
THE PARALLEL
UNIVERSEIssue 9

February 2012

Parallelizing
DreamWorks
Animation* Fur Shader
By Sheng Fu

Letter from the Editor
By James Reinders

New Analysis Tools in
Intel® Cluster Studio XE
By David Mackay, Ph.D. and Krishna Ramkumar

“Intel® Parallel Advisor is the tool needed to answer your parallelism
‘What If’ questions. It will assist you in understanding how to maximize
the benefits of your parallelism efforts.”

KIrK HallEr, Director of Research at Dassault Systems, SolidWorks Corporation

learn more about Intel® Parallel Studio XE

Winner of the 2011 Editor’s Choice award:
Best HPC Software Product or Technology
Intel® Parallel Studio XE software development suite combines Intel’s industry-leading
C/C++ compiler and Fortran compiler; performance and parallel libraries; error checking,
code robustness, and performance profiling tools into a single suite offering.

Choose this award-winning suite to help boost application performance and increase
your code quality, security, and reliability for high-performance computing and
enterprise applications.

Spark Extreme
Performance

© 2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

ContEntS
letter from the Editor
Parallel Performance from Feature Films to Advanced Clusters
By JAMES REINDERS 4
Examine the impact of applying data parallelism to a geometry generator, and analyzing
massively parallel applications for correctness and performance.

Parallelizing DreamWorks animation* Fur Shader
How Intel® tools help add parallelism in large applications
By SHENg Fu 6
Learn how Intel® parallelization tools help DreamWorks Animation's fur shader take
advantage of the performance and capabilities of multicore processors, while preserving
legacy libraries needed in production.

New analysis Tools in Intel® Cluster Studio XE
By DAvID MACKAy, PH.D. AND KRISHNA RAMKuMAR 18
Improve hybrid application analysis with new cluster tools, including Intel® VTune™ Amplifier XE.
MPI programs can now be tuned more precisely and easily—regardless of the shared-memory
programming model utilized in the hybrid—based on insight into the detailed activities on
the nodes of a distributed program.

© 2012, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Cilk, VTune, and Xeon are trademarks of Intel Corporation in
the U.S. and other countries. *Other names and brands may be claimed
as the property of others.

THE ParallEl UNIVErSE

LETTER FRoM
THE EDITor

James reinders Chief Software Evangelist at Intel Corporation.
His articles and books on parallelism include Intel Threading Building
Blocks: Outfitting C++ for Multicore Processor Parallelism, which has
been translated into Japanese, Chinese, and Korean. Reinders is also
widely interviewed on the subject of parallelism.

PARALLEL PERFoRMANCE
EXpAnds whAT’s possIblE from
fEATurE fIlms To AdVAncEd clusTErs.

THE ParallEl UNIVErSE

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

Explaining what you do for a living to your children
is easier if you can take them to a movie they like, and tell them
that you had something to do with making it. Working on the Intel®
tools, I have had that opportunity multiple times over the years
with movies that were assisted by our tools. I’m pleased to share
some of that excitement with you in this issue.

Do you know what panda bears, reluctant dragons, hybrid
applications, and cluster analysis all have in common? They represent
the innovations made possible by the latest parallel programming
tools from Intel, and they come to life in this issue of The Parallel
Universe magazine.

Animators create over two hundred attributes of fur, which
are enabled by developers who move easily through loops and
threads at DreamWorks Animation.

Parallelizing DreamWorks Animation* Fur Shader explains
the application of data parallelism to a geometry generator, and
shows the impact of tools such as Intel® Threading Building
Blocks (TBB), Intel® Math Kernel Library (MKL), Intel® Inspector XE
2011, Intel® Code coverage tool (part of Intel® C++ Composer XE),
and Intel® VTune™ Amplifier XE. You can apply the insights to
other domains as you make dependent libraries thread safe, and
improve scalability on multicore platforms.

New Analysis Tools in Intel® Cluster Studio XE takes us from
the microscopic world of the texture of hair and blades of grass
to the macro-level of accelerating cluster performance. It illustrates
the ways Intel® Inspector XE and Intel® VTune™ Amplifier XE help
you analyze a system, even if it is a system with hundreds or
thousands of processors. The latest versions can run these tools
across a cluster to analyze massively parallel applications for
correctness and performance, and efficiently understand what is
happening on each node. Whether you care about one processor
or thousands, these are tools well worth knowing and using.

our movies are better because of our high performance tools,
and you’ll learn more about how that happens in this issue. you’ll
also learn about two amazing tools that can make you an expert
on what your program is really doing, and locate threading,
memory, and performance issues on any system. Don’t forget to
use your knowledge to spark the imagination of a young future
computer scientist by heading out to a theater, and enjoying a
movie and some popcorn.

James reinders
February 2012

THE ParallEl UNIVErSETHE ParallEl UNIVErSE

THE ParallEl UNIVErSE

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

How Intel® tools help add parallelism in large applications

Parallelizing DreamWorks
animation* Fur Shader
by Sheng Fu, Software and Services Group

In computer-animated movies, furry surfaces are
crucial in making 3D objects look more realistic. the fur
shader developed by DreamWorks Animation and used
in production is a powerful geometry generator that
simulates different furry surfaces, such as fur, hair, and
grass. fur shader tends to consume large computing
resources; however, it is also an excellent candidate for
data parallelism since the computation for each hair is on

its own data set and is independent of each other. In this
paper, we will talk about how Intel parallel tools help
DreamWorks Animation to parallelize the fur shader to
generate deterministic result, make dependent libraries
thread safe, and improve scalability on multicore platforms.
Although this paper discusses parallelizing DreamWorks
Animation fur shader, the techniques, the tools, and the
methodologies are generic enough to be applied in paral-
lelizing applications in other software domains as well.

THE ParallEl UNIVErSE

Figure 1: Scene with grass from “Kung Fu Panda 2”

Figure 2: Scene with hair from “How to Train your Dragon” Figure 3: Scene with fur from “Kung Fu Panda 2”

Introduction
In computer-animated movies, furry surfaces are crucial in making 3D
objects look more realistic. the fur shader developed by DreamWorks
Animation and used in production is a powerful geometry generator
that simulates different furry surfaces, such as fur, hair, and grass.
fur shaders tend to consume large computing resources since millions
of fur/hair/grass surfaces are needed in production. A scene with
even a few furry surfaces may take hours to render. Figures 1 to 3
show examples of scenes from popular movies produced by
DreamWorks Animation.

the DreamWorks Animation fur shader is an excellent candidate for
data parallelism since the computation for each hair is on its own data
set and is independent of each other. however, the fur shader is also
quite complex: 200+ fur attributes that artists can tweak, thousands
of lines of code, and dependency on many other DreamWorks Animation
libraries. In this paper, we discuss how Intel® tools, such as Intel® threading
building blocks (Intel® Tbb), Intel® math Kernel library (Intel® mKl),
Intel® Inspector XE 2011, Intel® code coverage tool (part of Intel® c++
composer XE), and Intel® VTune™ Amplifier XE, help parallelize the
DreamWorks Animation fur shader, make dependent libraries thread
safe, and improve scalability on multicore platforms.

Although this paper discusses parallelizing the DreamWorks Animation
fur shader, the techniques, the tools and the methodologies are generic
enough to be applied in parallelizing applications in other software
domains as well.

THE ParallEl UNIVErSE

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Geometry Sampling

Texture Sampling

Guide Hair Interpolation

Styling

Figure 4: Steps to generate a hair via the fur shader

void Fur::generateFur()
{
 for(size_t i=0; i<numHairs; i++)
 {
 // compute each hair
 }
}

void Fur::generateFur()
{
 tbb::parallel_for(
 tbb::blocked_range<size_t>(0,numHairs),
 [=](const tbb::blocked_range<size_t> &r)
 {
 for(size_t i = r.begin() i<r.end(); i++),
 {
 // compute each hair
 }
 });
}

Figure 5: Left-hand side—original fur shader code. Right-hand side—modified code using Intel® TBB parallel_for with C++ lambda expression

Sign up for future issues | Share with a friend

overview of the fur shader
the fur shader is a geometry generator. It generates a large number of
small hairs to add details to a surface on which hair needs to be grown.
Each hair goes through steps identified in Figure 4.

In the geometry sampling step, the fur shader randomly picks a
location on source geometry and evaluates the geometry attributes,
including position, normal texture coordinates, and derivatives, on
that location.

Many attributes of hair can be bound to a texture. In the texture
sampling step, the fur shader evaluates hair attributes by looking up
texture maps.

during guide hair interpolation, the fur shader finds the guide hairs
that are neighbors to the current hair, and then determines its shape
based on the interpolation of the neighboring guide hairs’ shapes.

finally, during styling, the fur shader adds attributes such as kink,
curl, gravity, and wind to change the look of a hair, and adds other
subtle details to make a hair look realistic.

Clearly, the computation cost for each hair is very high, and the number
of hairs needed in production is also very large. Since the computations
for each hair are independent of each other, the fur shader is an excellent
candidate for parallel processing.

Parallelizing the fur shader with
Intel® Threading Building Blocks
the fur generation loop for each hair is the most time-consuming region
in the DreamWorks Animation fur shader. there are several parallel
programming models available from Intel® software products to choose
from: openmp*, Intel Threading building blocks, and Intel® opencl.
Since parallelism is being added to an existing C++ object-oriented
application, opencl required significant code rewrites. openmp is very
good for parallelizing loop oriented code—just add a pragma before
the for loop. Intel Tbb, however, may be a better choice if the code
base is heavily C++ and object oriented, which is the case for the fur
shader. since Intel Tbb is widely used at dreamworks Animation in
other projects, it was a natural choice for the fur shader parallelization.

Changing a regular for loop into Tbb parallel_for is quite
straightforward. Figure 5 shows the existing fur code structure and
the modifications needed for Intel® Tbb parallel_for side by
side. Tbb parallel_for requires two input parameters: the first
parameter is a blocked_range object, which defines the range of
the for loop; the second parameter is a loop body object for which a
developer must define a loop body class consisting of at least a copy
constructor, destructor, and the operator(). The code shown in Figure 5,
however, uses the c++ lambda expression, which is defined in the c++0x
standard. with the lambda expression, the compiler (e.g., Intel’s c++ compiler)
automatically generates the required loop body class, etc., which meet the
requirements for the parallel_for. A nice aspect of the lambda
expression is that the code inside the lambda expression can access the
local variables defined before the parallel_for statement.

As seen from this example, it is quite easy to build parallelism in
existing applications with Intel Tbb especially since Tbb runtime handles
creation of thread pool, scheduling tasks to threads, etc.

THE ParallEl UNIVErSE

Sign up for future issues | Share with a friend

// generate a base random number stream
vslNewStream(&myBaseRandomBStream, VSL_BRNG_MCG59, seed);

...

// the code in fur generation loop body

for each hair do
{
 vslCopyStream(¤tRandomStream, myBaseRandomStream);
	 vslSkipAheadStream(currentRandomStream,	hair_id	*	offset_for_each_hair);

 //assume we want to get a single random number as we need
 double random_number;
 vdRngUniform(VSL_METHOD_DUNIFORM_STD, currentRandomStream,
 1, &random_number, range_low, range_high);

 // Use random number in fur generation code
 ...
}

Figure 6: use of Intel® MKL RNg to generate deterministic fur results

Adding determinism to the fur shader using
Intel® Math Kernel Library random number generation
Even though it is easy to parallelize the fur generation loop, there were a few other important issues to be resolved before
production use. The first critical one was to ensure that the parallel implementation of the fur shader was deterministic;
that is, it produced results independent of the number of threads or processor cores used.

DreamWorks Animation fur shader used random number generation function extensively to make generated fur
look more natural. for example, the fur shader samples density maps randomly to find the location to grow hair on a
surface. In addition, most of fur attributes have user-defined randomness as well. In the original dreamworks Animation
implementation, the fur shader used a proprietary implementation of drand48 algorithm to generate the various random
numbers. however, the use of this random number generation function raised two challenges. first, the proprietary
implementation was not thread safe. Even if a mutex is used to make the drand48 implementation thread safe, it would
become a performance bottleneck since the fur shader called random number generation very often. Second, since each
hair is generated in parallel, the random numbers generated for each hair might be different in different parallel runs,
which would make the hairs look different in parallel runs.

however, in the fur shader code, it turned out that the maximum number of random numbers needed for each hair
was fixed and known before the fur generation loop. since the series of pseudo random numbers is fixed once the seed
is specified, each hair can use the same sequence of random numbers in that series by its hair id (hair id is the loop
iteration number which is independent of serial or parallel run). for example, if each hair needed 10 random numbers, and
there were a total 10 hairs need to be generated, then the random numbers for the hairs may be distributed as follows:

Random numbers: r1, r2,……r10, r11, r12,……r20, …….. r91, r92,……r100

Hair Id: hair_1 hair_2 hair_10

The offset to the beginning of the random number sequence for kth hair would then be:
offset for hair_k = k * (maximum number of random numbers needed per hair)

one deterministic implementation would be to generate all the random numbers prior to the fur generation loop
and store it in an array for use later through the hair_id offset. but there are millions of furs to be generated, and a more
memory-efficient implementation would be to let the random numbers be generated as needed but with guaranteed
sequence independent of parallelization. Intel mKl library supports a variety of random number generation (rnG)
functions that have the behavior we needed. These rnG functions are thread safe and lock free. most importantly,
Intel mKl provides a function to skip ahead a certain number of random numbers in a stream/sequence, and then generate
random numbers as needed. this is exactly what was needed for parallel fur generation. the code snippet in Figure 6
shows the use of Intel mKl random number functions in the fur shader:

THE ParallEl UNIVErSE

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

#include "tbb/parallel_for.h"
#include "tbb/blocked_range.h"
using namespace tbb;
float	g				=	0.0f;
int			flag	=	1;

class my_tbb_test {
private:
	 float	*a;
public:
 void operator() (const blocked_range<size_t> &r) const
 {
 for (size_t i=r.begin(); i<r.end(); i++)
 {
 g ++;
	 	 	 if(flag)	{a[i]	+=	g;}
 else {a[i] -= g;}
 }
 }
 my_tbb_test(const my_tbb_test &other)
 {
 a = other.a;
 }
	 my_tbb_test(float	*a)	
 {
 this->a = a;
 }
};

void func_foo()
{
 printf(“Test function for code coverage\n”);
}

int main()
{
	 float	data[10000];
	 memset(data,	10000*sizeof(float),	0);
 parallel_for(blocked_range<size_t>(0, 10000),
 my_tbb_test(&data[0]));
 return 0;
}

Figure 7: parallel_for example to illustrate some of the key features of
Intel® Inspector XE

Sign up for future issues | Share with a friend

Intel mKl function vslSkipAheadStream is designed to jump
to the desired random number without computing the prior random
numbers in the sequence/stream. this particular feature in short helped
add determinism to parallel fur generation.

Combining Intel® Inspector XE and code
coverage tool to find thread safety issues
the DreamWorks Animation fur shader logic is very complicated with
about 256 attributes for artists to tune. the fur shader itself is over
30k lines of code, and it depended on 10+ other dreamworks Animation
libraries. for example, the fur shader depended on geometry libraries
to sample different types of geometry, such as mesh, nurbs surface,
and subdivision surface. Some of these libraries were developed and

“Intel® Inspector XE
is a tool we depended
on heavily to find
thread safety issues
in the parallelized fur
shader. It is a dynamic
memory and threading
error checking tool
for developing serial
and multithreaded
applications."

maintained over a long period of time, and were not designed to run
in parallel. our next challenge was to make the fur shader and the code
paths in legacy libraries exercised by fur shader to be thread safe.

Intel Inspector XE is a tool we depended on heavily to find thread
safety issues in the parallelized fur shader. It is a dynamic memory and
threading error checking tool for developing serial and multithreaded
applications. users must define a test case, and then run it with
Inspector XE. Inspector XE will detect data race and deadlock issues in
the application as well as record the call stack when they occur.

The example Tbb parallel_for code in Figure 7 illustrates
some of the key features of Intel Inspector XE.

In this example, global variable g has a data race issue since multiple
threads can read and write variable g without protection.

THE ParallEl UNIVErSE

Figure 9: Intel® Inspector XE showing a data race issue in a test program

In order to ensure that Inspector XE can fully analyze Tbb applications, an Intel® compiler macro “Tbb_usE_ThrEAdInG_
Tools” should be defined for compiling the application. so the Intel® compiler command line should be as follows:
(Figure 8)

Then launch Inspector XE to run the application in order to locate deadlocks and data races. Figure 9 shows the
screen shot of Intel Inspector XE after its analysis is completed.

In this example, one can see Inspector XE reporting a data race issue. If the row with data race is selected, Inspector XE
will then show the call stack where this data race occurred (see Figure 10).

with the call stack for the data race, developers can usually figure out why the data race occurred quite easily.
since Inspector XE only performs runtime analysis, the issues it can find are completely dependent on the test cases

defined by developers. If the test cases do not exercise the code paths that have thread safety issues, Inspector XE
won’t be able to find them. It would not be too difficult for the author of the code to create appropriate test cases. but
for a very large code base, such as the fur shader, developed over time and maintained by different authors, it can be
quite challenging to define comprehensive test cases.

Interestingly, Intel® Composer C++ compiler provides a code coverage tool to help developers to analyze extent of code
paths that are covered by test cases. let us use the simple Tbb parallel for code as an example. The following Intel® compiler
options are needed to enable code coverage analysis:

icpc –o tbb_for tbb_for.cpp –tbb –g –prof-gen=srcpos –prof-dir ./code_coverage

Figure 11

icpc –o tbb_for tbb_for.cpp –tbb –DTBB_USE_THREADING_TOOLS –O2 –g

Figure 8

THE ParallEl UNIVErSE

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 10: The call stack for a data race issue

Figure 12: Intel® code coverage tool’s analysis result

“In general,
for large legacy
codes, in order
to introduce
threading quickly,
one may have to
use mutexes
to protect entire
functions.”

Sign up for future issues | Share with a friend

THE ParallEl UNIVErSE

Figure 13: Intel® code coverage analysis result for file “tbb_for.cpp”

option “prof-gen” enables code coverage analysis, and option
 “prof-dir” sets the directory to save code coverage results.

now, the application built with above compiler options is run with
several tests. with different runs, multiple files with various profile
information are created in the ./code_coverage directory. next, change
directory to ./code_coverage, and run “profmerge”. This command
supplied with Intel® compiler will accumulates multiple *.dyn files into a
single “pgopti.dpi” file. finally, run “codecov –dpi pgopti.dpi” to generate
an html page “codE_coVErAGE.hTml”. The following screen shot
(Figure 12) shows what the code coverage analysis page looks like.

 If the link for “tbb_for.cpp” is selected, a detailed code analysis
result for that file is shown. (Figure 13)

on the left-hand side, the functions that are covered and uncovered
by the tests are reported. on the right side, the code with white
background color are fully covered while the codes highlighted with
pink and yellow are uncovered by the tests (pink highlights point to
uncovered functions, while yellow highlights point to uncovered basic
blocks). from this simple example, one can see how Intel® compiler
code coverage tool helps understand what execution code paths are
covered by various test cases.

“ Intel® tools were critical
in every step of this
parallelization effort
with DreamWorks
Animation's fur shader.”

THE ParallEl UNIVErSE

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

Continuing on our DreamWorks Animation fur shader discussion, we
used the Intel® code coverage tool to define about 100 test cases for
the fur shader to get a good coverage of code execution paths. then,
running Inspector XE on these test cases helped us find a few more
data race issues that would have been very hard to find with code
inspection alone.

A caution on running large applications through Intel Inspector XE:
since Inspector XE instruments the code heavily, applications usually
run much slower than the un-instrumented regular version. So it is
critical to design test cases that run for a very short time. In the
DreamWorks Animation fur shader case, we reduced the number of
hairs in fur generation loop since the hairs in the same fur generation
loop usually go through similar code paths.

Different approaches
to fixing thread safety issues
All thread safety issues found in the fur shader with Inspector XE
were data races. the member functions in class Fur were designed to
run with single thread, and these functions read/write the member
variables of class Fur. however, with parallelization of the fur generation
loop, these functions will be called from multiple threads. thus,
accessing the member variables of class Fur would be no longer
thread safe. there are a few different approaches to fix such data
race issues based on the different usages of the variables:

1. If a member variable is used inside a member function loop and there
is no dependency of this member variable across loop iterations, then
such a variable may be made as a local variable just in the scope of
the loop statement. for example, in the fur shader, member variable
moutputhair, which saves the final result of the generated hair to pass
on to tessellation, can be converted to a loop local variable since
each thread needs a copy of that variable which is not shared across
multiple threads. In addition, if a member function inside fur generation
loop accessed moutputhair, then the member function should be
modified to accept moutputhair as a function parameter.

2. If a member variable is shared by multiple threads, but it is an integral
type, enumeration type, or pointer type, and only require limited
arithmetic operations, such as “++”, “- -“, it may be converted to a Tbb
atomic variable. Atomic variables allow atomic operations, which have
low overhead compared to locks. Atomic operations do not suffer race
conditions or deadlocks. for example, mTotoalhairs, counts the total
number of generated hairs. The only operation for that variable is “++”
and it can be converted to an atomic variable as follows: (Figure 14)

3. for all other shared member variables, a mutex is needed to protect
them to avoid race conditions. If a mutex is in a high thread contention
area, it may become quite expensive. In case of the fur shader there
was no need for such a mutex since logically each hair was
processed independently.

As mentioned earlier, the DreamWorks Animation fur shader depends
on various other libraries, such as the geometry evaluation library.
some of these libraries contained static variables. for example, in the
nurbs surface evaluation function, a static variable fprecision controls
the precision of evaluation. one could pass fPrecision as a function
argument to avoid race conditions; however, such libraries are usually
widely used by different applications and it is very time consuming to
change the function interfaces to include a new parameter. In such
cases, use of a thread local storage variable may be a good choice.
Converting to thread local variables is straightforward—just add a
prefix “__thread” to the declaration of that variable. for example:

thread-local storage variables can be accessed just like regular
variables, and the compiler will maintain a separate copy of this variable
for each thread. however, caution must be exercised when using
thread local variables. first, there may be subtle hidden performance
costs associated with the use of thread local variables (see blog:
http://software.intel.com/en-us/blogs/2011/05/02/the-hidden-
performance-cost-of-accessing-thread-local-variables/). second, using
large arrays as thread-local variables should be avoided since these
would be allocated on the thread stack by the compiler, and could
reduce available stack size.

Improving scalability with
Intel® vTune™ Amplifier XE
once the threaded fur shader ran correctly after data races and
thread safety issues were fixed, the next step was to evaluate the
performance. In particular, it is important to study how performance
scaled with number of threads/cores. with the Tbb task scheduler, it
is very easy to control the number of threads to run the application.
for example, one could code as follows:

this scaling experimentation with the fur shader revealed a
surprise—it did not scale well with the number of cpu cores at all. for
example, the fur shader reached ~2x scaling on 2 cores but with 8
cores/threads the scaling did not improve beyond 2x.

Intel VTune Amplifier XE is a great tool to help find such thread
scaling performance issues. In particular, it has a “locks and waits”
analysis, which can identify an important cause for ineffective processor
core utilization. one common performance problem is for threads to

tbb::atomic<int> mTotalHairs;

Figure 14

tbb::task_scheduler_init init(nThread);

Figure 16

__thread	float	fPrecision;

Figure 15

THE ParallEl UNIVErSE

Figure 17: Intel® VTune™ Amplifier XE showing thread contention in texture sampling function evaluateMaps (yellow lines showing lots of
transitions between threads)

Figure 18: Drilling down on function evaluateMaps in Figure 17 shows the source code
and the lock location where contention occurred

THE ParallEl UNIVErSE

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

Doctor Fortran gets
Explicit—Again!
STEVE lIoNEl, Developer Products Division

nearly 11 years ago (!) I wrote an item for the Visual Fortran

Newsletter on explicit interfaces in Fortran. In recent weeks,

I have had to refer quite a few customers to this article,

suggesting that many fortran programmers don't understand

the role and rules of explicit interfaces. however, when I

reread the item, I realized that things had changed a bit since

fortran 95, so I figured it was time to revisit the issue.

In fortran speak, an "interface" is information about a

callable procedure. fortran 77 had only "implicit interface"

where the only thing you could say about a procedure was

the datatype of a function result. While the language said

that arguments in a call must match in number, order, type, and

rank (number of dimensions), there was no way to describe

the arguments so that the compiler could check them.

furthermore, a compiler did not need to know these things

because it didn't affect how arguments were passed.

Enter fortran 90. suddenly, things get a lot more complicated.

for example, a dummy argument could be an assumed-shape

array, requiring the call to supply information about the

array bounds….

visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at go Parallel: Translating Multicore
Power into Application Performance.

wait on synchronization objects such as locks or for threads to contend
for access to a protected/locked resource. In the case of the fur shader,
“locks and waits” analysis (see Figures 17 and 18) showed that the
mutex in the texture sampling library was the most contentious and
expensive one.

In DreamWorks Animation's texture sampling library, there is a cache
to save the results from last texture sampling call. If the texture
coordinates from current texture sampling call are the same as the last
call, the sampling function simply returns the texture values saved
in the cache. this cache is protected with a mutex to make it thread
safe. however, in the workload tested, the texture sampling function
was called very frequently, resulting in a high thread contention for
texture cache access. And, this thread contention became the hotspot.
In this particular instance, it was easy to eliminate the contention by
removing the mutex and making the texture cache a thread-local
storage variable.

In general, for large legacy codes, in order to introduce threading
quickly, one may have to use mutexes to protect entire functions if it is
not clear whether the functions are thread safe or not. the assumption
would be that these legacy functions are not the performance bottle-
necks. If Intel VTune Amplifier XE profiling shows that a mutex is a
hotspot, then a further investigation would be needed to design a better
solution. following this approach, developers are made to always focus
on performance-critical areas in parallelizing a large legacy application.

Conclusion
this paper highlights different ideas that enabled parallelization of
DreamWorks Animation's fur generation for multicore processors
while still continuing to use various legacy libraries needed in production.
Performance evaluation of this parallel code on DreamWorks
Animation's production shots on an 8-core Intel® workstation produced
an average of 5x speedup on the fur generation loop. overall
speedup for the fur shader was 4x due to other serial regions in the
execution path.

Intel® tools were critical in every step of this parallelization effort
with dreamworks Animation's fur shader: Intel Threading building
block’s (Tbb) parallel_for construct was used to parallelize the
fur generation loop, Intel math Kernel library’s (mKl) random number
generation functions were used to ensure that the result from
parallelized fur generation was deterministic and independent of the
number of threads used, Intel Inspector XE and Intel compiler’s
code coverage tools helped find all relevant thread safety issues, and
Intel VTune Amplifier XE helped find/fix thread scalability issues.
Without these Intel tools, parallelizing DreamWorks Animation's fur
shader would have been a mission impossible. o

SEE THE rEST oF STEVE’S BloG:

BLOG
highlights

THE ParallEl UNIVErSE

new Analysis tools in
 Intel® Cluster Studio XE

THE ParallEl UNIVErSE

18 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

new Analysis tools in
 Intel® Cluster Studio XE

Intel® Cluster Studio XE offers new analysis tools—Intel® Inspector XE and Intel® vTune™ Amplifier XE—as
an XE bonus, in addition to updates to tools previously found in Intel® Cluster Studio. As many software applications
adopt a hybrid distributed/shared memory programming model, the addition of node software analysis capabilities
is particularly useful. Now you can analyze what is happening in the shared memory section of your code, in
addition to the internode interaction capabilities that have been supported for years.

VTune Amplifier XE and Intel Inspector XE provide detailed information, respectively, about software performance
and correctness of a system. you can run these tools across a cluster to analyze your hybrid parallel application
for correctness and performance, and efficiently understand what is going on in each node.

This article provides a brief sample analysis of an Intel® MPI program with VTune Amplifier XE. It also explores
typical usage scenarios designed to give developers a sense of the tools’ benefits in a cluster environment.

by David Mackay, Ph.D. and
Krishna Ramkumar,
Software and Services Group, Intel Corporation

THE ParallEl UNIVErSE

 Figure 1. Sample graph abstraction

1

2

3

4

6

5

7

8

9

10

11

14

13

12
16

20

21
17

18

15

19

23

22

24

notoriously difficult to shift tasks or work across mpI processes once
they are already assigned. Intel’s shared memory programming models,
such as Intel Tbb and Intel® cilk™ plus, offer task stealing under the hood
and can automatically help provide a good workload balance among
threads on a compute node.

here, we illustrate the use of VTune Amplifier XE on a hybrid
distributed/shared memory cluster application. the sample application
is an algorithm that computes the Betweenness Centrality metric
on large, real-world datasets. betweenness centrality of a vertex is a
shortest path-based metric, which is defined as the ratio of the number
of shortest paths (between all vertex pairs in a graph) passing through
the vertex to the total number of shortest paths (again between all
vertex pairs in a graph). for example, a high value of betweenness
Centrality for a vertex indicates that the vertex is important in a commu-
nications network (as generally communication is desired through the
shortest path). The algorithm computes shortest paths from every
vertex to all other vertices in the graph using breadth first traversals
(we only consider undirected, unweighted graphs in this paper). for
more details about the algorithm including pseudo code, please refer to
Algorithm 1 in in Parallel Algorithms for Evaluating Centrality Indices in
Real-world Networks.1

In Figure 1, a sample graph network is depicted with vertices labeled.
In this case, vertex nine has the highest betweenness centrality
value. this might be useful to know if each of the above vertices were
to represent different cities in a transportation network or routers in
a telecommunication network.

Intel Cluster Studio XE
The new Intel cluster studio XE adds the popular analysis tools
Intel Inspector XE and the VTune Amplifier XE to the successful
Intel cluster studio (containing Intel® mpI library, Intel® compilers,
Intel® Threading building blocks (Intel® Tbb), Intel® math Kernel library
(Intel®mKl), and Intel® Trace Analyzer and collector). In this paper, we
illustrate the use of VTune Amplifier XE on a hybrid distributed/shared
memory cluster application for tuning performance. An article in a
future edition of The Parallel Universe will cover the usage of Intel
Inspector XE for finding programming defects.

Intel MPI has long been a popular method for solving large, technically
difficult problems on distributed memory compute clusters. As the
industry shifted to multicore processors, many developers initially just
ran one mpI process per mpI node. however, hybrid parallel programming
is becoming more popular for performance-critical applications, especially
as core count increases. In this model, distributed/shared memory
constructs are used to implement two levels of parallelism, because the
computation can now be distributed across the available MPI nodes. In
addition, there can be threading per MPI node to make full use of all
the available cores per mpI node. This has several advantages. first,
many applications have significant amounts of data that each process
needs to read or access for computations. As the number of cores per
node on the compute cluster increases, each MPI process ends up with
its own copy of the memory. This is an inefficient use of system resources,
such as memory. hybrid parallel programming shares memory on the
node, and the threads share a common memory heap and can easily
share a common memory data set. A second advantage is the ability
to execute dynamic task stealing or task balancing on the node. It is

THE ParallEl UNIVErSE

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.20

Sign up for future issues | Share with a friend

We begin with distributed parallelism
using Intel MPI to implement this algorithm.
As a next step, we add shared memory
parallelism using Intel Tbb. specifically, we
use Intel Tbb’s parallel_for framework
to parallelize the main loop in the algorithm
to improve performance. Inside the
parallel_for we use an Intel Tbb
scoped spin mutex to ensure data coher-
ency and avoid data races (look for a future
article on using Intel Inspector XE to find
data races in multithreaded programs).

The source code showing the Intel Tbb
spin_mutex is shown below (Figure 2).

“Intel’s shared memory programming
models, such as Intel® Threading
Building Blocks and Intel®Cilk™ Plus,
offer task stealing under the hood
and can automatically help provide
a good workload balance among
threads on a compute node.”

if(w != node)

{

// scoped_lock is used here that protects code within this‘if’ block

spin_mutex::scoped_lock lock(bwMutex);

//betweennessCentrality is the global data structure

betweennessCentrality[w] = betweennessCentrality[w] + dependency[w];

}

Figure 2

“MPI programs
can now be tuned
more precisely
and easily with
the insights
available from
Intel® Cluster
Studio XE.”

THE ParallEl UNIVErSE

	
Figure 4. Screenshot showing wait time on sync objects reported by Intel® VTune™ Amplifier XE

Figure 5. Screenshot showing expansion of top sync objects

	

Figure 6. Screenshot showing expansion of top sync objects

“Hybrid parallel programming is becoming more popular
for performance-critical applications, especially as core
count increases.”

THE ParallEl UNIVErSE

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

"Award-Winning"
Intel® Parallel Studio XE
JamES rEINDErS,

Director of Software Development Products

Intel® Parallel Studio XE, in the category of "best hpc

software product or technology," was honored in the annual

HPCwire Readers Choice Awards. the awards are an annual

feature of the publication and constitute prestigious recogni-

tion from the high-performance computing community.

the awards were announced and presented during the

2011 Supercomputing Conference, held in Seattle, WA.

As hpcwire proclaimed, "The annual awards are highly

coveted as prestigious recognition of achievement by the

hpc community."

Intel parallel studio XE 2011 combines enhanced optimizing

compilers, libraries, error checkers, and performance analyzers

in a single integrated suite that enables developers to write

faster, more reliable and secure code on Windows* and Linux*.

I'm very pleased to see this additional recognition for our

Intel parallel studio XE, which is used by a very large number

of developers around the world. We just recently offered an

extended version of Intel parallel studio XE, for developers

on cluster computers (characterized in part by their use of

mpI), called Intel® Cluster Studio XE….

visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at go Parallel: Translating Multicore
Power into Application Performance.

when we build this application we use the –dTbb_usE_
ThrEAdInG_Tools option so that the analysis tools will recognize all
of the Intel Tbb constructs, and display more meaningful information
when displaying the analysis results. to analyze this application for
performance we use VTune Amplifier XE. The simple “hotspots”
analysis shows us which routines consume the most compute time.
The “locks and waits” analysis shows us where threads are stalled
waiting for shared resources. In this case, we are going to conduct a
locks and waits analysis so we invoke VTune Amplifier XE collection
with the following command line:

In this mode, VTune Amplifier XE will produce a results data for each
node in the MPI cluster and appends the node rank number to the
results data, so we can distinguish results output from each node. for
our screenshots we use data from node 0. the node rank comes from
the mpI runtime and VTune Amplifier XE takes the values from the
environment settings pmI_rAnK or pmI_Id (these are automatically
set by Intel mpI). In this analysis, we chose a workload with 5,242
vertices and 28,980 edges). when we open results in VTune Amplifier
XE, we have the following display in Figure 4.

This shows a significant spinning on the Intel Tbb spin_mutex .
We click on the + box on the tbb::spin_mutex line to expand our
display and we see the results shown in Figure 5.

 figure 5 shows us that it is the Intel TBB spin mutex
around the routine computeBetweennessCentrality that is
the bottleneck. this shows us where to concentrate our attention.
now when we double-click on this line or right-click and select a source
view we obtain the view in Figure 6.

 The results in figure 6 show us exactly where the thread contention
is occurring. this tells us we need to think of a better solution to minimize
the thread contention. We recognize that it is a global variable update
operation and that an Intel Tbb atomic variable will be a more elegant
solution. so, we remove the Intel Tbb spin_mutex and create an Intel
Tbb atomic variable that will not require a spin_mutex, but preserve
the thread safety required (Figure 7).

mpirun -f mpd.hosts -perhost 1 -n 1 am-
plxe-cl -collect locksandwaits -r gmet-
rics_lw_r1 -- ./graph_metrics CA-GrQc.txt

Figure 3

map<int, atomic<double> >
betweennessCentrality;

Figure 7

SEE THE rEST oF JamES’ BloG:

BLOG
highlights

THE ParallEl UNIVErSE

After this change, we compared the two algorithms (one with a
scoped mutex and the other with an atomic variable on a 16 node
linux* cluster. Each node is a 64-bit 2-socket Intel® Xeon® cpu x5680
machine running at 3.33 Ghz with 6 physical cores per socket with
hyperthreading enabled (384 Tbb threads). we ran a data set with
36,692 vertices and 367,662 edges. The program execution time
with the spin_mutex was 284 seconds; when we adopted the atomic
variable execution time dropped to 222 seconds—a 22 percent
performance improvement.

The performance analysis tool VTune Amplifier XE can help
analyze the performance of hybrid parallel applications. In general,
we recommend tuning software on a single node: a) make sure the
software is vectorized using sImd instructions such as ssE4 or AVX,
b) Add the mpI constructs and use Intel®Trace Analyzer and collector
to improve the message passing performance, c) Add shared memory
parallelism for improved performance on each node and, d) run Intel
Inspector XE to remove possible non-deterministic results, and then
use VTune Amplifier XE to look for performance bottlenecks.

Summary
the ability to analyze the detailed activities on the nodes of a
distributed program with VTune Amplifier XE offers much needed
insights for the world of hybrid programming. VTune Amplifier XE
can help with hybrid application regardless of the shared-memory
programming model utilized in the hybrid—Intel Tbb, Intel cilk plus,
openmp*, coarray fortran, pthreads or windows* threads. mpI
programs can now be tuned more precisely and easily with the new
tools available in Intel cluster studio XE. o

References
1. d.A.bader, K. madduri, “parallel Algorithms for Evaluating

centrality Indices in real-world networks,” The 35th
International conference on parallel processing (Icpp 2006),
columbus, oh, August 14–18, 2006.

2. Stanford Large network Dataset Collection - http://snap.stanford.
edu/data/index.html

3. http://software.intel.com/en-us/articles/intel-cluster-studio/

4. http://software.intel.com/en-us/articles/intel-parallel-studio-xe/

“Intel® VTune™ Amplifier XE
provides detailed information
about software performance
on a system.”

THE ParallEl UNIVErSE

24 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Sign up for future issues | Share with a friend

RESouRCES AND SITES oF INTEREST

The mission of dr. dobb’s Go parallel is to assist
developers in their efforts toward “Translating multicore
power into Application performance.” robust and full of
helpful information, the site is a valuable clearinghouse
of multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
this content-rich collection includes Intel® Software
network tV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® Software
Development Products available for free download.
for high-performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier Support account after requesting the
evaluation license, or via Intel® software network forums.
for evaluating Intel® parallel studio, you can access free
support through Intel® software network forums onlY.

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
test drive emerging tools, collaborate with peers,
and share your thoughts via the “what If” blogs and
support forums.

Go Parallel

Intel® Software Network
“What If” Experimental
Software

Step Inside the latest Software
Intel® Software
Evaluation Center

THE ParallEl UNIVErSE

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Free updates and fast downloads on even more new software technologies, tools, and best
practices for smart coding and innovative user experiences.

> Join Intel® Software Dispatch.

THE ParallEl UNIVErSE

26 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

WaTCH NoW
application Tuning
Assess the recommended methodology for using Intel® Vtune™ Amplifier XE to tune
software on Intel® microarchitecture in this video.

© 2012, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as the property of others.

Intel® Learning Lab
The ultimate training resource for serial and parallel programming for multicore.
Demos, videos, articles, quick tips, and more.

Stay pulsed on the latest parallel
techniques, tools and technologies
with Intel® Software Insight.
Innovate at the forefront of software design, coding, and deployment.
Join thousands of developers and It pros worldwide who subscribe
to Intel® Software Insight.

• get the latest news in parallel
programming, mobile technologies,
and open Source, as well as
virtualization, security, and the cloud.

• Receive free tech downloads to help
rev up your code.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others. Copyright ©2012 Intel Corporation.

All rights reserved. 0212/BC/RHM3/WQ

free updates. free downloads.

from software experts directly to you.

Eliminate Threading

Errors and Improve

Program Stability

with Intel® Parallel Studio XE

INTEL® PARALLEL STUDIO XE EVALUATION GUIDE

The STaTe of

Multicore has gone mainstream —

but are developers ready?

Parallel Programming

Sponsored by

An Exclusive Research Report Parallel computing is the primary way that processor

manufacturers are dealing with the physical limits

of transistor-based processor technology. Multiple

processors — or cores — are joined together on a single inte-

grated circuit to provide increased performance and better

energy efficiency than using a single processor. Multicore

technology is now standard in desktop and laptop computers.

Mobile computing devices like smartphones and tablets are

also incorporating multicore processors into their designs.

 The problem with multicore computing is that

software applications no longer automatically benefit from

improvements in processor performance the way they did

in the past. Those benefits can only be realized by writing

applications that expect and take advantage of parallelism.

The proliferation of multicore processors means

that software developers must incorporate

parallelism into their programming in order

to achieve increased application performance.

But many programmers are ill-equipped for

parallel programming, lacking the requisite

training and often relying on primitive devel-

opment tools. The research shows that better

and simpler tools and libraries are needed to

help programmers parallelize their code and

to debug the complex concurrency bugs that

parallelism exposes.

The Parallel Programming
Landscape

Join Intel® Software Insight today!

softwaredispatch.intel.com

