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Introduction 
• Radar technology has been in existence for several decades 

– Military, Weather, Law enforcement, and so on 

• In the past decade, use of radar has exponentially increased 

– Automotive and Industrial applications 

• Automotive applications 

– Front-facing radar (LRR/MRR) 

• Adaptive Cruise Control, Autonomous Emergency Braking 

– Corner radar (SRR) 

• Blind Spot Detection, Lane Change Assist, Front/Rear Cross 

Traffic Alert 

– Newer applications 

• Automated parking, 360 degree surround protection 

• Body/Chassis and In-cabin applications 

• Industrial applications 

– Fluid level sensing 

– Solid volume identification 

– Traffic monitoring and Infrastructure systems 

– Robotics, and many others 
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77GHz mmWave Radar 
• mmWave:  RF frequencies within 30 GHz to 300 GHz 

– Wavelength is in the order of few millimeters 

• 77GHz mmWave radar bands 

– 76-77 GHz 

• Allocated for vehicular radar in many countries 

• Also available for infrastructure systems in certain regions 

– 77-81 GHz 

• Recently made available for short range radar 

• Legacy 24 GHz UWB short range radar to be phased out by 2022 

– 75-85 GHz:  Available for level probing radar 

• mmWave radar sensors can measure 

– Radial distance (range) to the object 

– Relative radial velocity to the object 

– Angle of arrival using multiple TX, RX 

• Some benefits of radar 

– Robust to environmental conditions like dust/fog/smoke 

– Operation in dazzling light, or no ambient light  

– Operation behind plastic enclosure 
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FMCW Radar – Overview 
• Multiple types of radar modulation 

waveforms used 

– Pulsed radar, CW Doppler radar, UWB, 

FSK, FMCW, PN-modulated radar 

• FMCW: Frequency Modulated 

Continuous Wave  

– FMCW (sometimes called LFMCW or 

Linear FMCW) is the most commonly 

used scheme in automotive radar today 

– Linear FMCW:  TX signal has frequency 

changing linearly with time (i.e., chirp) 

 

4 

fTx(t) 

fRx(t) 

fIF 

(few MHz) 

c

R
td

2


Tchirp 

t 

B (in 100’s of 

MHz or few 

GHz) 

FMCW – Freq vs. Time sawtooth pattern 

• Key benefits of FMCW radar 

– Ability to sweep wide RF bandwidth (GHz) while keeping IF bandwidth small (MHz) 

• Better range resolution.  RF sweep bandwidth of 2 GHz can achieve 7.5cm range resolution, 

while IF bandwidth can still be <15MHz 

– Lower peak power requirement, compared to pulsed radar 

 



FMCW Radar – System Model (1/3) 

 

• The transmitted FMCW waveform (chirp) is 

 

 

 

 

• The instantaneous frequency of FMCW 

waveform is 
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FMCW Radar – System Model (2/3) 
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2. RX signal 

• High-level block diagram 

 

• Received signal is a scaled and delayed version of transmitted signal 

 

 

  

 

• Round-trip delay of reflection td is 
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FMCW Radar – System Model (3/3) 
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3. Beat signal 

(IF)  

IF signal 

• High-level block diagram 

 

• Beat frequency or IF signal after receive mixer is as follows 
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FMCW Radar – How it works (1/2) 
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• For static objects, the beat frequency is simply 

proportional to the distance (round-trip delay) 

• Beat frequency is the product of FMCW 

frequency slope (B/Tc) and round-trip delay (td) 

• For multiple objects, the beat signal is a sum of 

tones, where each tone’s frequency is 

proportional to the distance of the object 

• The frequencies of these tones gives the 

distances to the different objects 

• Detection of objects and Distance (Range) 

estimation is done typically by taking FFT of 

received IF signal 
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FMCW Radar – How it works (2/2) 
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• For moving objects, velocity (v) is determined using phase change across 

multiple chirps 

• Phase and frequency of the received beat signal for the nth chirp can be 

calculated as 

 

 

 

 

• Second dimensional FFT is performed across chirps to determine the phase 

change and thus the velocity 
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• The two-dimensional FFT process gives a 

2D range-velocity image (FFT heatmap) 

• Typically, detection of objects is done on 

this image 

• After detection, the range and relative 

speed of the objects are easily calculated 
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Angle Estimation - Beamforming 

• Consider received signal for multiple RX antennas (say, four) as shown in figure 

• Additional distance (Δ)  travelled at successive antennas depends on the angle of 

arrival θ 

 
• This additional distance results in a phase change (w) across consecutive antennas 

 

 

• This phase change can be estimated (west) using an FFT (3rd dimension FFT) 

• Once w is estimated, the angle of arrival (θ) can be derived easily 

θ 

d 

Δ=dsin(θ) 

Uniform linear array 

A Aejw Aej2w 

θ 

Aej3w 



Sample FMCW Radar processing flow (1/2) 
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• Typical processing flow used in FMCW (sawtooth) Radar signal processing 
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Sample FMCW Radar processing flow (2/2) 

1D FFT processing is done inline. 2D-FFT, 3D-FFT & Detection for current frame.   

CFAR or other proprietary algorithms often used for detection. 

Active transmission time of chirps 

(10~15 ms) Inter-frame time  

(upto 25~30ms) 

A frame consists of active transmission 

time and idle inter-frame time. 

Frame time (~40ms) 
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• Typical (simple) FMCW chirp configuration consists of a sequence of chirps followed by idle time 



Advantages of Fast FMCW modulation 
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• Slow FMCW (Triangular) 

waveform used in many  

legacy systems 

– Chirp duration in ms, 

instead of us 

• Slow FMCW has 

advantage of low DSP 

MIPS requirement 

– No two-dimensional FFT 

processing 

• However, it suffers from 

ambiguity issues 

– No elegant way of getting 

range-doppler image 

• Fast FMCW (Sawtooth) 

waveform is preferred in 

newer systems 

• Fast FMCW has ability to 

provide range-doppler 

two dimensional image of 

objects 

Slow (Triangular) FMCW 

Fast (sawtooth) FMCW 



Radar system performance parameters 

• Key parameters 

– Max range 

– Range resolution 

– Range accuracy 

– Max velocity 

– Velocity resolution 

– Velocity accuracy 

– Field of view 

– Angular resolution 

– Angular accuracy 

– Cycle time 
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Max range (1/2) 

• Based on Friis transmission equation 
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Max range (2/2) 

• Max range depends on the below factors 

Typical range 

TX Output power 10 dBm – 13 dBm 

TX Antenna gain 9 dBi – 23 dBi 
(USRR – LRR) 

Depends on Azimuth and 

Elevation field of view 

RCS of target 0.1m2 – 50m2 

(-10 dBsm to 17 dBsm) 

Pedestrian vs. Truck 

RX Antenna gain 9 dBi – 23 dBi Depends on Azimuth and 

Elevation field of view 

Noise figure 11 dB – 18 dB  

Implementation dependent 

Active frame time 2 ms – 20 ms 

Detection SNR 10 dB – 18 dB 

Pt Gt 

(4)3 

(RCS) Gr
2 
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Tf Rmax = 
4 (SNR) 

RX array beamforming gain can be additionally included. 

  

Azim 
FOV 
(deg) 

Elev 
FOV 
(deg) 

Antenna 
gain (dB) 

SRR 120 30 9.21 

MRR 90 12 14.44 

LRR 24 8 21.94 

Target RCS 

Pedestrian 0.1 ~ 1 sq.m 

Motorbike 5 sq.m 

Car 10 sq.m 

Truck 50 sq.m 

Thumb rule: 

3 dB loss = 15% loss of range 

12 dB loss = 50% loss of range 



Range resolution and Range accuracy 
• Range resolution 

– Ability to separate two closely spaced objects in 

range 

– Range resolution is a function of RF bandwidth 

used 

 

 

 

 

 

 

• Range accuracy 

– Accuracy of range measurement of one object 

– Depends on SNR 

– Typically range accuracy is a small fraction of 

range resolution  
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Max velocity 
• Max unambiguous velocity in Fast 

FMCW modulation depends on chirp 

repetition period 

– Higher velocity needs faster ramps 

 

 

 

• For a given max range and range 

resolution, higher max velocity needs 

higher IF bandwidth 

 

 

 

 

 

• Advanced techniques are often used 

to increase the max velocity 

– Ambiguity resolution techniques can be 

used to resolve aliased velocity into 

true velocity 
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Velocity resolution and Velocity accuracy 

• Velocity resolution 

– Ability to separate two objects in velocity 

– Depends on the active duration of the frame 

 

 

 

 

• Velocity accuracy 

– Accuracy of velocity measurement of one object 

– Depends on SNR 

– Typically a fraction of velocity resolution 
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Benefits of 77GHz mmWave 
• Wide RF bandwidth (4 GHz) provides good range resolution and range accuracy 

– 20X better than legacy 24GHz narrowband sensors (which use ~200MHz bandwidth) 

• High RF frequency (small wavelength) provides good velocity resolution and accuracy 

– 3X better than 24GHz sensors 

 

 

 

 

 

 

 

 

 

• Smaller form-factor for the sensor 
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More focused beam with 77GHz 

Improved performance  

Better resolution performance with 77GHz 



Angular resolution 
• Angular resolution 

– Ability to separate objects in angle (for same range 

and velocity) 

– Radar sensors have poorer angular resolution 

typically (compared to LIDAR for example) 

– However, in many real life situations, objects get 

resolved in range or velocity, due to good resolution 

in those dimensions 

– Angular resolution (in radians) for K-length array is 

given by: 

 =
λ

Kdcos(θ)
    Note the dependency of the resolution on θ.   

   Resolution is best at θ=0  

 

=
2

K
   Resolution is often quoted assuming d=λ/2 and θ=0 

 

Array length 
Ang. Resolution 
(deg) 

8 14.32 

12 9.55 

24 4.77 

40 2.86 

(in radians) 



Use of Multiple TX – MIMO radar  

Tx1 Tx2 Rx1 Rx4 

2 /2 /2 

8 virtual channels 

• Multiple TX along with multiple RX (MIMO radar) to increase angular resolution – eg. 2 TX, 4 RX can give 8 

virtual channels 

Active transmission time of chirps 

(Tx1 and Tx2 chirps interleaved) Inter-frame time  

Frame time (~40ms) 

time 

Tx1 Tx2 Tx1 Tx2 Tx2 

Active transmission time of chirps 

(Tx1 and Tx2 BPM-coded, simultaneous transmission) 
Inter-frame time  

Frame time (~40ms) 

time 

Tx1+Tx2 Tx1-Tx2 Tx1+Tx2 

Multiple TX time-interleaved 

Multiple TX BPM-multiplexed 

• Multiple TX can also be used for TX beamsteering (simultaneous transmission with linear phase shifter 

based steering of beam) 



Cascaded multi-chip radar 
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8 channels (2 TX, 4 RX) 12 channels (3 TX, 4 RX) 

24 channels (3 TX, 8 RX) 40 channels (5 TX, 8 RX) Master device Slave device 
(LO sync’ed to master) 

TX RX TX RX Measurement results with 2 corner reflectors at ~4deg separation 

Two corner reflectors 2-chip cascade radar 

Single chip Single chip 

2-chip cascade 2-chip cascade 

2-chip cascade enables better separation of the corner reflectors 



TI mmWave radar devices 
• TI offers a family of 77GHz radar devices for automotive and industrial applications 

– Highly integrated devices based on RFCMOS 

– High accuracy, Small form-factor, Sensing simplified 

For more information, visit: 

TI.com/mmWave 

http://www.ti.com/mmWave
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