
by Noah Clemons, David Weinberg,
Jonas Dalidd, and Dennis Sieminski

Issue 13
february 2013

New resources may
change the way
you build applications.
Explore the latest on parallel programming from threading to HPC.

“I’ve been dreaming for a while of a modern, accessible book that I could recommend to my
threading-deprived colleagues and assorted enquirers to get them up to speed with the core
concepts of multithreading, as well as something that covers all the major current interesting
implementations. Finally I have that book.”

Martin Watt, Principal Engineer, DreamWorks Animation

Structured Parallel Programming
by Michael McCool, Arch Robison, and James Reinders

Learn more at: www.parallelbook.com

“This book belongs on the bookshelf of every HPC professional. It
takes us back to the universal fundamentals of high performance
computing, including how to think and reason about the performance
of algorithms mapped to modern architectures, and it puts into
your hands powerful tools that will be useful for years to come.”

Robert J. Harrison, Institute for Advanced Computational Science,
Stony Brook University

Intel® Xeon Phi™ Coprocessor
High Performance Programming
by Jim Jeffers and James Reinders

Learn more at: www.lotsofcores.com

Meet the Authors
James Reinders, director and chief evangelist for Intel® Software, or Jim Jeffers, software
product application engineer for Intel® Many Integrated Core (Intel® MIC) will discuss their
new book and deliver the keynote address at the upcoming Intel® Software Conference 2013
in four U.S. cities. See full agenda and register

©2013, Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

http://www.lotsofcores.com
http://softwareproductconference.com/asmo/
http://softwareproductconference.com/asmo/

Sign up for future issues | Share with a friend

Contents
Letter from the Editor
Forging Ahead with Software, by James Reinders	 4

Transforming Product Engineering:
Fast, Accurate Finite Element Analysis (FEA),
by Noah Clemons, David Weinberg, Jonas Dalidd, and Dennis Sieminski	 6
Looks at some of the ways finite element analysis (FEA) can use Intel® Math Kernel Library
(Intel® MKL) PARDISO and DGEMM routines to reduce analysis time, while giving engineers
the ability to examine extremely complex structures.

Parallel Power: Optimize Software for
Intel® Xeon Phi™ Coprocessors, by Amanda Sharp	 14
Outlines a software optimization methodology for applications currently optimized for Intel®
Xeon® processors and targeting Intel Xeon Phi coprocessors.

Unleash Intel® Xeon Phi™ Coprocessor Performance,
by Todd Rosenquist and Shane Story	 17
A concise look at the Intel® MKL Automatic Offload (AO) model, which can be used with any
compiler and helps developers realize performance gains from the Intel Xeon Phi coprocessor.

Tune OpenMP* Applications, by Alexei Alexandrov	 18
Tuning techniques to improve parallelism and gain performance benefits for applications
running on Intel® Xeon processors and Intel Xeon Phi coprocessors.

Expand Your Debugging Options,
by Nicolas Blanc and Georg Zitzlsberger	 24
Explores some of the versatile Intel® debugging options for the Intel Xeon Phi coprocessor,
examining both offload and native models.

Parallel Execution Using HTML5, by Max Domeika	 26
A quick guide to APIs supporting parallel performance gains in HTML5 applications.

© 2013, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel
Core, Intel Inside, Cilk Plus, Pentium, VTune, VPro, Xeon and Xeon Phi
are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

THE PARALLEL UNIVERSE

Forging Ahead

Letter From
the Editor

James Reinders, Director of Parallel Programming Evangelism
at Intel Corporation. James is a coauthor of two new books from
Morgan Kaufmann, Intel® Xeon Phi™ Coprocessor High Performance
Programming (2013), and Structured Parallel Programming (2012).
His other books include Intel® Threading Building Blocks: Outfitting
C++ for Multicore Processor Parallelism (O’Reilly Media, 2007, available
in English, Japanese, Chinese, and Korean), and VTune™ Performance
Analyzer Essentials (Intel Press, 2005).

THE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://lotsofcores.com
http://lotsofcores.com
http://parallelbook.com/
http://threadingbuildingblocks.org/
http://threadingbuildingblocks.org/
http://software.intel.com/en-us/articles/optimization-notice

THE PARALLEL UNIVERSE

New book examines
programming for the
Intel® Xeon Phi™ coprocessor
and Intel® Many Integrated
Core (Intel® MIC) architecture

Sign up for future issues | Share with a friend

Our first issue, this year, explores some of the techniques, tools, and coding models
enabling an explosion of innovation driven by software. The reality that software is
changing the world is very evident in our feature article.

This feature article, Fast, Accurate Finite Element Analysis (FEA), explores finite element analysis (FEA)
and its role in extremely complex 3D simulations that are revolutionizing product engineering—from NASA
and Formula 1 race cars to medical implants and environmental analysis.

Parallel Power: Optimize Software for Intel® Xeon Phi™ Coprocessors provides a straightforward code
optimization methodology to maximize performance on Intel® Xeon® processors and take advantage of the
newest Intel® Xeon Phi™ coprocessors. A related article, Unleash Intel® Xeon Phi™ Coprocessor Performance,
offers tips on optimization using the Intel® Math Kernel Library (Intel® MKL)—a key ingredient in unleashing
the performance of Intel® architectures in real-world applications. I found both of these articles inspirational
as I was working with my coauthor to put the finishing touches on our book about programming for the
exciting new Intel Xeon Phi coprocessor (learn more about the book at: http://lotsofcores.com). I recommend
these articles and our book for anyone interested in programming the Intel Xeon Phi coprocessor.

Tune OpenMP* Applications provides step-by-step guidance for increasing insight and analyzing and
tuning performance for parallel HPC applications. Expand Your Debugging Options looks at debugging across
Intel Xeon Phi coprocessor use cases, considering both offload and native models.

Parallel Execution Using HTML5 covers the API options for parallel HTML5 applications, allowing developers
to benefit from parallelization performance increases.

As we see the theoretical possibility of what software can make possible become a reality, it’s a great
time to explore the techniques and tools that can bring our own applications to the next level. I look forward
to seeing what you make possible in the year ahead.

James Reinders
February 2013

Forging Ahead
with Software

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Transforming Product Engineering:

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

THE PARALLEL UNIVERSE

by Noah Clemons, Technical Consulting Engineer, Embedded Compute, Debuggers,

and Performance Libraries Group, Intel, David Weinberg, NEi, Jonas Dalidd, NEi,

and Dennis Sieminski, NEi

Fast, Accurate
Finite Element Analysis (FEA)

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

Fast, Accurate
Finite Element Analysis (FEA)

https://swdevtoolsmag.makebettercode.com

Figure 1: Cessna 510 Citation Mustang* designed and analyzed using
NEi Nastran*. Colors superimposed on the empennage indicate
levels of stress in the structure. The red end of the spectrum is
used for higher values versus blue for lower values.

Engineered products of all kinds are improved
through finite element analysis (FEA). FEA allows engineers
to examine structures with incredible thoroughness and flexibility.
This paper introduces FEA, and shows how the performance benefits
of the Intel® Math Kernel Library (Intel® MKL) improve analysis accuracy,
while supporting analyst productivity.

Today’s media features a continual stream of news on impressive
engineering projects. The stories cover an incredibly wide spectrum of
industries—from progress on spacecraft capable of sending tourists
on real-life space travel experiences to medical implants that restore
vital and sensitive faculties like eyesight and hearing. Even the sports
world features new equipment designs that change performance
expectations, including Tour de France bicycles, America’s Cup yachts,
or Formula 1 race cars. What is driving such widespread sophisticated
technical capability? These examples from NEi Software’s customer
case studies (www.NEiSoftware.com) illustrate the role a numerical
method known as finite element analysis (FEA) has come to play in
elevating contemporary engineering practice. FEA software is a tool
that gives engineers the power to virtually test 3D models of their
product designs. Engineers can simulate the application of loads, forces,
impacts, vibrations, heat, and temperature conditions. They see how
the virtual product will respond not only with numerical data and graphs,
but also through the clever use of 3D graphics and animation. Huge data
files generated on technical entities such as stress, strain, vibration
modes, and temperature gradients can be turned into animations and
colorful visual presentations that aid in developing a more comprehen-
sive technical understanding of the performance of complex physical
systems. The insight gained through working with these digital proto-
types provides numerous benefits. A big advantage comes from the
ability to have problem areas highlighted, so they can be addressed
while still in the digital design phase where change is much easier,
design alternatives can be tried, and various operating conditions can
be thoroughly explored until results are satisfactory. All the changes
can be made before the first part is made or prototype has been built.
The result is a productive and insightful design process that brings
a cascade of benefits and savings across subsequent steps in the
product development cycle—fewer prototypes, less physical testing,
and a reduction in the number of design iterations before release
to manufacturing. The upshot is lower costs, faster time to market,
and better-quality products. It is clear that with these benefits the
introduction of FEA has had a profound and widespread effect on the
practice of product engineering.

A quick look at how FEA reached its present stage is instructive;
its path provides context for some of the current issues facing the
next stage in the development of the technology. The origin of
commercial FEA software is typically traced to the public release in
the early 1970s of code developed under the auspices of the National
Aeronautics and Space Administration (NASA). The program was
called NASTRAN, an acronym for NASA Structural Analysis. The cost
of computer resources and the specialized personnel needed to use
the software initially confined NASTRAN to expensive, high-profile
projects—typically aerospace programs funded by the federal government.
Over the next two decades, improvements in computing hardware,
FEA software capabilities, and costs allowed proliferation of the soft-
ware into the top tier of aerospace, automotive, maritime, and nuclear
applications. The next phase for FEA software usage occurred with

the dramatic transition from mainframe computers. As part of that
pioneering effort, NEi Software developed NEi Nastran* to run on
PCs (www.NEiNastran.com). With FEA capabilities within reach of
average-sized engineering departments, usage expanded in traditional
aerospace, automotive, and maritime markets. More important, an even
wider range of industry segments, such as civil, medical, consumer, and
recreation were able to embrace the technology.

Improving computational speed without sacrificing accuracy continues
to be of paramount importance. For the technology to be viable and
enjoy widespread usage, it cannot take weeks, days, or even too many
hours of computer time to render the result of each FEA test case.
There needs to be quick turnaround and availability of results. What’s
different today is that engineers are building on past successes and
tackling more complex simulations. The models are larger and more
detailed. The physical phenomena they seek to replicate are nonlinear,
multidiscipline, and interrelated. Plus, new materials such as composites
and shape memory alloys are more complex in their behavioral properties.
Using this background, we can look at the mathematical and programming
structures found in FEA software to see where and how improvements
in speed and accuracy may be accomplished.

Solving a problem in mechanics or physics means predicting the
mechanical or physical system’s behavior due to the action of given
loads. The analytical solution of such a problem is only possible on
geometrically simple domains (e.g., rectangles, circles). In order to tackle
more complex domains, numerical discretization methods such as FEA
are required. As the name implies, the premise of FEA is to subdivide the
complex domain into a finite number of subdomains, or finite elements,
and solve the physical problem on each of them. A representation of
a continuous domain with a set of finite elements is called a finite
element model. All finite elements in the model form a finite element
mesh. Each element in the finite element model has a fixed number
of nodes that define the element’s boundaries to which loads and
boundary conditions can be applied. The finer the mesh, the closer
approximation of the geometry of the structure, the load application,

THE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://www.NEiSoftware.com
http://www.NEiNastran.com
http://software.intel.com/en-us/articles/optimization-notice

Figure 2: The Femap pre- and post-
processor (above top) and NEi Nastran*
in-CAD* (above) user interfaces. Note:
colors are used to represent levels of
stress in these example analyses. The red
end of the spectrum is used for higher
values versus blue for lower values.

Figure 3: A nonlinear transient analysis of a rubber membrane.
The analysis involves large displacements, rotations, and post-
buckling behavior. The numbered sequence shows changes to part
shape caused by the loading. Stress levels are represented by
colors. To view this as an animation, and for other examples, go to
www.nenastran.com/fea/animations.

1

3

5

2

4

6

Step

Step

Step

Step

Step

Step

Sign up for future issues | Share with a friend

and the stress and strain gradients. However, there is a tradeoff:
the finer the mesh, the more computational power needed to solve
the complex problem. The trend in FEA is for larger, more detailed,
and complicated models that require greater computing power and
for advanced tools, such as Intel MKL, to be built into FEA applications.
FEA is comprised of three phases:

1.	Preprocessing: The analyst develops a finite element mesh based on
the geometry of the structure, and applies material properties, boundary
conditions, and loads to it.

2.	Solution: The FEA solver assembles the stiffness matrix and applied
load vector and solves for displacements, strains, and stresses. The
solution for displacements requires the solving of a large number of
simultaneous equations and can be the most numerically intensive
operation in any FEA application.

3.	Post-processing: The analyst obtains results usually in the form of
deformed shapes, contour plots, and other graphic visualizations which
help to check the validity of the solution.

The pre- and post-processing phases typically rely on an FEA
modeler such as Siemens Femap* or NEi Nastran in-CAD*. Femap is
a stand-alone FEA modeler and post-processor that works externally
with computer-aided design (CAD) applications. CAD is the tool typically
used to define the geometry of the structure. NEi Nastran in-CAD is
an internal CAD application that works directly with CAD programs to
build the FEA model, run the solution, and post-process within the
more familiar CAD application.

The solution phase relies on an FEA solver such as NEi Nastran. It
is the most numerically intensive of all three phases and will require
the most memory and CPU processing time. The analyst is typically
looking for the fastest and most accurate solution. These two criteria
are often diametrically opposed to each other—as faster means a
coarser FEA mesh, which is less accurate. The challenge is to have
both. Within an FEA solver are specialized subcomponents optimized
to provide the best performance possible. For NEi Nastran and many
other FEA solvers, the critical subcomponents are the linear equation
solver and eigenvalue/eigenvector solver. For best performance, no
individual subcomponent should dominate the solution time. Therefore,
it is critical that subcomponents take advantage of memory and CPU
architecture. NEi Nastran uses Intel MKL, specifically its PARDISO solver
and DGEMM matrix multiplication routine, to reduce analysis time and
avoid solution bottlenecks. The PARDISO solver can reduce overall
analysis time by a factor of 100, or even 1,000 in some cases, because
of the parallel processing scalability and its tuning to specific Intel®
CPU architecture. The importance of the PARDISO solver is magnified
in the nonlinear case, where it can take thousands of decompositions
and backsolves to complete. The PARDISO solver is the default solver
for nonlinear analysis in NEi Nastran, and is typically the fastest solver.

THE PARALLEL UNIVERSE

http://www.nenastran.com/fea/animations
https://swdevtoolsmag.makebettercode.com

0 108642
Number of CPUs

Fa
ct

or
iz

at
io

n
T

im
e

(s
ec

)

45

40

35

30

25

20

15

10

5

0

PARDISO Parallel Performance

VSS

Pardiso

Figure 4: Factorization time for
the rubber membrane analysis
showing parallel scalability of the
Pardiso solver. Typical nonlinear
transient analyses perform hundreds
of factorizations per simulation.
(Hardware: 2 x Intel® Xeon®
processor E5-2670 2.6GHz, 60.5GB
RAM, SAS; Software: Windows
Server* 2008 R2 64-bit, Intel®
Math Kernel Library 11.0.1.)

Figure 5: Call to Pardiso solver for factorization. Within Intel® MKL there are several ways to call the Pardiso solver.
Here we are first calling it for reordering and symbolic factorization to determine and minimize memory requirements
(PHASE=11). Next we call it for the action factorization that will use the most memory and CPU demand (PHASE=22).
Provisions are made within NEi Nastran* to revert to an out-of-core mode if needed, which will use less memory and
more I/O but will result in slower performance.

c
c write out status
c
			 str806 = ‘reordering’
			 call writ1sta(str806)
c
			 phase = 11
c
c reordering and symbolic factorization
c
			 call pardiso(ppointer, maxfactmatrix, matrix, pmtype, phase,
		 1				 nfdof, a, ln, tla, intnum, nrhs, intparameter,
		 2				 msglvl, realnum, realnum, errorstatus)
			 if (errorstatus .ne. 0) then
			 if ((errorstatus .eq. pss_ooc_insufficient_memory) .or.
		 1		 (errorstatus .eq. pss_insufficient_memory)) then
			 if (l .eq. 1) then
			 amultiblock = .true.
c
c Free sparse solver memory (if allocated).
c
			 call freepss
c
c force out of core mode.
c
			 intparameter(60) = 2
c
c reset pss configuration file.
c
			 call setpsscf(‘reset’)
c
		 	 cycle
			 else
			 goto 307
			 endif
			 else
			 goto 207
			 endif
			 endif
c
			 sparsememalloc = .true.
c
c write out status.
c
	 		 write (str806, 1000) 0
			 call writ1sta(str806)
c
			 phase = 22
c
c numerical factorization.
c
			 call pardiso(ppointer, maxfactmatrix, matrix, pmtype, phase,
		 1				 nfdof, a, ln, tla, intnum, nrhs, intparameter
		 2				 msglvl, realnum, realnum, errorstatus)
c

THE PARALLEL UNIVERSE

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

0 54321

Number of CPUs

Ex
tr

ac
ti

on
 T

im
e

(s
ec

)

700

600

500

400

300

200

100

0

DGEMM Parallel Performance

Non-DGEMM

DGEMM

Figure 7: A comparison of the
modal extraction time for the ship
section. Ten modes were extracted
during the analysis. (Hardware:
Intel® Core™ i7 860 2.8GHz, 16GB
RAM, Samsung 830* Series SSD;
Software: Windows* 7 SP1 64-bit,
Intel® Math Kernel Library 11.0.1.1)

Figure 6: The NEi Nastran Editor* showing the stress contour on a section of a ship.
Dynamic analyses allow multiple ways to interrogate results including 2-d and 3-d plots.

Sign up for future issues | Share with a friend

Pardiso implementation is fairly straightforward and uses the sparse
matrix format (storing only non-zero terms) essential for solving
today’s large FEA problems. Most FEA solutions deal with large sparse
matrixes. A typical call to the Pardiso solver is shown in Figure 5
where provisions are made for handling matrixes too large to fit into
available physical memory.

FEA analysis also involves dense matrixes and their multiplication.
The Intel MKL DGEMM routine provides a very fast, scalable routine for
the multiplication of large, dense matrixes. Like Pardiso, it is optimized
for Intel CPU architecture. Eigenvalue analysis is often performed to
determine natural frequencies and mode shapes of structures, as well
as for dynamic response analysis.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 8: DGEMM call. DGEMM is optimized for large/dense matrix multiplications. In the above subspace eigensolver
routine, DGEMM is used to expand eigenvectors from modal to physical space. Matrix sizes range from a square matrix
of 10 to 1,000 rows and columns being multiplied by a rectangular matrix of 10 to 1,000 by 1,000 to 1,000,000. OPXT
and OPXN are variables that define if the matrix or matrix transpose should be multiplied. NC and NN are the matrix
dimensions where NN (the model size in degrees of freedom) is typically much larger than NC (the number of eigenvalues
to be determined).

Figure 9: Call to Pardiso for forward/back substitution and solution. Once the matrix is factorized, as shown in Figure 5,
it can be repeatedly solved for various load cases or right-hand sides. It is more convenient and optimal to do this in FEA,
especially in nonlinear analysis where many of these forward/back substitution calls are needed.

c
			 str801 = ‘extracting eigenvalues for subcase ’
		 1			 //subcstr(1:ncharsubc)//’ iteration ‘
		 2			 //iterstr(1:nchariter)
			 str802 = ‘vector: 1 percent complete: 0’
			 call writ2sta(str801, str802)
c
			 ic = 0
c
c calculate the projections of a and b.
c
			 call asolnegs(uu, a, adiag, la, na, eigvec, nsol, increment,
		 1				 ic, interval, nc)
c
			 call dgemm(opxt, opxn, nc, nc, nn, one, eigvec, ndof, uu, ndof,
		 1				 zero, ar nc)
c
		 	 do j=1, nc
			 do k=1, nn
			 eigvec(k, j) = uu(k, j)
			 enddo
			 enddo
c
			 call amultegs(uu, a, adiag, b, bdaig, eigvec, la, na,
		 1				 shiftflag, shift, increment, ic, interval,
		 2					 nc, ‘b’)
c
			 call dgemm(opxt, opxn, nc, nc, nn, one, eigvec, ndof, uu, ndof,
		 1				 zero, br nc)
c
			 if (.not.(converged)) then
		 	 do j=1, nc
			 do k=1, nn
			 eigvec(k, j) = uu(k, j)
			 enddo
			 enddo
			 endif

c
			 phase = 33
c
c sparse forward and backward substitution.
c
			 call pardiso(ppointer, maxfactmatrix, matrix, pmtype, phase,
		 1				 nfdof, a, ln, la, intnum, nrhs, intparameter,
		 2				 msglvl, s, x, errorstatus)
			 deallocate (ln)
c
		 	 if (errorstatus .ne. 0) then
		 	 if (errorstatus .eq. pss_insufficient_memory) then
		 	 goto 307
			 else
			 iostatus = errorstatus
		 	 goto 207
			 endif
			 endif
c
c unpartition x.
c
			 call vspr2glb(x, v, lp)

THE PARALLEL UNIVERSE

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

DGEMM implementation is also straightforward. A typical DGEMM
call is shown in Figure 8. Here the multiplication can be performed on
very large matrixes. In this example, two rectangular matrixes of size NC
x NDOF are multiplied to form a square matrix of size NC. NC ranges
typically from 10 to 1,000 and NDOF from 1,000 to 1,000,000. In
Figure 9 we show that the call to ASOLNEGS also uses the Pardiso
solver, and its fast backsolve performance further takes advantage
of Intel MKL.

In summary, FEA technology gives engineers the ability to examine
structures with an incredible degree of thoroughness and flexibility.
They can consider structures with complicated geometry, explore
designs using new materials with nonlinear properties, and determine
the effects that a variety of service conditions will have, including
environmental forces like wind and earthquakes. Fast and accurate
solutions are essential in this endeavor. Intel MKL Pardiso and DGEMM
routines have been very effective in reducing analysis time, while
allowing for larger model sizes and complexity. This increases analysis
accuracy, while maintaining analyst productivity. It is hard to think of
an engineered product category that has not been touched by FEA
technology. The benefit has been new levels of product performance
with exceptional quality and reliability. o

Read the blog:
Transforming Product Engineering: Fast, Accurate Finite Element
Analysis using NEi Nastran

But Will It Scale?
jackson m, (Intel)

Has this ever happened to you: You work tirelessly to
add threads to your serial code, all your correctness tests are
passing, and your application is zooming along almost twice
as fast as the serial version on your 2-core machine. Now your
friend sees your results and would love to run your program
on his machine which is fully loaded with four cores that are all
equipped with Intel® Hyper-Threading Technology (that’s eight
“logical” processors). You’re expecting your newly parallelized
application to be blazing fast on his machine, maybe even four
times faster than it was on yours! But to your dismay … it runs
the same speed as it did on the 2-core machine. What’s going
on? One possibility is that you have a scaling problem.

A scaling problem arises when parallelized software isn’t
designed to take advantage of more cores when they are avail-
able in the hardware. For example, task-level parallelism, where
a predetermined number of jobs are assigned to the threads,
will never scale to core counts beyond the total number of
jobs created. There just isn’t enough division of labor to take
advantage of more hardware.

Creating parallel software that scales is essential to developing
applications that will remain relevant and competitive as hard-
ware evolves without a major redesign effort. Intel® Advisor XE
can give you confidence that your newly parallel solution will
scale to higher core counts BEFORE you invest the time into
threading your code.

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

SEE THE REST OF jackson’s BLOG:

 “The result is a productive and
insightful design process that
brings a cascade of benefits
and savings across subsequent
steps in the product development
cycle—fewer prototypes, less
physical testing, and a reduction
in the number of design iterations
before release to manufacturing.
The upshot is lower costs, faster
time to market, and better
quality products.”

BLOG
highlights

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers
http://software.intel.com/en-us/user/434821
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2013/02/05/fast-accurate-finite-element-analysis-solvers

This article outlines a software optimization methodology appropriate
for applications currently optimized for Intel® Xeon® processors and targeting
Intel® Xeon Phi™ coprocessors.

THE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

by Amanda Sharp, Technical Consulting Engineer, HPC Compiler Support, Intel

Parallel Power:

Optimize Software
for Intel® Xeon Phi™ Coprocessors

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Overview
The Intel® Xeon Phi™ coprocessor is a highly parallel
processor, based on Intel® Xeon™ processor architecture extended with
up to 61 cores and a 512-bit wide vector engine. Both processors
share common programming languages, coding techniques, and software
tools. Optimizations already implemented in software running on Intel
Xeon processors also benefit applications running on Intel Xeon Phi
coprocessors. By following the steps below, your application may yield
even more performance gains.

Code Optimization Recipe

1.	Determine Suitability: Verify that the application meets the
requirements for good performance on a highly parallel architecture.

2.	Choose an Execution Model: Send computations from the host system
to the coprocessor or run the application directly on the coprocessor.

3.	Tune the Code: Use parallelization and vectorization techniques to
tune the code for Intel Xeon Phi coprocessors.

1. Determine Suitability
When targeting a highly parallel architecture, you will need to determine
if your application or a sufficient portion of your application is likely
to run optimally on the target. Applications that can make effective
use of the considerable hardware resources available on Intel Xeon Phi
coprocessors generally have the following characteristics:

>	 Highly parallel algorithms scalable to a minimum of 100 threads:
Each processor core supports four hardware threads. At runtime, a
typical application may have more than 200 active threads. Your parallel
implementation should show close to linear scaling up to the maximum
number of CPU cores.

>	 A significant amount of efficiently vectorized code: Each processor
core contains a vector processing unit (VPU), the main source of
computational power. Your vectorized application should deliver significant
speedup when compared with the non-vectorized implementation.

Suitable algorithms typically spend at least 90 percent of execution
time in parallel and vectorized code segments after optimization. If
your application is already highly parallelized and highly vectorized
for Intel Xeon processors and it meets these criteria, you are ready to
select an execution model and tune your code.

2. Choose an Execution Model
An Intel Xeon Phi coprocessor can be programmed as a coprocessor(s)
or as an autonomous processor. The appropriate model depends on
application and context.

Heterogeneous Execution

Heterogeneous (offload) execution occurs when the host system
executes scalar portions of the application and delegates parallel
segments to the coprocessor. The host and coprocessor do not share
memory, thus all data exchange happens over the PCI-E bus. The Intel®
C/C++ and Intel® Fortran Compilers support language extensions for
offload, based on C++ pragmas and Fortran directives. This includes
extensive support for data allocation and marshaling, including
overlapping data transfer with computation. The Intel C++ Compiler
also supports a second model that creates and manages a virtual
shared memory system for C++ applications.

The Intel® Compilers automatically detect offload language
extensions in your code and create a binary that runs on both the host
and the coprocessor. See The Heterogeneous Programming Model
for more information about offload programming syntax. Effective
Use of Compiler Features for Offloading is a comprehensive article
on effectively programming Intel Xeon Phi coprocessors that includes
tuning tips.

Native Execution

Native execution occurs when an application runs entirely on the
coprocessor. For best performance, a native application should have
very few serial segments, limited I/O usage, and be smaller than the
physical memory on the coprocessor. Intel Xeon Phi coprocessors run a
Linux*-based operating system. Use the Intel Compiler option –mmic
to compile and generate a binary for the coprocessor. Then, connect
to the coprocessor via a secure shell, copy the required binaries to the
coprocessor, and run the application. For more information, refer to
Building a Native Application for Intel® Xeon Phi™ Coprocessors.

3. Tune the Code
There are many techniques for tuning code for Intel Xeon Phi copro-
cessors. The amount of performance gain you experience depends on
your code and the number of techniques you use in your application.

Efficient Parallelization

Intel Xeon Phi coprocessors support four thread contexts per core.
Given the large number of cores, implementing efficient parallelization
to take advantage of all parallel resources is the key to maximizing
performance. This usually requires the use of at least two threads
per core. Here we will discuss key recommendations for OpenMP*
-based code.

Reduce Synchronization Costs

Remove or reduce any use of barrier synchronization, locks, and critical
sections in your code as far as possible, consistent with correctness.
Use reduction operations where possible.

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/the-heterogeneous-programming-model
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/effective-use-of-the-intel-compilers-offload-features
http://software.intel.com/en-us/articles/building-a-native-application-for-intel-xeon-phi-coprocessors

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Loop Scheduling

By default, the runtime library implements static loop scheduling,
which may not be ideal for some applications. Workloads that run fine
with eight or sixteen threads can exhibit significant load imbalance
with static loop scheduling over a large number of cores. Try specifying
different loop scheduling algorithms and chunk sizes to improve
performance. In some cases, using the OMP collapse clause can help.

Thread Affinity Control

Thread affinity can have a dramatic effect on the execution speed of
a program. Determine the optimal number of application threads. Try
different numbers of threads from N-1 threads to 4 x (N-1) threads,
where N is the number of physical cores on the coprocessor. Use a
maximum of N-1 threads to avoid scheduling worker threads on the
coprocessor core that runs the OS and offload services.

Keep in mind that the default values of OpenMP parameters may
vary between host and coprocessor, and between offloaded and native
execution. You can use Best Known Methods for Using OpenMP*
as a guide. Intel® Composer XE supports a variety of parallelization
methods for Intel Xeon Phi coprocessors. See the article Efficient
Parallelization, OpenMP* Thread Affinity Control for details.

Vectorization

Intel Xeon Phi coprocessors provide a wide vector unit for processing
highly data-parallel workloads. The techniques below will help you to
take advantage of the specialized VPU, which is essential for optimal
performance.

Data Alignment

Data alignment is very important for Intel Xeon Phi coprocessors.
Using proper data alignment will streamline the process of loading and
storing data. There are two steps:

1.	Align your data on 64-byte boundaries. For C and C++, use
__attribute__((aligned(64))) for static arrays and
_mm_malloc() and _mm_free() for managing dynamic data.
Compile Fortran applications with -align array64byte.

2.	Alert the compiler that data are aligned so it can generate
vectorized code. One method is to insert pragmas/directives before
a loop. For C and C++, use #pragma vector aligned or for
Fortran, !dir$ vector aligned.

Memory Access Patterns

Non-unit-stride memory accesses can lead to inefficient vectorization
and can have considerable impact on performance. This occurs when
consecutive iterations of your inner loop access memory from non-
adjacent locations. This pattern may also cause cache misses if the
data elements come from different cache lines. Adopt vector friendly
data structures and algorithms that maximize use of unit-stride
vectorization in all hotspots. In some cases, use of vector array notation
can help. In other situations, you may have to change the data layout
from “array of structures” to “structure of arrays.” For more information
on this topic, refer to Memory Layout Transformations.

Enforcement

The SIMD pragma/directive (#pragma simd or!dir$ simd with appropriate
clauses added) is a powerful feature that tells the compiler to vectorize
a loop. By default, the compiler attempts to vectorize innermost loops
in nested loop structures. However, if an outer loop contains more
work, a combination of elemental functions, strip mining, and pragma/
directive SIMD can force vectorization at the outer level. You can use
the Intel Compiler Vectorization Reports as a guide.

Advanced Optimizations

Advanced optimizations, such as data prefetching and use of
streaming stores, can improve performance of your application. Using
the appropriate floating-point options, while considering performance
vs. accuracy tradeoffs, can have a big impact on performance. For
more information on these topics, refer to Advanced Optimizations
for Intel® MIC Architecture.

Summary
Applications targeting highly parallel architectures must be able to
leverage extensive hardware resources. Once your application is
optimized for Intel Xeon processors, you can maximize performance
on Intel Xeon Phi coprocessors by following a straightforward code
optimization methodology. First, ensure that the application can benefit
from execution on a highly parallel architecture. Then, select the best
execution model for your application and use the recommended opti-
mization techniques to tune the code. To learn advanced techniques,
including code examples, please review the article Compiler Methodology
for Intel® MIC Architecture. For more information, visit the Intel®
Developer Zone for Intel® Xeon Phi™ Coprocessors. o

 “Applications targeting highly
parallel architectures must
be able to leverage extensive
hardware resources. Once your
application is optimized for
Intel® Xeon® processors, you can
maximize performance on Intel®
Xeon Phi™ coprocessors by
following a straightforward code
optimization methodology.”

THE PARALLEL UNIVERSE

16

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/openmp-thread-affinity-control
http://software.intel.com/en-us/articles/memory-layout-transformations
http://software.intel.com/en-us/articles/vectorization-and-optimization-reports
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/advanced-optimizations-for-intel-mic-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/en-us/articles/programming-and-compiling-for-intel-many-integrated-core-architecture
http://software.intel.com/mic-developer
http://software.intel.com/mic-developer

Sign up for future issues | Share with a friend

Unleash
Intel® Xeon Phi™
Coprocessor Performance

The Intel® Math Kernel Library (Intel® MKL) makes it easy for
users to realize the performance benefits provided with each
new processor including the new Intel® Xeon Phi™ coprocessor.
Those who have not used Intel MKL before should look for
opportunities to use its optimized kernels rather than tuning
their own. Those who use Intel MKL can take advantage of
support for natively optimized functions for the Intel Xeon
Phi coprocessor as well as functions that automatically
detect and make the best use of all the processors and
coprocessors on the system—a model we call Automatic
Offload (AO).

Intel MKL AO mode is simple to use. You start by linking
with Intel MKL as you do now, and either call mkl_mic_
enable() in your program or set MKL_MIC_ENABLE=1
in your environment. Subsequent calls to Intel MKL linear
algebra functions with large computation-to-data ratios will
internally assess the total hardware resources available, and
automatically distribute the computational work across them.
This means that all the required data transfer is transparently
done for you. In addition, functions that used to run only on
the multicore processor now benefit automatically from the
added computational power of the Intel Xeon Phi coprocessor.
An added bonus is that the Intel MKL AO mode can be used
with any compiler.

The natively tuned functions in Intel MKL can be used in
multiple ways. You can code your program to offload these
functions to the coprocessor using the pragmas supported
by the Intel® compilers—called compiler assisted offload (CAO).
Or, you can compile the whole program and run it by logging
in to the coprocessor as described in the adjacent article.

With the introduction of Intel Xeon Phi, Intel MKL remains
a key ingredient in unleashing the performance of Intel®
architectures in real-world applications. Intel MKL provides top
performance for the high-performance Linpack benchmark,
used to characterize the performance of the world’s fastest
Top500 computers.

Learn more about programming for the Intel Xeon Phi
coprocessor at: http://software.intel.com/en-us/articles/
intel-mkl-on-the-intel-xeon-phi-coprocessors. o

by Todd Rosenquist, Technical Consulting Engineer, Intel® Math Kernel Library, Intel Corporation,

and Shane Story, Manager of Intel® MKL Technical Strategy, Intel Corporation

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors
http://software.intel.com/en-us/articles/intel-mkl-on-the-intel-xeon-phi-coprocessors

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

THE PARALLEL UNIVERSE

18

Tune OpenMP*
Applications
by Alexei Alexandrov, Senior Software Developer, Intel

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

Tune OpenMP*
Applications

Alexei alexandrov
Senior Software
Developer

https://swdevtoolsmag.makebettercode.com

$ amplxe-cl -collect hotspots --
 ~/sp.A.x

$ amplxe-cl -c knc-lightweight-
hotspots -search-dir all:p=/lib/
firmware/mic -- ssh mic0 ~/sp.A.x

Figure 1: Using grouping and filtering to analyze the balance of an OpenMP*
program with Intel® VTune™ Amplifier XE.

High performance computing (HPC) has a long history and today
is critical to business, research, and science. Clusters consisting of thousands of
machines help enable many advances of modern science with both theoretical and
practical implications, working 24/7 to enrich the lives of every person on earth.

HPC parallelism is exploited in three levels: process, thread, and SIMD vectorization
(including auto-vectorization, for example in the Intel® compiler). For process-level
parallelism, the Message Passing Interface (MPI) is the de facto standard in the HPC
industry. For thread-level parallelism, the OpenMP* programming model is prevalent
in the HPC community, and other models—such as Intel® Threading Building Blocks
and Intel® Cilk™ Plus—are gaining traction. While Intel® VTune™ Amplifier XE supports
all of these paradigms, this article will focus on useful techniques for profiling HPC
programs that use OpenMP.

The examples shown are collected from an OpenMP application running on
an Intel® Xeon Phi™ coprocessor, but the techniques used are valid for tuning all
OpenMP programs. The examples use Intel VTune Amplifier’s command line to collect
data, as this is the most common way to gather data on systems with Intel Xeon
Phi processors. But you don’t need to worry about learning all the switches. The
graphic user interface (GUI) is commonly used to set up the analysis and generate a
command line that you can cut and paste.

Profiling OpenMP programs with
Intel VTune Amplifier XE
We’ll begin by walking through a simple scenario
of collecting and analyzing performance data for an
OpenMP program. This will include three steps:

1.	Collect the data using a command-line interface.

2.	Analyze the data using an interactive GUI, with
examples of capabilities such as filtering and loop
analysis.

3.	Generate the hotspot profile using an Intel VTune
Amplifier command line interface. This is often useful
for automating performance regression testing or
feeding the data into another program.

In step 1, to profile a program that uses OpenMP on
an Intel® Xeon® processor-based computer, you can use
any of the supported analysis types, just launching the
data collection as usual:

or using hardware event-based sampling analysis
types to profile a program executed on an Intel Xeon Phi
coprocessor:

The search directory is specified here to make sure
the Intel Xeon Phi runtime binaries can be found on the
host during result post-processing.

In step 2, having collected the result and opened it
in the Intel VTune Amplifier XE GUI, you can begin your
analysis. For an OpenMP program, it is a good idea to
start looking into data by grouping the data by threads
in the Bottom-up view. To do this, select a thread-based
grouping in the Grouping combo-box above the grid
(Figure 1). Selecting several rows in the grid allows
you to easily see the number of selected threads and
the summary statistics for them—this is useful for
understanding how a given team of threads behaved.
By right-clicking the selected items, you can also filter
in or filter out the selected data. Combined usage of
grouping and filtering allows you to dice and slice the
data as needed. The filter feature is particularly useful
for filtering out the time spent in the OpenMP runtime
library to see the pure contribution of the user code

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

THE PARALLEL UNIVERSE

20

http://software.intel.com/en-us/articles/optimization-notice

Figure 2: Using grouping by Core to understand the hardware
core balance.

Sign up for future issues | Share with a friend

on overall performance. For example, Figure 1 shows that the user
module only contributed 14.5 percent of CPU cycles; the rest of the
cycles were spent in other modules, mostly spinning because of non-
optimal CPU affinity and the number of OpenMP threads running.

In the case above, using the thread grouping revealed that only
64 software threads were effectively executing the user code—
although there were 244 hardware threads available since this is an
Intel Xeon Phi coprocessor with 61 cores. From the program source
code, it became clear that the available parallelism is limited by one
dimension of the input problem size, so that the program needs to
be changed to adopt the higher available parallelism. Or, at the very
least, the affinity and number of OpenMP threads to use should be
set to match the workload properties. Setting KMP_AFFINITY to
“balanced” and OMP_NUM_THREADS to 64 indeed provided better
execution time and better balance between the threads. Since the
Intel® OpenMP Library actively uses spinning instead of waiting,
the CPU time spent outside of the user module (and usually in the
OpenMP module) is a common indication of imbalance or excessive
serial execution. You can also choose grouping by Core to understand
the program balance in terms of hardware cores. This is often useful
to understand the performance of Simultaneous Multithreading
(SMT) parallelism (Figure 2).

 Having identified and fixed high-level balance and overhead
issues, you can narrow down to function-level analysis (Figure 3).
When using the Intel compiler together with the Intel OpenMP
implementation, the OpenMP region bodies are conveniently
aggregated into pseudo functions with names like compute_
rhs_ompparallel@17, so that it’s easier to distinguish the
time spent inside and outside of the region body. For instance, in
this case the name reads as “the OpenMP Parallel Region at line 17
in function compute_rhs.”

Knowing a hot function, you can dive into its C, C++, or Fortran
source and assembly to identify which source lines were taking most
of the time and which assembly code was generated by the compiler
for them. Understanding the latter often provides guidance for how
you should direct the compiler to vectorize the inner loops. Starting
with version 3.0, Intel VTune Amplifier XE also helps you understand
the structure of the program in terms of loops (useful for loopy
HPC codes). To enable that mode, switch the “Loop Mode” to “Loops
and functions” in the GUI filter bar (or use “-loop-mode=loop-and-
function” in the amplxe-cl command line interface). The top-down
view will show the looping structure of the program (Figure 4). In
this example, we can easily see that the OpenMP region function has
a loop at line 295, which nests to loop at line 296, and then to loop
at line 297—with the latter loop being peeled by the compiler as part
of the vectorization process. This is identified by observing two loop
instances belonging to the same source line. Note that the first of
the peeled instances takes the larger fraction of the time, since the
second instance is a remainder loop with a small iteration count.

 “Applications targeting highly parallel
architectures must be able to leverage
extensive hardware resources. Once your
application is optimized for Intel® Xeon®
processors, you can maximize performance
on Intel® Xeon Phi™ coprocessors by
following a straightforward code
optimization methodology.”

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 3: Function-level hotspot view.

Figure 4: Using loop analysis to understand the looping structure of the program.

THE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Figure 5: Using tiny mode for timeline bands to view many-thread data over time.

Sign up for future issues | Share with a friend

The timeline view can be used to narrow down the scope of the data to a specific time
region. For example, to skip the program startup “cold” phase or to magnify the data into the
execution of specific region. Using the ITT API, supported by Intel VTune Amplifier, to mark
up the program execution may be useful for the latter. When viewing results that ran many
threads, use the “Tiny” mode of timeline bands to easily fit more data onto your display:

Figure 6

$ amplxe-cl.exe -R hotspots -loop-mode=loop-and-function -filter module=sp.A.x -limit=10 -group-by
thread,function -r <result directory path>

Thread Function Module CPU Time:Self
 --------------- --- ------ -------------
Thread (0x2cd3) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.394
Thread (0x2cd5) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.385
Thread (0x2cb5) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.376
Thread (0x2cd7) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.376
Thread (0x2cc1) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.358
Thread (0x2ccb) [Loop@0x4200d8 at line 294 in x_solve_ompparallel_for@27] sp.A.x 0.358
Thread (0x2ca2) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.349
Thread (0x2ccf) [Loop@0x4200d8 at line 294 in x_solve_ompparallel_for@27] sp.A.x 0.339
Thread (0x2cd2) [Loop@0x4200d8 at line 294 in x_solve_ompparallel_for@27] sp.A.x 0.339
Thread (0x2cab) [Loop@0x4136a1 at line 297 in compute_rhs_ompparallel@17] sp.A.x 0.330

Finally, in step 3 of our simplified optimization flow, it may be useful to automate the hotspot
extraction using the command line interface (e.g., for automatic performance regression
testing). Most of the capabilities mentioned above can be used from the command line. For
example, here you can see how to output the ten top hotspots grouped by thread and function,
filtered by a specific module and time region, and with loop analysis on:

Conclusion
The Intel VTune Amplifier XE techniques described here are useful for diving into performance
analysis of an HPC program, but there is still more to learn. The product documentation and
online resources (see the Intel Knowledge Base) can provide further information on the features
of the product, including MPI program analysis, loop and inline function analysis, ITT API usage,
performance analysis automation using command-line reporting, and many more. The techniques
were illustrated using an Intel Xeon Phi coprocessor, but apply equally well to an Intel® Xeon®
system. One nice benefit is that tuning to improve the parallelism in your application usually
yields performance benefits when running on both Intel Xeon processors and Intel Xeon Phi
coprocessors: a double win! o

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com

Figure 1

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Overview
Execution of typical applications for the Intel® Xeon Phi™ coprocessor is distributed among
the host and one or more coprocessors. In general, there are two basic domains for Intel
Xeon Phi coprocessor-based applications:

>	 Heterogeneous applications that execute seamlessly across the host and selected
coprocessors using either the explicit or implicit offload model

>	 Applications solely executed on each of the available coprocessors, using the so-called
native model

Developing and debugging applications in both native and offload models requires
dedicated support. Intel® Parallel Studio XE 2013 for Linux* provides a range of solutions,
along with ease of use and full awareness of the Intel Xeon Phi architecture. Vendors, such
as Allinea or Rogue Wave, enrich the Intel Xeon Phi environment with further debugging
options. Thus, developers for Intel Xeon Phi can select among many debugging options,
depending on their field of application. Next, we’ll look at a selection of Intel debugging
solutions, grouped by the two typical domains.

Offload Model
There are two different offload models:
explicit and implicit. Both provide a
simple, yet flexible programming
environment to develop applications
running on the Intel Xeon Phi copro-
cessors and host systems. An offload
application comes as a single executable
file containing both host and target
code. Detection of available coprocessors,
including data transfers, is automatically
handled at runtime. Therefore, work
packages are scheduled transparently
among any coprocessors and the host.
In case no coprocessor is available, the
execution remains entirely native on
the host system.

The programming flexibility makes
debugging with standard tools more
complex. Therefore, Intel Parallel Studio
XE 2013 for Linux provides an Eclipse*
debugger plugin with full awareness
of both offload models. This allows
instant debugging without further
configuration. Using Eclipse as an inte-
grated development environment (IDE)
provides an easy-to-use, well-known
graphical interface for this debugger.
The integration also offers scalability
up to hundreds of threads on multiple
coprocessors for C, C++, and Fortran—a
necessity for Intel Xeon Phi because of
its manycore architecture.

by Nicolas Blanc, Software Engineer, Intel

and Georg Zitzlsberger, Technical Consulting Engineer, Intel

Expand Your
Debugging Options

THE PARALLEL UNIVERSE

24

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx

$ idbc_mic –tco –rconnect=tcpip:<coprocessor>
(idb) attach <pid> <path_to_executable_on_dev_system>
...

Sign up for future issues | Share with a friend

Native Model
For the native model—where applications run exclusively on the coprocessor—different
debug solutions are provided by the Intel Parallel Studio XE 2013 suite for Linux. Here,
development takes place on one system while the created applications are running on a
remote coprocessor. Such a coprocessor may not necessarily be installed on the same
development system, but can be installed on another host, reachable via network.

Debug support for this use case requires remote capabilities, which are also available
via the aforementioned Eclipse plugin. A second solution is the Intel® Debugger (IDB) for
command-line debugging. A typical IDB debug session starts with the following simple steps:

The debugger is started via idbc_mic by providing the name or IP address of the
coprocessor. When the debugger is started, the path of the executable to be run on the
coprocessor is specified first, followed by the path of the same executable on the development
system that launched the debugger. Afterwards, IDB can be used as usual.

Alternatively, IDB can also attach to an application already running on the coprocessor
via its process ID <pid>.

The advantages of using IDB are its speed, compatibility with C, C++, and Fortran, and
GNU GDB* syntax for a flat learning curve. With its focus on the command line, it can easily
be used for automated script-based testing as well. More information on how to use IDB
can be found in the Intel® Debugger User’s and Reference Guide.

A third solution for the native mode is using GNU GDB for Intel Xeon Phi. Like IDB, it
provides remote debugging capabilities; in addition, it can be hosted directly on the copro-
cessor. Developers preferring GDB on the host can continue using it for debugging on the
coprocessor. Intel added support to GDB for the Intel® Many Integrated Core (Intel® MIC)
architecture of Intel Xeon Phi. This version is not part of Intel Parallel Studio XE 2013 for
Linux, but can be downloaded from our Intel® Many Integrated Core Architecture Forum.

Summary
The wide variety of debugging tools
supports the different, versatile use
cases of the Intel Xeon Phi coprocessor.
Developers can choose between
comfortable GUI based or fast, low
overhead command line debuggers.
There are a number of different
vendors offering such solutions,
including Intel. o

Learn More
Intel® Parallel Studio XE 2013

Intel® Xeon Phi™ coprocessor
and Intel® Many Integrated Core
Architecture (Intel® MIC)

Intel® Debugger User’s and
Reference Guide

Intel® Many Integrated Core
Architecture resources
(including GNU GDB sources)

Allinea releases tools for Intel® Xeon
Phi™ coprocessor developers

Rogue Wave announces
support for the Intel® Xeon® Phi™
coprocessor in key products

$ idbc_mic –tco –rconnect=tcpip:<coprocessor>
(idb) idb file-remote <path_to_executable_on_coprocessor>
(idb) file <path_to_executable_on_dev_system>
...

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/intel-parallel-studio-xe/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/en-us/mic-developer/
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/sites/products/documentation/doclib/stdxe/2013/composerxe/debugger/user_guide/index.htm
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/forums/topic/278102/
http://software.intel.com/en-us/forums/topic/278102/
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.allinea.com/news/bid/88837/Allinea-releases-tools-for-Intel-Xeon-Phi-Coprocessor-developers
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

by Max Domeika,
HTML5 Product Manager,
Intel Corporation

THE PARALLEL UNIVERSE

26

http://software.intel.com/en-us/articles/optimization-notice

Figure 1: A glimpse of what is possible with Parallel JavaScript*

Sign up for future issues | Share with a friend

HTML5 Moves Forward
Evolving humbly from a text markup language,
HTML5 is embracing parallel processing to better meet developers’
demands for a high performance application platform. The HTML5
language specification, currently under development by the World
Wide Web consortium (W3C) with completion targeted for the end of
2014, includes improvements in source code readability, multimedia,
graphics, device access, offline storage, connectivity, and performance
over the previous HTML4 specification.

APIs Support Multicore
Like most developers, HTML5 developers value application performance
and have developed a number of APIs to expose the performance
potential offered by multicore processors. These APIs offer program-
mability of both homogenous and heterogeneous multicore processors
and include Web Workers*, Parallel JavaScript*, WebGL*, and WebCL*.
Widespread adoption in HTML5 applications is just beginning. However,
the expectation is for continued growth as example applications spur

demand and a greater number of browser vendors implement support.
Let’s look at some examples of these technologies.

The Web Workers API specifies a message-passing-based
programming model that can be likened to traditional multiprocessing.
Instantiated Web Workers do not share application data space with
each other or with the primary Web object, referred to as the Document
Object Model (DOM). Web Workers are supported by most major browsers
and the API specification is in the final phases of approval.

Figure 2 shows a sample program employing Web Workers and
comprising two files, main.js and compute.js. The code in main.js creates
a new Web Worker, which executes the code in compute.js. Communication
is managed through the onMessage property and postMessage method.

WebGL is a JavaScript API based on the OpenGL ES 2.0* standard
from the Khronos Group. It allows calling of the 3D graphics primitives,
which act within the HTML5 canvas object. The HTML5 canvas is a
pixel-based drawing surface, enabling both 2D and 3D graphics. WebGL
leverages the parallel processing capabilities available in graphics
accelerators. For more details, refer to the WebGL website.

Another standard defined by the Khronos Group is WebCL, which
provides JavaScript bindings to OpenCL, a native standard for hetero-
geneous multicore processing. The programming model for WebCL is
characterized as an accelerator model, where you create a compute
kernel containing the desired processing and dispatch the kernel and
the data to a series of accelerators.

Parallel JavaScript, also known by the codename River Trail, extends
JavaScript with data-parallel constructs. The technology leverages
OpenCL, while providing a higher level of abstraction than the accelerator
model exposed by WebCL. Parallel JavaScript extends JavaScript by
adding the ParallelArray data structure and parallel operations, such
as map, combine, reduce, scan, scatter, and filter. Figure 3 shows two
JavaScript code snippets to compute the sum of a set of values: one
that executes serially and another that employs Parallel JavaScript.
For more details, refer to the Intel Labs’ River Trail Wiki.

Figure 2: Web Workers* example

Figure 3: Parallel JavaScript* example

//main.js
var worker = new Worker(‘compute.js’);
worker.onmessage = function(event) { alert (event.data); };
worker.postMessage(‘information’);

//compute.js
self.onmessage = function(event) { // Processing task
self.postMessage(“received: “ + event.data); };

//Serial
var val = new Array(1,2,3,4,5,6);
var sum = 0;
for (var i=0; i<6; i++){
 sum += val[i];
}

//Parallel
var val = new ParallelArray([1,2,3,4,5,6]);
var sum = val.reduce(function plus(x,y) { return x+y; });

THE PARALLEL UNIVERSE

https://swdevtoolsmag.makebettercode.com
http://www.khronos.org/webgl/
http://www.khronos.org/webcl/
https://github.com/rivertrail/rivertrail/wiki

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Choosing an API
The following can help guide which API should be assessed first for
deployment in your application.

My application can benefit from: API for
consideration:

Parallelism provided via dedicated access to the
Graphics Processing Unit

WebGL

More general-purpose task parallelism that is not
vector or graphical in nature

Web Workers

Performing vector operations in parallel, but with
greater programmability than afforded by WebGL

>	I prefer an accelerator programming
model where compute tasks are bundled
and dispatched to the processing unit

WebCL

>	I prefer a higher abstraction for parallel
computation

Parallel JavaScript

Table 1

james reinders, (Intel)
Director of Parallel Programming Evangelism

Rogue Wave Software recently announced expansion of their
support of Intel Xeon Phi coprocessors which will now
include their SourcePro* C++, IMSL* Numerical Libraries, TotalView*
debugger, and the ThreadSpotter* cache memory optimizer
products. You can check out their press release for details
Scott Lasica, VP Products and Alliances at Rogue Wave
Software, helped me understand this value by sharing with
me, “When we started porting TotalView to run on an Xeon Phi
coprocessor, we progressed in a week to what took us more
than a year with an accelerator.” The common x86 programming
model, Linux*-based environment, and suite of Intel® tools
allowed them to support Intel Xeon Phi coprocessors in a few
weeks instead of in many months without the Intel Xeon Phi
coprocessor advantages.

Rogue Wave tools support Intel® Xeon Phi™ coprocessors

BLOG
highlights

BLOG
highlights

I’m pleased to have Rogue Wave offering solutions for our
customers for Intel Xeon Phi coprocessor development. Many of
our customers have expressed to me personally how happy they
are to have Rogue Wave tools supporting Intel Xeon
Phi coprocessors.

As with other tools, a key benefit is that these are NOT
new tools or wildly different add-ons to their tools.

Conclusion
HTML5 is embracing multicore processing, as shown by these four API
standards. Expect continuing evolution and refinement as these speci-
fications are implemented by developers and engineers. o

SEE THE REST OF james’ BLOG:

 “Like most developers, HTML5 developers
value application performance and have
developed a number of APIs to expose the
performance potential offered by multicore
processors. These APIs offer programmability
of both homogenous and heterogeneous
multicore processors and include Web
Workers*, Parallel JavaScript*, WebGL*,
and WebCL*.”

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

THE PARALLEL UNIVERSE

28

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/user/335550
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://www.roguewave.com/company/news-events/press-releases/2012/xeon-phi-support-in-rogue-wave-products.aspx
http://software.intel.com/en-us/blogs/2012/10/23/rogue-wave-tools-support-intel-xeon-phi-coprocessors
http://www.go-parallel.com

Resources AND Sites of Interest

The mission of Go Parallel is to assist developers in
their efforts toward “Translating Multicore Power into
Application Performance.” Robust and full of helpful
information, the site is a valuable clearinghouse of
multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
This content-rich collection includes Intel® Software
Network TV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® Software
Development Products available for free download.
For high performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier Support account after requesting the
evaluation license, or via Intel® Software Network Forums.
For evaluating Intel® Parallel Studio, you can access free
support through Intel Software Network Forums ONLY.

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
Test drive emerging tools, collaborate with peers,
and share your thoughts via the “What If?” blogs and
support forums.

Go Parallel

Intel® Software Network
“What If” Experimental
Software

Step Inside the Latest Software
Intel® Software
Evaluation Center

Sign up for future issues | Share with a friend

THE PARALLEL UNIVERSE

http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.go-parallel.com/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/
https://swdevtoolsmag.makebettercode.com

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel
microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding
the specific instruction sets covered by this notice.

Notice revision #20110804

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

THE PARALLEL UNIVERSE

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/optimization-notice

FREE SUBSCRIPTION
softwareadrenaline.intel.com

The future of software in your world.
Subscribe today: Free magazine and more

softwareadrenaline.intel.com

http://softwareadrenaline.intel.com
http://softwareadrenaline.intel.com

©2013, Intel Corporation. All rights reserved. Intel, the Intel logo, and Xeon Phi are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Intel® System Studio

Accelerate
time to market.

New tools for embedded and
mobile system developers.
Intel® System Studio provides deep
system-level insights into power,
performance, and reliability.

>> Speed development and testing

>> Enhance code stability

>> Boost power efficiency and performance

Learn more

Download trial software

http://software.intel.com/en-us/intel-system-studio
http://software.intel.com/en-us/intel-system-studio
https://makebettercode.com/systemstudio/

