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Nobel Prize in Physics, 1936
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Question of Parity Conservation in Weak Interactions™

T. D. LeE, Columbia University, New York, New York

AND

C. N. Yang,} Brookhaven National Laboratory, Upton, New York
(Received June 22, 1956)

The question of parity conservation in 8 decays and in hyperon and meson decays is examined. Possible
experiments are suggested which might test parity conservation in these interactions.

"ECENT experimental data indicate closely iden-
tical masses! and lifetimes? of the 6+(=K,s") and
the 7+(=K,st) mesons. On the other hand, analyses®
of the decay products of =+ strongly suggest on the
grounds of angular momentum and parity conservation
that the 7+ and 6% are not the same particle. This poses
a rather puzzling situation that has been extensively
discussed.*

One way out of the difficulty is to assume that
parity is not strictly conserved, so that 6+ and s+ are
two different decay modes of the same particle, which
necessarily has a single mass value and a single lifetime.

PRESENT EXPERIMENTAL LIMIT ON
PARITY NONCONSERVATION

If parity is not strictly conserved, all atomic and
nuclear states become mixtures consisting mainly of
the state they are usually assigned, together with small
percentages of states possessing the opposite parity. The
fractional weight of the latter will be called 2 It is a
quantity that characterizes the degree of violation of
parity conservation.

The existence of parity selection rules which work
well in atomic and nuclear physics is a clear indication

that the degree of mixing, 97, cannot be large, From
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Experiment: Ca(Fe, ,Co,)AsF [1111-family]
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Result: Ca(Fe,,Co,)AsF [1111-family]
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Result: Ca(Fe, ,Co,)AsF [1111-family]
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Result: Ca(Fe,,Co,)AsF [1111-family]
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Result: Ca(Fe,_,Co,)AsF [1111-family]
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Result: Ca(Fe, ,Co,)AsF [1111-family]

4 N
Coi= ExCHLIEHE - BB DR %
14 T | T | T T [ T [ T T T |
Ca(Fe,,Co,)AsF X 10 + ____________ | Ca(Fe,_,Co,)ASF.
12 —o— 0.000 ..
S —A— 0.050 ZF-uSR
S 10 08~ b ]
s : 4 *
) = i . |
5 0.8 go ° --®&- W, (para) )
<>0_> 0.6 _% 04l --&- W, (mag) + _
-E 0.4 T A
& 02 k3 _
= 02 L
00[e-—" I' —
0.0 I ! I ! I ! I ! I
0 40 80 120 160 0.00 0.04 0.08 0.12 0.16
T/K Co concentration x
x>0.05TA/VLMNREDEKRIZLEHIL THMEMRENBADL . KHYICEE
SHOAEENEMT D,

o /




Result: Ca(Fe, ,Co,)AsF [1111-family]
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Result: Ca(Fe, ,Co,)AsF [1111-family]
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