The Parallel (inteD

e Software
‘ \/ Issuei3
FEBRUARY 2013

Transforming Product Engineering:
Fast, Accurate Finite Element Analysis (Fea)

by Noah Clemons, David Weinberg,
Jonas Dalidd, and Dennis Sieminski i

NEW RESOURCES MAY

CHANGE THE WAY

YOU BUILD APPLICATIONS .

=
Structured Parallel Programming ‘
E

= % | I].“-.{”“J by Michael McCool, Arch Robison, and James Reinders

siructured radls

el -” Learn more at: www.parallelbook.com

| IH}.,F[r.m””] “I've been dreaming for a while of a modern, accessible book that | could recommend to my
threading-deprived colleagues and assorted enquirers to get them up to speed with the core
concepts of multithreading, as well as something that covers all the major current interesting
implementations. Finally | have that book.”

Martin Watt, Principal Engineer, DreamWorks Animation

Intel® Xeon Phi™ Coprocessor

High Performance Programming
by Jim Jeffers and James Reinders

Learn more at: www.lotsofcores.com

“This book belongs on the bookshelf of every HPC professiona
takes us back to the universal fundamentals of high performar
computing, including how to think and reason about the perfo!
of algorithms mapped to modern architectures, and it puts
vour hands powerful tools that will be useful for years to con

Robert J. Harrison, Institute for Advanced Computational
Stony Brook University

MEET THE AUTHORS

James Reinders, director and chief evangelist for Intel® Software, or Jim Jeffers, software
product application engineer for Intel® Many Integrated Core (Intel® MIC) will discuss their

(in o,
new book and deliver the keynote address at the upcoming Intel® Software Conference 2013

in four U.S. cities. See full agenda and register ® Softwa re

©2013, Intel Corporation. Al rights reserved. Intel, the Intel logo, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

http://www.lotsofcores.com
http://softwareproductconference.com/asmo/
http://softwareproductconference.com/asmo/

THE PARALLEL UNIVERSE

CONTENTS

Letter from the Editor
Forging Ahead with Software, BY JAMES REINDERS 4

Transforming Product Engineering:
Fast, Accurate Finite Element Analysis (FEA),
BY NOAH CLEMONS, DAVID WEINBERG, JONAS DALIDD, AND DENNIS SIEMINSKI.......................... 6

Looks at some of the ways finite element analysis (FEA) can use Intel® Math Kernel Library
(Intel® MKL) PARDISO and DGEMM routines to reduce analysis time, while giving engineers
the ability to examine extremely complex structures.

Parallel Power: Optimize Software for
Intel® Xeon Phi™ Coprocessors, BY AMANDA SHARP 14

Outlines a software optimization methodology for applications currently optimized for Intel®
Xeon® processors and targeting Intel Xeon Phi coprocessors.

Unleash Intel® Xeon Phi™ Coprocessor Performance,
BY TODD ROSENQUIST AND SHANE STORY 7

A concise look at the Intel® MKL Automatic Offload (AO) model, which can be used with any
compiler and helps developers realize performance gains from the Intel Xeon Phi coprocessor.

Tune OpenMP* Applications, BY ALEXEI ALEXANDROV 18

Tuning techniques to improve parallelism and gain performance benefits for applications
running on Intel® Xeon processors and Intel Xeon Phi coprocessors.

Expand Your Debugging Options,
BY NICOLAS BLANC AND GEORG ZITZLSBERGER ... 24

Explores some of the versatile Intel® debugging options for the Intel Xeon Phi coprocessor,
examining both offload and native models.

.................................. 26

Parallel Execution Using HTMLS5, BY MAX DOMEIKA
A quick guide to APIs supporting parallel performance gains in HTML5 applications.

Sign up for future issues | Share with a friend

The Parallel Universe is a free quarterly magazine. Click here to sign

© 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel
Core, Intel Inside, Cilk Plus, Pentium, VTune, VPro, Xeon and Xeon Phi
are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

up for future issue alerts and to share the magazine with friends.

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

Forging An

LETTER FROM
THE EDITOR

James Reinders, Director of Parallel Programming Evangelism
at Intel Corporation. James is a coauthor of two new books from
Morgan Kaufmann, Intel® Xeon Phi™ Coprocessor High Performance
Programming (2013), and Structured Parallel Programming (2012).
His other books include Intel® Threading Building Blocks: Outfitting
C++ for Multicore Processor Parallelism (O'Reilly Media, 2007, available
in English, Japanese, Chinese, and Korean), and VTune™ Performance
Analyzer Essentials (Intel Press, 2005).

o

For more information regarding performance and optimization choices in Intel® software products, visit http://soft intel 1 [articles/optimizati ti
garding p p p! p

http://lotsofcores.com
http://lotsofcores.com
http://parallelbook.com/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL UNIVERSE

ead

with Software

Our first issue, this year, explores some of the techniques, tools, and coding models
enabling an explosion of innovation driven by software. The reality that software is
changing the world is very evident in our feature article. Coprocessor

High Performance
=TORE rar !’llil'l '

Pk ki Bl

This feature article, Fast, Accurate Finite Element Analysis (FEA), explores finite element analysis (FEA)
and its role in extremely complex 3D simulations that are revolutionizing product engineering—from NASA
and Formula 1 race cars to medical implants and environmental analysis.

Parallel Power: Optimize Software for Intel® Xeon Phi™ Coprocessors provides a straightforward code
optimization methodology to maximize performance on Intel® Xeon® processors and take advantage of the
newest Intel® Xeon Phi™ coprocessors. A related article, Unleash Intel® Xeon Phi™ Coprocessor Performance,
offers tips on optimization using the Intel® Math Kernel Library (Intel® MKL)—a key ingredient in unleashing
the performance of Intel® architectures in real-world applications. | found both of these articles inspirational
as | was working with my coauthor to put the finishing touches on our book about programming for the
exciting new Intel Xeon Phi coprocessor (learn more about the book at: http://lotsofcores.com). | recommend

el i

New book examines

these articles and our book for anyone interested in programming the Intel Xeon Phi coprocessor. programming for the
‘ , N ‘ Intel® Xeon Phi™ coprocessor
Tune OpenMP* Applications provides step-by-step guidance for increasing insight and analyzing and and Intel® Many Intggrated

tuning performance for parallel HPC applications. Expand Your Debugging Options looks at debugging across Core (Intel® MIC) architecture
Intel Xeon Phi coprocessor use cases, considering both offload and native models.

Parallel Execution Using HTML5 covers the API options for parallel HTMLS applications, allowing developers
to benefit from parallelization performance increases.

As we see the theoretical possibility of what software can make possible become a reality, it's a great
time to explore the techniques and tools that can bring our own applications to the next level. | look forward
10 seeing what you make possible in the year ahead.

James Reinders
February 2013

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

TRANSFORMING PRODUCT ENGINEERING:

-ast, Accurate
-INnite Element

by Noah Clemons, Technical Consulting Engineer, Embedded Compute, Debuggers,
and Performance Libraries Group, Intel, David Weinberg, NEi, Jonas Dalidd, NE;,
and Dennis Sieminski, NEi

6 For more information regarding performance and optimization choices in Intel® softwa

-

http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL UNIVERSE

(

IS

Analys

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

Engineered products of all kinds are improved
through finite element analysis (FEA). FEA allows engineers
10 examine structures with incredible thoroughness and flexibility.
This paper introduces FEA, and shows how the performance benefits
of the Intel® Math Kernel Library (Intel® MKL) improve analysis accuracy,
while supporting analyst productivity.

Today's media features a continual stream of news on impressive
engineering projects. The stories cover an incredibly wide spectrum of
industries—from progress on spacecraft capable of sending tourists
on real-life space travel experiences to medical implants that restore
vital and sensitive faculties like eyesight and hearing. Even the sports
world features new equipment designs that change performance
expectations, including Tour de France bicycles, America's Cup yachts,
or Formula 1 race cars. What is driving such widespread sophisticated
technical capability? These examples from NEi Software’s customer
case studies (www.NEiSoftware.com) illustrate the role a numerical
method known as finite element analysis (FEA) has come to play in
elevating contemporary engineering practice. FEA software is a tool
that gives engineers the power to virtually test 3D models of their
product designs. Engineers can simulate the application of loads, forces,
impacts, vibrations, heat, and temperature conditions. They see how
the virtual product will respond not only with numerical data and graphs,
but also through the clever use of 3D graphics and animation. Huge data
files generated on technical entities such as stress, strain, vibration
modes, and temperature gradients can be turned into animations and
colorful visual presentations that aid in developing a more comprehen-
sive technical understanding of the performance of complex physical
systems. The insight gained through working with these digital proto-
types provides numerous benefits, A big advantage comes from the
ability to have problem areas highlighted, so they can be addressed
while still in the digital design phase where change is much easier,
design alternatives can be tried, and various operating conditions can
be thoroughly explored until results are satisfactory. All the changes
can be made before the first part is made or prototype has been built.
The result is a productive and insightful design process that brings
a cascade of benefits and savings across subsequent steps in the
product development cycle—fewer prototypes, less physical testing,
and a reduction in the number of design iterations before release
to manufacturing. The upshot is lower costs, faster time to market,
and better-quality products. It is clear that with these benefits the
introduction of FEA has had a profound and widespread effect on the
practice of product engineering.

A quick look at how FEA reached its present stage is instructive;
its path provides context for some of the current issues facing the
next stage in the development of the technology. The origin of
commercial FEA software is typically traced to the public release in
the early 1970s of code developed under the auspices of the National
Aeronautics and Space Administration (NASA). The program was
called NASTRAN, an acronym for NASA Structural Analysis. The cost
of computer resources and the specialized personnel needed to use
the software initially confined NASTRAN to expensive, high-profile

projects—typically aerospace programs funded by the federal government.

Over the next two decades, improvements in computing hardware,
FEA software capabilities, and costs allowed proliferation of the soft-
ware into the top tier of aerospace, automotive, maritime, and nuclear
applications. The next phase for FEA software usage occurred with

the dramatic transition from mainframe computers. As part of that
pioneering effort, NEi Software developed NEi Nastran* to run on

PCs (www.NEiNastran.com). With FEA capabilities within reach of
average-sized engineering departments, usage expanded in traditional
aerospace, automotive, and maritime markets. More important, an even
wider range of industry segments, such as civil, medical, consumer, and
recreation were able to embrace the technology.

Improving computational speed without sacrificing accuracy continues
1o be of paramount importance. For the technology to be viable and
enjoy widespread usage, it cannot take weeks, days, or even too many
hours of computer time to render the result of each FEA test case.
There needs to be quick turnaround and availability of results. What's
different today is that engineers are building on past successes and
tackling more complex simulations. The models are larger and more
detailed. The physical phenomena they seek to replicate are nonlinear,
multidiscipline, and interrelated. Plus, new materials such as composites
and shape memory alloys are more complex in their behavioral properties.
Using this background, we can look at the mathematical and programming
structures found in FEA software to see where and how improvements
in speed and accuracy may be accomplished.

Solving a problem in mechanics or physics means predicting the
mechanical or physical system's behavior due to the action of given
loads. The analytical solution of such a problem is only possible on
geometrically simple domains (e.q., rectangles, circles). In order to tackle
more complex domains, numerical discretization methods such as FEA
are required. As the name implies, the premise of FEA is to subdivide the
complex domain into a finite number of subdomains, or finite elements,
and solve the physical problem on each of them. A representation of
a continuous domain with a set of finite elements is called a finite
element model. All finite elements in the model form a finite element
mesh. Each element in the finite element model has a fixed number
of nodes that define the element's boundaries to which loads and
boundary conditions can be applied. The finer the mesh, the closer
approximation of the geometry of the structure, the load application,

Figure 1: Cessna 510 Citation Mustang* designed and analyzed using
NEi Nastran*. Colors superimposed on the empennage indicate
levels of stress in the structure. The red end of the spectrum is
used for higher values versus blue for lower values.

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel len-us/articles/optimization-notice.

http://www.NEiSoftware.com
http://www.NEiNastran.com
http://software.intel.com/en-us/articles/optimization-notice

and the stress and strain gradients. However, there is a tradeofT:
the finer the mesh, the more computational power needed to solve
the complex problem. The trend in FEA is for larger, more detailed,
and complicated models that require greater computing power and
for advanced tools, such as Intel MKL, to be built into FEA applications.
FEA is comprised of three phases:

1. Preprocessing: The analyst develops a finite element mesh based on

the geometry of the structure, and applies material properties, boundary
conditions, and loads to it.

2. Solution: The FEA solver assembles the stiffness matrix and applied
load vector and solves for displacements, strains, and stresses. The
solution for displacements requires the solving of a large number of
simultaneous equations and can be the most numerically intensive
operation in any FEA application.

3. Post-processing: The analyst obtains results usually in the form of
deformed shapes, contour plots, and other graphic visualizations which
help to check the validity of the solution.

The pre- and post-processing phases typically rely on an FEA
modeler such as Siemens Femap* or NEi Nastran in-CAD*. Femap is
a stand-alone FEA modeler and post-processor that works externally
with computer-aided design (CAD) applications. CAD is the tool typically
used to define the geometry of the structure. NEi Nastran in-CAD is
an internal CAD application that works directly with CAD programs to
build the FEA model, run the solution, and post-process within the
more familiar CAD application.

e

i

fmﬂ

LEABBLEL

Les

Figure 2: The Femap pre- and post-
processor (above top) and NEi Nastran*
in-CAD* (above) user interfaces. Note:
colors are used to represent levels of
stress in these example analyses. The red
end of the spectrum is used for higher
values versus blue for lower values.

THE PARALLEL UNIVERSE

The solution phase relies on an FEA solver such as NEi Nastran. It
is the most numerically intensive of all three phases and will require
the most memory and CPU processing time. The analyst is typically
looking for the fastest and most accurate solution. These two criteria
are often diametrically opposed to each other—as faster means a
coarser FEA mesh, which is less accurate. The challenge is to have
both. Within an FEA solver are specialized subcomponents optimized
to provide the best performance possible. For NEi Nastran and many
other FEA solvers, the critical subcomponents are the linear equation
solver and eigenvalue/eigenvector solver. For best performance, no
individual subcomponent should dominate the solution time. Therefore,
it is critical that subcomponents take advantage of memory and CPU
architecture. NEi Nastran uses Intel MKL, specifically its PARDISO solver
and DGEMM matrix multiplication routine, to reduce analysis time and
avoid solution bottlenecks. The PARDISO solver can reduce overall
analysis time by a factor of 100, or even 1,000 in some cases, because
of the parallel processing scalability and its tuning to specific Intel®
CPU architecture. The importance of the PARDISO solver is magnified
in the nonlinear case, where it can take thousands of decompositions
and backsolves to complete. The PARDISO solver is the default solver
for nonlinear analysis in NEi Nastran, and is typically the fastest solver,

Step @ Step @

Figure 3: A nonlinear transient analysis of a rubber membrane.
The analysis involves large displacements, rotations, and post-
buckling behavior. The numbered sequence shows changes to part
shape caused by the loading. Stress levels are represented by
colors. To view this as an animation, and for other examples, go to
www.nenastran.com/fea/animations.

Sign up for future issues | Share with a friend Q)

http://www.nenastran.com/fea/animations
https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

45
*r— L 2

PARDISO Parallel Performance

40
35
30
25
20
15
10

Factorization Time (sec)

¢

t

VSS

'

Pardiso

Num

6 8 10
ber of CPUs

WRITE OUT STATUS

[eXoXe!

STR806 = ‘REORDERING’
CALL WRIT1STA(STR806)

PHASE = 11

Qo 0

REORDERING AND SYMBOLIC FACTORIZATION

CALL PARDISO(PPOINTER

N =

MSGLVL,

NFDOF, A, LN, TLA,

, MAXFACTMATRIX, MATRIX, PMTYPE, PHASE,
INTNUM, NRHS, INTPARAMETER,
REALNUM, REALNUM, ERRORSTATUS)

IF (ERRORSTATUS .NE.
IF ((ERRORSTATUS .EQ
1 (ERRORSTATUS .EQ
IF (L .EQ. 1) THEN
AMULTIBLOCK = .TRUE
FREE SPARSE SOLVER MEMORY (IF
CALL FREEPSS
FORCE OUT OF CORE MODE.
INTPARAMETER(60) =
RESET PSS CONFIGURATION FILE.

CALL SETPSSCF(‘RES

Q a0 a0 a0

CYCLE

ELSE

GOTO 307

ENDIF
ELSE

GOTO 207
ENDIF
ENDIF

WRITE OUT STATUS.

Qo Q

WRITE (STR806, 1000) 0
CALL WRITISTA(STR806)

PHASE = 22
NUMERICAL FACTORIZATION.

Qa0

0) THEN
. PSS_0OOC_INSUFFICIENT MEMORY) .OR.
. PSS_INSUFFICIENT MEMORY)) THEN

ALLOCATED) .

2

ET’)

SPARSEMEMALLOC = .TRUE.

CALL PARDISO(PPOINTER

N

MSGLVL,

NFDOF, A, LN, TLA,

, MAXFACTMATRIX, MATRIX, PMTYPE, PHASE,
INTNUM, NRHS, INTPARAMETER
REALNUM, REALNUM, ERRORSTATUS)

C

Figure 4: Factorization time for
the rubber membrane analysis
showing parallel scalability of the
PARDISO solver. Typical nonlinear
transient analyses perform hundreds
of factorizations per simulation.
(Hardware: 2 x Intel® Xeon®
processor £5-2670 2.6GHz, 60.5GB
RAM, SAS; Software: Windows
Server* 2008 R2 64-bit, Intel®
Math Kernel Library 11.0.1.)

Figure 5: Call to PARDISO solver for factorization. Within Intel® MKL there are several ways to call the PARDISO solver.
Here we are first calling it for reordering and symbolic factorization to determine and minimize memory requirements
(PHASE=11). Next we call it for the action factorization that will use the most memory and CPU demand (PHASE=22).
Provisions are made within NEi Nastran* to revert to an out-of-core mode if needed, which will use less memory and

more 1/0 but will result in slower performance.

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel I

us/articles/optimi:

notice.

http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL UNIVERSE

FEA analysis also involves dense matrixes and their multiplication.
The Intel MKL DGEMM routine provides a very fast, scalable routine for
the multiplication of large, dense matrixes. Like PARDISO, it is optimized
for Intel CPU architecture. Eigenvalue analysis is often performed to
determine natural frequencies and mode shapes of structures, as well
as for dynamic response analysis.

PARDISQ implementation is fairly straightforward and uses the sparse
matrix format (storing only non-zero terms) essential for solving
today's large FEA problems. Most FEA solutions deal with large sparse
matrixes. A typical call to the PARDISO solver is shown in Figure 5
where provisions are made for handling matrixes too large to fit into
available physical memory.

T2 Efiech Wisss Vernn Mode Numier

B Dwecton EFeil b iid
=y
¥
|
0
I
]
i ¥
L] PR IL T

i
LIS

i el LN R

L L

5l i

)

g

Burpet Sens BUBC 1, WEWMESTRER

tm.wn HWBI.

S gina sectionsas: broosmring B wlasests for diplay svarted 43
MLFIA BECTIGL. DA Frocwmring bd elessecs for dipler emded
MLFinA BCTIOL AR Froowmssing B4 slessacs for dipley suarced
MLFInA BECTLOL-DARD Frooesring B oelessece for dipler emded
il | s
Figure 6: The NEi Nastran Editor* showing the stress contour on a section of a ship.
Dynamic analyses allow multiple ways to interrogate results including 2-d and 3-d plots.
~)
Figure 7: A comparison of the
DGEMM Parallel Performance modal extraction time for the ship
section. Ten modes were extracted
700 during the analysis. (Hardware:
¢ ¢ Intel® Core™ i7 860 2.8GHz, 16GB
600 ¢ RAM, Samsung 830* Series SSD;
T Software: Windows* 7 SP1 64-bit,
a Intel® Math Kernel Library 11.0.1.1)
YL 500 Y
8 Non-DGEMM
= 400
c
2 300 -
S DGEMM
i 200
w
100
0
0 1 2 3 4 5
Number of CPUs
- %

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

a0

Q

N =

STR801 = ‘EXTRACTING EIGENVALUES FOR SUBCASE '’
//SUBCSTR (1:NCHARSUBC)//’ ITERATION *‘
//ITERSTR(1:NCHARITER)

STR802 = ‘VECTOR: 1 PERCENT COMPLETE: 0’

CALL WRIT2STA(STR801, STR802)

IC =0

CALCULATE THE PROJECTIONS OF A AND B.

N

CALL ASOLNEGS(UU, A, ADIAG, LA, NA, EIGVEC, NSOL, INCREMENT,
IC, INTERVAL, NC)

CALL DGEMM(OPXT, OPXN, NC, NC, NN, ONE, EIGVEC, NDOF, UU, NDOF,
ZERO, AR NC)

DO J=1, NC

DO K=1, NN

EIGVEC(K, J) = UU(K, J)
ENDDO
ENDDO

CALL AMULTEGS(UU, A, ADIAG, B, BDAIG, EIGVEC, LA, NA,
SHIFTFLAG, SHIFT, INCREMENT, IC, INTERVAL,
NC, ‘B’)

CALL DGEMM(OPXT, OPXN, NC, NC, NN, ONE, EIGVEC, NDOF, UU, NDOF,
ZERO, BR NC)

IF (.NOT.(CONVERGED)) THEN
DO J=1, N
DO K=1, NN
EIGVEC(K, J) = UU(K, J)
ENDDO
ENDDO
ENDIF

Figure 8: DGEMM call. DGEMM is optimized for large/dense matrix multiplications. In the above subspace eigensolver
routine, DGEMM is used to expand eigenvectors from modal to physical space. Matrix sizes range from a square matrix
of 10 to 1,000 rows and columns being multiplied by a rectangular matrix of 10 to 1,000 by 1,000 to 1,000,000. OPXT
and OPXN are variables that define if the matrix or matrix transpose should be multiplied. NC and NN are the matrix
dimensions where NN (the model size in degrees of freedom) is typically much larger than NC (the number of eigenvalues
to be determined).

Qo Q

[eXeXe!

PHASE = 33

SPARSE FORWARD AND BACKWARD SUBSTITUTION.

N =

CALL PARDISO(PPOINTER, MAXFACTMATRIX, MATRIX, PMTYPE, PHASE,
NFDOF, A, LN, LA, INTNUM, NRHS, INTPARAMETER,
MSGLVL, S, X, ERRORSTATUS)

DEALLOCATE (LN)

IF (ERRORSTATUS .NE. 0) THEN
IF (ERRORSTATUS .EQ. PSS _INSUFFICIENT MEMORY) THEN
GOTO 307
ELSE
IOSTATUS = ERRORSTATUS
GOTO 207
ENDIF
ENDIF

UNPARTITION X.

CALL VSPR2GLB(X, V, LP)

Figure 9: Call to PARDISO for forward/back substitution and solution. Once the matrix is factorized, as shown in Figure 5,
it can be repeatedly solved for various load cases or right-hand sides. It is more convenient and optimal to do this in FEA,
especially in nonlinear analysis where many of these forward/back substitution calls are needed.

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel len-us/articles/optimization-notice.
g g p p p P

http://software.intel.com/en-us/articles/optimization-notice

DGEMM implementation is also straightforward. A typical DGEMM
call is shown in Figure 8. Here the multiplication can be performed on
very large matrixes. In this example, two rectangular matrixes of size NC
x NDOF are multiplied to form a square matrix of size NC. NC ranges
typically from 10 to 1,000 and NDOF from 1,000 to 1,000,000. In
Figure 9 we show that the call to ASOLNEGS also uses the PARDISO
solver, and its fast backsolve performance further takes advantage
of Intel MKL.

In summary, FEA technology gives engineers the ability to examine
structures with an incredible degree of thoroughness and flexibility.
They can consider structures with complicated geometry, explore
designs using new materials with nonlinear properties, and determine
the effects that a variety of service conditions will have, including
environmental forces like wind and earthquakes. Fast and accurate
solutions are essential in this endeavor. Intel MKL PARDISO and DGEMM
routines have been very effective in reducing analysis time, while
allowing for larger model sizes and complexity. This increases analysis
accuracy, while maintaining analyst productivity. It is hard to think of
an engineered product category that has not been touched by FEA
technology. The benefit has been new levels of product performance
with exceptional quality and reliability. O

Read the blog:
Transforming Product Engineering: Fast, Accurate Finite Element
Analysis using NEi Nastran

“The result is a productive and
insightful design process that
brings a cascade of benefits
and savings across subsequent
steps in the product development
cycle—fewer prototypes, less
physical testing, and a reduction
in the number of design iterations
before release to manufacturing.
The upshot is lower costs, faster
time to market, and better
quality products.”

THE PARALLEL UNIVERSE

SLOG

highlights

But Will It Scale?
JACKSON M, (Intel)

Has this ever happened to you: You work tirelessly to

add threads to your serial code, all your correctness tests are
passing, and your application is zooming along almost twice
as fast as the serial version on your 2-core machine. Now your
friend sees your results and would love to run your program
on his machine which is fully loaded with four cores that are all
equipped with Intel® Hyper-Threading Technology (that's eight
“logical” processors). You're expecting your newly parallelized
application to be blazing fast on his machine, maybe even four
times faster than it was on yours! But to your dismay ... it runs
the same speed as it did on the 2-core machine. What's going
on? One possibility is that you have a scaling problem.

A scaling problem arises when parallelized software isn't
designed to take advantage of more cores when they are avail-
able in the hardware. For example, task-level parallelism, where
a predetermined number of jobs are assigned to the threads,
will never scale to core counts beyond the total number of
jobs created. There just isn't enough division of labar to take
advantage of more hardware.

Creating parallel software that scales is essential to developing
applications that will remain relevant and competitive as hard-
ware evolves without a major redesign effort. Intel® Advisor XE
can give you confidence that your newly parallel solution will
scale to higher core counts BEFORE you invest the time into
threading your code.

SEE THE REST OF JACKSON'S BLOG:

Visit Go-Parallel.com

Browse other blogs exploring a range of related
subjects at Go Parallel: Translating Multicore
Power into Application Performance.

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers
http://software.intel.com/en-us/user/434821
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers

l///

ik i gy 7
JJIIHHI B
L

§ “i

g |
e B mee - 4

.

PARALLEL POWER

Opt\m\ze Software !

for Intel® Xeon Phi” Coprocessors

This article outlines a software optimization methodology appropriate
for applications currently optimized for Intel® Xeon® processors and targeting
Intel® Xeon Phi™ coprocessors.

by Amanda Sharp, Technical Consulting Engineer, HPC Compiler Support, Intel

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Overview

The Intel® Xeon Phi™ coprocessor is a highly parallel
processor, based on Intel® Xeon™ processor architecture extended with
up to 61 cores and a 512-bit wide vector engine. Both processors
share common programming languages, coding techniques, and software
tools. Optimizations already implemented in software running on Intel
Xeon processors also benefit applications running on Intel Xeon Phi
coprocessors. By following the steps below, your application may yield
even more performance gains.

Code Optimization Recipe

1. Determine Suitability: Verify that the application meets the
requirements for good performance on a highly parallel architecture.

2. Choose an Execution Model: Send computations from the host system
to the coprocessor or run the application directly on the coprocessor.

3. Tune the Code: Use parallelization and vectorization techniques to
tune the code for Intel Xeon Phi coprocessors.

1. Determine Suitability

When targeting a highly parallel architecture, you will need to determine
if your application or a sufficient portion of your application is likely
to run optimally on the target. Applications that can make effective
use of the considerable hardware resources available on Intel Xeon Phi
coprocessars generally have the following characteristics:
> Highly parallel algorithms scalable to a minimum of 100 threads:
Each processor core supports four hardware threads. At runtime, a
typical application may have more than 200 active threads. Your parallel

implementation should show close to linear scaling up to the maximum
number of CPU cores.

> A significant amount of efficiently vectorized code: Each processor
core contains a vector processing unit (VPU), the main source of
computational power. Your vectorized application should deliver significant
speedup when compared with the non-vectorized implementation.

Suitable algorithms typically spend at least S0 percent of execution
time in parallel and vectorized code segments after optimization. If
your application is already highly parallelized and highly vectorized
for Intel Xeon processors and it meets these criteria, you are ready to
select an execution model and tune your code.

2. Choose an Execution Model

An Intel Xeon Phi coprocessor can be programmed as a coprocessor(s)
or as an autonomous processor. The appropriate model depends on
application and context.

THE PARALLEL UNIVERSE

Heterogeneous Execution

Heterogeneous (offload) execution occurs when the host system
executes scalar portions of the application and delegates parallel
segments to the coprocessor. The host and coprocessor do not share
memory, thus all data exchange happens over the PCI-E bus. The Intel®
C/C++ and Intel® Fortran Compilers support language extensions for
offload, based on C++ pragmas and Fortran directives. This includes
extensive support for data allocation and marshaling, including
overlapping data transfer with computation. The Intel C++ Compiler
also supports a second model that creates and manages a virtual
shared memory system for C++ applications.

The Intel® Compilers automatically detect offload language
extensions in your code and create a binary that runs on both the host
and the coprocessor. See The Heterogeneous Programming Model
for more information about offload programming syntax. Effective
Use of Compiler Features for Offloading is a comprehensive article
on effectively programming Intel Xeon Phi coprocessors that includes
tuning tips.

Native Execution

Native execution occurs when an application runs entirely on the
coprocessor. Far best performance, a native application should have
very few serial segments, limited I/0 usage, and be smaller than the
physical memory on the coprocessar. Intel Xeon Phi coprocessors run a
Linux*-based operating system. Use the Intel Compiler option —mmic
to compile and generate a binary for the coprocessor. Then, connect
10 the coprocessor via a secure shell, copy the required binaries to the
coprocessor, and run the application. For more information, refer to
Building a Native Application for Intel® Xeon Phi™ Coprocessors.

3. Tune the Code

There are many techniques for tuning code for Intel Xeon Phi copro-
cessors. The amount of performance gain you experience depends on
your code and the number of techniques you use in your application.

Efficient Parallelization

Intel Xeon Phi coprocessors support four thread contexts per core.
Given the large number of cores, implementing efficient parallelization
1o take advantage of all parallel resources is the key to maximizing
performance. This usually requires the use of at least two threads

per core. Here we will discuss key recommendations for OpenMP*
-based code.

REDUCE SYNCHRONIZATION COSTS

Remove or reduce any use of barrier synchronization, locks, and critical
sections in your code as far as possible, consistent with correctness.
Use reduction operations where possible.

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/the-heterogeneous-programming-model
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors

THE PARALLEL UNIVERSE

LOOP SCHEDULING

By default, the runtime library implements static loop scheduling,
which may not be ideal for some applications. Workloads that run fine
with eight or sixteen threads can exhibit significant load imbalance
with static loop scheduling over a large number of cores. Try specifying
different loop scheduling algorithms and chunk sizes to improve
performance. In some cases, using the OMP collapse clause can help.

THREAD AFFINITY CONTROL

Thread affinity can have a dramatic effect on the execution speed of
a program. Determine the optimal number of application threads. Try
different numbers of threads from N-1 threads to 4 x (N-1) threads,
where N is the number of physical cores on the coprocessor. Use a
maximum of N-1 threads to avoid scheduling worker threads on the
coprocessor core that runs the OS and offload services.

Keep in mind that the default values of OpenMP parameters may
vary between host and coprocessor, and between offloaded and native
execution. You can use Best Known Methods for Using OpenMP*
as a guide. Intel® Composer XE supports a variety of parallelization
methods for Intel Xeon Phi coprocessors. See the article Efficient
Parallelization, OpenMP* Thread Affinity Control for details.

Vectorization

Intel Xeon Phi coprocessors provide a wide vector unit for processing
highly data-parallel workloads. The techniques below will help you to
take advantage of the specialized VVPU, which is essential for optimal
performance.

DATA ALIGNMENT

Data alignment is very important for Intel Xeon Phi coprocessors.
Using proper data alignment will streamline the process of loading and
storing data. There are two steps:
1. Align your data on 64-byte boundaries. For C and C++, use
__attribute ((aligned(64))) forstatic arrays and

~mm malloc()and mm free () for managing dynamic data.
Compile Fortran applications with —align arrayé64byte.

2. Alert the compiler that data are aligned so it can generate
vectorized code. One method is to insert pragmas/directives before
aloop. For Cand C++, use #pragma vector aligned or for
Fortran, !dir$ vector aligned.

MEMORY ACCESS PATTERNS

Non-unit-stride memory accesses can lead to inefficient vectorization
and can have considerable impact on performance. This occurs when
consecutive iterations of your inner loop access memory from non-
adjacent locations. This pattern may also cause cache misses if the
data elements come from different cache lines. Adopt vector friendly
data structures and algorithms that maximize use of unit-stride
vectorization in all hotspots. In some cases, use of vector array notation
can help. In other situations, you may have to change the data layout
from “array of structures” to “structure of arrays.” For more information
on this topic, refer to Memory Layout Transformations.

ENFORCEMENT

The SIMD pragma/directive (#pragma simd orldir$ simd with appropriate
clauses added) is a powerful feature that tells the compiler to vectorize
aloop. By default, the compiler attempts to vectorize innermost loops
in nested loop structures. However, if an outer loop contains more
work, a combination of elemental functions, strip mining, and pragma/
directive SIMD can force vectorization at the outer level. You can use
the Intel Compiler Vectorization Reports as a guide.

ADVANCED OPTIMIZATIONS

Advanced optimizations, such as data prefetching and use of
streaming stores, can improve performance of your application. Using
the appropriate floating-point options, while considering performance
VS, accuracy tradeoffs, can have a big impact on performance. For
more information on these topics, refer to Advanced Optimizations
for Intel® MIC Architecture.

Summary

Applications targeting highly parallel architectures must be able to
leverage extensive hardware resources. Once your application is
optimized for Intel Xeon processors, you can maximize performance
on Intel Xeon Phi coprocessors by following a straightforward code
optimization methodology. First, ensure that the application can benefit
from execution on a highly parallel architecture. Then, select the best
execution model for your application and use the recommended opti-
mization technigues to tune the code. To learn advanced techniques,
including code examples, please review the article Compiler Methodology
for Intel® MIC Architecture. For more information, visit the Intel®
Developer Zone for Intel® Xeon Phi™ Coprocessors. [J

“Applications targeting highly

parallel architectures must

be able to leverage extensive
hardware resources. Once your
application is optimized for
Intel® Xeon® processors, you can
maximize performance on Intel®
Xeon Phi™ coprocessors by
following a straightforward code
optimization methodology.”

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel I [articles/optimizati tice.

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/memory-layout-transformations
http://software.intel.com/en-us/articles/vectorization-and-optimization-reports
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

THE PARALLEL UNIVERSE

r‘ in te|®) inside”

AL ! v

| Xeon Phi

Unleash

Intel” Xeon PhI”

Coprocessor Performance

by Todd Rosenquist, Technical Consulting Engineer, Intel® Math Kernel Library, Intel Corporation,
and Shane Story, Manager of Intel® MKL Technical Strategy, Intel Corporation

The Intel® Math Kernel Library (Intel® MKL) makes it easy for
users to realize the performance benefits provided with each
new processor including the new Intel® Xeon Phi™ coprocessor.
Those who have not used Intel MKL before should look for
opportunities to use its optimized kernels rather than tuning
their own. Those who use Intel MKL can take advantage of
support for natively optimized functions for the Intel Xeon
Phi coprocessor as well as functions that automatically
detect and make the best use of all the processors and
coprocessars on the system—a model we call Automatic
Offload (AQ).

Intel MKL AQ mode is simple to use. You start by linking
with Intel MKL as you do now, and either callmkl mic
enable () inyour program or set MKL_MIC_ENABLE=1
in your environment. Subsequent calls to Intel MKL linear
algebra functions with large computation-to-data ratios will
internally assess the total hardware resources available, and
automatically distribute the computational work across them.
This means that all the required data transfer is transparently
done for you. In addition, functions that used to run only on
the multicore processor now benefit automatically from the
added computational power of the Intel Xeon Phi coprocessor.
An added bonus is that the Intel MKL AO mode can be used
with any compiler. i

The natively tuned functions in Intel MKL can be used in
multiple ways. You can code your program to offload these
functions to the coprocessor using the pragmas supported
by the Intel® compilers—called compiler assisted offload (CAO).
Or, you can compile the whole program and run it by logging
in to the coprocessor as described in the adjacent article.

With the introduction of Intel Xeon Phi, Intel MKL remains
a key ingredient in unleashing the performance of Intel®
architectures in real-world applications. Intel MKL provides top
performance for the high-performance LINPACK benchmark,
used to characterize the performance of the world's fastest
Top500 computers.

Learn more about programming for the Intel Xeon Phi
coprocessor at: http://software.intel.com/en-us/articles/
intel-mkl-on-the-intel-xeon-phi-coprocessors. O

|
= T |

- 'I iu_i I .|.-_ i .

LA ERLE] -

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors
http://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors

THE PARALLEL UNIVERSE

Il..l.-l"-‘
LA I TTTY
LT T
L]

[CT ISt It
T T LI I -
SENREEERE AR EEEERRERE

une OpenM

APPLICATIONS

by Alexei Alexandrov, Senior Software Developer, Intel

intel 1 Iarticlac/antimirath o

18 For more information regarding performance and optimization choices in Intel® software products, visit http://

http://software.intel.com/en-us/articles/optimization-notice

S AaREEE
ENREE AR
SRR
STRTERT T LT |

A

o

L

N

L1

S LEL L L L 1T |
TIItrI I
AELEL L LT 1]
AL EL L R T L L]
I EFEEERERE
A RLEL LR LT |
EEFEEERERE
L L L LA LY
S ELLL L YT 1]
AL LLL L L LY |
FRRRRRERRR
i FEEEEEEE
.
STETE A RT IO
i EESEEEE
L L L L L L LY |
SLEITITTYT 1T
A LEL L L LY]
EEEREREEER
idgERaEEEE
iR EREEEEE
...
igaEEaEEEe

1
.a‘lll'.]r
THE PARALLEL leﬁﬁn!{.::,+:,

L []
' I!rl""'ll"
[

,jqasa®

sann®

I

jlill..-

aasanni

HTEE

1L HITHRH
.-n-:::: L

::::l-l- Ll

e e =Y

-Il:

=

e iy

sEE .'.'-.

il sttt e
(11} ML

sas e

H i

aes L LT

T T T i it
(21

-4 |'-l|illi--‘|"'.-

aEFE .

S (1111
sERiAEERRERER

HH T L

aEE ERRREERARE R RERE

=== sERERRENERRIRRERRD

[T T] dlRRNEEEEERARRERARN

HH L tERERRRRRERRRRREE

el ARRERRRRRRRRRERRNS

LLLLLE LR TTH]

i 2T W?i}-ulff
o i
Y,

¥ i

o,
L0 O
el 1 ALEXEI ALEXANDROV

Senior Software

Developer

Vo -

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

High performance computing (HPC) has a long history and today
is critical to business, research, and science. Clusters consisting of thousands of
machines help enable many advances of modern science with both theoretical and
practical implications, working 24/7 to enrich the lives of every person on earth.

HPC parallelism is exploited in three levels: process, thread, and SIMD vectorization
(including auto-vectorization, for example in the Intel® compiler). For process-level
parallelism, the Message Passing Interface (MP) is the de facto standard in the HPC
industry. For thread-level parallelism, the OpenMP* programming model is prevalent
in the HPC community, and other models—such as Intel® Threading Building Blocks
and Intel® Cilk™ Plus—are gaining traction. While Intel® VTune™ Amplifier XE supports
all of these paradigms, this article will focus on useful techniques for profiling HPC
programs that use OpenMP.

The examples shown are collected from an OpenMP application running on
an Intel® Xeon Phi™ coprocessor, but the techniques used are valid for tuning all
OpenMP programs. The examples use Intel \VTune Amplifier's command line to collect
data, as this is the most common way to gather data on systems with Intel Xeon
Phi processors. But you don't need to worry about learning all the switches. The
graphic user interface (GUI) is commonly used to set up the analysis and generate a
command line that you can cut and paste.

= FHMSd KNG - T T i E I A~ D

dirpaping: | Theman ; Furnetion 1 Call Sack

Hanrwane: Eseal Doust by Hand. -

Thessd | Furchon | Ll Slack

TEwee Ja L 241]
Tirreaa o L)
Thrsmt dal: Ted
Trweaa eda Lo T}

el
Rl ke
S G DOy

Thre =1 |

i 00000 203
Thrmaa o Lol

2500 M

i Y83.003 003

L ITR00 Y

| 2300 600 000

R ST

FELAT T

LI Rl 0 P02 el D O
Tt idm L AT] L3 &40 (i 0| 3455000 G00
Thrisda (e LETEA) L7 el D00 D00 | 3 0Tk R Gk
Thoread (e LL T B0 1] L 10 R R
THarmd (0 L EW0Y 0050, 000 000 | EST T

Thwesi dda LCTLl
Thaat! (30 LC5 7

FThreaa idx Lo]

¥ Threas (0x 1439 01, a0 000 1] rax
FThread idulcidl LR] ¥ TR
F Thiroas (3xLeell 401 a0 000 1} bk)
FThread (dwLcE2i 30 o0 DD ¥ Lrar

e - B e,

Ealected B4 rowink | B38.37T3.000,508 153 776,500,5.

k

Figure 1: Using grouping and filtering to analyze the balance of an OpenMP*
program with Intel® VTune™ Amplifier XE.

£

Profiling OpenMP programs with
Intel VTune Amplifier XE

We'll begin by walking through a simple scenario
of collecting and analyzing performance data for an
OpenMP program. This will include three steps:

1. Collect the data using a command-line interface.

2. Analyze the data using an interactive GUI, with
examples of capabilities such as filtering and loop
analysis.

3. Generate the hotspot profile using an Intel \VTune
Amplifier command line interface. This is often useful
for automating performance regression testing or
feeding the data into another program.

In'step 1, to profile a program that uses OpenMP on
an Intel® Xeon® processor-based computer, you can use
any of the supported analysis types, just launching the
data collection as usual:

$ amplxe-cl -collect hotspots --
~/sp.A.x

or using hardware event-based sampling analysis
types to profile a program executed on an Intel Xeon Phi
COProcessor;

$ amplxe-cl -c knc-lightweight-
hotspots -search-dir all:p=/1lib/
firmware/mic -- ssh mic0 ~/sp.A.x

The search directory is specified here to make sure
the Intel Xeon Phi runtime binaries can be found on the
host during result post-processing.

In step 2, having collected the result and opened it
in the Intel VTune Amplifier X GUI, you can begin your
analysis. For an OpenMP program, it is a good idea to
start looking into data by grouping the data by threads
in the Bottom-up view. To do this, select a thread-based
grouping in the Grouping combo-box above the grid
(Figure 1). Selecting several rows in the grid allows
you to easily see the number of selected threads and
the summary statistics for them—this is useful for
understanding how a given team of threads behaved.
By right-clicking the selected items, you can also filter
in or filter out the selected data. Combined usage of
grouping and filtering allows you to dice and slice the
data as needed. The filter feature is particularly useful
for filtering out the time spent in the OpenMP runtime
library to see the pure contribution of the user code

Tan.tic/artinlac/antimiratinn.nat

20 For more information regarding performance and optimization choices in Intel® software products, visit http://

http://software.intel.com/en-us/articles/optimization-notice

on overall performance. For example, Figure 1 shows that the user
module only contributed 14.5 percent of CPU cycles; the rest of the
cycles were spent in other modules, mostly spinning because of non-
optimal CPU affinity and the number of OpenMP threads running.

In the case above, using the thread grouping revealed that only
64 software threads were effectively executing the user code—
although there were 244 hardware threads available since this is an
Intel Xeon Phi coprocessor with 61 cores. From the program source
code, it became clear that the available parallelism is limited by one
dimension of the input problem size, so that the program needs to
be changed to adopt the higher available parallelism. Or, at the very
least, the affinity and number of OpenMP threads to use should be
set to match the workload properties. Setting KMP_AFFINITY to
“balanced” and OMP_NUM_THREADS to 64 indeed provided better
execution time and better balance between the threads. Since the
Intel® OpenMP Library actively uses spinning instead of waiting,
the CPU time spent outside of the user module (and usually in the
OpenMP module) is a common indication of imbalance or excessive
serial execution. You can also choose grouping by Core to understand
the program balance in terms of hardware cores. This is often useful
to understand the performance of Simultaneous Multithreading
(SMT) parallelism (Figure 2).

Having identified and fixed high-level balance and overhead
issues, you can narrow down to function-level analysis (Figure 3).
When using the Intel compiler together with the Intel OpenMP
implementation, the OpenMP region bodies are conveniently
aggregated into pseudo functions with names like compute
rhs_Somp$parallel@17,so thatit's easier to distinguish the
time spent inside and outside of the region body. For instance, in
this case the name reads as “the OpenMP Parallel Region at line 17
in function compute_rhs.”

Knowing a hot function, you can dive into its C, C++, or Fortran
source and assembly to identify which source lines were taking most
of the time and which assembly code was generated by the compiler
for them. Understanding the latter often provides guidance for how
you should direct the compiler to vectorize the inner loops. Starting
with version 3.0, Intel VTune Amplifier XE also helps you understand
the structure of the program in terms of loops (useful for loopy
HPC codes). To enable that mode, switch the “Loop Mode" to “Loops
and functions" in the GUI filter bar (or use "-loop-mode=loop-and-
function” in the amplxe-cl command line interface). The top-down
view will show the looping structure of the program (Figure 4). In
this example, we can easily see that the OpenMP region function has
a loop at line 295, which nests to loop at line 296, and then to loop
at line 297—with the latter loop being peeled by the compiler as part
of the vectorization process. This is identified by observing two loop
instances belonging to the same source line. Note that the first of
the peeled instances takes the larger fraction of the time, since the
second instance is a remainder loop with a small iteration count.

THE PARALLEL UNIVERSE

Grouping: | Core [Thread / HAWW Context J/ Fundction § Call Stack
Core / Thread / HW Context Hardware Event Count by H
Function / Call Sgack CPU_CLE U..~ INSTRUCTIO...
(coe0 | 53500.000.000| 7.440.000.000 |
Peore 5 51,320,000.000 7,360,000,000
P core_2 51, 120,000,000 7,400,000,000
beare 4 51, 1200000000 7,320,000,000
Peore 1 50,520,000.000 7,540,000,000
P care_3 S0, 720,000,000 7.480,000,000
P eare 15 28, 360 000,000 4.940.000,000
Peore 32 28. 180,000 000 4,980, 000,000
B core_7 28,080, 000,000 5, 200,000,000
b eare 19 28,020.000,000 4.900,000,000
Peare 13 28020000000 5, 140,000,000
P core_25 27 620,000,000 &, 960,000,000
PFeare 17 27.7600000,000 5.020.000,000
Poome 9 27.740,000,000 S, 080,000,000
P eare 23 27 R0 000,000 5, 200,000,000
P eare 24 27 600,000,000 4 860,000,000
Peare 18 27,540,000, 000 S, 020,000,000
b eare 21 27 500,000,000 5,080,000,000
beare 8 27 400 D00, 000 4,000, 000, 000
Poore 11 27 490,000,000 4.820,000,000
P core_10 27 4900000,000 4 BA0,000,000
b eare 6 273000000000 4, 700,000,000
Poome 12 27,260,000, 000 4,540,000,000
Sefected 1orowis): $3,900,000,000 7,440,000,000

| T nRAa

Figure 2: Using grouping by Core to understand the hardware
core balance.

“Applications targeting highly parallel

architectures must be able to leverage
extensive hardware resources. Once your
application is optimized for Intel®* Xeon®
processors, you can maximize performance
on Intel®* Xeon Phi™ coprocessors by
following a straightforward code
optimization methodology.”

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

Wik

Lo m et =
P
scnahyrin Type | |1 Collection teg || B Summasy B Unceew ivents | | %

Sy I"J-:h-'.l!'.i e j

runsa_knc - H vware: Cywesnl il

Ited WTune Amplifier Xg 2013

B Anshmin Tasged Togp-down Tree| | B Taaks sod Frames

asrchwar e (et Comund by e - -

s PO . w BF | INSTRLICTRO...
BT

Bt =0 oy kel 21 | . A%, | el crenite rhet Bl e B 17 i
= ¢_pohee_fompidcu el o @111 | bESEM,000,000 11300000000 eua & _tiber_Borrgrboar oo _toe @31 £ _tusber ¥
oy poir_jompiparalel_for @37 | B, Sran D0E), 000 30, D 000,000 oAl K v achve dompdaaralel o BT ¥_achee.f
= n wier jorpiowold foegld | 136, 500,000,500 5,670,000,000 A ¥ _soker_forpioaralel fr BT _gobvi
= et _Somdng sl _for@1T 15, 500,000,000 T 850,000,000 kK etwr_Sompicarsls_for B0 [r. A
= trer foeyifce abe o QO 11, 500,000,000 2630000000 gk v forpdparalel Fn@rT tarrer . f
= add_Earpdpa abd_For 1% | 11,230,000.000 20000000 spk.x k] _ oy iearallal_for B0 okl
w ey fempicarsls for @00 L, FEl OO0 OO0 B, TP OO0 000 Ak rarr oo sl b 00 marrr. |
- — P P i B W il i S ey LI W R, I — e . e il e 0 WY —
Selacted 1 rowiel | 1, 100,000,000 41,800,000, 000 b
[l K ¥ .
st R ENE RN RE 0N IR0, Wl SR 00 IO R N | Sl
vead (0) | o 1 e i s 1] it 1 . e - e e e] st i st s, s . e i B r-d-“m"r
s 0w D) B e T T e e
i ‘ﬂ kst b

Figure 3: Function-level hotspot view.

o misepliFl o

=

s £ 0

B Cobectaon iog

= runsa_kong: - Hardveare Event €

Imtel VTune Amplifier XE 201 3

B fammary| | E#l Ivents || [acoes Dvents B Tasks and Frames
Hardhwart Everldl Courd:Te & |h.“.,r N — ..l

B Anabysis Target Anchesi Typr

Coll Srach T
R R - | Worvesrn 4 1edi4 b
Todal 50 200, 000, 000 I
reinuate_rhi_ o foa sl T 178,110,008, o0 | 0% (540,000,000 of 17,800,000,0000 |
+ Lo P11 3T gl e T compute ctn_foepdpur sl i@ F) w4, 150,008,000 4 :

! [l 1 i b L0 i coeTgme_rhe_ o b sl LT 5,570,000, 000 I i 7 | ot 4L e | 8 et 0 i cimpite
= e B IER a 1 covente b _Borerion sl 17 | msmnmoni B AR copefi it ICEISS) o ey A I, commpute.
[loop e 13 wt Bne 256 I compute_rhe_lomprioar kel L7 | »,5%000.008 o o a4 L15TH 88 e 75 0 comput
v LoopiDomd] #al ol ine 79 compute_ it fompineraleio 11 | MAmoon o0l b Tepute e fompoian el 8 7 0 LS00, ¢
H [Leogrilihcd 1 30 ok e FiFin compule_rke_Somsdoarale §117] A A 00, 00
¥l fLoop St $70 ot ne 17% m compuite rhe_fomprdiparallel @ £ 7] e T]
Lo Btn-a1 2t a1 ke T8 A dompule i sl skl 811 14,650 1558, 553 1

L e By 8 8 TR, S — T

'

Mapkgpand 1rimi: |

B o, e,

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel I

Figure 4: Using loop analysis to understand the looping structure of the program.

us/articles/optimi

"
10tice.

http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL UNIVERSE

The timeline view can be used to narrow down the scope of the data to a specific time
region. For example, to skip the program startup “cold” phase or to magnify the data into the
execution of specific region. Using the ITT API, supported by Intel VTune Amplifier, to mark
up the program execution may be useful for the latter. When viewing results that ran many
threads, use the “Tiny" mode of timeline bands to easily fit more data onto your display:

[n 1% » 1% - e = f-::j
: - , , | il RS
Picrmal LT -
Tr = i T —T e —r1- ¥ Rich Ewenis
: —-||

Figure 5: Using tiny mode for timeline bands to view many-thread data over time.

Finally, in step 3 of our simplified optimization flow, it may be useful to automate the hotspot
extraction using the command line interface (e.q., for automatic performance regression
testing). Most of the capabilities mentioned above can be used from the command line. For
example, here you can see how to output the ten top hotspots grouped by thread and function,
filtered by a specific module and time region, and with loop analysis on:

$ amplxe-cl.exe -R hotspots -loop-mode=loop-and-function -filter module=sp.A.x -1limit=10 -group-by
thread, function -r <result directory path>

Thread Function Module CPU Time:Self
Thread (0x2cd3) [Loop@0x4136al at line 297 in compute_rhs_S$ompS$parallel@l7] sp.A.x 0.394
Thread (0x2cd5) [Loop@0x4136al at line 297 in compute rhs Sompparallel@l7] sp.A.x 0.385
Thread (0x2cb5) [Loop@0x4136al at line 297 in compute_rhs_ Sompparallel@l7] sp.A.x 0.376
Thread (0x2cd7) [Loop@0x4136al at line 297 in compute_rhs_Sompparallel@l7] sp.A.x 0.376
Thread (0x2ccl) [Loop@0x4136al at line 297 in compute rhs Sompparallel@l7] sp.A.x 0.358
Thread (0x2ccb) [Loop@0x4200d8 at line 294 in x_solve_ompparallel for@27] sp.A.x 0.358
Thread (0x2ca2) [Loop@0x4136al at line 297 in compute_rhs_S$ompS$parallel@l7] sp.A.x 0.349
Thread (0x2ccf) [Loop@0x4200d8 at line 294 in x solve $ompS$parallel for@27] sp.A.x 0.339
Thread (0x2cd2) [Loop@0x4200d8 at line 294 in x_solve_ompparallel for@27] sp.A.x 0.339
Thread (0x2cab) [Loop@0x4136al at line 297 in compute_rhs_S$ompS$parallel@l7] sp.A.x 0.330
Figure 6
Conclusion

The Intel VTune Amplifier XE techniques described here are useful for diving into performance
analysis of an HPC program, but there is still more to learn. The product documentation and
online resources (see the Intel Knowledge Base) can provide further information on the features
of the product, including MPI program analysis, loop and inline function analysis, ITT APl usage,
performance analysis automation using command-line reporting, and many more. The techniques
were illustrated using an Intel Xeon Phi coprocessor, but apply equally well to an Intel® Xeon®
system. One nice benefit is that tuning to improve the parallelism in your application usually
yields performance benefits when running on both Intel Xeon processors and Intel Xeon Phi
coprocessors: a double win! [

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

T =IE

24

Expand Your

Debugging Options

by Nicolas Blanc, Software Engineer, Intel
and Georg Zitzlsberger, Technical Consulting Engineer, Intel

Overview

Execution of typical applications for the Intel® Xeon Phi™ coprocessor is distributed among
the host and one or more coprocessors. In general, there are two basic domains for Intel
Xeon Phi coprocessor-based applications:

> Heterogeneous applications that execute seamlessly across the host and selected
coprocessors using either the explicit or implicit offload model

> Applications solely executed on each of the available coprocessors, using the so-called
native model

Developing and debugging applications in both native and offload models requires
dedicated support. Intel® Parallel Studio XE 2013 for Linux* provides a range of solutions,
along with ease of use and full awareness of the Intel Xeon Phi architecture. Vendors, such
as Allinea or Rogue Wave, enrich the Intel Xeon Phi environment with further debugging
options. Thus, developers for Intel Xeon Phi can select among many debugging options,
depending on their field of application. Next, we'll ook at a selection of Intel debugging
solutions, grouped by the two typical domains.

@] -
[iw [id Ml favigeis Segerh Fropmd fen Finiew Hela I
. & o e Qe s ' a = [EREEA *
P oamergad Orh S " T =0 e Dy it ~ |
i - %
vl Law w1 5 oy bad
g Tl b1, WF. b (The | |Fmea R - (8
LT RETE i . g el DyrlpoH CEA s s e
[T P, = -
all JOFF = & Tremad |11 1o [rare: e
e TR T
h_',' s B gl g e 0 PR
- iLE 11a
val = -l i : 1 P g e——
—— | - i
- v g Trwpng 1] 100l [1ore md
o - 3 | = vl 51 108N [-
sl - == - 5 Thread 4] 10T Jimen e
¥ LS5 | 3 L 5 Thrmad
i ol i B i g6 Tremad | 5] 140 " -
e =L kD B 1 181 1 am Tremad (6] 16k] Goees
i TR T TR T
ey i - + o Tremsd |17 10040 Foers: maca) I8
- = | -]
o 1 1 C ¥]
[&} [=] & e =0
-l 5 Caraes AR . I | S o
e e e =] il Ml Dalgal [s & (i iplinit] inlry. Barmpiel Se
L amy | el =
el L T - N I
P, sy | i |
[FLTR] = =
=
4]) AL L
Figure 1

| |
|E Bl | v !

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel I

Offload Model

There are two different offload models:
explicit and implicit. Both provide a
simple, yet flexible programming
environment to develop applications
running on the Intel Xeon Phi copro-
cessors and host systems. An offload
application comes as a single executable
file containing both host and target
code. Detection of available coprocessors,
including data transfers, is automatically
handled at runtime. Therefore, work
packages are scheduled transparently
among any coprocessors and the host.
In case no coprocessor is available, the
execution remains entirely native on
the host system.

The programming flexibility makes
debugging with standard tools more
complex. Therefare, Intel Parallel Studio
XE 2013 for Linux provides an Eclipse*
debugger plugin with full awareness
of both offload models. This allows
instant debugging without further
configuration. Using Eclipse as an inte-
grated development environment (IDE)
provides an easy-to-use, well-known
graphical interface for this debugger.
The integration also offers scalability
up to hundreds of threads on multiple
coprocessors for C, C++, and Fortran—a
necessity for Intel Xeon Phi because of
its manycore architecture.

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx

Native Model

For the native model—where applications run exclusively on the coprocessor—different
debug solutions are provided by the Intel Parallel Studio XE 2013 suite for Linux. Here,
development takes place on one system while the created applications are running on a
remote coprocessor. Such a coprocessor may not necessarily be installed on the same
development system, but can be installed on another host, reachable via network.

Debug support for this use case requires remote capabilities, which are also available
via the aforementioned Eclipse plugin. A second solution is the Intel® Debugger (IDB) for
command-line debugging. A typical IDB debug session starts with the following simple steps:

$ idbc_mic —tco —rconnect=tcpip:<coprocessor>
(idb) idb file-remote <path_to_executable_on_coprocessor>
(idb) file <path_to_executable_on_dev_system>

The debugger is started via idbe_mic by providing the name or IP address of the
coprocessor. When the debugger is started, the path of the executable to be run on the
coprocessor is specified first, followed by the path of the same executable on the development
system that launched the debugger. Afterwards, IDB can be used as usual.

Alternatively, IDB can also attach to an application already running on the coprocessor
via its process ID <pid>.

$ idbc_mic —tco —rconnect=tcpip:<coprocessor>
(idb) attach <pid> <path_ to_executable on_dev_system>

The advantages of using IDB are its speed, compatibility with C, C++, and Fortran, and
GNU GDB* syntax for a flat learning curve. With its focus on the command line, it can easily
be used for automated script-based testing as well. More information on how to use IDB
can be found in the Intel® Debugger User's and Reference Guide.

A third solution for the native mode is using GNU GDB for Intel Xeon Phi. Like IDB, it
provides remote debugging capabilities; in addition, it can be hosted directly on the copro-

cessor. Developers preferring GDB on the host can continue using it for debugglng onthe

coprocessor. Intel added support to GDB for the Intel® Many Integrated Co
architecture of Intel Xeon Phi. This version is not part of Intel Parallel Stud

Linux, but can be downloaded from our Intel® Many Integw |

THE PARALLEL UNIVERSE

Summary

The wide variety of debugging toals
supports the different, versatile use
cases of the Intel Xeon Phi coprocessor.
Developers can choose between
comfortable GUI based or fast, low
overhead command line debuggers.
There are a number of different
vendors offering such solutions,
including Intel. O

Learn More
Intel® Parallel Studio XE 2013

Intel® Xeon Phi™ coprocessor
and Intel® Many Integrated Core
Architecture (Intel® MIC)

Intel® Debugger User's and
Reference Guide

Intel® Many Integrated Core
Architecture resources
(including GNU GDB sources)

Allinea releases tools for Intel® Xeon
Phi™ coprocessor developers

Rogue Wave announces
support for the Intel® Xeo .'
coprocessor in key prod m ¥
i
| i

RO
i

a

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/forums/topic/278102/
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx

| ‘ u.nl .. | / l' ,
THE PARALLEL UNIVERSE ,

“PANRALLEZ
KCUTIONV

- by Max Domeika,

HTML5 Product Manager,
Intel Corporation

Ny

N w
| |
|

intel.com/ ticles/opt 0tice.

£

26 For morefilformation regarding performance and optimization choices in Intel® software products, visit http://:

5

.

http://software.intel.com/en-us/articles/optimization-notice

HTML5 Moves Forward

Evolving humbly from a text markup language,

HTMLS is embracing parallel processing to better meet developers’
demands for a high performance application platform. The HTML5
language specification, currently under development by the World
Wide Web consortium (W3C) with completion targeted for the end of
2014, includes improvements in source code readability, multimedia,
graphics, device access, offline storage, connectivity, and performance
over the previous HTML4 specification.

APIs Support Multicore

Like most developers, HTML5 developers value application performance
and have developed a number of APIs to expose the performance
potential offered by multicore processors. These APIs offer program-
mability of both homogenous and heterogeneous multicore processors
and include Web Workers*, Parallel JavaScript*, WebGL*, and WebCL*,
Widespread adoption in HTMLS5 applications is just beginning. However,
the expectation is for continued growth as example applications spur

River Trai

Figure 1: A glimpse of what is possible with Parallel JavaScript*

//main. js
var worker = new Worker (‘compute.js’);

THE PARALLEL UNIVERSE

demand and a greater number of browser vendors implement support.
Let's look at some examples of these technologies.

The Web Workers API specifies a message-passing-based
programming model that can be likened to traditional multiprocessing.
Instantiated Web Workers do not share application data space with
each other or with the primary Web object, referred to as the Document
Object Model (DOM). Web Workers are supported by most major browsers
and the API specification is in the final phases of approval.

Figure 2 shows a sample program employing Web Workers and
comprising two Tfiles, main.js and computejs. The code in main,js creates
a new Web Worker, which executes the code in computejs. Communication
is managed through the onMessage property and postMessage method.

WebGL is a JavaScript APl based on the OpenGL ES 2.0* standard
from the Khronos Group. It allows calling of the 3D graphics primitives,
which act within the HTMLS canvas object. The HTMLS canvas is a
pixel-based drawing surface, enabling both 2D and 3D graphics. WebGL
leverages the parallel processing capabilities available in graphics
accelerators. For more details, refer to the WebGL website.

Another standard defined by the Khronos Group is WebCL, which
provides JavaScript bindings to OpenCL, a native standard for hetero-
geneous multicore processing. The programming model for WebCL is
characterized as an accelerator model, where you create a compute
kernel containing the desired processing and dispatch the kernel and
the data to a series of accelerators.

Parallel JavaScript, also known by the codename River Trail, extends
JavaScript with data-parallel constructs. The technology leverages
OpenCL, while providing a higher level of abstraction than the accelerator
model exposed by WebCL. Parallel JavaScript extends JavaScript by
adding the ParallelArray data structure and parallel operations, such
as map, combine, reduce, scan, scatter, and filter. Figure 3 shows two
JavaScript code snippets to compute the sum of a set of values: one
that executes serially and another that employs Parallel JavaScript.

For more details, refer to the Intel Labs’ River Trail Wiki.

worker.onmessage = function(event) { alert (event.data); };

worker.postMessage(‘information’);
//compute.js
self.onmessage = function(event) {

self.postMessage(“received: “ + event.data); };

Figure 2: Web Workers* example

//Serial
var val = new Array(l1,2,3,4,5,6);
var sum = 0;

for (var i=0; i<6; i++)({
sum += val[i];

}

//Parallel
var val = new ParallelArray([1,2,3,4,5,6]);

// Processing task

var sum = val.reduce(function plus(x,y) { return x+y; });

Figure 3: Parallel JavaScript* example

Sign up for future issues | Share with a friend Q)

https://swdevtoolsmag.makebettercode.com
http://www.khronos.org/webgl/
http://www.khronos.org/webcl/
https://github.com/rivertrail/rivertrail/wiki

THE PARALLEL UNIVERSE

Choosing an API Conclusion
The following can help guide which API should be assessed first for HTMLS is embracing multicore processing, as shown by these four API
deployment in your application. standards. Expect continuing evolution and refinement as these speci-

fications are implemented by developers and engineers. [

“Like most developers HTML5S deve|0pers

Parallelism provided via dedicated access to the

Graphics Processing Uit Hienst value application performance and have
e ey o elism aLIS MO yjeb iorkers developed a number of APIs to expose the
Performing vector operations in parallel, but with perfO rmance pOtEﬂtial Offe I'Ed by mUltiCOI'e
greater programmability than afforded by WebGL e
S S processors. These APIs offer programmability
del wh k bundled WebCL
ot o e e ot ¢ of both homogenous and heterogeneous

> | prefer a higher abstraction for parallel
computation

multicore processors and include Web
Workers*, Parallel JavaScript*, WebGL*,
Teble and WebCL*"

Parallel JavaScript

b

BLOG highlights

Rogue Wave tools support Intel® Xeon Phi™ coprocessors

JAMES REINDERS, (Intel)
Director of Parallel Programming Evangelism

Rogue Wave Software recently announced expansion of their I'm pleased to have Rogue Wave offering solutions for our
support of Intel Xeon Phi coprocessors which will now customers for Intel Xeon Phi coprocessor development. Many of
include their SourcePro* C++, IMSL* Numerical Libraries, TotalView* our customers have expressed to me personally how happy they
debugger, and the ThreadSpotter* cache memory optimizer are to have Rogue Wave tools supporting Intel Xeon

products. You can check out their press release for details Phi coprocessors.

Scott Lasica, VP Products and Alliances at Rogue Wave
Software, helped me understand this value by sharing with
me, “When we started porting TotalView to run on an Xeon Phi
coprocessor, we progressed in a week to what took us more
than a year with an accelerator.” The common x86 programming
model, Linux*-based environment, and suite of Intel® tools SEE THE REST OF]AMES' BLOG:
allowed them to support Intel Xeon Phi coprocessors in a few
weeks instead of in many months without the Intel Xeon Phi
coprocessor advantages.

As with other tools, a key benefit is that these are NOT
new tools or wildly different add-ons to their tools.

Visit Go-Parallel.com

Browse other blogs exploring a range of related
subjects at Go Parallel: Translating Multicore
Power into Application Performance.

- S ‘ — _
N S =l ST bl . =[] [

28 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel len-us/articles/optimizati

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/user/335550
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://software.intel.com/en-us/blogs/2012/10/23/rogue-wave-tools-support-intel-xeon-phi-coprocessors
http://www.go-parallel.com

THE PARALLEL UNIVERSE

RESOURCES AND SITES OF INTEREST

Go Parallel @

The mission of Go Parallel is to assist developers in
their efforts toward “Translating Multicore Power into
Application Performance.” Robust and full of helpful
information, the site is a valuable clearinghouse of
multicore-related blogs, news, videos, feature stories,
and other useful resources.

What |1 EXpETES. Intel® Software Network @
Software

What if you could experiment with Intel's advanced Check out a range of resources on a wide variety
research and technology implementations that are still of software topics for @ multitude of developer

under development? And then what if your feedback communities ranging from manageability to parallel

helped influence a future product? It's possible here. programming to virtualization and visual computing.

Test drive emerging tools, collaborate with peers, This content-rich collection includes Intel® Software

and share your thoughts via the “What If?" blogs and Network TV, popular blogs, videos, tools, and downloads.

support forums,

Step Inside the Latest Software Intel® Software

Evaluation Center

See these products in use, with video overviews that The Intel® Software Evaluation Center

provide an inside look into the latest Intel® software. You makes 30-day evaluation versions of Intel® Software
can see software features firsthand, such as memory Development Products available for free download.
check, thread check, hotspot analysis, locks and waits For high performance computing products, you can get
analysis, and more. free support during the evaluation period by creating

Intel® Inspector XE an Intel® Premier Support account after requesting the
. . i evaluation license, or via Intel® Software Network Forums.
Intel” VTune™ Amplifier XE For evaluating Intel® Parallel Studio, you can access free

support through Intel Software Network Forums ONLY.

'] FEE S
P =i
Sign up for future issues | Share with a friend Q) || |

O (o bl STITIIIIIT T It

=

http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.go-parallel.com/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

Optimization Notice

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Sign up for future issues | Share with a friend

The Parallel Universe is a free quarterly magazine. Click here to sign

up for future issue alerts and to share the magazine with friends.

K B L e

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel I

us/articles/optimization-notice.

http://https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/optimization-notice

Intel® Software Adrenaline

Mobile game-changers
think differently.

Arofl The future of software in your world.
.: SUBSCRIBE TODAY: Free magazine and more
ﬂl softwareadrenaline.intel.com

http://softwareadrenaline.intel.com
http://softwareadrenaline.intel.com

Intel® System Studio Software

Accelerate

LEARN MORE >J

DOWNLOAD TRIAL SOFTWARE J

]
- s e e

©2013, Intel Corporation. Al rights reserved. Intel, the Intel logo, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

http://software.intel.com/en-us/intel-system-studio
http://software.intel.com/en-us/intel-system-studio
https://makebettercode.com/systemstudio/

