
justable parameters: rod profile (dotted line) and osculating
circle (dashed lines) at the point of largest curvature (arrow).
Note that the rod breaks at the point of maximal curvature.

ture and leads to a cascade of cracks, as discussed below.

This analysis leads to a simple, although counter-
intuitive prediction: releasing a bent pasta suffices to
break it. This claim is indeed confirmed by the experi-
ment presented in Fig. 3. A Barilla n◦ 1 dry spaghetti
pasta of length L = 24.1 cm was clamped and bent into
an arc of circle, just below its limit curvature (by an an-
gle κ0 L = 195◦). Digital photographs were acquired
at 1000 frames per second using a fast camera while
one end was released. The rod ruptured at a distance
s = .76 L of the free end, at a time t = 6.7 ms after the
release. From the period of free oscillations, we measured
T = 114 ms directly, hence a dimensionless fracture de-
lay t/T = 58.5 10−3. A flexural wave travelling from top
(released end) to bottom (clamped end) is clearly visible
on the intermediate frames in the form of a local increase
of curvature. The point of maximum curvature predicted
by theory, (s/L)/

√

t/T = 2
√

π, is superimposed on the
experimental snapshots along with the smallest osculat-
ing circle and the predicted rod configuration, without
any adjustable parameters. The rod breaks exactly at
the simulated maximum of curvature, as expected.

By repeating the experiment, we found that the fail-
ure delay and its location along the rod vary. Failure
appears to be extremely sensitive to the initial curvature
κ0 (rods that are closer to their limit curvature tend to
break sooner after release, hence closer to released end)
and probably also to the presence of defects. Twenty-five
experiments were carried out with various pasta diame-
ters (Barilla n◦ 1 with r1 = .57 mm and γ1 = 0.521 m2/s;
Barilla n◦ 5 with r5 = .84 mm and γ5 = 0.735 m2/s;
Barilla n◦ 7 with r7 = .95 mm and γ7 = 0.82 m2/s) and
initial curvature (in the range 9.7 m−1–15.3 m−1), with
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FIG. 4: Space-time diagram, in rescaled coordinates, of the
breaking events obtained by repeating the experiment of
Fig. 3 (data points) for different pasta radii and initial cur-
vatures κ0. The time and location of curvature records pre-
dicted by nonlinear numerical simulations for κ0 L = π are
shown in background, with no adjustable parameters: abso-
lute records (black) and local ones (grey). Percentages show
the relative increase of curvature κ/κ0 at selected points. In-
tersections of dashed parabola and horizontal lines labelled
by k correspond to an approximate analytical prediction of
breaking events (see main text).

L around 24 cm. All the breaking events collapse onto
a well-defined curve in a space-time diagram (s/L, t/T ),
see Fig. 4. The curve of collapse can be predicted as
follows. Assuming the rod has no defect, it breaks as
soon as its limit curvature κ∗ is reached somewhere. The
first breaking event after the release must therefore cor-
respond to the first time that |κ(s, t)| reaches the value
κ∗. This means that breaking occurs necessarily at a
point in the plane (s/L, t/T ) that is a record of cur-
vature since the experiment started: for all s′ and all
t′ < t, |κ(s, t)| > |κ(s′, t′)|. This defines the so-called
absolute curvature records. Under the opposite assump-
tion that defects are important, κ∗ becomes a function
of s and rupture is simply expected to take place at a
local curvature record, that is at a point (s, t) such that
|κ(s, t)| > |κ(s, t′)| for all t′ < t and same s. Global
and local curvature records define a rather narrow region,
shown in Fig. 4, onto which the experimental data points
indeed collapse. These curvature records lie on a series of
islands which can be interpreted as interference patterns
between the incident and reflected waves. An analytical
argument based on this remark shows that these islands
lie at the intersection of the parabola (s/L)2 = 4π t/T
and the horizontal lines t/T = 1/(4π(k+q)), where k ≥ 0
is an integer and q ≈ 2/3 for clamped boundary condi-
tions (dashed curves in Fig. 4). The collapse of the ex-
perimental data onto curvature records, without any ad-
justable parameters, confirms that this delayed rupture
process is due to the flexural waves and the associated
increase of curvature.

In the present analysis, we have only considered the

first breaking event after release, although multiple fail-
ures were commonly observed in experiments [18]. Sec-
ondary failure events are most likely described by the
same theory, with a shorter timescale T (fragments are
shorter), and with the additional difficulty that the ini-
tial curvature profile is not uniform. The present physical
mechanism, based on flexural waves, for fragmentation of
slender elastic bodies leads us to expect specific statistics
for fragments sizes. Recall that the maximal curvature
increases during the initial boundary layer, t ∼ Ts, and
later reaches a plateau, κ/κ0 = 1.43. If the initial cur-
vature is sufficiently close to the limit one, very early
secondary breaking events should occur. Such events are
too fast to be measured with our experimental setup but,
nevertheless, we have often observed the ejection of tiny
rod fragments, with typical size r. Such fragments, whose
size and ejection velocity can probably be predicted by a
boundary layer analysis, contribute in a non-trivial way
to the statistics of fragments sizes. Data is being col-
lected in order to test this hypothesis.

Contrary to the intuition that removing a loading de-
creases stresses and so cannot induce failure by itself, we
have shown that rods can break just because they are
released. When a bent rod reaches its limit curvature
and breaks at a first point, a burst of flexural waves is
sent through the newly formed fragments, which locally
further increase the curvature. The limit curvature is
therefore exceeded again at later time, allowing a cas-
cading failure mechanism to take place. The cascade is
limited by dissipation (propagation of transverse cracks,
damping of flexural waves e.g. by visco-elastic effects in
the material). The rupture delay t/T ' (s/L)2/(4π)
we derive here is singularly shorter than what would be
conjectured from a crude analysis: t ∼ Tfree = 1.79 T .
Finally, let us note that since this increase in curvature
is described by a universal self-similar solution with no
adjustable parameters it should be a fairly robust mech-
anism.

We are grateful to L. Lebon, D. Vallet and K. Liop
for their help in setting up the experiments and to E.
Villermaux and A. Belmonte for early communication of
their preprint.
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