
Band-Limited Simulation of Analog
Synthesizer Modules by Additive Synthesis

Amar Chaudhary
Center for New Music and Audio Technologies

University of California, Berkeley
amar@cnmat.berkeley.edu

March 12, 2001

Abstract

Analog synthesizers continue to be used by many musicians be-
cause of their distinctive timbres, intuitive real-time control and flex-
ible patching. There has been recent interest in simulating the analog
signal chain with digital techniques. However, a literal time-domain
translation of analog VCOs and VCFs is surprisingly challenging. This
paper presents a new strategy for digital simulation based on spectral
descriptions of analog modules and additive synthesis techniques. A
real-time software analog synthesizer has been implemented based on
this strategy. Audio output is qualitatively close to that of analog
synthesizers.

1 Introduction

Analog synthesizers continue to be used by many musicians because of their
distinctive timbres, intuitive real-time control and flexible patching. Since
digital synthesizers are cheaper to make and don’t suffer from the tuning
problems of their analog counterparts, there has been recent interest in sim-
ulating the analog signal chain with digital techniques. A literal time-domain
translation of each analog functional module into digital form is surprisingly
challenging. Creating band-limited sawtooth and square waves over a wide

1



variety of pitches is computationally expensive. Some filter topologies used
in VCFs are not realizable digitally. When they are realizable, the accurate
transformation of frequency and Q parameters to digital filter coefficients is
very expensive.

We introduce a new strategy to avoid these problems based on operations
on spectral descriptions of analog modules and additive synthesis techniques.
This new approach avoids aliasing and filter design problems and preserves
the control parameters of analog implementations (i.e., pitch, loudness, cen-
ter frequency and bandwidth) without the need to convert to the problematic
parameter space for digital filters. This strategy is also used to simulate ana-
log noise generation.

Our implementation supports dynamic reconfiguration (i.e., “patching”)
of modules. Audio output is qualitatively close to that of analog synthesizers.
The implementation runs in real time and responds to external controllers
via MIDI or Open Sound Control [1].

The remainder of this paper is organized as follows: Section 2 explains
why digital simulations of analog synthesizers are difficult. Section 3 de-
scribes our method based on additive synthesis. Section 4 discusses the
application of this method to analog noise generation. Section 5 describes
our implementation, and section 6 concludes the paper.

2 Why Digital Simulations of Analog Synthe-
sizers are Difficult

Analog synthesizers typically use subtractive synthesis. In subtractive synthe-
sis, sounds are produced by passing broadband signals through time-varying
filters [2]. Analog synthesizers consist of modules that implement the steps
of subtractive synthesis:

• Voltage-controlled oscillators (VCOs) produce broadband excitation sig-
nals at a given pitch.

• Voltage-controlled filters (VCFs) modify the timbre of signals. VCFs
usually have controls for center frequency and Q (i.e., resonance).

2



• Voltage-controlled amplifiers (VCAs) scale the amplitudes of signals by
a given gain.

The pitch, center frequency, Q and gain controls of these modules can
be controlled directly or by using piecewise linear functions called envelopes,
or low-frequency oscillators (LFOs). Figure 1 illustrates a typical chain of
analog synthesizer modules.

VCOs generally produce a few types of waveforms, such as sawtooths,
squares, triangles and pulse trains. Each of these waveforms can be de-
scribed as an infinite sum of sinusoidal components, as shown in Table 1.
As such signals are not band-limited, aliasing will occur producing unwanted
frequency components in the output signal [3]. In order to prevent aliasing,
the source signals must be band-limited, or contain only partials between the
fundamental and the Nyquist frequency. For example, a band-limited square
wave can be expressed using the following formula 1:

1
π

N
∑

i=1

1
2i− 1

cos(2(2i− 1)πft) (1)

where f is the fundamental frequency of the square wave, and N is the
number of partials. The number of partials is a function of the fundamental
and the sampling rate:

N ≤ R
2f

(2)

where R is the sampling rate. Because the fundamental varies while the
Nyquist frequency R/2 remains constant, the number of partials in the band-
limited spectrum changes. A time-domain implementation based on sample-
playback or wavetable synthesis must store different versions of the waveform
for different frequency ranges. This requires large amounts of dynamic stor-
age [2].

Difficulties also arise when converting analog VCFs to equivalent digital
filters. The distinctive timbres of analog synthesizers are often a result of the

1All time-varying functions in this paper are expressed as continuous functions of time
for clarity and convenience. However, it should be noted that time is a discrete value in
the digital domain. Digital-domain time is expressed as t = n/R where R is the sampling
rate and n = 0, 1, 2, . . .

3



strongly non-linear response characteristics of the particular VCF topology
used, so these functions should be modeled as accurately as possible. We also
want to preserve for musicians the familiar analog parameters, such as cen-
ter frequency and Q. Traditional conversion techniques use an isomorphism,
such as the bilinear transformation to map between the analog and digital
domains [4]. These techniques often preserve the parameterization but not
the frequency response characteristics of the original analog filter [5]. VCF
topologies that include feedback may not be realizable at all using these tech-
niques. For example, the Moog four-pole VCF [6] is unrealizable using the
bilinear transform unless a unit delay is added to the resulting digital filter
[7].
Such hand-tweaking of converted filters complicates or, in some cases, de-
stroys the relationship between the analog control parameters and filter be-
havior [7]. Designing a digital filter directly from the impulse response or
frequency response of a VCF[8] will likely result in a filter with a nontrivial
mapping between analog parameters and filter coefficients that is too expen-
sive to compute in real time.

In the following section, we present a method which overcomes or avoids
the problems described above.

3 Simulation Using Additive Synthesis

Many of the difficulties discussed in the previous section can be avoided by
operating on spectral descriptions used in additive synthesis. In additive syn-
thesis, sounds are modeled as a sum of sinusoid functions whose amplitude,
frequency and phase change over time:

x(t) =
N

∑

i=1
Ai(t) cos(ωi(t)t + φi(t)) (3)

where N is the number of sinusoids in the sound, Ai(t), ωi(t) and φi(t) rep-
resent the amplitude, frequency and phase, respectively, of the ith sinusoid
at time t. The spectral description of the sound at time t is the set of all
instantaneous frequency, amplitude and phase values {ωi(t), Ai(t), φi(t)}. A
spectral discription may contain hundreds of sinusoids in order to accurately
model a sound. The spectral description is converted to a digital waveform

4



using inverse-transform or oscillator additive synthesis [9].

Analog synthesizer modules can be simulated using a sequence of spectral-
domain functions, as illustrated in figure 2. This simulation method requires
an efficient implementation of additive synthesis that can handle hundreds
of partials in real time [9].

The spectral-domain VCO is a function that outputs the spectral de-
scription of band-limited excitation waveforms. The description of a par-
ticular waveform is the band-limited subset of the frequency, amplitude
and phase coefficients used in its summation formula, as listed in table 1.
For example, the spectral description of a square wave of pitch f would be
{{f, 1, 0}, {3f, 1/3, 0}, {5f, 1/5, 0}, . . . , {(2N−1)f, 1/(2N−1), 0}}, where N
is the total number of partials, as described in equation 2.

The spectral-domain VCF is a function which scales the amplitudes of the
spectral discription according to the frequency-response function of the ana-
log filter. For example, the Moog four-pole VCF has the following frequency-
response function:

H(jω) =
ω4

c

(jω − ωc)4 + kω4
c

(4)

where ωc is the center frequency and k is the Q control. Each partial in
the output spectral description has the same frequency and phase values
as the corresponding input partial, but its amplitude value has been scaled
according to frequency-resonpose function:

{ωi, AiH(jωi), φi} (5)

By operating in the spectral domain, the center frequency and Q controls
are applied directly to the signal without the need for an intermediate cal-
culation of digital filter coefficients. The filter conversion problem has been
avoided.

This method can be applied to other VCF designs. The frequency and
phase responses of the filter are analyzed at different values of its control
parameters. The collected data can be used to construct a table-lookup
function that takes frequency, phase and the control parameters as inputs
and produces an appropriate amplitude-scaling value.

5



The spectral-domain VCA is trivial. The amplitude of each sinusoid is
scaled by the gain control of the VCA.

4 Simulation of Noise

The additive synthesis strategy can also be used to simulate analog noise
generation. The VCO noise signal is represented as a set of noise bands,
each with a center frequency and an amplitude. White noise is generated
by using a constant amplitude over all frequency bands, and pink noise is
generated by setting the amplitude of each band to be inversely proportional
to its center frequency. The frequency response function of the simulated
VCF is then used to scale the amplitude of the noise band. The scaled noise
bands can then be converted to a digital waveform using an inverse transform
method for generating broad-band signals [10].

5 Implementation

We have implemented an analog synthesizer simulation using the method
described in this paper. It consists of two voices, each with its own VCO,
Moog-style VCF and VCA. The VCO has a pitch control, the VCF has con-
trols for center frequency and Q, and the VCA has a gain control. Each of
these controls has an indepedent ADSR (i.e., attack, decay, sustain and re-
lease) envelope and LFO as well as a slider for direct control. The VCO uses
a maximum of 100 sinusoids to generate spectral descriptions for sine waves,
sawtooths, square waves, triangle waves, pulse trains and white and pink
noise. The VCF applies a Moog transfer function to the source spectrum.
The spectral descriptions from the two voices are merged together and the
resulting spectrum is converted to an output audio signal using the inverse
transform method of additive synthesis [9]. The signal chain of this software
analog synthsizer is illustrated in figure 3.

The modules were written as portable C++ objects that support dynamic
“patching”. The user interface was written using Tcl [11], a multi-platform
scripting language and user interface toolkit. A screen capture of the user
interface is shown in figure 4.

6



Our implementation has been tested on an Intel Pentium Pro 200Mhz
running Windows NT 4.0, and an SGI O2 running Irix 6.3. Both implemen-
tations run in real time and respond to external controllers via MIDI or Open
Sound Control. The external control messages can be mapped to any of the
analog module parameters on either or both voices.

Listeners find this implementation qualitatively close to analog Moog syn-
thesizers and confirm that the real-time controls agree with their intuition
and experience with analog instruments.

6 Future Work

Our results have been very encouraging, both computationally and perceptu-
ally. Future work includes the analysis of additional VCF topologies, controls
based on non-linear functions (e.g., the hyperbolic tangent), an improved user
interface for dynamically adding and patching modules and optimization of
spectral transform code for very large patches.

Some additional types of analog modules, such as ring modulators, can be
more efficiently implemented as time-domain transforms. Such modules can
easily be added at the end of a spectral-domain signal chain after the inverse
transform operation, but require additional domain conversions if used in the
middle of a signal chain.

Acknowledgements

I am grateful to Silicon Graphics Inc., the NSF Graduate Research Fellowship
program and Gibson Music Inc. for their support of this research.

References

[1] M. Wright and A. Freed. “Open Sound Control: A New Pro-
tocol for Communicating with Sound Synthesizers.” In Pro-
ceedings of the 23rd International Computer Music Conference,
Thessoloniki, Greece, 1997. This paper can be found at
http://cnmat.cnmat.berkeley.edu/Research.

7



[2] F.R. Moore. Elements of Computer Music. P T R Prentice Hall, Engle-
wood Cliffs, NJ, 1990.

[3] T. Stilson and J. O. Smith. “Alias-free Digital Synthisis
of Classic Analog Waveforms.” Technical report, CCRMA,
Stanford University, 1996. This paper can be found at
http://www-ccrma.stanford.edu/ stilti/papers.

[4] K. Steiglitz. “The Equivalence of Digital and Analog Signal Processing.”
Information and Control, 8:455–467, 1965. Reprinted in Digital Signal
Processing, IEEE Press, New York, 1972.

[5] S. J Orfandis. “Digital Parametric Equalizer Design with Prescribed
Nyqyust-frequency Gain.” Journal of the Audio Engineering Society,
45(6), June 1997.

[6] R. A. Moog. “A Voltage-controlled Low-pass High-pass Filter for Audio
Signal Processing.” processing”. In Audio Engineering Society Conven-
tion, volume Preprint 413, October 1965.

[7] T. Stilson and J. O. Smith. “Analyzing the Moog VCF with
Considerations for Digital Implementation.” Technical report,
CCRMA, Stanford University, 1996. This paper can be found at
http://www-ccrma.stanford.edu/ stilti/papers.

[8] L. B. Jackson. Digital Filters and Signal Processing, Second Edition.
Kluwer Academic Publishers, Boston, 1989.

[9] A. Freed. “Real-time Inverse Transform Additive Synthesis for Additive
and Pitch Synchronous Noise and Sound Spatialization.” AES 104th
Convention, San Francisco, CA, 1998. This paper can be found at
http://cnmat.cnmat.berkeley.edu/Research.

[10] A. Freed. “Bring Your Own Control to Additive Synthi-
sis.” In Proceedings of the International Computer Music Con-
ference, Banff, Canada, 1995. This paper can be found at
http://cnmat.cnmat.berkeley.edu/Research.

[11] B. B. Welch. Practical Programming in Tcl & Tk, 2nd Edition. Prentice
Hall, Upper Saddle River, NJ, 1997.

8



Waveform Summation
Sawtooth 1

π
∑∞

i=1
(−1)i

i cos(2πift)
Square 1

π
∑∞

i=1
1

2i−1 cos(2(2i− 1)πft)
Triangle 4

π2

∑∞
i=1

(−1)i

(2i−1)2 cos(2πift)
Pulse Train ∑∞

i=1 cos(2πift)

Table 1: Common VCO waveforms as infinite sums of sinusoidal components

9



VCO VCF VCAExcitation
signal

Filtered
signal

Figure 1: An analog signal chain. Throughout this paper, circles represent
functional units, and rectangles represent signals or data.

VCO VCF
Excitation
spectral

description

Filtered
spectral

description

scaled
spectral

description
VCA IFFT

Figure 2: A spectral-domain version of the analog signal chain from figure
1. The signals have been replaced by spectral descriptions. The last spectral
description is converted to an audio signal using an Inverse Fast Fourier
Transform (IFFT).

10



VCOVCO

VCFVCF

Excitation
spectral

description

Excitation
spectral

description

Filtered
spectral

description

Filtered
spectral

description

scaled
spectral

description

scaled
spectral

description

VCAVCA

IFFT

ADSRADSR

LFOLFO

PitchPitch

ADSRADSR

LFOLFO

CenterCenter

ADSRADSR

LFOLFO

QQ

ADSR

LFO

Gain

VCOVCO

VCFVCF

Excitation
spectral

description

Excitation
spectral

description

Filtered
spectral

description

Filtered
spectral

description

scaled
spectral

description

scaled
spectral

description

VCAVCA

ADSRADSR

LFOLFO

PitchPitch

ADSRADSR

LFOLFO

CenterCenter

ADSRADSR

LFOLFO

QQ

ADSR

LFO

Gain

Mixer

Figure 3: The signal chain and control structure of the two-voice analog syn-
thesizer implementation. Each control parameter has its own ADSR envelope
and LFO.

11



Figure 4: The main interface panel of the analog synthesizer. Controls for
pitch, center frequency, Q, gain and oscillator waveform are included for each
voice. Buttons are included to pop up an LFO or envelope editing panel for
each control parameter.

12


