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Abstract 

Radar has been proposed for monitoring the health of elderly patients in long term 

care because it is safe, non-contact and preserves the privacy of patients. Random body 

movements (RBM) obscure radar return signals making it difficult if not impossible to 

accurately estimate vitals. Activity classification is presented in this thesis as a pre-

processing step for dealing with RBMs. Posture classification is presented in this thesis 

for assistance in preventing falls. Two popular radar architectures- continuous wave 

(CW) Doppler and ultra-wideband (UWB) are investigated in this thesis. Activity 

classification is performed with 92% average accuracy with CW and 86% with UWB. 

Posture Classification is performed with 64% average accuracy with CW and 85% with 

UWB. An occupancy detection algorithm was also developed for UWB and achieved 

88% average accuracy. The contribution of this thesis is a proposed hierarchical 

processing approach for both radar types capable of dealing with moving subjects. 
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1    Chapter: Introduction 

This chapter discusses the motivation for developing a system of non-contact 

monitoring using a single sensor radar and the inherent problems that must be overcome 

before a practical solution can be deployed. The contributions of this thesis are also 

discussed in this chapter. At the end of this chapter an overview of the rest of the thesis is 

given. 

1.1 Motivation 

Breathing and heart rate are two important vital signs of life that need to be 

monitored. Monitoring of these vital signs can be done either using contact sensors or 

non-contact sensors. Ability to monitor these two vital signs reliably is an area of active 

research. Reliable monitoring of such physiological signs have several advantages. A 

physiological monitoring device in an intensive care unit in a hospital for instance can be 

trained to generate an alarm when it senses a cessation in respiratory activity. In addition 

to using respiratory activity as a sign of wellbeing, trends in respiratory rate can be used 

in medical diagnostics to indicate pathological conditions including chronic obstructive 

pulmonary disease (COPD), pulmonary embolisms, pneumonia, sepsis, systemic 

inflammation, low blood volume, malfunctions of the excretory system, and even some 

neurological disorders [1]. Obstructive Sleep Apnea (OSA), which is characterized by 

periodic cessations of breathing for more than 10 seconds at a time during sleep [2] is a 

serious medical condition that could also be detected using non-contact sensing 

technologies. Typically OSA is diagnosed by performing polysomnography tests, an 

expensive and time consuming process that could be mitigated by using low cost non-
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contact sensors. Similarly, trends in heart rate as well as heart rate variability (HRV) can 

be analyzed by medical practitioners for diagnostic purposes.  

 Noncontact sensors offer a solution to many problems associated with contact or 

wearable sensors. Sensors requiring physical contact with the subject can be burdensome 

or uncomfortable making them impractical for 24/7 monitoring in long term care 

facilities, whereas noncontact sensors are capable of monitoring without the subject being 

aware of it. In some instances, contact sensors may compromise the health of patients 

such as burn victims or premature infants due to skin sensitivity. Noncontact sensing 

using video has been proposed, however video (infrared or visible spectrum cameras) 

requires an unobstructed view of the subject and privacy concerns can arise. Radar on the 

other hand is capable of monitoring subjects through barriers and does not record 

personal or identifying information.     

Most works in literature deal with data recorded in very controlled environments. 

Subjects are typically stationary, very close to the radar or in a single posture for the 

duration of the tests. Current algorithms hat provide estimates of breathing and heart rate 

are only reliable when data is recorded for perfectly still subjects [3]. This means there is 

a need for classifying radar returns based on the activity levels of human subjects and 

ascertain if the subjects are stationary or not. When subjects are still, further analysis can 

be performed on the radar returns, and when subjects are moving analysis can be 

suspended until the subject is still. When systems are developed for monitoring patients 

in long term care facilities, information regarding activity levels could be useful for 

medical practitioners. Trends in activity levels can be tracked to determine if the subject 

or patient is becoming more active or less active with time. This could be used to predict 
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an improvement or decline in health. Activity classification using non-contact sensors 

should be able to detect whether the subject is sedentary and still, sedentary but moving 

their limbs (potentially corresponding to exercise) or walking around their home.  

Posture classification using single non-contact radar sensors has had very little 

coverage in literature. For monitoring of patients who have an elevated risk of falling, 

posture classification could be used to generate alarms to staff when the patient stands up 

and gets ready to walk. Fall detection and fall prevention is an important area of research 

within the field of non-contact physiological monitoring for elderly care. Falls are the 

leading cause of death in seniors aged 65 and over, and the total cost worldwide related to 

these falls is estimated at $30 billion (2010); one in every three seniors aged 65 or over 

fall each year [4]. Another important reason to perform posture classification of elderly 

patients is to potentially avoid bed sores and ulcers caused by long durations in which the 

subject remains in the same posture [5]. A benefit of radar solutions is that a single 

inexpensive radar sensor can cover a very large area as opposed to pressure mats for 

example which must be placed in all areas that the subject may be present.   

In applications where a non-contact monitoring system is used to monitor people 

in their homes, room occupancy determination is essential so that when multiple people 

are present, the system is not tricked into recording physiological information of the 

wrong subject. The monitoring system may be trained to either stop recording when 

multiple people are present, or if it is able to differentiate and separate the people as 

independent targets then it could perform analysis on all subjects. Furthermore, the room 

occupancy data could be used in conjunction with smart home infrastructure to increase 

energy efficiency by turning off devices when nobody is present.   
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 Contact-sensor based methods are already in place for monitoring of patients in 

long term care homes, including medic-alert pendants. The contact-based sensors requires 

co-operation from the home-care based patients. For instance, many senior citizens who 

would normally rely on wearable devices like medic-alert pendants may forget to wear 

them, or refuse to wear them because they cause discomfort or reduce their 

independence. Monitoring systems in home-care are integrated into a patient’s everyday 

routine and so the sensors should be non-intrusive and not reduce the quality of life of 

individuals. Non-contact sensors are non-intrusive as the subjects can go about their daily 

activities as very minimal or no co-operation is needed from the subjects. Non-contact 

sensors can be implemented in a system that runs constantly and does not require any 

physical interaction with the subject. Wireless networks [6] have been used in breathing 

monitoring using the principles of receiver signal strengths. As a single wireless link is 

incapable of providing reliable detection and estimation of breathing frequency, a 

collection of wireless links were considered. Such active sensors, including radars, 

preserves privacy of the individual unlike passive sensors like video and hence may be a 

preferred way of monitoring in long term home-care environments. Radar does not 

capture personal information from subjects and can be used to monitor people even in 

places such as bedrooms and bathrooms. Unlike wireless sensor links, a single radar is 

capable of monitoring a large area (such as several rooms) at the same time. Radar is also 

able to penetrate objects so it does not require an unobstructed view of the subject. 

Furthermore, changes in ambient lighting that affects the performance of video based 

approaches for physiological monitoring has no effect on radar.  
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Patient care in long term home environments is one of the many applications that 

is currently being researched in the field of non-contact monitoring with radar. Radar 

sensors are used in search and rescue applications, as the transmitted radar waveforms are 

able to penetrate obstacles and provide location of trapped victims. In many medical 

applications, contact sensors are inappropriate because they have the potential to 

compromise a patient’s health, such as with premature infants and burn victims. In 

polysomnographic sleep studies, using contact sensors may impede the subject’s natural 

breathing patterns, biasing the results of the study. Use of noncontact sensors such as 

radars would circumvent these issues. These benefits have motivated physiological 

monitoring using radars in this thesis. 

1.2 Problem statement 

As will be shown in the survey of the current works done in the field of radar 

physiological monitoring (Chapter 2), there have been very few attempts at designing a 

system that can be implemented in a real environment. Other than a few key works in this 

area, majority of research has been done with data collected in very controlled situations. 

While this type of initial research is critical in the path to developing practical systems, 

there needs to be research done which deals with subjects behaving naturally, as they 

would in uncontrolled environments. The problem of large body movements manifests in 

uncontrolled environments. Large body movements obscure the smaller physiological 

signals reflected from the human body. Some research has been done with data fusion 

using video and radar for counteracting the effects of these movements [7], but there has 

been no reported research on single sensor radar that addresses dealing with large body 

movement, including walking, while estimating the vital signs. It is this issue that gives 
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motivation for human movement classification (Chapters 7 and 8). Knowing whether or 

not a subject is stationary gives insight to the efficacy and confidence of breathing rate 

and heart rate algorithm outputs. For instance, if it is determined that a subject is moving, 

it may be best to withhold these estimates until the subject is stationary so as to not give 

erroneous results.  

Posture detection has not been performed in a robust manner using a single non-

contact radar sensor, nor has it been implemented into a system that also performs 

activity classification. Identification of a subject’s posture is necessary for fall 

prevention; knowing that a subject who has a history of falling is standing may indicate 

that they are at a high risk of experiencing another fall. Hence in this thesis, posture 

detection using a single radar is studied. 

The issue of multiple individuals being present in the field of the radar must also 

be solved for a practical system to be developed. Chapter 8 presents a potential solution 

to this issue which can easily be integrated into a system along with posture and activity 

classification.  

Two radars, the continuous wave (CW) radar and the ultra-wideband (UWB) 

radar, are widely used in literature and are considered in this thesis. CW radar is typically 

designed to have a higher carrier frequency than UWB, meaning it has higher frequency 

resolution making it better suited for estimating breathing and heart beat frequencies. On 

the other hand, a UWB radar has much larger bandwidth which results in much higher 

spatial resolution making it better suited for posture classification and room occupancy 

(as will be discussed in later chapters).  
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1.3 Contributions 

The intended goal of this work was to investigate the potential of using radar for 

non-contact physiological monitoring, and to develop algorithms that could be integrated 

into a system that is capable of performing monitoring in an uncontrolled environment.  

The following are the contributions of this thesis; 

1. A novel algorithm to detect occupancy and estimate the number of occupants in a 

room using UWB radar. This could enable separating the subjects as individual 

sources for further processing. 

2. Classification of postures and activities using a single CW or UWB radar as a 

precursor to vital sign estimation. The posture classification for UWB is novel 

and is an improvement in classification accuracy compared to the only existing 

algorithm in literature [8]. 

This work lays the foundation for a robust non-contact monitoring system, for 

which research will extend past the scope of this thesis.  

1.4 Limitations of this thesis 

The scope of this thesis is limited to data recorded in an indoor environment, with 

no obstructions between the radar and subject, and no known additional moving objects 

within the field of the radar (i.e. fan, water running through pipes). Additionally, the 

relative orientation between the subject and radar throughout data samples is limited- the 

subject faces the radar in all data recordings (with the exception of laying down posture 

in which the subject always has their side facing the radar). Data in which more than one 

subject is present in the field of the radar was only used for testing the occupancy 

detection algorithm; the data was not used for further processing.  



 17 

1.5 Thesis overview 

Chapter 2 is a survey of work that has been performed in the field physiological 

monitoring using radar, including the limitations of these works in practical applications.  

Chapter 3 details the fundamental principles of radar operation, signal characteristics of 

CW and UWB radar as well as the radars used in this work  

Chapter 4 details the experimental protocol used for collecting the data for this thesis 

Chapter 5 includes activity classification and posture classification on data recorded with 

CW radar 

Chapter 6 includes posture classification, activity classification, and room occupancy 

detection on data that was recorded with UWB radar. 

Chapter 7 concludes the thesis by summarizing the contributions, explaining the 

limitations of the work presented in this thesis and providing directions for future work. 
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2    Chapter: State of the art 

This chapter will provide a survey of the field of non-contact physiological 

monitoring. It will cover all work relating to breathing and heart beat measurements, 

gross body movements, posture classification, fall detection and occupancy classification. 

Finally, practical implementations will be discussed.  

2.1 History of radar technology 

Radar and research applications of radar has gone through many changes during 

its relatively short existence. Research relating to radio wave transmissions began 

towards the end of the 19th century. Patents for metallic object detection using radio 

waves were filed early in the 20th century. WWII jumpstarted the development and 

proliferation of radar technology for defense applications. In 1975 James C. Lin 

conducted an experiment which placed an X-band continuous wave radar 30cm away 

from a 5.1kg albino rabbit, and then a seated human [9]. He found that the returns from 

the radar clearly showed the breathing pattern of both subjects. This initial finding was 

the catalyst for decades of research into the feasibility of using radar technology for 

monitoring human physiological signs. Different kinds of radar technology mostly based 

on continuous wave (CW) radar technology and its variants using different modulations 

to provide bandwidth for localization were considered for physiological processing [10]. 

In 2002 the Federal Communications Commission (FCC) allocated a frequency band for 

the use of ultra-wideband (UWB) radar. Since then UWB has become ubiquitous in non-

contact sensing in numerous applications, including physiological monitoring.  
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2.2 Breathing rate estimation 

Respiratory activity, which was the first physiological signal to be recorded using 

radar, has been researched extensively for different purposes and using different radar 

architectures and configurations.  

Initial findings have been presented using 60GHz V-band continuous wave radar. 

The benefit of using a higher frequency carrier wave is the increase in phase modulation 

resolution [11]. Respiration and heart beat signals were extracted using an algorithm that 

applies ensemble empirical mode decomposition (EEMD) and continuous wavelet 

transforms (CWT) for removing noise and separating the two source signals [12]. This 

was done using an IR-UWB radar, but was only tested on seated participants at 0.3m – 

3m away with the radar mounted chest level. Nijsure et al. developed a hidden Markov 

model (HMM) based algorithm for chest wall tracking and breathing pattern change 

detection, however this algorithm required multiple UWB radars set up in an array 

around the subject for chest wall tracking and breathing pattern change detection [13]. 

Respiration motion tracking has use in cancer radiation therapy as it can be used 

for adaptive radiation administering. An adaptive DC-coupled CW radar was used by Gu 

et al. to track respiratory motion of radiation therapy patients with sub-millimeter 

accuracy [14].  

A 2.34GHz quadrature CW Doppler radar was used to estimate the amount of 

energy that wearable devices would be able to harvest from human body motion caused 

by respiration [15]. In this work the test subject was seated only 1m away from the radar. 

Using multiple radars it was shown that breathing patterns including normal 

breathing, chest breathing, and diaphragmatic breathing can be discriminated for supine 
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subjects [16]. Similarly, a system was presented by Kagawa et al. that used two 24GHz 

Doppler radars mounted underneath of a bed for detecting sleep apnea-hypopnea events 

based on decreased amplitudes of breathing signals as well as phase changes between 

thoracic and abdominal respiratory movement corresponding to respiratory disturbances 

[17].  

Tidal volume, which holds valuable information for medical diagnostic purposes, 

was measured using a 2.4GHz Doppler radar [18]. This experiment was done on 8 

healthy subjects in both seated and supine positions, 1m away from the radar. The radar 

returns only provided relative tidal volume estimates, so the data had to be calibrated 

with spirometry data.  

Respiration monitoring was used by Kagawa et al. for classifying the sleep state 

of human subjects [19]. Multiple impulse Doppler radars operating at 24GHz were placed 

underneath a mattress and recorded data from subjects sleeping for an 8 hour period. The 

variation in respiration rate as well as the level of body movement was used to train a 

linear discriminant classifier. Singular Spectrum Analysis (SSA) was used to extract the 

breathing signal from the subject. Wakefulness, or sleep state of rats can also be 

determined using an impulse Doppler radar [20]. In Zeng et al. a support vector machine 

was trained to classify whether a rat was in one of these 3 states: a wakeful state, non-

rapid eye movement sleep state, or rapid eye movement sleep state.  

2.3 Heart rate estimation 

The major issue with estimating heart signals using radar is that the amplitude of 

chest motion due to respiration is on the order of 10mm whereas for cardiac motion it is 

only on the order of 0.1mm [21]. This means that power of the signal corresponding to 
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heart motion can be negligible in the presence of heavy respiration and signal noise. 

Furthermore, heart rate and breathing signals can have overlapping spectra making it 

difficult to separate the signals in the frequency domain.  

Several methods have been presented in literature to overcome the difficulties of 

monitoring small heart signals in the presence of larger physiological signals. Singular 

Spectrum Analysis (SSA) has been shown to be able to localize heart sounds in 

respiratory data recorded using a stethoscope [22]. A model based approach was 

presented by Boryssenko et al. which used predefined difference signals to estimate the 

blood volume in the heart, corresponding to the different states of the heart’s pump cycle 

[23]. That work however used a UWB radar sensor mounted on a human subject which 

makes it impractical for many applications. 

Monitoring of cardiac activity other than just for estimating heart rate has also 

been attempted in recent years. Heart rate variability (HRV), which is the variation in 

beat to beat periods of heart motion, is an indicator of cardio-vascular health. HRV 

monitoring has been performed using a direct conversion quadrature continuous wave 

Doppler radar in stationary (seated and supine) positions [24]. Yavari et al. estimated 

HRV on a supine subject using a synchrosqueezing transform approach [25]. In another 

work HRV was measured using an algorithm that filtered radar returns using a 

continuous wavelet transform (CWT) then extracted the heart signal using EEMD [26]. 

This experiment used a 5.8GHz quadrature CW Doppler radar, and the subjects were 

seated and remained stationary 0.5m away from the radar. Xu et al. showed that a 

2.4GHz Doppler radar was able to measure with sub-millimeter accuracy the movement 

of a mechanical oscillator acting as a surrogate for a human chest [27]. This work 
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however was just a feasibility study- it was not used on a human subject, and did not 

include a respiration signal.  Heart motion imaging has also been performed using an 

UWB radar fitted with an eight element antenna array and placed close to a supine 

subject [28].  

2.4 Moving subjects 

One major limitation in the current research is the inability to accurately estimate 

vital signs during periods of gross body movements [24]. At most, small movements such 

as typing on a laptop or smart phone while the subject is sedentary is admissible for a 

radar physiological monitoring system to obtain reliable estimates [3]. Hence, a vital sign 

monitoring system in real life must be able to provide reliable vital sign estimates 

irrespective of whether the subject is sedentary or moving.  

Current state-of-the-art non-contact physiological monitoring systems provide 

reliable vital sign estimates only in sedentary conditions. Large body movements can 

obscure the micro-Doppler variations caused by chest wall and abdominal movements. 

An autocorrelation based approach was used by Sun et al. for a 10GHz CW Doppler 

radar to remove the effect of random body movements (RBM); however, the data was 

recorded for subjects’ seated 0.2-0.3m away and remaining still [29]. An algorithm was 

developed by Khan et al. to detect RBMs by computing the width of the autocorrelation 

function of the signal and using a threshold to classify the amount of movement [30]. If 

the subject is classified as stationary, then the algorithm computes the respiration rate and 

heart rate from peaks in the Fourier transform, whereas if the subject is classified as non-

stationary the estimate for respiration and heart rate is not computed. This system reduces 

estimation error by only computing estimates when the estimates are expected to be 



 23 

accurate. The issue with this work by Khan et al. was that it only dealt with a seated 

subject. A random body movement cancellation (RBMC) algorithm that fuses data from 

video and radar was proposed by Gu et al. [7]. The phase data from the video was used 

for removing the RBMs in the radar returns so that the respiratory signals were preserved 

during periods of body movement.  

Rather than trying to estimate breathing rates in the presence of random body 

movements (RBM), one work exploited the existence of these movements by proposing a 

24GHz CW radar array system, to detect victims trapped in building rubble based solely 

on RBMs [31]. 

RBMs effect accuracy of other physiological estimation algorithms as discussed 

in Sections 2.2 and 2.3, however there has not been an algorithm proposed in literature 

which has been shown to be capable of dealing with RBMs in a robust manner.  

2.5 Posture classification 

An algorithm for detecting postural changes while lying down was presented by 

Nguyen et al. [5], however it was not tested in any other posture. A radar-video fusion 

system was presented which used radar for initial location of the subject, but video 

processing alone was used for posture classification [32]. Classification of posture using 

an IR-UWB radar was performed by Ahangar-Kiasari et al. with 86% accuracy for 

standing, 83% accuracy for sitting and 80% accuracy for lying postures [8]. This work 

extracted statistical features from the first 10 principal components of the radar return 

signals and used them for training a neural network. Data was collected for subjects at 1, 

3 and 5 meters from the subject, but the orientation of the subjects relative to the radar 

was not explained.   
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2.6 Fall prevention 

Preventing falls, or mitigating risks of falling for at risk seniors is a very 

important task that is currently being researched. Gait is a term used to refer to the 

characteristics of a subject’s movements while walking. It has been found that changes in 

gait over time can be representative of failing health and be used as predictors for 

increased risk of falling in senior citizens. Reduced walking speeds and higher variability 

in gait parameters were found to be good predictors for those who have an elevated risk 

of falling [33]. Gait analysis was performed by extracting features such as torso velocity, 

limb acceleration and period of limb movement from the short-time Fourier transform 

(STFT) of radar returns while subjects walked in a radial direction towards and away 

from a CW radar [34]. Differences in gait were found between men and women, as well 

as between healthy subjects and those suffering from neuro-muscular diseases. Gait 

analysis was also performed by Wang et al. within the context of fall prevention using 

two pulse Doppler radars: one at the torso level and the other at the foot level [4]. 

Furthermore, gait parameters were used to differentiate human subjects from other 

moving targets such as dogs, bicycles and automobiles [35].  

2.7 Detection of room occupancy 

Several methods have been used to determine room or building occupancy. 

Sensors used for these methods fall into three categories; infrared (IR), video, and radio 

frequency (RF) [36]. Infrared technology performs poorly in sunlight due to signal 

interference and requires the space between the IR sensor and the human target be free of 

obstructions. Video suffers from the same problems as IR sensors. Furthermore, video 

has implications regarding privacy.  
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RF occupancy detection can be further broken down into two methods: systems 

that require the target to carry a passive or active tag, and systems that do not require the 

target to carry a tag. The first method works on the principle of measuring signal strength 

in an array of wireless links, where each link is between the target and another RF sensor 

or RF tag located in a different part of a building. This method was used by Bahl et al. for 

occupancy detection of subjects that were stationary or moving [37]. Subjects were 

located and tracked with a resolution of 2-3m. A major drawback with this method is that 

it requires cooperation from the subject- they must wear the passive tag. This type of 

system may detect occupancy in office type applications where all employees are 

required to carry a badge. Tag-based systems may not be suited for monitoring patients in 

long term care homes as the requirement of carrying a monitoring tag at all times would 

be burdensome or cannot be guaranteed in cases with seniors with dementia. 

Non-contact occupancy detection using radars mounted in the room and not 

requiring subjects to wear a tag is a relatively new area of research. Occupancy detection 

and localization of a human subject was performed using a dual-band Doppler radar by 

detecting signal components in the radar returns corresponding to human breathing and 

heartbeat [38]. Data was collected from only one subject in that experiment. Similarly, 

Yavari et al. used a 2.405GHz offset quadrature phase-shift keying (O-QPSK) Doppler 

radar to extract the breathing signal of a single subject using cubic spline interpolation for 

determining the presence of a subject [39].  

Yavari et al. used a 2.4GHz continuous wave (CW) Doppler radar to detect 

human occupancy based solely on the root mean square (RMS) value of the radar returns 

[40]. Yavari et al. used a mechanical device moving at 0.2Hz to mimic breathing motion 



 26 

of a single human subject and reported an average accuracy of 93%. The energy levels 

recorded from a commercially available 3.1-5.3GHz UWB were used by Brown et al. to 

determine room occupancy, and the occupancy data was aggregated with power 

consumption in the household for analyzing the correlation of occupancy with energy 

consumption [41]. 

A 5.46GHz to 7.25GHz frequency modulated continuous wave (FMCW) radar 

was used by Adib et al. to detect occupancy of a room for up to 3 subjects [3].  With this 

radar, estimation of breathing and heartbeat of three individuals simultaneously as well as 

detection of  occupancy by two individuals while one was moving within the room (while 

staying at least 1.5m away from the other individual) was reported. The system proposed 

by Adib et al. was limited in range to 8m due to low SNR and was only able to separate 

two individuals as long as they were 1-2m apart. The details of the algorithm for 

occupancy determination and the number of occupants or location of the occupants and 

location accuracy was not available. 

2.8 Practical and commercial implementations 

There are a few research teams that have proposed or demonstrated a system for 

monitoring human physiological movements with non-contact radar sensors. A team 

from the Massachusetts Institute of Technology has developed a system called Vital-

Radio which they claim is capable of estimating breathing and heart rate with 99% 

median accuracy up to 8m away unobstructed, and 4m behind a wall [3]. The system is 

also claimed to be capable of identifying and analyzing the radar returns for up to 3 

subjects with at least 0.8m separation between subjects. Technical information regarding 
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the system including aspects about the hardware and signal processing algorithms were 

not presented.  

Norwegian radar manufacturer Novelda has a product on the market which is 

designed to monitor respiration and movement of customers while they sleep. The system 

is capable of monitoring subjects up to 5m away [42].   

Panasonic has teamed up with Kyoto University for the development of a 

millimeter-wave radar capable of monitoring physiological signs [43]. Similarly, TES 

Electronic Solutions has demonstrated a 60.5 GHz radar system for monitoring 

respiration and heartbeat up to 2m away, designed to be implemented in personal vehicles 

[44]. Details of the system and the algorithm used in these commercial systems are not 

publicly available yet. 

2.9 Limitations and proposed solution   

The main limitations in the current state of the art of non-contact monitoring 

using a single RF sensor are the following: being able to deal with moving subjects, 

detecting posture and determining room occupancy. There has been work done in each of 

these three areas, however there has not been a single work that has attempted to 

implement a solution to all of these three problems in a single system using only a single 

RF sensor. 

In the remainder of this thesis, algorithms are developed to deal with these 

problems, and a hierarchical processing approach which integrates all of these algorithms 

is proposed. The point of this approach is to be able to deal with data from subjects in 

uncontrolled situations, and provide estimates of posture and breathing only when 
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appropriate. This work is a step towards realization of a practical sensing system that can 

be implemented in uncontrolled environments for senior care applications.  
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3    Chapter: Radar theory 

Two distinct radar types are used in this thesis. Continuous wave (CW) Doppler 

radar and ultra-wideband (UWB). Both of these radar types are used widely within the 

field of non-contact human monitoring, so it is important to understand the advantages 

and disadvantages of using those two radars.   

In this chapter, the CW and UWB radar models used in this thesis will be 

introduced as well as an explanation of the signal characteristics of each. An explanation 

of radar fundamentals will be given first. 

3.1 Radar fundamentals 

Radar, which is an acronym for Radio Detection and Ranging, operates by 

transmitting an electromagnetic signal and analyzing the signal returns or echoes. From 

these echoes a target can be detected via its range and velocity. A radar transmits a signal 

with power Pt (W) and receives an echo signal of power Pr (W) which are related by the 

following equation [1] 

 
𝑃𝑟 =

𝑃𝑡𝐺2𝜎𝜆2

(4𝜋)3𝑅4
 

(3.1) 

where G is the gain of the antennas (assuming the antennas for transmission and 

receiving are identical), λ is the wavelength of the radar carrier frequency, R is the 

distance to the reflecting target, and σ is the radar cross section (RCS) which is defined as 

the ratio of echo power returned to the transmitter to the power that would be reflected by 

a perfectly conducting sphere with 1m2 cross sectional area, or 

 
𝜎 =

4𝜋𝑅2|𝐸𝑟|2

|𝐸𝑖|2
 

(3.2) 
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where Er is the echo field strength at the receiving antenna and Ei is the field strength 

incident on the target [1]. RCS can also be defined as the cross sectional area of a 

uniformly scattering target located at the same distance away that would produce the 

same reflecting power. With equation 3.2 one can determine the distance from a target or 

calculate the maximum range of target detection given a minimum received power 

required. 

When the target RCS is unknown or when there are reflections from multiple 

targets as is the case in any practical implementation of a radar, the range must be 

determined not by comparing transmitted and received power levels but by analyzing the 

time delay between the received signal and the transmitted signal.  

Target velocity can be found by exploiting the Doppler shift observed in the 

return echoes. A signal reflected from a moving target will undergo a frequency shift 

proportional to the velocity of the moving target. This frequency shift is known as the 

Doppler shift. When a radar signal is reflected off of a moving target the received signal 

has a Doppler shift given by  

 
𝑓𝑑 =

2𝑓𝑡𝑣𝑟

𝑐
 

(3.3) 

where fd is the Doppler shifted frequency as seen at the receiver, ft is the frequency of the 

transmitted signal, or carrier frequency, vr is the radial velocity of the target, and c is the 

speed of light in free space [1]. 

3.2 Model of CW Doppler radar 

The simplest type of radar is pure continuous wave (CW) which transmits and 

receives a narrow bandwidth signal of fixed frequency simultaneously (in the case of a 

bistatic, or two antenna configuration) or intermittently (in the case of a monostatic, or 
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single antenna configuration with a duplexer or circulator). A pure CW radar cannot 

unambiguously detect the range to a moving target since there is no way to time stamp 

the transmitted signal. Pure CW radars work very well for detecting target velocity due to 

the narrow bandwidth of the transmitted signal; the velocity is found by measuring 

frequency derivations of the received signal. The maximum range of target velocity that 

can be detected is based solely on the bandwidth of the receiving antenna and circuitry. 

Frequency Modulated Continuous Wave (FMCW) radars can detect both the 

range and the velocity of a moving target. The transmitted signal is frequency modulated 

by a triangular function (typically) which sweeps the frequency between an upper and 

lower bound (called the frequency excursion). This allows the range to be determined by 

comparing the phase delay of the returned signal, as the distance to the target is directly 

proportional to half of the time delay. The Doppler frequency is found by comparing the 

average frequency of the returned signal to the average (carrier) frequency of the 

transmitted signal. FMCW radars have larger bandwidths than pure CW radars, which 

can limit the range of target velocity that the radar can detect. The maximum range to a 

target that an FMCW radar can unambiguously detect is related to the period of the 

modulation function. The range resolution of a FMCW radar is defined by  

 Δ𝑅 =
𝑐

2Δ𝑓
 

(3.4) 

where Δ𝑓 is the bandwidth, or frequency excursion of the transmitted signal [1]. 

Other types of radars use a coding technique for time stamping the transmitted 

signal for comparison with the received signal to detect range of targets. The CW radar 

that is used for the experiments in this thesis is a Binary Phase Coded Continuous Wave 

Doppler Radar. Binary phase coding splits the transmitted signal into equal length 
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segments (called chips) which correspond to distance ranges (range bins) and applies a 

phase shift of either 0 or π radians. Barker codes are used to reduce time side-lobes to a 

minimum [45]. 

 There are many configurations that radars can be used in, including monostatic, 

bistatic, pseudo-monostatic, and multi-static. Monostatic refers to the use of a single 

antenna for both transmission and receiving. The antenna is switched using either a 

duplexer or circulator (similar to a commutator in a DC motor). The issue with a 

monostatic configuration is that there is little to no spatial separation of the transmitter 

(tx) and receiver (rx) circuits. For this reason, the radar can suffer from self-injection 

which results in high DC components in the demodulated baseband signal that saturate or 

damage the circuit. Self-injection obscures weak signals from distant targets. Bistatic 

refers to the use of spatially separate antennas for transmission and. Bistatic 

configurations can increase circuit isolation to improve SNR. Antennas in a bistatic 

configuration can be located at any distance apart and thus the radar configuration can be 

used in special applications such as detecting stealth aircraft or semi-active missile 

guidance. Pseudo-monostatic refers to a bistatic configuration in which the antennas are 

located close enough together that they can be considered to be in the same place for long 

range targets. The CW radar used in this thesis would fall into this category since there 

are four pairs of antennas (only one pair active at any point in time) that are located close 

to one another. Pseudo-monostatic radar configurations have higher circuit isolation than 

monostatic configurations because the circuits are separated. Multi-static refers to the use 

of more than two antennas. This may include two or more receiving antennas with only 

one transmitting antenna, two or more transmitting antennas with only one receiving 
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antenna, or multiple transmitting and multiple receiving antennas. Using multiple 

antennas (therefore multiple paths) can allow for greater localization of targets from noise 

and clutter because the noise and clutter in each channel is considered uncorrelated with 

one another, therefore the correlated components in each channel relate to moving 

targets. Using multiple antennas that are spatially separated also allows for obtaining 

information about targets from different angles which can be especially important for 

environments with a lot of occluding objects.  

A CW radar transmits a continuous wave signal of frequency fc (carrier 

frequency) and receives a reflected version of the transmitted signal. The received signal 

carries information about the environment in its frequency, phase, and amplitude. 

Frequency variations are induced in the signal when it is reflected off a target moving in 

the direction of wave propagation. This is called the Doppler shift and it is defined as  

 
𝑓𝑑 =

2𝑓𝑐𝑣𝑡

𝑐
 

(3.5) 

where fd is the Doppler shifted frequency,  vt is the velocity of the target in the direction 

of wave propagation (positive when moving towards the radar) and c is the speed of light 

in free space in m/s [1]. If the target moves away, then fd is considered as a negative 

frequency. 

The transmit signal of a CW radar can be defined as 

 𝑆𝑡 = cos(𝜔𝑜𝑡) (3.6) 

where wo is the carrier frequency (in radians/second). [1] 

The transmit signal is reflected off N number of objects in the environment 

covered by the antenna beam width and received at the receiving antenna as 
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𝑆𝑟 = ∑ 𝐴𝑡 cos (𝜔𝑜𝑡 +
2𝜋

𝜆
(2𝑑𝑜𝑡

+ 2𝑑𝑡(𝑡)))

𝑁

𝑡=1

 

(3.7) 

where the subscript t is the target in the environment that is reflecting the signal, do is the 

nominal distance to the target, d(t) is the time varying displacement of the target from the 

nominal distance (in the axis of signal propagation) [1]. In this thesis a target is defined 

as a point source capable of reflecting a portion of the incident radar signal back to the 

receiving antenna. For targets that are stationary the time varying component will be zero 

meaning their total contribution to the received signal will simply be a constant (resulting 

in a DC bias after demodulation). The number of targets (N) is very large for any 

environment save an anechoic chamber, however the purpose of this study is to analyze a 

moving human subject in an otherwise stationary environment. Therefore only time 

varying targets need to be considered- leaving only targets located on the human body 

(moving organs). After the signal is received at the receiving antenna it enters a mixer 

and is demodulated by a delayed version of the transmitted signal  

 

𝑆𝑟𝑆𝑡 = ∑ 𝐴𝑡 cos 𝜔𝑜𝑡 cos (𝜔𝑜𝑡 +
2𝜋

𝜆
(2𝑑𝑜𝑡

+ 2𝑑𝑡(𝑡)))

𝑁

𝑡=1

 

(3.8) 

Using the following trigonometric identity 

 
cos 𝑎 cos 𝑏 =

cos(𝑎 − 𝑏) + cos(𝑎 + 𝑏)

2
 

(3.9) 

the demodulated received signal is  

𝑆𝑟𝑆𝑡 = ∑
𝐴𝑡

2
[cos (

2𝜋

𝜆
(2𝑑𝑜𝑡

+ 2𝑑𝑡(𝑡))) + cos (2𝜔0𝑡 +
2𝜋

𝜆
(2𝑑𝑜𝑡

+ 2𝑑𝑡(𝑡)))]

𝑁

𝑡=1

 

(3.10) 
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The second term in the square brackets when filtered out by a low pass filter provides the 

following 

 

𝑆𝑟𝑆𝑡 = ∑
𝐴𝑡

2
cos (

2𝜋

𝜆
(2𝑑𝑜𝑡

+ 2𝑑𝑡(𝑡)))

𝑁

𝑡=1

 

(3.11) 

Using the following trigonometric identity 

 cos(𝑎 ± 𝑏) = cos 𝑎 cos 𝑏 ∓ sin 𝑎 sin 𝑏 (3.12) 

the demodulated received signal from one target reflection can be rewritten as 

 
𝑆𝑟𝑆𝑡1

=
𝐴

2
cos(

4𝜋𝑑0

𝜆
) cos(

4𝜋𝑑(𝑡)

𝜆
) −

𝐴

2
sin(

4𝜋𝑑0

𝜆
) sin(

4𝜋𝑑(𝑡)

𝜆
) 

(3.13) 

or  

 
𝑆𝑟𝑆𝑡1

= 𝑎 cos(
4𝜋𝑑(𝑡)

𝜆
) − 𝑏 cos(−

4𝜋𝑑(𝑡)

𝜆
+

𝜋

2
) 

(3.14) 

where  

 
𝑎 =

𝐴

2
cos(

𝐴

2
sin(

4𝜋𝑑0

𝜆
))  𝑏 =

𝐴

2
sin(

4𝜋𝑑0

𝜆
) 

(3.15) 

The two signals can thus be thought of as having two quadrature related components. 

To simplify the signal in baseband, a trigonometric ‘rule of thumb’ called the small angle 

approximation can sometimes be used to reduce the above equation to a simple linear 

equation. The small angle approximation [46] states that  

 
cosθ ≈  1 −

𝜃2

2
 , θ < 0.664 rad (38𝑜) 

(3.16) 

To check if the small angle approximation would hold, 
4𝜋𝑑(𝑡)

𝜆
 must be less than 0.664. In 

the case of this work the radar being used is a CW Doppler with center frequency of 

24.125GHz. The wavelength at 24.125 GHz is 0.0124m, so the maximum amplitude of 

target motion (d(t)) should be within 6.571*10-4m or 0.6571mm in order to apply the 
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small angle approximation. Chest displacement due to heart motion is approximately 

0.08mm while displacement due to breathing is 0.1mm to several mm [47]. This means 

that during periods of no breathing (or light breathing) the heart beat can be obtained 

through a simplified version of the received signal by applying the small angle 

approximation, but during normal breathing the large displacements of chest and 

abdominal motion causes non-linear harmonic distortion. 

Assuming there are only two independent sources within the human body causing 

periodic motion- namely the heart and lungs- we can expect that all moving targets found 

on the human body will oscillate with the frequency of breathing rate, heart rate, or a 

combination of both. In this case, a point source reflecting target may be modelled as 

 𝑑(𝑡) = 𝐴𝑏cos(2𝜋𝑓𝑏𝑡) + 𝐴ℎcos(2𝜋𝑓ℎ𝑡) (3.17) 

where Ab is the amplitude of chest/abdominal displacement due to breathing, Ah is the 

amplitude of chest displacement due to hear beat and fb and fh are breathing and heart rate 

frequency respectively.  

A simulation was performed in MatLab to help understand the effect of changing 

distance to target, frequency of motion of target, and relative amplitudes of motion 

sources. For small breathing displacements (Ab = 0.1 mm) the spectrum as obtained by 

performing a 216 point FFT with a Blackman window shows little harmonic distortion. 

For large breathing displacements (Ab = 2cm) that may be witnessed at the abdomen of a 

subject during deep breathing the spectrum has a lot of harmonic distortion.  
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Figure 3.1: Demodulation and target motion for Ab= 0.1mm 
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Figure 3.2: FFT of demodulated and target motion signals over 60s for Ab = 0.1mm, fb = 0.2Hz, Ah = 

0.08mm, fh = 1Hz, d0 = 1m 
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Figure 3.3: Time domain of demodulated and target motion signals over 60 seconds. Ab = 1cm, fb = 

0.2Hz, Ah = 0.08mm, fh = 1 Hz, d0 = 1m 
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Figure 3.4: FFT of demodulated and target motion signals over 60 seconds. Ab = 1cm, fb = 0.2Hz, Ah 

= 0.08mm, fh = 1 Hz, d0 = 1m 

As seen in Figures 3.1-3.4 the relative weights of the harmonics in the spectrum 

are dependent on the amplitude of displacement of the target. Since the heart motion only 

results in a very small displacement of the chest, its motion is obscured by the motion of 

the abdomen resulting from breathing. When the breathing signal is removed (i.e. Ab = 0) 

which is an analog for the case that the subject stops breathing but is still alive. The heart 

rate can be clearly seen in the spectrum (Figures 3.5 and 3.6). 
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Figure 3.5: Time domain of demodulated and target motion signals over 60 seconds. Ab = 0, fb = 

0.2Hz, Ah = 0.08mm, fh = 1 Hz, d0 = 1m 
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Figure 3.6: FFT of demodulated and target motion signals over 60 seconds. Ab = 0, fb = 0.2Hz, Ah = 

0.08mm, fh = 1 Hz, d0 = 1m 

Linear signal processing techniques, such as Fourier analysis, are not well suited for this 

signal because of its highly non-linear nature. For instance, under some permutations of 

breathing displacement amplitude and breathing frequency the fundamental breathing 

frequency is not even seen in the spectrum (Figure 3.7) which could lead to incorrectly 

estimating breathing frequency as its second or third harmonic.  
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Figure 3.7: FFT of demodulated and target motion signals over 60 seconds. Ab = 1cm, fb = 0.33Hz, 

Ah = 0.08mm, fh = 1 Hz, d0 = 1m 

In the case of Figure 3.7, the inter-peak separation of the frequency is the fundamental 

frequency of the signal. This can be used to estimate the breathing frequency in the 

model; however in a real signal it is expected that there will be noise which could obscure 

the peaks of the harmonics. 

The nominal distance between the radar and the target does not have an effect on the 

harmonic distortion of the spectrum, however it is expected that the further away the 

target is from the radar, the more the SNR will decrease due to the lower signal strength 

from R4 losses as well as increased baseband phase noise due to range correlation [1].  

A binary phase coded frequency modulated continuous wave Doppler radar built 

by K&G Spectrum (Gatineau, QC) is used for collecting the data. The carrier frequency 
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of the radar is 24.125GHz and the sampling rate is 905 samples per second. The radar has 

four antenna pairs that are each 20o x 70o beam-width, mounted adjacent to one another. 

The transmission antennas are all transmitting simultaneously while only one receiving 

antenna is receiving at any point in time. This means the radar is operating as a single 

input single output radar, but with unequal beam-width transmitting and receiving 

antennas. The reason for this architectural design was to allow the entire room to be 

flooded with the transmitted radar signal while still allowing narrow receiving beam-

width for locating the subject within specific regions of the room. The antennas are 

labelled antenna 1-4, which cover corresponding room regions. The receiving antennas 

are switched using solid state Macom SP4T switch with low insertion loss and high 

isolation between channels.  

 

Figure 3.8: Continuous wave antenna 

The received signal is arranged in a matrix format for signal processing purposes, 

where one dimension is indexed by the samples in slow time (temporal dimension) and 
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one is indexed by samples in fast time (spatial dimension). The spatial dimension is 

indexed by ‘zones’ which are 0.75m wide and overlapping. The room is adequately 

covered by 9 zones. 

To better visualize the structure of the received signal, Figure 3.9 represents the 

radar returns after demodulation of a subject walking toward and away from the radar in 

a single antenna beam path. The rows in the graph represent each zone, numbered 1 to 9 

where zone 1 is closest to the radar. The signal energy can be seen to change in zones 3 to 

9 as the subject walks through them, starting in zone 9 at t=0 and walking towards zone 3 

at t=5, reaching zone 3 at approximately t=10 and then turning around and walking back 

at t=13.  

 

Figure 3.9: Example of CW radar returns 
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3.3 Model of UWB radar 

Continuous wave radar has a very narrow bandwidth, which means its ability to 

locate a subject is limited. Ultra-wideband on the other hand has a bandwidth of at least 

25% of its center frequency. This allows UWB to locate a subject with better accuracy 

than CW. Ultra-wideband radar works on the basic principal of sending very short 

impulses, on the order of Nano or even Pico seconds, at high pulse repetition frequencies. 

Because the duration of these pulses is so short, the range resolution is very high.  

In UWB radars, the pulse length, denoted by cτ, where c is the velocity of light in 

free space and τ is the length of the pulse in time, is typically much smaller than the 

antenna aperture L. Therefore, antenna radiation pattern varies with time because there is 

a delay for the pulse to traverse the entire length of the antenna. Also the electromagnetic 

field at any point in the field of the radar is dependent on time and angle. This addition of 

angle dependence is unique to UWB radars- it is not present in CW [48]. 

UWB radiation patterns are modelled by treating an antenna as a series of 

elementary Hertzian dipole radiators with length ΔLi or cτ. The electric field of a 

Hertzian dipole excited by current i(t) is 

 
𝐸(𝜃, 𝑡) =

𝑍0 sin 𝜃

4𝜋𝑅
 

𝑑

𝑑𝑡
[𝑖 (𝑡 −

𝑅

𝑐
)] ∆𝐿 

(3.18) 

where θ is the angle between the dipole axis and point in space, Z0 is the impedance of 

free space, and R is the distance from the dipole to the point in space [48]. 

Since the antenna is being modelled as a series of these simple dipoles, the value 

of E(θ,t) will be the superimposition of the field radiated from each dipole. As the pulse 

i(t) tracks along the antenna, there will be a time delay. The following equation represents 

the total field ET(θ,t). 



 47 

 
𝐸𝑇(𝜃, 𝑡) =

𝑍0 sin 𝜃

4𝜋𝑅
 ∫

𝑑

𝑑𝑡
[𝑖 (𝑡 −

𝐿

𝑐
−

𝑅 − 𝐿 cos 𝜃

𝑐
)] 𝑑𝐿

𝐿

0

 
(3.19) 

This equation shows the dependency of the electric field about the UWB radar 

antenna with not only distance but angle as well [48]. 

As the UWB radar pulses have a wide frequency band, the pulse shape cannot be 

expected to be the same after it has been reflected off a target. The frequency response of 

each point target will distort the pulse shape. This means that the circuitry connected to 

the receiving architecture cannot use a simple correlator or matched filter as is done in 

CW radars. The relationship between the incident and reflected signal spectrum after 

target reflection is represented in the following equation:  

 𝑈𝑟(𝜔) = 𝑈𝑖(𝜔)𝐾(𝜔) (3.20) 

where K(ω) is the complex frequency characteristic of the target [48].  

Furthermore, because there is spatial separation between the transmitting and 

receiving antennas resulting in a difference in angle of arrival, the receiving antenna will 

have a different radiation pattern than the transmitting antenna.  

 This exploration into the signal characteristics of UWB radar shows that the 

phenomena governing short duration and large bandwidth pulses makes model based 

approaches for designing algorithms far more difficult than for CW radar. There are 

many unknowns that factor into the received signal such as relative angle, distance, and 

the frequency response of the target. This also makes the signal processing of UWB 

return echoes more challenging than that of CW radar.  

The ultra-wideband radar used in this experiment is the Xethru X4M03 

development kit manufactured by Novelda (Oslo, Norway), which uses the X4 chip 

operating at a center frequency of 7.29 GHz. The radar is equipped with 6-8.5 GHz 
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directional patch antennas with a beam width of 65o in both azimuth and elevation axes. 

The radar sampling rate is 23 GS/s in fast time and up to 20 S/s in slow time. The chips 

range is programmable up to 25 m. 

 

Figure 3.10: Novelda Xethru X4M03 

The output data is in the form of a matrix where the rows represent observations, 

or samples, in slow time and the columns represent samples in fast time (corresponding 

to range bins). The range resolution of the X4 radar is approximately 5.35cm. During 

experiments the radar was programmed to record data from a range of 9.75m away from 

the radar which resulted in 187 columns in the data matrix. The sampling rate in slow 

time was set to 17 S/s.  

3.4 Conclusion 

CW radar utilizes a very simple architecture to transmit and receive RF signals. 

This means that a model based approach can be used in designing algorithms for 

detection of targets and estimation of target motion. Furthermore, CW radar typically 

transmits and receives at a much higher frequency than UWB meaning frequency 

resolution of the return signals are much higher.  

UWB radar has a very high spatial resolution due to the extremely short duration 

of its pulses. A downside to short duration pulses however is the complexity of 
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mathematical models describing signal propagation and reflection. This makes model 

based approaches very difficult. 

CW radar is a better candidate for estimation of breathing and heartbeat frequency 

due to its high frequency resolution, whereas UWB is a better candidate for posture 

classification due to its high spatial resolution. The following chapters will utilize both of 

these radars for classification purposes. 
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4    Chapter: Experiment design and data collection 

In this chapter the data collection protocol for the experiments performed in this 

thesis are discussed. 

4.1 Data collection protocol for CW radar experiments 

The data collection was performed in Mackenzie Building Room 4246 at Carleton 

University (Ottawa, ON). The testing protocol was approved by the Carleton Research 

Ethics Board. The room measured 3.35x3.15x2.95 m and contained a bed constructed of 

a cushion overlaying a chip board supported by 6 cinder blocks, a stainless steel toilet and 

sink unit, a plastic chair (not a fixed location) and a metal table located in one of the 

radar’s blind spots. The radar was mounted 2.70m above the floor in one of the room’s 

corners. A Bosch NEI368 vandal proof wide-angle camera was also located in the room 

to record video data in conjunction with the radar for later processing. The walls of the 

room were brick (typical construction bricks) which should not be transparent to 

electromagnetic signals at the operating frequency of the radar used in this experiment 

(i.e. there should not be motion artefacts in the signal whose source is outside of the 

room). A picture of the room can be seen in Figure 4.1. Marks A, B, and C are 1.5m, 

2.5m and 3.5m from the corner of the room that contains the radar respectively. During 

data acquisition only one antenna was operating and only one human was present in the 

radar field (other experimenters were in a corner of the room that was not within the path 

of the radar). 
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Figure 4.1: Mackenzie room number 4246 

During radar measurements the subjects’ heart and breathing activity were 

monitored using 3 ECG adhesive sensors (mounted on the left and right wrists and left 

ankle) and a Braebon piezo-electric respiratory effort sensor belt (strapped around the 

chest near the sternum). The sensors were connected to a BioCapture data acquisition 

module which streamed data via Bluetooth to a PC located on the table. These 

measurements were recorded so that baseline breathing and heart rate measurements 

could be obtained for later evaluating the performance of signal processing algorithms 

applied to the corresponding radar returns. 

There were five different types of test protocols for this experiment-  
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1. Lying on the bed in the left lateral recumbent position facing the radar. One 

minute of normal breathing followed by one minute of holding breath (or as long 

as comfortable) finished with one minute of normal breathing with arm/head 

movements.  (3 minutes) 

2. Sitting on the bed facing the radar, back straight and hands resting on knees. One 

minute of normal breathing followed by one minute of holding breath (or as long 

as comfortable) finished with one minute of normal breathing with arms/head 

movements.  (3 minutes) 

3. Standing at mark C on the floor facing radar. One minute of normal breathing 

followed by one minute of holding breath (or as long as comfortable) finished 

with one minute of normal breathing with arms/head/knees movements.  Repeated 

twice at marks B and A on the floor. (9 minutes) 

4. Standing at mark A on the floor with back to radar. One minute of normal 

breathing followed by one minute of holding breath (or as long as comfortable) 

finished with one minute of normal breathing with arms/head/knees movements.  

Repeated twice at marks B and C on the floor. (9 minutes) 

5. Walking slowly back and forth between marks C and A on the floor, normal 

breathing for three minutes. (3 minutes) 

These test protocols (totaling 27 minutes) were performed by four subjects (3 male 

and 1 female) of varying ages.  

The data was synchronized (time aligned) and segmented and saved into one minute 

files. Synchronization was done by starting both radar and breathing belt and ECG data 

acquisition processes simultaneously. Each 1 minute segment of radar data (which 
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consisted of 54300 samples in each of the 9 zones) was saved into a CSV file. Each 1 

minute segment of ECG and breathing belt data (which consisted of 15360 samples for 

each signal) was also saved in a CSV file. 214 CSV files were saved and stored on a PC 

as well as on a Google Drive to be accessible by other teammates. The subjects’ personal 

information was stored in a referencing CSV file and their names were replaced with a 

numeric code. The 214 data files contained no identifying information about the subjects. 

All data was password protected, and the only file that contained the coding scheme 

which could link the data to the subjects was a text file that was password protected and 

accessible only to team members. The zone in which the subject was present was 

estimated by finding the highest energy zone (after the mean of the signal was removed). 

10 second samples were taken from the data, in total 642 samples were extracted.   

A MatLab code was written to import the referencing CSV (which contained the 

labels of all samples- including posture, zone, antenna, activity, breathing rate, heart rate, 

start and stop sample points, file names, subject number, weight, height, and age) and 

parse through every sample of data for feature extraction and breathing and heart rate 

estimation.   

4.2 Protocol for data collection in UWB radar experiments  

Data was collected in a laboratory in SITE5077 at the University of Ottawa (800 

King Edward Avenue, Ottawa). The laboratory measured 12.6x4.1m, and had a desk at 

one end of the room, on which the radar was fixed 1.5m above floor level. The testing 

protocol was approved by the University of Ottawa Research Ethics Board. The test 

protocol was developed to ensure proper controls and avoid any biasing for classification 

of activities and postures. The test protocol required the subject to perform varying levels 
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of activity while sitting, standing and lying down. Tests were performed in different 

locations throughout the room so that the algorithms could be developed invariant to 

location and relative angle.  

The following protocol was performed at three position in the room which were 

3m, 4.5m and 6m from the radar. 

1. Stand facing the radar breathing normally and remaining still. (1 minute) 

2. Stand facing the radar breathing normally and move limbs and head. (1 minute) 

3. Lie down on the floor with left side facing radar breathing normally and 

remaining still. (1 minute) 

4. Lie down on the floor with left side facing radar breathing normally and move 

limbs and head. (1 minute) 

5. Sit facing the radar breathing normally and remaining still. (1 minute) 

6. Sit facing the radar breathing normally and moving limbs and head. (1 minute) 

After the data in the three positions was recorded, a recording was made in which the 

subject walked radially (from the radar to the back of the room and back). (3 minutes) 

Data from 5 subjects were recorded, totaling 105 minutes. Data was labelled with 

subject information (subject number, age, weight, and height), activity level, location, 

posture, and orientation. Data samples of 10 seconds in duration were extracted from the 

data set with 30% overlap between the adjacent 10 second data samples resulting in a 

total of 816 samples. 
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5    Chapter: Posture and activity classification with CW radar 

This chapter contains classification algorithms that were developed and tested for 

the CW radar used in this thesis. A proposal for a hierarchical processing approach which 

integrates algorithms for classification of activity and posture is provided in the first 

section, and the remaining sections discuss each step in this proposed approach.  

5.1 Proposed hierarchical classification approach for CW radar returns  

When radar returns are collected in real time, there is no information available to 

the system regarding the state of the subject being monitored. As discussed in previous 

sections, the level of movement of the subject has implications for further processing 

including breathing and heart beat estimation. Therefore it is essential that radar returns 

are first passed through a trained classifier so that the activity level of the subject can be 

determined. Once it is confirmed that the subject is non-moving, other information such 

as vital sign estimation or posture information can be extracted as posture information is 

key for preventing falls and bed sores. Figure 5.1 shows a block diagram of the proposed 

approach for classification of radar returns based on a CW implementation.  
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Figure 5.1: Block diagram of hierarchical classification approach for CW radar returns 

The remainder of this chapter discusses the activity and posture classification 

steps, as well as a discussion of the results and the limitations encountered using CW 

radar for this application.  

5.2 Preprocessing and feature extraction 

The data from the radar is recorded in an M x N matrix where M represents the 

number of radar returns and N represents the number of zones. For this experiment, 10 

seconds of data are used for each sample, and 9 zones were captured. The sampling rate 

was 905 S/s. This means each data sample (10 seconds long) is 9050x9. For all 

processing, only the data corresponding to one zone is used. To determine which zone the 

subject is present in, the mean of each column is removed for clutter suppression and the 
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energy is calculated. The zone corresponding to highest energy is selected for further 

processing.  

43 features (listed in Table A.1 in Appendix 1) were extracted from the data 

samples. The code used for extracting these features can be found in Appendix B. The 

features can be categorized as time domain features and frequency domain features. In 

time domain, the correlation of the signal was calculated. First, the signal’s auto-mutual 

information was calculated for the first 50 lags. The lag corresponding to the first local 

minimum in the auto-mutual information was taken as the signal for computing 

correlation. This was performed on the original time series data as well as on two 

separate band passed versions corresponding to the range of breathing and heart beat 

(0.2-0.333 Hz and 0.667-3Hz respectively). Next, the original raw data was band pass 

filtered between 0.08-20 Hz (for clutter and high frequency noise removal), and the 

following statistics were computed: RMS, zero-crossing rate, turns count, variance, 

skewness, kurtosis, mobility and form factor.  

For the frequency domain features, the data was standardized and a 216 point 

welch-periodogram was computed for the original signal as well as the signal band pass 

filtered in the breathing and heart beat frequency ranges. The energy of each of these 

spectra was computed and used as a feature. The mean and median frequency of the 

whole signal spectrum was calculated as well as the second and third spectral moments 

and used as features. The energy contained in the following frequency bands were also 

calculated: 0.2-0.667 Hz (first and second breathing harmonics), 0.667-3Hz (heart beat), 

3-5Hz (low frequency noise), 5-11Hz (mid frequency noise) and 11-20Hz (high 

frequency noise). Each possible energy ratio from those bands were also calculated. The 
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energy from the first and second breathing harmonic frequency (0.08-0.35Hz and 0.37-

0.7Hz respectively) bands were calculated as well as their ratio. Finally, the energy of the 

whole spectrum as well as the spectrum in the breathing and heart beat ranges were 

calculated for the final features. Table A.1 in Appendix A lists the extracted features. 

 Many of the aforementioned features were either taken from the works of 

Nejadgholi et al [49] or Forouzanfar et al. [50] or are variations of features from that 

work. Table A.1 contains notation of which features were taken those works. The main 

difference between the work presented in this thesis and the work in those two papers is 

the data collection protocol. In this work, data was collected for subjects in different areas 

throughout the room and in all three postures.  

 Statistical features extracted from the time domain signal are used because they 

contain information about the randomness of the underlying sources present in the signal. 

For instance, when many random body movements are contained in the data is assumed 

that the distribution of the signal is closer to being Gaussian than when there is a single 

dominant narrow bandwidth breathing signal. 

 Similarly, statistical features extracted from the signal spectrum should contain 

information about the sharpness and modality of the spectrum. Signals in which the 

breathing signal is dominant should have a significant peak at the breathing frequency 

and its harmonics. Signals which contain random body movements should have many 

peaks throughout the spectrum, showing that the signal is multimodal or contains more 

than one source of movement.  

 Because random body movements are faster than the movement of the chest and 

abdomen due to breathing, the Doppler shift should due to these movements should be 
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higher than the breathing and heartbeat range. Hence the spectrum is split into 6 sections 

and the energy of each is used as a feature along with all possible ratios. Similarly for 

posture classification, body sway should affect the relative energy contained in each 

band.   

5.3 Classifiers 

Machine learning is a very broad field hence there have been countless algorithms 

and variations of algorithms developed for classification. Like any other type of 

algorithm, classifiers offer a tradeoff between complexity and performance. Furthermore, 

some advanced classifier types require large data sets for training (such as in deep 

learning). For the purpose of this thesis, four classifiers were chosen for comparison. Two 

parametric models- naïve Bayes and linear discriminant, and two non-parametric models- 

K-nearest neighbors and decision tree. Parametric models require fewer data samples 

since they infer or assume information about the population distribution whereas non-

parametric models learn solely from the data. Parametric models may make assumptions 

that are incorrect and lead to poor fitting, but non-parametric models can lead to 

overfitting.  

   Naïve Bayes classifiers work by computing the conditional probability of an 

observation belonging to a particular class using Bayes’ theorem 

 
𝑝(𝑐|𝑥) =

𝑝(𝑐)𝑝(𝑥|𝑐)

𝑝(𝑥)
 

(5.1) 

where x is the feature vector of a data sample or observation and c is the class type [51]. 

Naïve refers to the fact that the classifier assumes independence between all features. The 

training data is used to construct the probability model, and class is assigned to new data 

based on maximum likelihood.  
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 Linear discriminant classifiers compute the axes of highest class separability. The 

feature set is projected onto a lower dimension space that best captures the separability 

between classes. The linear discriminants are solved using the function  

 𝑆𝐵𝑣𝑘 = 𝜆𝑘𝑆𝑤𝑣𝑘 (5.2) 

which is essentially an eigenvector computation, where vk and λk are the eigenvector and 

eigenvalues of the between class and within class scatter matrix’ SB and Sw respectively. 

SB is defined as 

 
𝑆𝐵 = ∑ ∑ (𝑥𝑘 − 𝜇𝑖)

𝑥𝑘∈ 𝑐𝑙𝑎𝑠𝑠 𝑖

𝑐

𝑖=1

(𝑥𝑘 − 𝜇𝑖)
𝑡 

(5.3) 

and Sw is defined as  

 
𝑆𝑤 = ∑(𝜇𝑖 − 𝜇)

𝑐

𝑖=1

(𝜇𝑖 − 𝜇)𝑡 
(5.4) 

where xk is the feature vector, µi is the sample mean of class i, µ is the total mean of all 

samples, and c is the number of classes [52]. The first k eigenvectors, where k < c, are 

used for projecting the feature space onto a smaller subspace where the classes can be 

linearly discriminated. Linear discriminants assume that features belong to a population 

that follows a normal distribution and that they have equal class covariance.  

K-nearest neighbors is a very simple classifier model that assigns classes based on 

the most similar data from the training set. When a new data sample is passed to the 

classifier, the K nearest data points in the feature space are found and the class that the 

majority of the data points belong to is assigned to the new data point. Because it is a 

majority rules classifier, K must be an odd integer. In this thesis the value of K is 3.  

A decision tree is a hierarchical set of rules for splitting data into categories. In 

this thesis, the tree classifiers are trained using the classification and regression trees 
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(CART) method which finds optimal rules for each node of the tree, and stops adding 

nodes once no further gain in classification accuracy is made for node additions [53]. 

The performance of a classifier is evaluated in the validation stage. Initially the 

data set is partitioned into a training and validation set. The training set is used solely for 

training the classifier model. The validation set is then used to validate the classifier by 

performing classification on each sample within the validation set using the trained 

classifier. A confusion matrix is initialized as a square matrix of zeros, and when a 

validation sample is classified the result is added to the confusion matrix. The row and 

column number of the confusion matrix corresponds to the ‘actual’ class of the sample 

and class ‘predicted’ by the classifier, respectively. Each sample contributes an equal 

weight w to the confusion matrix;  

 
𝑤 =

1

𝑁
 

(5.5) 

where N is the number of instances in each class in the validation set. All classifiers in 

this thesis are trained and validated on class balanced sets hence N is equivalent for each 

class. This results in each row of the confusion matrix summing to 1, or 100%. The value 

in each element of the confusion matrix represents the percentage of samples classified 

either correctly or incorrectly as a particular class. The values along the diagonal of the 

confusion matrix define the class accuracy or percentage of correctly classified samples 

in each class (denoted by the row). To compute the overall or average accuracy of the 

classifier, the diagonal is summed and divided by the number of classes. It is important to 

note the difference between class accuracy and average accuracy. The type of accuracy, 

average or class, should be stated explicitly when discussing classifier performance or 

understood unambiguously in context. 
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5.4 Activity classification  

Three classes were used for this classification experiment, namely ‘sedentary’, 

‘sedentary with movements’ and ‘walking’. ‘Sedentary’ means the subject remains still in 

one location. ‘Sedentary with movement’ means the subject moves their limbs or head 

freely while remaining in one location. ‘Walking’ means the subject moves about the 

room. It should be noted that each activity class is independent of posture and location 

within the room, except for ‘walking’ class which is only represented by standing posture 

for obvious reasons. This means that the relative angle and distance between the subject's 

thorax and the radar varies from sample to sample. This was done so that the samples 

represent as closely as possible what would be encountered in a real environment where 

the subject is not following ideal test cases.   

Classification was attempted on the data using multiple classifiers so that the 

relative accuracies could be compared. The data was first under-sampled so that all 

classes would have equal representation. The total number of samples used to train and 

validate the classifier was 284 from the original 642. Some samples from the original 

recorded data were removed because they were corrupted with noise. The random under 

sampling was done in each iteration of training/validating so the pool of possible samples 

was larger- 575 in total. Classifiers were trained and validated in 200 iterations of 70% 

random partitioning with stratified sampling; 149 training samples and 64 validation 

samples.  

The confusion matrix for each classifier can be seen below. 
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Table 5.1: Confusion matrix for linear discriminant activity classifier 

 Predicted Sedentary Predicted Sedentary 

with Movements 

Predicted Walking 

Actual Sedentary 85.40 14.04 0.54 

Actual Sedentary 

with Movements 

4.20 95.79 0.00 

Actual Walking 2.56 1.93 95.50 

 

Table 5.2: Confusion matrix for decision tree activity classifier 

 Predicted Sedentary Predicted Sedentary 

with Movements 

Predicted Walking 

Actual Sedentary 90.06 9.93 0.00 

Actual Sedentary 

with Movements 

10.04 88.79 1.15 

Actual Walking 0.09 0.81 99.09 

 

Table 5.3: Confusion matrix for naive Bayes activity classifier 

 Predicted Sedentary Predicted Sedentary 

with Movements 

Predicted Walking 

Actual Sedentary 88.02 10.88 1.09 

Actual Sedentary 

with Movements 

5.31 94.54 0.13 

Actual Walking 0.31 5.18 94.50 
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Table 5.4: Confusion matrix for KNN activity classifier 

 Predicted Sedentary Predicted Sedentary 

with Movements 

Predicted Walking 

Actual Sedentary 67.31 27.04 5.63 

Actual Sedentary 

with Movements 

18.79 78.77 2.43 

Actual Walking 3.77 10.09 86.13 

 

5.5 Posture classification 

Like activity classification, posture classification is also presented in this thesis as 

a three class problem; ‘sitting’, ‘lying’, and ‘standing’. Posture classification was tested 

using 4 different classifiers; linear discriminant, KNN, naïve Bayes, and decision tree. 

Data in which the subject was walking was withheld from this experiment because as 

seen in the previous section, walking is easily discriminable from other activity classes. 

The inclusion of walking into the standing class would likely optimistically bias the 

accuracy of detecting standing. Similarly, since the lying class was only recorded at a 

single point in the room (on the bed), only the sitting and standing data recorded at mark 

C (near the bed) in the room were included. This resulted in fewer data samples than 

were used in the activity classification experiment, so in order to estimate the accuracy 

values of the classifiers 90% stratified partitioning was used instead of 70%, with 1000 

randomized tests rather than 200. The results of this experiment can be seen in Tables 

5.7-5.10. 
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Table 5.7: Confusion matrix for linear discriminant posture classifier 

 Predicted Sitting Predicted Lying Predicted Standing 

Actual Sitting 60.23 24.25 15.51 

Actual Lying 28.65 60.88 10.46 

Actual Standing 10.43 16.70 72.86 

 

Table 5.8: Confusion matrix for KNN posture classifier 

 Predicted Sitting Predicted Lying Predicted Standing 

Actual Sitting 44.08 27.11 28.80 

Actual Lying 25.21 63.53 11.25 

Actual Standing 28.75 11.18 60.06 

 

Table 5.9: Confusion matrix for naïve Bayes posture classifier 

 Predicted Sitting Predicted Lying Predicted Standing 

Actual Sitting 5.85 32.91 61.23 

Actual Lying 4.00 61.96 34.03 

Actual Standing 3.80 5.51 90.68 

 

Table 5.10: Confusion matrix for decision tree learning posture classifier 

 Predicted Sitting Predicted Lying Predicted Standing 

Actual Sitting 53.55 26.93 19.51 

Actual Lying 28.50 59.13 12.36 

Actual Standing 22.85 12.48 64.66 
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5.6 Feature evaluation 

In order to gain more knowledge about the underlying phenomena of this 

classification problem, the extracted values were evaluated based on their relative class 

separations. The metric used was the Bhattacharyya distance [50]. 

The Bhattacharyya distance is a measure of separation between two distributions. 

It can be used to evaluate a feature based on its class separability. A higher Bhattacharya 

distance means larger separation between distributions (i.e. less overlap between classes). 

The following equation defines the Bhattacharya distance for two class (w) distributions 

of a single feature with mean µ and standard deviation σ [50]. 

𝐷𝐵(𝑤𝑖, 𝑤𝑗) =
1

8
(𝜇𝑖 − 𝜇𝑗)

𝑇
[
𝜎𝑖 − 𝜎𝑗

2
]

−1

(𝜇𝑖 − 𝜇𝑗) +
1

2
ln ||

(𝜎𝑖 − 𝜎𝑗)/2

√|𝜎𝑖||𝜎𝑗|

|| 

(5.6) 

Often, only average DB is used in literature when discussing features. The average 

Bhattacharyya distance for each feature is calculated by averaging the DB for each 

possible pair of classes. For DB > 0.8 a Bayes classifier should achieve an error rate 

below 10% [50]. Since the average Bhattacharyya distance does not represent the 

separability of a feature for all pairs of classes, Table A.1 in Appendix A was constructed 

to show how each feature performs in separating each class.  

Bhattacharyya distance assumes a normal distribution, however DB can still be 

used to evaluate the feature set without the knowledge of the true distribution as it still 

contains information about the 'difference' between the two class distributions for each 

feature. 

 The features were sorted in descending order of largest Bhattacharyya distance, 

and the top ten features for each class pair were highlighted in green in Table A.1. The 
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strongest features, their corresponding Db and the average Db across the entire feature set 

for each class pair for activity classification can be seen in Table 5.5, and for posture 

classification in Table 5.6.   

Table 5.5: Strongest features for activity classification 

Class pair Strongest feature Db of strongest 

feature 

Average Db for 

entire feature set 

Sedentary vs 

Moving 

F2/F5 1.24 0.57 

Sedentary vs 

Walking 

ZCR 7.29 2.12 

Moving vs Walking Energy in 0.667-3 

Hz band 

7.13 1.96 

 

Table 5.6: Strongest features for posture classification 

Class pair Strongest feature Db of strongest 

feature 

Average Db for 

entire feature set 

Sitting vs Lying Median Frequency 1.96 0.27 

Sitting vs Standing Energy in 0.667-3 

Hz band 

6.07 1.33 

Lying vs Standing Energy in 3-5 Hz 

band 

5.15 1.35 

 



 68 

 The results of this experiment show that the spectral features are the most 

valuable features in the set. The relative energy contained in specific bands of the spectra 

hold information about the activity and posture of the subject.  

 It can also be seen that the features that were extracted for this experiment had the 

least amount of class separation for the class pair ‘sedentary vs moving’ and ‘sitting vs 

lying’. This is likely because ‘walking’ is easily separable due to the higher frequency 

movements and the fact that the subject moves in and out of the zone during each sample. 

Similarly, ‘standing’ is different from the other two posture classes because it is the only 

posture that does not have the subject’s back supported. This means the subject sways 

slightly as they maintain their balance.     

5.7 Discussion of results 

Activity classification using CW radar yielded very high average accuracy 

(92.64% for decision tree) and high sensitivity [54] of predicting ‘sedentary and still’ 

(89.88% for decision tree). Posture classification on the other hand performed poorly in 

average accuracy (64.66% for linear discriminant) and sensitivity of identifying 

‘standing’ (73.72% for linear discriminant). Standing is the most important posture to 

detect for this classifier because one of the reasons for performing posture classifications 

is to aid in fall prevention, and it is assumed that if a subject is standing they are at an 

elevated risk of falling. The continuous wave radar used in this experiment had 0.75m 

overlapping zones, meaning the reflected signals from the human subject are 

superimposed into a single time series signal. This means that information from the 

limbs, thorax, and abdomen are all contained in the signal being analyzed, resulting in 

high average activity classification accuracy. The downside of this however, is the lack of 
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spatial resolution in the radar returns. Without any spatial information, no information 

regarding the shape of the human target cannot be obtained. This means posture 

classification must be performed using only spectral and time series features. This is 

likely the reason why posture classification resulted in very low average accuracy for all 

classifiers tested.  
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6    Chapter: Classification of radar returns using UWB radar 

As seen in the results of the posture classification section of the previous chapter, 

it is difficult to perform posture classification with CW radar. This is due to the fact that 

CW radar has very low spatial resolution due to the narrow bandwidth of the carrier 

wave. UWB radar signal has low power, can penetrate obstacles, and has low probability 

of intercept. Furthermore, there are many low cost on chip solutions on the market 

making it a strong candidate for this application.  

UWB radar is used for the remainder of the work in this thesis so that the benefits 

of high spatial resolution afforded with this radar can be explored.   

6.1 Proposed hierarchical classification approach for UWB radar returns 

There are many unknowns in non-contact sensing, including most importantly the 

number of subjects within the field of the radar and the activity level of those subjects. A 

simple hierarchical approach is proposed which classifies the incoming radar returns and 

applies estimation algorithms based on the class of the radar returns. The first stage of the 

approach is to determine whether or not the room is occupied, and if so estimate the 

number of occupants. Occupancy detection was done for UWB only because the high 

spatial resolution allows for easier identification of individual subjects. If multiple 

subjects are present in the field of the radar, then the next step is to separate them as 

individual sources and then classify their corresponding activity levels. Once this has 

been done, if a subject is found to be stationary, posture classification and breathing and 

heart beat monitoring algorithms are applied in parallel. Figure 6.1 shows this approach 

in a block diagram. 
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Figure 6.1: Block diagram of hierarchical classification approach for UWB radar returns 

The remainder of this chapter deals with each classification step shown in the 

above diagram. First the occupancy detection algorithm will be described, then the 

feature extraction process and corresponding activity and posture classification steps will 

be explored.  
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6.2 Occupancy detection 

An algorithm for detecting and counting occupants in the field of the radar was 

developed based on the first principal component (PC) of the radar returns. The work in 

this section was presented at the 2017 IEEE Midwestern Symposium on Circuits and 

Systems in Boston, Massachusetts [55]. Principal Component Analysis (PCA) is an 

orthogonal linear transformation which defines a new basis for a data set. Each new axis, 

or PC, is aligned in a direction corresponding to the largest variance of the data, starting 

with the first PC. PCA is an effective way of suppressing clutter and separating time 

varying sources, making it an attracting signal processing technique.  

In order to perform PCA, the mean is first removed from each column of the m x 

n data matrix X, 

 𝑋 = [𝑥1[𝑖], 𝑥2[𝑖], … , 𝑥𝑛[𝑖]] , 1 ≤ 𝑖 ≤ 𝑚 (6.1) 

      �̂� = [�̂�1[𝑖], �̂�2[𝑖], … , �̂�𝑛[𝑖]] , 1 ≤ 𝑖 ≤ 𝑚  (6.2) 

where,  

 �̂�1[𝑖] = 𝑥1[𝑖] − 𝑚𝑒𝑎𝑛(𝑥1[𝑖]) , 1 ≤ 𝑖 ≤ 𝑚 (6.3) 

where m is the number of observations and n is the number of range bins. The zero mean 

data matrix is then used to construct the auto-correlation matrix R:  

 𝑅 = �̂�𝑇�̂� (6.4) 

The first principal component is found as follows: 

 
𝑤1 = arg max{

𝑤𝑇𝑅𝑤

𝑤𝑇𝑤
} 

(6.5) 

where w is a weighting vector [55]. This is a maximization of a Rayleigh quotient. The 

value of w that maximizes the equation will be the Eigenvector (principal component) 

corresponding to the largest Eigenvalue (principal values).  
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Ahangar-Kiasari et al. used PCA to classify human postures using a neural 

network classifier [8]. They computed the first 10 PCs from each sample. Mean, 

variance, and kurtosis were calculated from each of the 10 PCs and used as features.   

The algorithm developed and discussed in this thesis only makes use of the first 

PC, which corresponds to the greatest variance in the data.   

To first determine if the room is empty or occupied by a human subject, the 

energy of the zero mean data matrix is calculated by  

 
𝐸𝑖𝑗 = ∑ ∑(�̂�𝑖[𝑗])2

𝑚

𝑗=1

𝑛

𝑖=1

 
(6.6) 

If the value of the energy is above a certain threshold then the algorithm decides that the 

room is occupied, otherwise it decides that the room is vacant. If the room is decided to 

be occupied, the algorithm proceeds to determine the number of subjects in the room. The 

energy threshold was determined by calculating the max energy value that is encountered 

in the empty room data.  

Once the algorithm determines that the room is not vacant then the algorithm 

computes the first PC using the MatLab function princomp(). Figure 6.2 shows the first 

PC (vector w1) for data in which the room is vacant, for data in which there is one subject 

sitting approximately 3m away from the radar, and for data in which there is one subject 

sitting approximately 3m away from the radar and another subject standing 

approximately 5m away from the radar. As seen from the three plots, when there is a 

subject present in the field of the radar, the first PC has a sharp peak centered at the 

location in which the subject is present. The algorithm searches for the largest peak of the 

PC, and then a window around that peak is constructed where the bounds of the window 
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are defined by the first point that falls below 5% of the peak value. This window 

represents the area within the field of the radar that the subject occupies. As previously 

stated, the first PC is a vector that lies along the axis of highest variance in the data 

matrix. To determine if the room has only a single subject occupying it, the proportion of 

variance in the first PC that the first subject contributes to is computed by integrating the 

window and dividing that value by the integral of the entire PC. If the proportion of 

variance is below a threshold value then the algorithm begins searching for another 

subject by repeating the above process while omitting the window of the first subject in 

its search for the next largest peak and corresponding window. This process is repeated 

until the sum of the variance in all windows surpasses the threshold value. 

 

Figure 6.2: First principal component for three different signal types [55] 
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The value of the threshold for proportional variance contained within the 

windows as well as the threshold which defines the bounds of the window were 

determined by optimizing the algorithm by varying the two threshold values and finding 

the point at which the average accuracy was maximized for all samples. Average 

accuracy was optimized for a proportional variance threshold of 0.5 and window bounds 

of 5% peak value. The proposed algorithm is represented in Figure 6.3 as a flow diagram.  

 

Figure 6.3: Occupancy detection algorithm block diagram [55] 
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To further boost average accuracy of the algorithm, the outputs are filtered 

through a voting process which considers the current and previous two outputs and 

changes the output to the mode of the three estimates. This ensures that there are fewer 

abrupt changes in the occupancy determined or predicted by the algorithm. This means 

that for the filtered output the amount of data required to compute an estimate of room 

occupancy is extended to 15.8 seconds. 

This algorithm was tested on 17 minutes of data, with the data acquired by the 

following protocol: 

 Empty room (5 minutes) 

 One subject sitting on a couch 3m from the radar (5 minutes) 

 One subject sitting on a couch 3m from the radar, another subject standing 

5m from the radar directly behind the seated subject (5 minutes) 

 Two subjects standing, one subject 2m away from the radar, the other 

subject 3.2m away from the radar and directly behind the first subject both 

facing the radar. At each 30s interval the second subject steps towards the 

first subject in 40cm steps (2 minutes) 

To test the algorithm the data from the first 15 minutes is separated into 101 data 

windows with 10 second samples for each 5 minute file, with 70% overlap between 

adjacent windows. The results from running the samples through the algorithm can be 

seen in Table 6.1. 
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Table 6.1: Confusion matrix for occupancy detection algorithm 

 Predicted Number of Occupants 

0 1 2 3 

Actual 

Number of 

Occupants 

0 101 0 0 0 

1 0 82 19 0 

2 0 15 84 2 

  

As can be seen in the above Table, the algorithm is able to classify accurately 

100% of the time if the room is vacant (row 1 and column 1), and is able to determine 

when there is one subject and two subjects 81.2% and 83.2% of the time respectively. 

The algorithm was then tested for determining how close in proximity two 

subjects can be standing for the algorithm to still be able to discriminate both subjects. At 

0.8m subject separation the algorithm correctly estimated an occupancy of 2 subjects 

with 86% accuracy. At 0.4m subject separation however, the accuracy dropped to 24%. 

When both subjects were standing beside one another, the accuracy was 0%. The reason 

for this last result was that the algorithm separates the subjects spatially, therefore if the 

subjects are both in the same radii from the radar they will be superimposed in the radar 

returns.  

The results of this test are promising; when the subjects are stationary the 

algorithm correctly identified the room occupancy with up to 86% accuracy, and is able 

to identify a vacant vs occupied room with 100% accuracy. This algorithm could be 

integrated into a larger system so that processing of radar returns can be adaptive to the 

number of subjects present in the field of the radar.  
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The main limitation of this algorithm is that it is unable to identify multiple 

subjects in close proximity to one another with respect to radial distance from the radar. 

To overcome this issue, the algorithm could be updated to store historical data, such as 

room occupancy and the locations of the subjects over. For instance, if two subjects are 

identified in the room, the locations of the two subjects could be tracked. If those 

subjects, or ‘peaks’ in the first principal component suddenly merged, it may be a good 

indication that both subjects are still in the room. Rather than claim that the occupancy 

dropped to 1, keep the previous estimate of 2. Similarly, information about the room 

layout could be fused with the data from the radar so that points of egress could be 

known. This could be used to reduce errors by constraining the algorithm to only allow 

for changes in room occupancy estimates if a new subject is discovered near a point of 

egress, or if a subject is lost near a point of egress.  

6.3 Feature extraction 

Because the radar returns of the UWB is much different than the returns from the 

CW radar, the features extracted in this experiment are different. One main difference 

between the two signals are the sampling frequency- CW radar samples at 905 S/s 

whereas UWB samples at only 17 S/s meaning the highest frequency encountered in the 

UWB returns is 8.5 Hz. Additionally, UWB radar has significantly higher range 

resolution meaning spatial information can be exploited.  

33 features (given in Table A.2 in Appendix A) were extracted from the radar 

returns. First, the power of the entire signal prior to any signal processing was computed. 

Next, PCA was performed on the data sample. The maximum point in the first PC was 

found and a window was constructed around the peak (in the same manner as done in the 
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occupancy detection algorithm). This window represents the region of the room 

containing the source of largest variance in the radar signal returns. This window was 

normalized to sum to 1, and the width, mean value, median value, skewness, kurtosis end 

entropy were computed and taken as features. The second through tenth eigenvalues 

(sorted in descending order) as computed from PCA were taken as features after being 

normalized by the value of the first (and largest) eigenvalue. Next, the range bin 

corresponding to the point of maximum variance in the first PC was used for the 

computation of the remaining features. The remaining features were extracted either in 

the time domain or frequency domain. In the time domain, the mean value of the signal 

was calculated, and then the mean was removed and the signal was normalized by 

dividing by the maximum value. Next the RMS, zero crossing rate, turns count, variance, 

skewness, kurtosis, mobility and form factor were computed and used as features [50]. A 

216 point Welch-Periodogram was computed from the signal and then the following 

features were extracted from the Periodogram. The features included the energy of the 

spectrum, the mean frequency, median frequency, entropy of the spectrum, the energy 

contained in the range of the fundamental breathing frequency (0.2Hz < f < 0.333Hz), the 

energy contained in the range of the second harmonic of breathing frequency (0.334Hz < 

f < 0.667Hz), the ratio of the fundamental to the second harmonic power, and the values 

of the fundamental and second harmonic breathing frequency ranges normalized by the 

energy contained in the entire spectrum. 

The reason for extracting statistical features from the first PC is that it contains 

spatial information about the movement of the target (or subject). The window taken 

around the maximum point is treated as a distribution, so the statistics from that 
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distribution describe the spatial distribution of the target (subject) motion. The 

assumption is that posture information should be contained in these features since the 

human body will be situated or distributed among the range bins in the radar returns 

differently for each posture.  

In order to fully characterize the distribution of the time domain signal, higher 

order statistical features are considered. Higher order statistics such as skewness and 

kurtosis may help in measuring the deviation from Gaussian distribution. 

 Similarly, the statistics extracted from the spectrum should hold information 

about the activity level of the subject. For instance if the subject is stationary and 

breathing normally, it is assumed that the spectrum will have defined peaks near the 

breathing and heart beat frequencies, whereas if the subject is moving, the spectrum will 

be flatter (fewer peaks), or more noisy. The energy bands and corresponding ratio for the 

first and second breathing harmonics are assumed to hold information about the subject’s 

posture, as changes in posture affect the amplitude of movement of the abdomen and 

chest due to respiration.  

The first ten Eigenvalues are taken as features because they represent the strength 

and number of separate sources of variation. If the subject is highly active, the movement 

of their body may show up in multiple eigenvectors because they appear to be separate 

sources of movement. In this case, the amount of eigenvalues with high amplitude will be 

larger than if the subject were stationary, and the only sources of movement were 

respiration and heartbeat.  
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6.4 Activity classification 

Initially, activity classification was approached as a three class problem- 

‘sedentary and still’, ‘sedentary with movements’ and ‘walking’. Four classifiers were 

tested on this data and results were obtained using 200 randomized training and 

validation iterations with 70% partitioning between data sets with class balanced samples 

(154 samples per class before partitioning). The four classifiers tested were K-nearest 

neighbors, linear discriminant, naïve Bayes and decision tree. All four classifiers yielded 

low average accuracy, the highest performing of the four was the decision tree. The 

confusion matrix for the decision tree can be seen in Table 6.2. 

Table 6.2: Confusion matrix for 3 class activity classification for UWB 

 Predicted Sedentary 

and Still 

Predicted Sedentary 

with Movements 

Predicted Walking 

Actual Sedentary 

and Still 

66.06 8.11 25.81 

Actual Sedentary 

with Movements 

7.72 70.24 22.03 

Actual Walking 25.76 22.58 51.64 

  

The accuracy values of the decision tree is quite low, especially compared to the 

activity classifier developed for the CW experiment.  

The purpose of the activity classification step is to isolate data samples in which 

the subject is still for further processing. Therefore it isn’t crucial to discriminate types of 

movement but rather identify whether or not movement is present. The ‘walking’ and 

‘sedentary with movements’ classes were grouped in order to test the average accuracy of 
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a two class classifier. The results of two way classification using all four proposed 

classifiers can be seen in the Tables 6.3-6.6.  

Table 6.3: Confusion matrix for KNN activity classification 

 Predicted Still Predicted Moving 

Actual Still 73.38 26.61 

Actual Moving 23.82 76.17 

 

Table 6.4: Confusion matrix for linear discriminant activity classification 

 Predicted Still Predicted Moving 

Actual Still 91.00 8.99 

Actual Moving 19.06 80.93 

 

Table 6.5: Confusion matrix for naïve Bayes activity classification 

 Predicted Still Predicted Moving 

Actual Still 91.24 8.75 

Actual Moving 21.82 78.17 

 

Table 6.6: Confusion matrix for decision tree activity classification 

 Predicted Still Predicted Moving 

Actual Still 81.79 18.20 

Actual Moving 19.46 80.53 

 

The top performing classifier for activity classification was the linear discriminant 

with 85.96% average accuracy. The sensitivity however is only 82.68%. Sensitivity is a 
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measure of how well the classifier can correctly identify when the subject is still. This is 

an important metric for this classifier because if a radar return sample is incorrectly 

identified as still, the results from further processing may be inaccurate. 

6.5 Posture classification 

For posture classification using UWB radar, data in which the subject was moving 

or walking was withheld from training and validation sets. After class balancing the 

samples there were 94 samples per class. Four classifiers were tested, using 70% 

partitioning between training and validation with class balanced samples (observations of 

each class). Results were averaged over 200 randomized tests. The results of this can be 

seen in the following four Tables.  

Table 6.7: Confusion matrix for KNN posture classification 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 34.22 27.27 38.50 

Actual Standing 32.62 52.53 14.84 

Actual Lying 40.10 11.60 48.29 

 

Table 6.8: Confusion matrix for linear discriminant posture classification 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 64.98 13.50 21.52 

Actual Standing 18.47 77.93 3.60 

Actual Lying 22.48 3.03 74.48 
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Table 6.9: Confusion matrix for naïve Bayes posture classification 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 63.47 9.79 26.74 

Actual Standing 30.43 68.10 1.47 

Actual Lying 35.76 3.02 61.22 

 

Table 6.10: Confusion matrix for decision tree posture classification 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 62.21 7.38 30.41 

Actual Standing 8.00 90.31 1.69 

Actual Lying 28.29 2.71 69.00 

 

The highest performing classifier based on accuracy was the linear discriminant 

with 73.84% average accuracy. Since data was recorded at three different distances from 

the radar, a distance specific classifier scheme was tested. The data was separated into 

three categories corresponding to distance of the subject from the radar, and the four 

classifier types were trained and validated for each of the three data sets. At 3m, the 

highest performing classifier based on accuracy was decision tree, at 4.5m naïve Bayes 

and at 6m the highest performing was naïve Bayes. For this test there were fewer 

observations since the data set was divided by three. After under sampling for class 

balance, there were 33 samples per class at 3m, 33 samples per class at 4.5m and 30 

samples per class at 6m. Since fewer samples were available for training and validation 

the data partitioning was changed to 90% and 1000 randomized tests were performed 
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instead of 200. The confusion matrices for those classifiers can be seen in the following 

three Tables.  

Table 6.11: Confusion matrix for decision tree posture classification at 3m 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 82.93 3.63 13.45 

Actual Standing 3.88 94.73 1.40 

Actual Lying 13.10 3.63 83.28 

 

Table 6.12: Confusion matrix for decision tree posture classification at 4.5m 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 73.13 10.95 15.93 

Actual Standing 12.43 85.85 1.73 

Actual Lying 13.78 3.38 82.85 

 

Table 6.13: Confusion matrix for decision tree posture classification at 6m 

 Predicted Sitting Predicted Standing Predicted Lying 

Actual Sitting 81.17 2.43 16.40 

Actual Standing 2.80 96.97 0.23 

Actual Lying 16.13 0.20 83.67 

 

When location specific classifiers were used, the average accuracy for each posture 

increased; 79.07% for sitting, 92.51% for standing, and 83.26% for lying. The average 

posture classification accuracy is therefore 84.94%. Because one of the uses for posture 

classification is fall prevention, ‘standing’ is an important class to correctly identify. The 
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overall sensitivity of the three distance specific classifiers with respect to ‘standing’ is 

91.97%. When compared to the results obtained by Kiasari et al, the posture classification 

algorithm presented in this section has higher average accuracy (85% compared to 83%), 

and is recorded at greater distances from the radar [8].  

6.6 Feature evaluation 

Because of the high spatial resolution of the UWB radar returns, it is necessary to 

examine how correlated each feature is with distance from the radar. For robust 

classification, features should be uncorrelated with distance, so that the trained classifiers 

perform well with radar returns from subjects located anywhere in the room. In order to 

determine which features were invariant to distance from the radar, the Spearman rank 

coefficient was computed for each feature in each posture. The Spearman rank [56] was 

computed by comparing each observation of the feature to the distance that the subject 

was from the radar. The results of this can be seen in Table A.2 in Appendix A. Values 

close to ±1 indicate high correlation with distance, meaning the classifier trained using 

these features may be distance specific.  

The Bhattacharyya distance of each feature distribution compared over all classes 

(posture and activity) was also calculated for analyzing the strengths of each feature. 

These results are also in Table A.2 in Appendix A.  

This data in Table A.2 shows that there are many features that are highly 

correlated with distance and have strong class separation. This indicates that it may be a 

better option to integrate multiple location specific classifiers in the real time system as 

opposed to a single classifier which is trained on data from all distances. The results of 

the distance specific classifiers tested in Section 6.5 validate this. When distance specific 
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classifiers are implemented, the average accuracy for the same data set was boosted by 

11.10%.  

The strongest features as calculated using Bhattacharyya distance can be seen in 

Tables 6.14 and 6.15. 

Table 6.14: Strongest features for activity classification 

Class Pair Strongest Feature Db of Strongest 

Feature 

Average Db for 

entire feature set 

Sedentary vs 

Moving 

Median of Window 

from 1st PC 

0.4425 0.1468 

 

Table 6.15: Strongest features for posture classification 

Class Pair Strongest Feature Db of Strongest 

Feature 

Average Db for 

entire feature set 

Sitting vs Standing Power of Signal 1.7348 0.1767 

Sitting vs Lying Eig9/Eig1 0.2311 0.0846 

Lying vs Standing Power of Signal 1.750 0.2638 

 

6.7 Discussion of results 

Both activity classification and posture classification performed very well with 

UWB radar – 85.96% and 84.94% accurate respectively. It was shown that many of the 

33 extracted features had high correlation with distance and hence the initial results from 

posture classification were poor. From the results it may be inferred that posture 

classification performance could be boosted by implementing distance specific 

classifiers. This also indicates that in a practical application, a lot of training data may 
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need to be collected and labelled on order to develop a robust location invariant system. 

The inability to classify activity with high accuracy when the ‘walking’ class was 

included is likely because when the subject is walking they do not remain in a single bin 

ling enough to extract valid statistical features from the time domain. In Chapter 5, 

‘walking’ is highly separable from other classes. This is likely because the range bins 

(called zones) for CW are much wider than in UWB so the subject remains in a single bin 

for a much longer duration.  
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7    Chapter: Conclusion 

Monitoring of patients in long term care facilities is important for mitigating 

health care costs, ensuring peace of mind of the patient’s loved ones, and most 

importantly ensuring the wellbeing of the patient being monitored. Radar is an attractive 

solution to this problem since it is non-contact, relatively inexpensive, safe and preserves 

the privacy of individuals being monitored. As of the present day there are no products on 

the market that use a single radar sensor for monitoring of human subjects and capable of 

performing robust analysis during normal daily activities. In academic literature there 

have been very few demonstrations of single RF sensor radar systems capable of adapting 

to various human activity levels and changing room occupancy. No systems have been 

demonstrated or proposed that combine occupancy detection, activity classification, 

posture classification and breathing and heartbeat estimation using a single radar sensor.  

In this thesis, the problems encountered in developing a system capable of each of 

these feats using both continuous wave radar and ultra-wideband radar were presented. 

Algorithms were developed for activity classification and posture classification using CW 

and UWB radar, and a novel occupancy detection algorithm was developed for UWB 

radar. Activity classification achieved 92.64% average accuracy for CW and 85.96% for 

UWB. Posture classification achieved 64.66% average accuracy for CW and 84.94% for 

UWB. Occupancy detection was performed with 88.13% average accuracy for UWB 

radar. Posture classification with UWB radar performed with higher average accuracy 

than the only other instance of posture classification using single sensor UWB radar in 

literature.  
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Based on findings presented in this thesis, UWB radar is a more attractive 

candidate than CW Doppler radar for posture and activity classification. UWB radar 

emits low power signals, has low probability of intercept, is capable of penetrating solid 

obstacles, has high spatial resolution and is a low cost solution. While activity 

classification results are slightly lower for UWB than for CW (6.7% lower), posture 

classification results are significantly higher for UWB than for CW (20.3% higher). 

Furthermore, high spatial resolution in UWB radar returns enables occupancy detection 

to be performed with relative ease and high average accuracy.  

7.1 Limitations and future works 

Because there are many possible variations in the orientation of a human subject 

relative to the radar, it is very difficult to design a test protocol that ensures good 

representation of data that would be encountered in an uncontrolled. In order to improve 

the robustness of classification algorithms, a 3 month long period of uncontrolled data 

collection is planned to take place in an Ottawa senior care facility. A single radar unit 

will be placed in each participant’s room along with a 3D depth sensor camera. Residents 

will be monitored 24 hours a day performing their daily routines. The data collected 

during this period will be used to develop and train classifiers which are more robust to 

variations in subject posture, orientation and activity. The major challenge for this 

experiment will be to label the massive amount of data. The 3D depth sensor will allow 

for automatic labelling of posture information.   

Feature space reduction techniques can be explored in future works. Techniques 

such as PCA or mapping using a kernel function can be used to reduce the feature space. 

A reduction in feature space would reduce the complexity of the classifiers, and may be 
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able to improve average accuracy by removing features that only contribute noise to the 

data set. Additionally, in this thesis time and frequency domain features were extracted 

independently of one another. Future work could involve extracting time-frequency 

features using a short time Fourier transform (STFT) or wavelet transform. These time-

frequency features could help in discriminating activity classes which involve changes in 

frequency over short periods of time. 

Receiver operator characteristic (ROC) curves can be used for analyzing the 

performance of a classifier when decision thresholds are changed. In this thesis ROC 

curves were not used for optimizing classification accuracy. Future works could include 

optimizing classifier performance using ROC curve diagnostics.  

Data fusion using both CW and UWB radar could be explored in future works, 

since it is understood that these two architectures have complementary strengths. CW 

could be used for activity classification and vital sign estimation whereas UWB radar 

could be used for occupancy detection and posture classification 

While it is known that UWB radar is capable of penetrating solid obstacles, the 

algorithms presented in this thesis have not been tested on data obtained by placing 

subjects behind solid objects. The effect of subject occlusion must be studied in the future 

and occupancy detection, posture classification and activity classification must be 

performed when the subject is occluded by a solid object.  

During all data recording sessions there were no known sources of physical 

movement other than the subject being monitored. In uncontrolled environments it is 

assumed that there will be other sources of movement present in the field of the radar 

such as fans, pipes with running water or stereo speakers. The effect of these additional 
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sources of movement on the algorithms developed in this thesis should be considered as 

part of the future study. 

Data in which two subjects are present in the field of the radar was only used for 

testing the occupancy detection algorithm for UWB radar. This data was not used for 

testing of any of the classification algorithms. Future work should involve separating the 

returns from multiple subjects and classifying the activity and postures of the individual 

subjects. Time domain decomposition techniques such as empirical mode decomposition 

(EMD) may be used to identify the number of individual sources in a particular area of 

the room. This may lead to improvement in occupancy detection when there are entry or 

egress of subjects. 

The contribution of this thesis is the development of activity and posture 

classification algorithms for CW and UWB radar as well as an occupancy detection 

algorithms for UWB. A hierarchical approach for processing radar returns using these 

algorithms was proposed for both CW and UWB radar. This approach can be integrated 

into a real time system along with breathing and heartbeat estimation algorithms for 

wellness monitoring in senior care applications.   
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Appendices 

Appendix A    

A.1 Features extracted in CW experiments 

Feature Name Bhattacharyya Distance (Posture) Bhattacharyya Distance 

(Activity 

1 v 2 1 v 3 2 v 3 1 v 2 1 v 3 2 v 3 

Correlation of whole signal1 0.1594 0.2108 0.0078 0.0777 1.1757 1.26748 

Correlation of breathing signal 
0.0061 0.0450 0.0218 0.0228 0.0352 0.00138 

Correlation of heart signal 
0.1202 0.4193 0.7378 0.5909 1.3444 0.71727 

RMS2 0.2409 0.0053 0.2881 0.0569 0.2488 0.22570 

ZCR2 0.0039 0.2884 0.3411 0.6912 7.2858 3.57729 

Turns Count2 
0.0478 0.0351 0.1534 0.5641 0.0226 0.53489 

Variance2 0.6008 0.0127 0.7008 0.0907 0.6053 0.36685 

Skewness2 0.0491 0.0075 0.0197 0.1222 0.1006 0.03222 

Kurtosis2 0.1003 0.3623 0.1194 0.1043 0.8241 1.06479 

Mobility2 0.0028 0.2818 0.3266 0.6541 3.9260 2.24502 

Form Factor2 0.0040 0.0072 0.0219 1.1141 1.7705 0.53556 

Total Power 
0.6136 6.0731 5.1444 0.8028 6.0000 7.13092 

Mean Frequency2 0.3472 0.2001 0.6951 0.4837 1.1329 0.44276 

Median Frequency2 1.96089026316501 0.4767 2.7271 0.2479 1.2187 0.68732 

Spectral Variance2 0.2611 0.5773 1.0729 0.8377 1.9727 0.92448 

Spectral Skewness2 0.0439 0.0001 0.0392 0.4172 0.5207 0.00773 

F1 (0.2-0.667 Hz)2 0.6133 6.0729 5.1445 0.8025 6.0001 7.1306 

F2 (0.667-3 Hz)2 0.6146 6.0737 5.1440 0.8045 5.9996 7.1320 

F3 (3-5 Hz)2 0.1973 5.6010 5.1508 0.1101 5.9108 6.1693 

F4 (5-8 Hz)2 0.2085 5.6041 5.1243 0.2366 5.9195 6.2117 

F5 (8-11 Hz)2 0.1333 5.5018 5.1242 0.3082 5.8941 5.9856 

F6 (11-20 Hz)2 0.1671 5.5304 5.1054 0.2007 5.9330 5.9149 

FB1 (0.2-0.333 Hz) 0.6132 6.0728 5.1445 0.8024 6.0001 7.1305 
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FB2 (0.334-0.667 Hz)) 
0.6134 6.0730 5.1445 0.8026 6.0000 7.1307 

F1/F22 0.3909 0.0876 0.1446 0.0422 1.5555 1.3555 

F1/F32 0.0245 0.0329 0.0010 0.5197 0.1322 1.0724 

F1/F42 0.0536 0.0321 0.0081 0.8253 0.0053 0.8911 

F1/F52 0.0463 0.0153 0.0134 1.1647 0.0803 0.7746 

F1/F62 0.0175 0.0098 0.0152 1.0131 0.4439 0.2004 

F2/F32 0.0229 0.03021 0.0009 0.5283 0.1253 1.0739 

F2/F42 0.0074 0.0022 0.0065 0.8741 0.0067 0.8476 

F2/F52 0.0055 0.0003 0.0084 1.2447 0.1572 0.6811 

F2/F62 0.0892 0.0200 0.0326 1.0049 0.5594 0.1402 

F3/F42 0.4252 0.0111 0.3390 0.7675 1.3471 0.2950 

F3/F52 0.3488 0.0559 0.5543 1.1726 1.6343 0.2022 

F3/F62 0.4823 0.2033 0.9194 1.2387 2.5959 1.0732 

F4/F52 0.0608 0.2048 0.4139 0.5693 0.4100 0.0399 

F4/F62 0.2053 0.5913 1.0449 0.8374 1.7675 0.7847 

F5/F62 0.3433 0.0726 0.5741 0.1578 1.0065 0.8833 

FB1/FB2 
0.8325 0.3101 0.2646 0.1647 1.6311 1.2069 

Shannon Entropy 
0.3053 0.0248 0.1725 0.1744 0.1006 0.0215 

Shannon Entropy Breathing 
0.0146 0.0144 0.0532 0.0953 0.0301 0.0173 

Shannon Entropy 

Heart 

0.0168 0.0314 0.0878 1.0461 1.6548 0.3090 

1 - Features that are identical or variations of features from [49] 

2 - Features that are identical or variations of features from [50] 
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A.2 Features extracted in UWB experiments 

Feature Name Spearman Rank 

(correlation with distance) 

Bhattacharyya Distance (Posture) Bhattacharyya 

Distance 

(Activity) 

Sitting Standing Lying 1 v 2 1 v 3 2 v 3 1 v 2 & 3 

Power of Signal -0.5773 -0.5674 -0.4467 1.7348 0.0187 1.750 0.3233 

Width of Window from 1st 

PC 

0.2081 -0.0401 0.1914 0.0227 0.0086 0.0582 0.0520 

Mean of Window from 1st 

PC 

-0.0873 0.1638 -0.0684 0.0181 0.0123 0.0391 0.0168 

Median of Window from 1st 

PC 

0.0857 0.0524 0.2052 0.1987 0.1876 0.5967 0.4425 

Skewness of Window from 

1st PC 

0.0683 0.0294 -0.1227 0.0108 0.0405 0.0455 0.0131 

Kurtosis of Window from 

1st PC 

0.2415 0.1308 -0.0879 0.0425 0.0078 0.0152 0.0083 

Entropy of Window from 

1st PC 

0.2504 -0.02100 0.1929 0.4755 0.0155 0.3633 0.0450 

Mean Value in Time 

Domain 

-0.6781 -0.1099 -0.0140 0.0480 0.1123 0.0244 0.0040 

Root Mean Square Value in 

Time Domain 

0.0698 0.6119 -0.1822 0.0295 0.0281 0.1013 0.0568 

Zero Crossing Rate 0.5023 -0.1476 0.0936 0.0243 0.0059 0.0215 0.4104 

Turns Count 0.6515 -0.2969 0.3331 0.0620 0.0074 0.0545 0.0718 

Variance in Time Domain 0.0698 0.6119 -0.1822 0.0237 0.0367 0.1127 0.0690 

Skewness in Time Domain -0.0566 -0.4712 0.3793 0.0965 0.0401 0.1060 0.0721 

Kurtosis in Time Domain -0.0307 -0.4717 0.3183 0.3986 0.0279 0.3933 0.2998 

Mobility 0.6711 -0.3337 0.0205 0.2009 0.0207 0.2906 0.2255 

Form Factor -0.3312 0.5000 0.1933 0.0807 0.0535 0.2519 0.1648 

Energy of Welch-

Periodogram 

0.1254 0.6012 -0.1790 0.0243 0.0329 0.1102 0.0639 

Mean Frequency 0.3555 -0.3922 0.1996 0.3209 0.0189 0.4375 0.2145 

Median Frequency 0.1028 -0.2391 -0.1316 0.4876 0.0495 0.6038 0.2492 

Entropy of Welch 

Periodogram 

0.4017 -0.2998 -0.1293 0.2056 0.0626 0.3500 0.2963 

Energy of Welch 

Periodogram, 0.167Hz < f < 

0.33Hz (FB1) 

0.1551 0.3976 -0.2920 0.2058 0.1733 0.5687 0.0807 

Energy of Welch 

Periodogram, 0.33Hz < f < 

0.67Hz (FB2) 

0.4979 -0.0017 0.0082 0.3143 0.0986 0.5876 0.4238 

Ratio of Energy FB1/FB2 -0.3173 0.4533 -0.2384 0.0027 0.0150 0.0285 0.3097 

FB1 normalized with 

energy of entire spectrum 

0.1286 -0.1040 -0.2242 0.1970 0.1462 0.5064 0.1708 

FB2 normalized with 

energy of entire spectrum 

0.4554 -0.2722 0.0972 0.2614 0.0946 0.5375 0.3299 

Eig3/Eig1 0.0023 -0.3361 0.3749 0.0571 0.0360 0.0704 0.0334 



 96 

Eig4/Eig1 0.2429 -0.3589 0.4797 0.0970 0.1414 0.0327 0.0390 

Eig5/Eig1 0.3602 -0.4302 0.4964 0.0635 0.1891 0.0523 0.0433 

Eig6/Eig1 0.4721 -0.4767 0.5066 0.0447 0.2117 0.0759 0.0510 

Eig7/Eig1 0.5406 -0.4693 0.5172 0.0347 0.2189 0.0926 0.0575 

Eig8/Eig1 0.6330 -0.4718 0.5265 0.0232 0.2181 0.1116 0.0640 

Eig9/Eig1 0.6725 -0.4653 0.5342 0.0129 0.2311 0.1483 0.0675 

Eig10/Eig1 0.6844 -0.4560 0.5370 0.0083 0.2298 0.1647 0.0727 
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Appendix B   

B.1 CW feature extraction 

for R1=1:642 
M = csvread(filename,R1,C1,[R1 0 R1 21]); 
s1='C:\Users\Zach\Desktop\GradDegree\Radar 

Project\Data\CW_MAY25\labelledData\'; % folder location 
s2 = num2str(M(15)); % number of radar file 
s3='.dat'; % file extension 
filename_R=strcat(s1,s2,s3); % Name of Radar data file 
Data = csvread(filename_R); % Import Radar Data 

     
Zone=M(14); 
if Zone==0 
for j = 1:9 
        xx1 = Data(:,j);  
        xx1 = xx1-mean(xx1); 
        xx1=detrend(xx1); 
        nfft1 = length(xx1); 
        window1 = hamming(length(xx1));         
        [p11,f11] = periodogram(xx1,window1,nfft1,fs); 
        E1(j) = sum(p11.^2);  
end 
[dontneed Zone]=max(E1); 
end     

  
Data=Data(M(17):M(18),Zone); 

  
POSTURE=M(7); 
ACTIVITY=M(8); 
if M(6) == 3 || M(6) ==4 
    LOCATION=1; 
else 
    LOCATION=0; 
end 

  
%% Embedding Space 
for i=0:50  % First 50 lags 
DataShift=circshift(Data,i); % Apply lag 
ind=i+1;  
mu(ind)=mutInfo(DataShift,Data); % Auto Mutual Information 
end 

  
% Find first local minimum 
der=diff(mu); 
for z=1: length(der) 
if der(z)>0 
    lag=z; 
    break 
end 
end 
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% Standardized Version 
m=mean(Data); 
Data1=(Data-m)/(sqrt(var(Data))); 

  
%% Filter Data 

  
[b,a] = butter(2,0.16/fs,'high'); % 0.08Hz highpass 
Data = filter(b,a,detrend(Data)); 
[b,a] = butter(2,40/fs,'low'); % 20Hz lowpass 
Data = filter(b,a,Data);  

  
% To find periodicity of breathing range (4.8-20bpm) 
[b,a] = butter(2,0.4/fs,'high'); % 0.08Hz highpass 
DataB = filter(b,a,detrend(Data)); 
[b,a] = butter(2,(4/6)/fs,'low'); % 0.333Hz lowpass 
DataB = filter(b,a,Data);  

  
% To find periodicity of heart range (50-180bpm) 
[b,a] = butter(2,(8/6)/fs,'high'); % 0.833Hz highpass 
DataH = filter(b,a,detrend(Data)); 
[b,a] = butter(2,6/fs,'low'); % 3Hz lowpass 
DataH = filter(b,a,Data);  

  
%% Time Features 
CORR = Data1\circshift(Data1,lag); % Correlation 
CORRB = DataB\circshift(DataB,lag); % Correlation of breathing only 
CORRH = DataH\circshift(DataH,lag); % Correlation of heart only 
RMS=sqrt(mean(Data.^2)); % Root Mean Square 
ZCR= sum(abs(diff(Data>0)))/length(Data); % Zero Crossing Rate 
TC= sum(abs(diff(diff(Data)>0)))/length(diff(Data)); % Turns Count 
V= var(Data); % Variance 
SKEW=skewness(Data); % Skewness 
KURT= kurtosis(Data); % Kurtosis 
MOB= sqrt(var(diff(Data))/V); % Mobility 
FF= sqrt(var(diff(diff(Data)))/var(diff(Data)))/MOB; % Form Factor 

  
%% Frequency Features 
Data=(Data-m)/(sqrt(var(Data))); 
pxx=pwelch(Data,[],[],2^16,fs); % Welch Periodogram of signal 
pxxB=pwelch(DataB,[],[],2^16,fs); % Welch Periodogram of Breathing 

Signal 
pxxH=pwelch(DataH,[],[],2^16,fs); % Welch Periodogram of Heart Signal 
%EX= sum(abs(pxx).^2)/length(pxx); % Power of Signal 
EX=sum(pxx); % Total power of signal 
PofF=pxx/EX; 
EXB=sum(pxxB); % Total power of Breathing signal 
PofFB=pxxB/EXB; 
EXH=sum(pxxH); % Total power of Heart signal 
PofFH=pxxH/EXH; 
FMEAN=meanfreq(Data); % Mean Frequency 
FMED=medfreq(Data); % Medin Frequency 
kbar=FMEAN*length(pxx)/fs; % index of FMEAN (not Feature) 
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M2=(fs*2/(length(pxx)*EX))*sum(((linspace(0,length(pxx)/2-

1,length(pxx)/2)-kbar).^2).*pxx(1:length(pxx)/2)'); % Second Spectral 

Moment (Variance) 
M3=((fs*2/(length(pxx)*EX))*sum(((linspace(0,length(pxx)/2-

1,length(pxx)/2)-kbar).^3).*pxx(1:length(pxx)/2)'))/(sqrt(M2)^3); % 

Third Spectral Moment (Variance) 
F1=sum(pxx((0.2/fs)*length(pxx):(0.667/fs)*length(pxx))); % Breathing 
F2=sum(pxx((0.667/fs)*length(pxx):(3/fs)*length(pxx))); % Heart 
F3=sum(pxx((3/fs)*length(pxx):(5/fs)*length(pxx))); %  
F4=sum(pxx((5/fs)*length(pxx):(8/fs)*length(pxx))); 
F5=sum(pxx((8/fs)*length(pxx):(11/fs)*length(pxx))); 
F6=sum(pxx((11/fs)*length(pxx):end)); 
FB1=sum(pxx((0.2/fs)*length(pxx):(0.333/fs)*length(pxx))); 
FB2=sum(pxx((0.334/fs)*length(pxx):(0.667/fs)*length(pxx))); 
F1F2=F1/F2; 
F1F3=F1/F3; 
F1F4=F1/F4; 
F1F5=F1/F5; 
F1F6=F1/F6; 
F2F3=F2/F3; 
F2F4=F2/F4; 
F2F5=F2/F5; 
F2F6=F2/F6; 
F3F4=F3/F4; 
F3F5=F3/F5; 
F3F6=F3/F6; 
F4F5=F4/F5; 
F4F6=F4/F6; 
F5F6=F5/F6; 
FB1FB2=FB1/FB2; 
ShannonEnt=-sum(PofF.*log2(PofF)); 
ShannonEntB=-sum(PofFB.*log2(PofFB)); 
ShannonEntH=-sum(PofFH.*log2(PofFH)); 

  
win = window(@hamming,length(Data)); 
m=2048; % number of sample points to calculate for chirp transform  
f1 = 0; % lower frequency bound of chirp transform 
f2 = 4; % upper frequency bound of chirp transform 
w = exp(-1i*2*pi*(f2-f1)/(m*fs)); % arc in unit circle of z domain is 

defined by w and a 
a = exp(1i*2*pi*f1/fs); 
z = czt(Data.*win,m,w,a); % chirp transform 
fn = (0:m-1)'/m; % normalized frequency vector 
fy = fs*fn; % un-normalized frequency vector 
fz = (f2-f1)*fn + f1; % adding back f1 (in case f1 is not zero) 

  

 
%% Feature Vector 
FEATURES(R1,:)=[CORR CORRB CORRH RMS ZCR TC V SKEW KURT MOB FF ...  
    EX FMEAN FMED M2 M3 F1 F2 F3 F4 F5 F6 FB1 FB2 ... 
    F1F2 F1F3 F1F4 F1F5 F1F6 F2F3 F2F4 F2F5 F2F6 F3F4 F3F5 F3F6 F4F5 

F4F6 F5F6 FB1FB2 ShannonEnt ShannonEntB ShannonEntH  
    POSTURE ACTIVITY LOCATION]; 
end  
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B.2 Occupancy counter 

clear 
clc 
addpath('C:\Users\Zach\Desktop\GradDegree\Radar 

Project\Functions\entropy') 
addpath ('C:\Users\Zach\Desktop\GradDegree\Radar 

Project\RealTimeDataFilesForCSCProject') 

  
Data = csvread('C:\Users\Zach\Desktop\2017-05-31\2017-05-31-13-09-

30_ZAC-SIT-FR-STATIONARY_UWBX4.csv'); 
Data=Data(:,21:end); 

  
phase=atan(imag(Data)./real(Data)); 
%Data=phase; 
[row col]=size(Data); 
samp=0; 
test_no=3; 
V_thresh=0.5; 
W_thresh=0.05; 
for i=1:100:row-170 
    samp=samp+1; 
Data_sample=Data(i:i+169,:); 
energy(samp)=0;  
%Ent(samp)=entropy(Data_sample); 
for e=1:col 
   energy(samp)=energy(samp)+sum(abs(detrend(Data_sample(:,e))).^2);  
end 

  
if  energy < 0.19 
Number_of_people(samp)=0; 
else 

  
%% PCA 
    [COEFF,SCORE, Latent] = princomp(Data_sample,'NumComponents',1); 
    first_PC=COEFF(:,1); 

  
%% First Person 
if samp==10 
    keep1= COEFF(:,1); 
end 
if samp==5 
   keep=COEFF(:,1);  
end 
[M, I]=max(COEFF(2:end,1)); % Find maximum in principal component 
%fprintf('Person 1 is %f m away from radar \n', (I+20)/18.7); 
Loc1(samp)=(I+20)/18.7; 
% Find lower bound of human 
mini=abs(M); 
counter_mini=1; 

  
while mini > W_thresh*abs(M) && I-counter_mini > 2  
   mini=abs(COEFF(I-counter_mini,1));  
    counter_mini=counter_mini+1; 
end 
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% Find upper bound of human 
maxi=abs(M); 
counter_maxi=1; 

  
while maxi > W_thresh*abs(M) && I+counter_maxi < col  
   maxi=abs(COEFF(I+counter_maxi,1));  
    counter_maxi=counter_maxi+1; 
end 

  
% Statistics about person 1 
Percent_variance=sum(abs(COEFF(I-

counter_mini:I+counter_maxi,1)))/sum(abs(COEFF(:,1))); 
width_1(samp)=counter_mini+counter_maxi+1; 
Number_of_people(samp)=1; 

  
Total_Percent_variance=Percent_variance; 
%% Check if there are more people 
while Total_Percent_variance < V_thresh 
    Number_of_people(samp)=Number_of_people(samp)+1; 
    [M1, I1]=max(abs(COEFF(2:I-counter_mini,1))); 
    [M2, I2]=max(abs(COEFF(I+counter_maxi:end,1))); 
    II=[I1 I2+I+counter_maxi]; 
    [mm, I]=max([M1,M2]); 
    I_p2=II(I); 
    if I_p2==1 
        I_p2=2; 
    end 
    if I_p2>=166 
        I_p2=165; 
    end 
    %fprintf('Person 2 is %f m away from radar \n', (I_p2+20)/18.7); 
    Loc2(samp)=(I_p2+20)/18.7; 
    mini=abs(mm); 
    counter_mini=1; 
    while mini > W_thresh*abs(mm) && I_p2-counter_mini > 1  
        mini=abs(COEFF(I_p2-counter_mini,1));  
        counter_mini=counter_mini+1; 
    end 

     
    maxi=abs(mm); 
    counter_maxi=1; 
    while maxi > W_thresh*abs(mm) && I_p2+counter_maxi < col-1  
        maxi=abs(COEFF(I_p2+counter_maxi,1));  
        counter_maxi=counter_maxi+1; 
    end 

     
    % Statistics about person 1 
    Percent_variance_2=sum(abs(COEFF(I_p2-

counter_mini:I_p2+counter_maxi,1)))/sum(abs(COEFF(:,1))); 
    Total_Percent_variance=Total_Percent_variance+sum(abs(COEFF(I_p2-

counter_mini:I_p2+counter_maxi,1)))/sum(abs(COEFF(:,1))); 
    width_2(samp)=counter_mini+counter_maxi+1; 
end 
end 
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if samp > 2 
    Number_of_people_filt(1:2)=Number_of_people(1:2); 
    Number_of_people_filt(samp)=mode(Number_of_people(samp-2:samp)); 
end 
end 

  
figure(1) 
% subplot(3,1,test_no) 
%plot(linspace(1,3,length(COEFF(:,1))),abs(COEFF(:,1))/sum(abs(COEFF(:,

1)))) 
% ylabel('two people') 
plot(linspace(1,180,length(Number_of_people)),Number_of_people,'r*') 

  
% figure(2) 
% plot(linspace(1,10,length(first_PC)),abs(first_PC)) 

  
figure(2) 
plot(linspace(1,180,length(energy)),energy) 

  
figure(3) 
plot(linspace(1,180,length(Number_of_people_filt)),Number_of_people_fil

t,'g*') 

  
%figure(4) 
%plot(linspace(1,180,length(energy)),Ent) 

  

  
figure 
plot(abs(keep)); 
hold on 
plot(abs(keep1)); 

  
acc=[0 0 0 0]; 
for i=1:length(Number_of_people) 
    acc(Number_of_people(i)+1)=acc(Number_of_people(i)+1)+1; 
end 
accuracy=acc(2)/length(Number_of_people) 

  
acc_f=[0 0 0 0]; 
for i=1:length(Number_of_people) 
    

acc_f(Number_of_people_filt(i)+1)=acc_f(Number_of_people_filt(i)+1)+1; 
end 
accuracy_f=acc_f(2)/length(Number_of_people) 

  
errors=Number_of_people_filt-1; 
acc_1(1)=sum(errors(101:150))/50; 
acc_1(2)=sum(errors(151:200))/50; 
acc_1(3)=sum(errors(201:250))/50; 
acc_1(4)=sum(errors(251:299))/49; 
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B.3 UWB feature extraction 

function [FEATURES]=FeatureExtraction(Data) 
%% Author: Zach Baird 
% Date: June 26, 2017 
% This function takes input data and returns a feature vector 

  
[row, col]=size(Data); 
fs=17; 

  
% Take absolute value 
Data=abs(Data); 

  
%%  Energy 
% Calculate energy of entire signal  
ENERGY=0;  
for e=1:col 
   ENERGY=ENERGY+sum(abs(detrend(Data(:,e))).^2);  
end 
POWER=ENERGY/row; 
%% PCA features 
W_thresh=0.05; 
% Compute Principal Components 
[COEFF,SCORE, Latent] = pca(Data); 
[M, I]=max(COEFF(:,1)); % Find maximum in first principal component 

  
%% EIG 
EIG=abs(Latent(1:10))/abs(Latent(1)); 

  
%% Maintain bounds 
if I < 3 
    I=3; 
end 

  
if I > col-1 
    I=col-2; 
end 

  
% Construct Window around maximum point in first principal component 
% find lower bound of window 
mini=abs(M); 
counter_mini=1; 

  
while mini > W_thresh*abs(M) && I-counter_mini > 1  
   mini=abs(COEFF(I-counter_mini,1));  
    counter_mini=counter_mini+1; 
end 

  
% Find upper bound of window 
maxi=abs(M); 
counter_maxi=1; 

  
while maxi > W_thresh*abs(M) && I+counter_maxi < col  
   maxi=abs(COEFF(I+counter_maxi,1));  
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    counter_maxi=counter_maxi+1; 
end 

  
% Statistics about person 1 
%% WIDTH 
WIDTH=counter_mini+counter_maxi+1; 
%% MEAN 
window=COEFF(I-counter_mini:I+counter_maxi,1); 
window=window/sum(window); % normalize to sum to 1 
MEAN=mean(window); 
%% MEDIAN 
MEDIAN=median(window); 
%% SKEWNESS 
SKEW=skewness(window); 
%% KURTOSIS 
KURT=kurtosis(window); 
%% ENTROPY 
ENTROPY=0; 
for z=1:length(window) 
    ENTROPY=ENTROPY-window(z)*log10(window(z))/log10(2); 
end 
%% Single Dimension Data 
Data_V=Data(:,I); % from max variance column 
%% MEAN_T 
MEAN_T=mean(Data_V); 
%% Filter Data and normalize 
[b,a] = butter(2,0.16/fs,'high'); % 0.08Hz highpass 
Data_V = filter(b,a,(Data_V)); 

  
Data_V=Data_V-mean(Data_V); 
Data_V=Data_V/max(Data_V); 

  
%% RMS 
RMS=sqrt(mean(Data_V.^2)); % Root Mean Square 
%% ZCR 
ZCR= sum(abs(diff(Data_V>0)))/length(Data_V); % Zero Crossing Rate 
%% TC 
TC= sum(abs(diff(diff(Data_V)>0)))/length(diff(Data_V)); % Turns Count 
%% V 
V= var(Data_V); % Variance 
%% SKEW_T 
SKEW_T=skewness(Data_V); % Skewness 
%% KURT_T 
KURT_T= kurtosis(Data_V); % Kurtosis 
%% MOB 
MOB= sqrt(var(diff(Data_V))/V); % Mobility 
%% FF 
FF= sqrt(var(diff(diff(Data_V)))/var(diff(Data_V)))/MOB; % Form Factor 
%% Frequency Domain 
pxx=pwelch(Data_V,[],[],2^16,fs); % Welch Periodogram of signal 
%% EX 
EX=sum(pxx); % Total power of signal 
%% FMEAN 
FMEAN=meanfreq(Data_V); % Mean Frequency 
%% FMED 
FMED=medfreq(Data_V); % Medin Frequency 
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%% SHANNON 
PofF=pxx/EX; 
SHANNON=-sum(PofF.*log2(PofF)); 
%% FB1 
lower_bound=(0.4/(fs/2))*2^16; 
upper_bound=(0.66/(fs/2))*2^16; 
FB1=sum(pxx(lower_bound:upper_bound)); 
%% FB2 
lower_bound=(0.67/(fs/2))*2^16; 
upper_bound=(1.33/(fs/2))*2^16; 
FB2=sum(pxx(lower_bound:upper_bound)); 
%% RFB 
RFB=FB1/FB2; 
%% FB1N 
FB1N=FB1/EX; 
%% FB2N 
FB2N=FB2/EX; 
%% Feature Vector 
FEATURES=[POWER, WIDTH, MEAN, MEDIAN, SKEW, KURT, ENTROPY, MEAN_T, RMS, 

ZCR, TC, V, SKEW_T, KURT_T, MOB, FF, EX, FMEAN, FMED, SHANNON FB1 FB2 

RFB FB1N FB2N EIG(2:9)']; 
end 
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