
THE PARALLEL
UNIVERSEIssue 8

September 2011

Intel® Parallel Studio XE SP1 by Michael D’Mello

The Intel® Threading Building Blocks
Flow Graph by Michael J. Voss, Ph.D.

HPC Study:
Biophysicists and Mathematicians Embrace
Parallelism with Intel® Parallel Advisor
by Zakhar A. Matveev

Speed and simplify parallel development
Intel® Parallel Advisor pinpoints where your application can benefit
most from threading —before you’ve wasted time, effort, and money.

The innovative threading assistant is the only step-by-step guide
available for Microsoft Visual Studio* C developers and C++ developers
who want to add threading to existing serial or parallel applications.

LEarn morE aBouT InTEL ParaLLEL advISor

© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

“Intel® Parallel Advisor is the tool needed to answer your parallelism
‘What If’ questions. It will assist you in understanding how to maximize
the benefits of your parallelism efforts.”

KIrK HaLLEr, Director of Research at Dassault Systems, SolidWorks Corporation

http://software.intel.com/en-us/articles/intel-parallel-advisor/

Contents
Letter from the Editor
Parallelism Programming: Who Signed Me Up
for Writing a Book?, By JAMES REInDERS 4
Reinders, chief evangelist and director of Intel® software Development Products, shares
how his opinions on Intel® Parallel Advisor have evolved, and explains why Flow Graph is his
most favorite new feature of Intel® threading Building Blocks.

HPC Study: Biophysicists and Mathematicians Embrace
Parallelism with Intel® Parallel Advisor, By ZAKHAR A. MATVEEV 6
Learn how a group of research scientists in Russia parallelized their applications in
response to the growing data from biological experiences and increasing complexity of
simulation requirements.

The Intel® Threading Building Blocks
Flow Graph, By MICHAEL J. VOSS, PH.D 14
User feedback inspired the Flow Graph feature in Intel® threading Building Blocks, which
allows programmers to express static and dynamic dependency graphs, as well as reactive
or event-based graphs.

Intel® Parallel Studio XE SP1, By MICHAEL D’MELLO 20
Intel® Parallel studio Xe combines Intel’s industry-leading C/C++ and Fortran compilers, high
performance parallel libraries, error checking, code robustness, and performance profiling
technologies into a single suite offering. the sP1 release now adds functionality to simplify
the transition from multicore to many-core hardware platforms.

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

© 2011, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Cilk, VTune, and Xeon are trademarks of Intel Corporation in
the U.S. and other countries. *Other names and brands may be claimed
as the property of others.

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com/

LETTER FROM
THE EdITor

James reinders Chief Software Evangelist at Intel Corporation.
His articles and books on parallelism include Intel Threading Building
Blocks: Outfitting C++ for Multicore Processor Parallelism, which has
been translated into Japanese, Chinese, and Korean. Reinders is also
widely interviewed on the subject of parallelism.

We have three very different articles for your consideration
in this issue, and all of them are quite useful, but still compact.

one article is an overview of the capabilities of Intel® Parallel studio
Xe sP1. If you do not already use all our tools, this may pique your
interest. If you do use them all, this may highlight capabilities you will
want to learn more about.

It is hard to choose a favorite article, especially in this issue, but
I would vote for the feature article “HPC study: Biophysicists and
Mathematicians embrace Parallelism with Intel® Parallel Advisor,” simply
because it is a real customer example. I’m a pushover for any article that
shows the actual customer experience, step-by-step. not only that,
this article covers a pretty typical experience with Intel Parallel Advisor.

Around Intel, some people know me as “the guy who did not believe
in Intel Parallel Advisor.” true enough. For decades, I’ve seen tools try
to make parallelism easy. It has hardened me into a skeptic down to
the bone. In a way, I was right. I remain convinced no tool can magically
look at your code and make it parallel. today, parallelism still requires
the skills of a human programmer.

But I’m actually no longer skeptical about Intel Parallel Advisor. so,
what changed my mind? Answer: Intel Parallel Advisor works!

Intel Parallel Advisor changed the game. “Kobayashi Maru,1” you
might say. Instead of trying to build a tool that magically did everything,
we created a tool that assists you in your analysis of possibilities—like
nothing before it could. It turns out this is magical because that is
where we waste time!

ParaLLELISm ProGrammInG:

WHo sIGneD Me UP
FoR WRItInG A BooK?

THE ParaLLEL unIvErSE

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

I admit that I’ve been there. I’ve had a bright idea on how to code
something in parallel, only to code it up, debug it, and figure out that
I missed a key reason it was not going to scale well. of course, I wish
I’d known that fact many weeks earlier. I’m left to decide if it is “good
enough” or whether I wasted weeks of programming time. Intel Parallel
Advisor makes that “good enough” question a thing of the past, because
it lets us find those issues without weeks of programming and debugging.
the HPC article shows you how that worked for one customer. I hope
you give it a try when you need it, and see how well it can help you
avoid dead ends. Give Intel Parallel Advisor a day of hard work on a real
problem you have, and it just might save you weeks of unproductive
dead ends while letting you really find the ways to scale an application.
I’ve seen it help expert and novice alike. Fortunately, I did not make
any serious bets with the development team about their ability to
help experts and novice both, or I’d be out a lot of money now! I’m
impressed with Intel Parallel Advisor because of what I’ve seen it do
for our customers.

Finally, the article “the Intel® threading Building Blocks Flow Graph”
is about my favorite single new feature. My appreciation for Intel
threading Building Blocks (Intel® tBB) is hardly a secret, and this latest
feature will give you some idea of why I continue to be a huge fan of
Intel tBB and the team behind it. For some time now, users have asked
for more interfaces to Intel tBB. Game developers, in particular, have
asked for event-based interfaces to schedule tasks. other developers
have wanted interfaces for coordinating multiple dependent parts of
an application. others did not ask for anything, but proceeded to make
our support team members amazed at what some developer would
do with the pipeline functionality of Intel tBB, despite how convoluted
it seemed to us. The Intel TBB design team outdid themselves, finding
a unifying solution to all three of these interface needs with a general
purpose “graph” interface. Internally, they called this tbb::graph for a
long time including during early beta testing. Late in the game, before
product release, they renamed it “flow graph.” I’ve been told it is a
better description of the feature and they’ve had positive feedback
on the name change.

the concept of a group of tasks being organized with a dependency
graph is very common in many applications. I first used it in compiler
design, but have used it many times in signal processing applications
such as radar system designs. Intel TBB’s new flow graph is the right
solution for such programs.

oh, did I mention a book? I’m working with a couple of experts on
a book about parallel programming. We have finally reached the point
where we think we see the light at the end of the tunnel—we have
written more than 75 percent of the text we need before we send it
out to reviewers and the publisher. Will it be a groundbreaking book?
We hope so. time will tell. I’ll try to update you next time on what our
reviewers think, and tease you more with what will be inside it. For
now, suffice it to say we are trying to put on paper what we have
learned from working with our customers about how to best succeed
at teaching parallelism. one way to explain what we think we have
learned is this: computation is not everything because communication
matters and you can learn a lot from knowing common patterns and
having seen enough examples.

our tools will help you succeed; I hope this issue gives you a few
more ways to understand how they fit your needs.

Please do the authors the favor of reading their articles and keep
the feedback coming! Your feedback and requests help guide future
articles. I hope you enjoy this issue, and I look forward to hearing
your thoughts.

Enjoy!

James reinders
September 2011

P.S., As we go to press with this issue, news is out that support for
Intel® Cilk™ Plus is going into a branch of gcc for evaluation by the gcc
community. We have contributed our implementation to open source
to help this effort. We are very excited about that. Of course, we will
continue to support Intel Cilk Plus in our compiler and tools; having
gcc support will just make Intel Cilk Plus better supported and a better
way to go with coding. I’ll blog on that more, and talk about it in a
future issue of this magazine. Just like the popular success Intel TBB
enjoys because it is supported widely, we look forward to growing
support for Intel Cilk Plus.

1. The no-win Starfleet* training scenario, as seen in the Star Trek* films.

Instead of trying to build a tool that
magically did everything, we created a tool
that assists you in your analysis of possibilities—
like nothing before it could.

THE ParaLLEL unIvErSETHE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com

Figure 1: CARDIAC benchmark application GUI. Myocytes voltage level
is given in red color, while fibroblasts voltage is given in green.

Learn how a group of research scientists in Russia parallelized their
applications in response to the growing data from biological experiences
and increasing complexity of simulation requirements.

Biophysics explorations are increasingly associated with
high-performance computing (HPC). the use of computer modeling and
simulations is becoming biology’s “next microscope.” the huge amount
of heterogeneous data that biophysics applications must process requires
high-performance computing techniques. the complex interaction of
biological “units” increases the complexity of the model, and eventually
makes it practically impossible to organize efficient computational
processing in this area without using parallelism.

A group of research scientists at nizhny novgorod national
Research University in Russia, including Professor G. osipov Ph.D., V.
Petrov Ph.D., and M. Komarov Ph.D., have been developing biophysics
compute-intensive simulation applications for years. Because of the
growing data from biological experiments and increasing complexity
of simulation requirements, research scientists have been faced with
significant computational challenges in this area. To improve the
performance of the algorithms, they decided to parallelize their
applications using Intel® Parallel Advisor 2011 (now available with
the purchase of Windows* version of Intel® Parallel Studio XE).

Originally there were three different serial C++ applications to
be parallelized:

> CARDIAC: three-domain cardiac 3-D simulation

> neURAL: Brain neural ensembles dynamic analysis

> RAte: Phenomenological rate model to organize virtual mobile
robot control

In this article we will discuss each of them to see how research
scientists parallelized their code with the help of Intel® software tools.

Three-domain cardiac simulation serial application
electromechanical cardiac simulation models are widely used to interpret
medical data and test hypotheses about arrhythmia mechanisms. In
the CARDIAC application, the nizhny novgorod scientists used a newly
proposed three-domain model that takes into account not only cardiac
muscle cells (cardiac myocytes) as usual, but also extracellular space
and small passive cardiac cells called fibroblasts. More complex real-world
modeling means more complex numerical computations.

the output of CARDIAC is a spatiotemporal distribution of myocyte
and fibroblast voltage levels V (x,y,z,t) over a 3-D volume and time
interval [0, t], as shown on the CARDIAC benchmark GUI in Figure 1.

 HPC study: Biophysicists and Mathematicians

Embrace Parallelism
 with Intel® Parallel Advisor
by Zakhar A. Matveev
Software Development Engineer

THE ParaLLEL unIvErSE

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

#1 for (ti) // time ([0, T]) integration outer loop
#2 for (Pi = {x,y,z}) // space (3D volume) iteration inner loop
 //calculates total extracellular current in Pi

 //Poisson solver:
 while (err > err0)
#3 for (Pi = {x,y,z}) // space iteration inner loop
 //calculates total extracellular current in Pi

#4 for (Pi = {x,y,z}) // space iteration inner loop
 //calculates ionic currents in Pi

#5 for (Pi = {x,y,z}) // space iteration inner loop
 //calculates myocyte voltage in Pi

#6 for (Pi = {x,y,z}) // space iteration inner loop
	 	 	 	 	 //calculates	fibroblast	voltage	in	Pi

Figure 2: CARDIAC application program structure

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

The algorithm involves four key steps:

1. Find the total extracellular current (requires numerical calculation of discrete Laplace operator using five-point
central approximation).

2. solve the Poisson equation using an iterative scheme.

3. Calculate ionic currents through the cell using the biologically-relevant Luo-Rudy model for myocytes and recently
proposed Sachse model for fibroblasts. In terms of numerical calculations it implies solving 15 nonlinear ordinary
differential equations describing the dynamics of a single cardiac cell.

4. Solve the partial differential equations to find the fibroblast and the myocyte voltage levels.

https://swdevtoolsmag.makebettercode.com

Figure 3: Intel® Parallel Advisor
workflow GUI guides you through
parallelization steps.

Figure 4: Intel® Parallel Advisor survey report for CARDIAC application

the spatiotemporal nature of the problem suggested this nesting of loops in the serial program
structure, as seen in Figure 2.

In the next section, we will look how this program has been transformed to execute calculations
in parallel.

CARDIAC parallelization case study
Conceptually, Intel® Parallel Advisor can be considered as a combination of several interrelated
analysis tools and a proven methodology for adding parallelism to applications. (Methodology
tends to be quite a natural thing for scientists.) the methodology is explicitly exposed by Intel
Parallel Advisor in the workflow seen in Figure 3.

CARDIAC developers followed the workflow “step one” prompt and used the survey tool,
which runs the application and profiles it, as seen in Figure 4. As expected, the survey reported
that the outer time integration loop took approximately 100 percent of total execution time.
However, executing this kind of loop in parallel is typically impossible because of the strong
dependency between iterations (this loop is a refinement process, where the i+1 iteration
is a function of iteration i). therefore, inner loops with iteration over space were of the most
interest.

As the survey tree automatically expanded node accentuates in Figure 4, the myocyte
integration loop #5 looked like the best candidate amongst the inner loops. Developers marked
the corresponding code region (site) by inserting an Intel Parallel Advisor macro (annotation) for
future analysis by other Intel Parallel Advisor tools.

(note: In terms of Intel Parallel Advisor annotations terminology, “site” is a code region to
parallelize, whereas “task” is a program extent to be executed in parallel with other task
instances. one example is a typical loop parallelization where single-loop iteration corresponds
to the task instance, while the overall loop is considered to be a site.)

But is it enough to parallelize only one 96 percent total time loop? Amdahl’s law says that
even relatively small pieces of serial execution might affect your performance for a large
number of threads. thus, the scientists decided to try several more places for parallelization.
this is easy to do because the Intel Parallel Advisor annotations, as opposed to real parallel
framework code, enable you to experiment with different parallelization approaches in a simple
and safe way. to identify other parallel “hotspots,” they used the survey source feature to
provide loop time metrics (Figure 5)—this clearly suggested the second and third candidates

THE ParaLLEL unIvErSE

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sp
ee

du
p

Thread Number

25

20

15

10

5

0

1 3 5 7 9 11 13 15 17 19 21 23

Single parallelized site
Three parallelized sites

2 4 8 16 32

M
ax

im
um

 S
it

e
G

ai
n

Target CPU Number

Scalability of Maximum Site Gain

Figure 5: Intel® Parallel Advisor survey source view and loop time feature

Figure 6:
Intel® Parallel
Advisor scalability
forecast and
experimental
data for CARDIAC
application
(actual parallel-
ization done with
Intel® TBB)

Sign up for future issues | Share with a friend

(Poisson solver loop #3 and <time step *
voltage> multiplication loop #6 in Figure 2).
there was an additional, smaller spatial iteration
loop inside of the Poisson solver. the scientists
decided to merge it with the main solver loop
to increase the granularity of loop body.

But how scalable is this parallelization
idea? Is this really a good way to invest time
and effort? the purpose of the Intel Parallel
Advisor suitability tool is to provide quick
answers to such questions by predicting
approximate parallel performance for the code
marked by annotations. therefore, on the
next step, the scientists ran the suitability
tool; its forecast was encouraging for the
most computationally loaded myocyte loop
(with 22.79x expected speed-up on 32
cores, as seen in Figure 6) and quite cautious
on other loops (with “bad” scalability near 2x
for any target platform).

the Intel Parallel Advisor suitability tool
also provided a strong recommendation
to switch “task Chunking” on when imple-
menting the target parallel framework code.
Fortunately, the CARDIAC scientists were
planning to use Intel® threading Building
Blocks (Intel® tBB), which provides good
support for task chunking.

the program was rebuilt using a debug
configuration so it could be examined by
the Intel Parallel Advisor correctness tool,
which predicts possible parallel data sharing
problems. surprisingly, the correctness
analysis identified data race and memory
reuse problems and also pointed out the
particular places in the code where a read/
write communication problem occurs for

THE ParaLLEL unIvErSE

Sign up for future issues | Share with a friend

https://swdevtoolsmag.makebettercode.com

Figure 7: Intel® Parallel Advisor correctness report for CARDIAC application

Figure 8: Intel® Parallel Advisor annotations summary report

#1 for (ti) // time integration outer loop (tÎ[0, T]))

#2 for (ni) // iteration over N neuron network vertexes

#3 for (ni) // iteration over N neuron network vertexes
 //Calculates interaction with other neurons

 //Calculate given neuron characteristics

#1 for (ti) // time iteration outer loop

	 	 	 	 	//	get	sensor	data	from	robot	(x,	y,	angle,	etc)

#2 for (ni) // iteration over N neuron network vertexes
 // calculate neuron states

#3 for (ni) // iteration over N neuron network vertexes
 // calculate neuron interactions

#4 for (ni) // iteration over N neuron network vertexes
 //	update	variables

	 	 //	send	data	to	robot	motor	(x,	y,	angle,	etc)

Figure 9: nEURAL application program structure

Figure 10: RATE application program structure

recently merged loops inside of the Poisson
solver (Figure 7). It was quite easy to fix
this problem by splitting loops back (i.e.,
avoiding execution of two interrelated loops
in parallel). this adjustment did not affect
the suitability performance forecast much,
while the correctness analysis showed no
remaining problems after it was rerun.

the last step was to replace Intel Parallel
Advisor annotations with Intel tBB parallel
framework code and measure the parallel
application performance. the Advisor summary
GUI feature provided a convenient way to
take a look at the job done on previous steps,
compare possible parallelization approaches,
and quickly locate the source code regions
actually requiring the conversion into the
parallel framework instructions (Figure 8).

eventually the code was parallelized and
the measurement of the parallel application
was done on a quad-socket Intel® Xeon®
24-core server, code-named Dunnington.
Experimental data confirmed the optimistic
suitability forecast, demonstrating, for
example, 11x total improvement on 16
cores (Figure 6). It also confirmed that the
model with several parallelized loops looks
more promising, because in accordance with
Amdahl’s law, when the most intensive
loop takes less time by using a greater number
of cores, even lightweight code region
parallelization provides a visible benefit in
performance as well.

neural networks
serial application
neURAL algorithms belong to the adaptive
systems area, which has numerous applications
in biology, artificial intelligence, and artificial
neural networks. the nizhny novgorod
scientists’ study attempted to reduce the
existing gap between biological and artificial
systems by introducing deterministic chaos
into the model.

neural ensemble modeling is a complex
“all-to-all” network graph analysis across n
vertexes (neurons). each vertex of the graph
can be described by a nonlinear system of
differential equations (Hodgkin-Huxley model).
Interaction between the neurons is also
described by a nonlinear differential equation.
Figure 9 is a simplified representation of

THE ParaLLEL unIvErSE

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

2 4 8 16 32

M
ax

im
um

 S
it

e
G

ai
n

Target CPU Number

Scalability of Maximum Site Gain

4x

2x

1x

Im
pr

ov
em

en
t

of
 E

la
ps

ed
 T

im
e

8

6

4

2

0

Target CPU Number

2 3 4 5 6 7 8

parallel_for
Ideal

Figure 11:
Intel® Parallel
Advisor scalability
forecast and
experimental data
for nEURAL
application (actual
parallelization done
with Intel® TBB)

 Amdahl’s law says that even
relatively small pieces of
serial execution might affect
your performance for a large
number of threads.

Sign up for future issues | Share with a friend

the algorithm.

Rate phenomenological model serial application
Another broad class of neural models takes the form of the simpler
phenomenological rate models typically used for learning and perception
purposes. this modeling methodology was used in the current project
for real-time virtual robot control.

the algorithm takes the basic form seen in Figure 10.

nEURAL and RATE
parallelization case study
Given the similarity of loop structure over all three applications, the
method of parallelization used in CARDIAC seemed a likely approach.
In the case of neURAL, it implied a quite straightforward solution as
shown in Figure 9: there is only one inner loop iterating over the
network vertexes (it took 98.9 percent of the total serial application
time according to the survey analysis). thus, developers decided to
annotate it, though they had the choice between loop #2 and the
innermost loop #3. First they tried loop #3. After adding annotations
inside the F_v function, responsible for cross-neuron interaction

calculations, suitability analysis was run. But the forecast was
discouraging, predicting only a 1.01x improvement maximum.

Just adding another pair of annotation macros let developers to
test loop #2. the second attempt was more successful: suitability run
showed quite an interesting forecast with a scalability local maximum
between 4 and 8 cores (Figure 11). this data seemed a bit strange
to the research scientists after seeing the scalability gains for
CARDIAC; they were curious whether or not the experimental data
would confirm the Intel Parallel Advisor forecast. As you can see from
Figure 11, real data (measured on Intel tBB-parallelized application)
absolutely confirmed the tool prediction, demonstrating local maximum
scaling at 6 cores.

What is behind the different scaling behaviors of CARDIAC and
neURAL? one answer can be found by looking through the suitability
report statistics and comparing site “average instance time” metric
(Figure 12). With CARDIAC, we deal with quite a heavy computational
load each time-step (i.e., with “heavy” site), so we don’t have to start up
and shut down parallel execution too often. on the contrary, neURAL
has very little work for the thread pool to do each time-step, which is
executed in very big time loop, resulting in significant threading
overheads. That’s why the first attempt of parallelization at loop #3
was disappointing. even with loop #2 parallelized, the time iteration

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com

2 4 8 16 32

M
ax

im
um

 S
it

e
G

ai
n

Target CPU Number

Scalability of Maximum Site Gain

16x

8x

4x

2x

1x

Figure 13: RATE model suitability forecast and recommendations

 In accordance with
Amdahl’s law, when the
most intensive loop takes
less time by using a
greater number of cores,
even lightweight code
region parallelization
provides a visible benefit
in performance as well.

Figure 12: Intel® Parallel Advisor suitability site metrics for CARDIAC and nEURAL applications

THE ParaLLEL unIvErSE

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Introducing Intel® Fortran
Studio XE 2011
STEvE LIonEL, Developer Products Division

Let us return to those thrilling days of yesteryear. Yes, I

mean november 2010, when Intel® Parallel studio Xe was

first released. This suite of high-performance computing

development tools included new versions of the Intel C++

and Fortran compiler products, (now renamed “Composer

XE”), and two new analysis tools: Intel® VTune™ Amplifier XE

and Intel® Inspector XE. The analysis tools were significantly

upgraded versions of the Intel® Parallel Amplifier and Intel®

Parallel Inspector that had been launched in 2009 for C/C++ on

Windows* only. The new “XE” tools not only supported Fortran

as well, but were now available on Linux* for the first time.

Fortran programmers loved the new features of the compiler,

but there was some muted grumbling in the background. You

see, while it was possible to buy a subset containing C++ and

the analysis tools, called Intel® C++ studio Xe, there was no

corresponding subset for Fortran-only programmers. Fortran

users who also wanted the analysis tools either needed to

buy them separately, or purchase the larger Parallel studio

Xe product containing a C++ compiler, which, while excellent,

might go unused in Fortran-only shops. “Where,” you cried,

“is our Fortran studio Xe?” ok, ok. You can put down your

pitchforks and Arithmetic IFs—Intel® Fortran studio Xe 2011

is now here for both Linux and Windows!

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

SEE THE rEST oF STEvE’S BLoG:

granularity was not big enough to provide nice scalability. But the lesson
learned on this neURAL example helped in the next model parallelization.

the next study was done on the RAte model. survey and survey
source reports indicated that all three inner loops looked promising,
although the first one took about half the time. Based on this, three
parallel sites were annotated and a suitability analysis was run. the
scalability forecast was only a little bit better than in neURAL case.
Despite the fact that a maximum 5-6x gain is better than nothing,
they desired to look for a better approach. so the Intel Parallel Advisor
forecast edged the developers into restructuring the serial code a bit.

one obvious idea was to increase the amount of work in the
inner loop (i.e., site “average instance time”) by fusing all three loops
together to decrease total overhead as previous studies suggested.
After minimal refactoring, the application was restructured to have
a single major parallel site and suitability was rerun. the new result
demonstrated much better scalability and opportunities with a
potential 14x gain, which appeared for 32 cores (Figure 13).

Lessons learned
Despite the fact that the three mathematical models are different,
it’s easy to see that the parallelization schemes in all three applications
look similar. they all consist of an outer time iteration loop, which was
not a subject for direct parallelization, and multiple inner loops, which
looked quite promising to be parallelized. they found that the right
target for parallelization is the inner loop, whose available work should
be made as big as possible.

this tends to be a parallelization pattern for various differential
equation solvers whose solution is based on an iterative time integration
(i.e., solution refinement) basis. This parallelization pattern was quickly
recognized by the nizhny novgorod research scientists because:

> Intel Parallel Advisor could quickly model different parallelization
approaches without any significant application modifications (using
annotations).

> Intel Parallel Advisor methodology suggested an efficient method
to step through the necessary parallelization stages, providing
recommendations and metrics to simplify decision making at every step.

> even in the case when the Intel Parallel Advisor forecast was negative,
its suitability and correctness tools nudged developers in the right
direction to restructure the original code.

> the fact that the same group of scientists participated in several
parallelization experiments simultaneously, helping share, reuse,
and summarize the experience obtained during these different
parallelization efforts.

Professor G. osipov’s parallelization studies have proven the value
of Intel Parallel Advisor tools and methodology when parallelizing
three different HPC-relevant applications. Intel Parallel Advisor tools
helped to find regions that will benefit from running in parallel, to
identify and fix a data sharing problem, and to model quickly parallel
program structure and potential benefits. Intel Parallel Advisor prediction
accuracy and efficiency were confirmed by real experimental data.

At the moment, the research activities to parallelize numerical
modeling algorithms are underway in nizhny novgorod, helping research
scientists to improve and analyze their application performance,
while helping Intel Parallel Studio developers confirm the strengths
and identify possible weaknesses of Intel Parallel Advisor. o

BLOG
highlights

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com
http://intel.ly/mhQx9E
http://intel.ly/mPEcCc
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2011/09/06/introducing-intel-fortran-studio-xe-2011/
http://software.intel.com/en-us/blogs/2011/09/06/introducing-intel-fortran-studio-xe-2011/
http://software.intel.com/en-us/blogs/2011/09/06/introducing-intel-fortran-studio-xe-2011/

tHe InteL®
tHReADInG BUILDInG BLoCKs

by Michael J. Voss, Ph.D.
Software Architect

User feedback inspired the flow graph feature in Intel® Threading
Building Blocks, which allows programmers to express static and dynamic
dependency graphs, as well as reactive or event-based graphs.

THE ParaLLEL unIvErSE

14 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

mICHaEL J. voSS
Senior Software Engineer

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com

Functional

source_node continue_node function_node multioutput_function_node2

f(x) f(x) f(x)f()

Buffering

Split/Join

Other

buffer_node queue_node priority_queue_node sequencer_node

reserving joinqueueing join tag matching join split_node2 nor_node2

write_once_nodebroadcast_node overwrite_node limiter_node

3 2 1 0

Figure 1: The node
types supported by
the Intel® Threading
Building Blocks flow
graph

Intel® Threading Building Blocks (Intel® TBB) 4.0
includes flow graph as a fully supported feature. the flow graph
supports both static and dynamic dependency graphs, as well as
reactive graphs that respond to and pass data messages. Introduced
as a Community Preview feature1 in Intel® tBB 3.0 Update 5, the
flow graph interface has been refined and improved based on several
months of user feedback.

In fact, numerous development teams across the media, gaming,
financial services, and technical computing segments have been
evaluating the flow graph as an Intel TBB 3.0 Community Preview
feature. Before the flow graph was available, some event-based and
reactive programs were simply impractical to implement using Intel
tBB. In other cases, users were either writing complex code that used
the low-level Intel tBB tasking interface directly, or were over-constraining
their parallelism to use an Intel TBB pipeline. The flow graph provides
a more natural fit for many applications, while maintaining or improving
performance over other Intel tBB-based solutions.

An overview of the flow graph interface
An Intel TBB flow graph consists of three primary components: a
graph object, nodes, and edges. the graph object provides methods
to run tasks in the context of the graph and to wait for the graph to

complete. nodes generate, transform, or buffer messages. edges wire
the graph together, connecting the nodes that send messages to the
nodes that should receive them. there are several types of nodes, as
shown in Figure 1. there are functional nodes that execute user code,
buffering nodes, nodes that join and split messages, and several other
miscellaneous node types.

A dependence graph example
Figure 2 shows an approach to implementing a wave-front
computation using a set of continue_node objects. In this
example, each computation must wait for the computation above
it and the computation to its left to complete before it can start
executing. A continue_node starts executing when it receives
a continue_msg from each of its predecessors.

In Figure 3, this approach is used to implement a blocked wave-
front calculation, where each computation updates a BxB block of the
matrix values. the for loop in function run_graph creates the
set of the continue_node objects. In the figure, the continue_
node constructor is passed a reference to the graph object g
and a function object (or in this case a lambda expression) that calls
update_block on its block.

THE ParaLLEL unIvErSE

16 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/lemj34http://
http://software.intel.com/en-us/articles/optimization-notice

f() f()f()f()

f() f()f()f()

f() f()f()f()

f() f()f()f()

Figure 2: Using an Intel® TBB flow graph to express a wave-front calculation

//	M	and	N	are	the	number	of	rows	and	columns	in	the	matrix
//	MB	and	NB	are	the	number	of	blocks	in	the	rows	and	columns
//	B	is	the	block	size	(BxB	squares)

using	namespace	tbb;	
using namespace tbb::flow;

double	value[M][N];	

graph g;
continue_node<continue_msg> *node[MB][NB];

double	run_graph()	{
	 value[M-1][N-1]	=	0;
	 		for(int	i=MB;	--i>=0;)	{
	 			for(int	j=NB;	--j>=0;)	{
	 				node[i][j]	=
 new continue_node<continue_msg>(g,
	 							[=](const	continue_msg&)	{	update_block(i,	j);	});
 if (i + 1 < MB) make_edge(*node[i][j],	*node[i+1][j]);
 if (j + 1 < NB) make_edge(*node[i][j],	*node[i][j+1]);
 }
 }
 node[0][0]->try_put(continue_msg());
 g.wait_for_all();
	 for(int	i=0;	i<MB;	++i)
	 			for(int	j=0;	j<NB;	++j)
	 								delete	node[i][j];
	 return	value[M-1][N-1];
 }

 Figure 3: An implementation of a blocked wave-front calculation

Sign up for future issues | Share with a friend

Once the flow graph is set up in the
example, a continue_msg is put to the
node in the upper left corner, node[0][0],
to start the wave front through the graph.
the call to g.wait_for_all() blocks
until the entire wave-front computation
completes.

A complete description of this example
and complete source code can be found in
the blog article, “Implementing a wave-front
computation using the Intel® threading
Building Blocks flow graph” found at http://
software.intel.com/en-us/blogs/tag/
flow_graph.

A message graph example
Figure 4 shows an Intel threading Building
Blocks flow graph that implements a simple
feature detection application. A number of
images will enter the graph and two alternative
feature detection algorithms will be applied
to each one. If either algorithm detects a
feature of interest, the image will be stored
for later inspection.

In the figure, a source_node, src
supplies images to a reserving join node,
resource_join. the second input
of resource_join is connected to
a queue of image buffers, buffers. A
source_node only generates new items
after its current output has been consumed.
A reserving join node does not consume
incoming items until it can reserve an input
at each of its incoming ports. the front of
this graph is therefore nicely constructed
to control memory use. new images will only
be generated by src if an image buffer is
available in buffers to pair with it.

once an incoming image is paired with a
buffer, it is forwarded to the function_
node, preprocess_function, which
preprocesses the image, placing the results in
the associated buffer. the preprocess_
function may be created with unlimited
concurrency, allowing it to process multiple
images concurrently. In a feature-detection
application, this preprocessing might, for
example, include algorithms for blurring
the image.

the output of preprocess_function
is connected by an edge to detect_A and
detect_B, which implement two alterna-
tive algorithms for detecting the feature of
interest in the images. Again, these nodes

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/tag/flow_graph
http://software.intel.com/en-us/blogs/tag/flow_graph
http://software.intel.com/en-us/blogs/tag/flow_graph

src detect_A

decide

detect_B

buffers

resource_join

preprocess_function
detection_join

f(x) f(x)

f(x)

f(x) f(x)

Figure 4: A feature
detection example
using an Intel® TBB
flow graph

Task graphs Pipeline / parallel_pipeline Flow graphs

Expressiveness
Can express acyclic dependency
graphs

Can express linear pipelines
Can express acyclic dependency
graphs as well as acyclic and cyclic
messaging graphs

Ease-of-use
Requires low-level bookkeeping
code and explicit spawning
of tasks

A concise, type-safe interface

More verbose than
parallel_pipeline, but does
not require explicit bookkeeping or
task spawning

Persistence
Graphs are executed destructively;
cannot be re-executed

Can be executed multiple times
(applies to pipeline only)

Can be executed multiple times

Performance3
Very low overhead since it is built
directly on tasks and is executed
destructively

Uses last-in, first-out (LIFO) task
scheduling to optimize for cache locality.
Overhead is comparable to flow graph.

Uses first-in, first-out (FIFO) task
scheduling to keep messages
flowing through the graph. Overhead
is comparable to pipeline and
parallel_pipeline.

Table 1: Comparing flow graph, parallel_pipeline, and graphs of tasks

THE ParaLLEL unIvErSE

18 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.18

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friendSign up for future issues | Share with a friend

may be created with unlimited concurrency, allowing multiple
images to be processed by each node concurrently. the outputs of
these detection nodes are forwarded to a tag matching join,
detection_join. A tag matching join pairs items together based
on matching tags; in this case, it will pair the outputs of detect_A
and detect_B based on the image they were processing. Use of a
tag matching join is important here because multiple images may be
in flight in the graph simultaneously, and it’s important to match the
proper results together.

Finally, a pair of results reaches the function_node decide.
It inspects the results from each algorithm to see if the feature might
be present in the image. If so, it stores the image for later inspection.
When decide is complete, it returns the buffer to buffers so it can
be paired with another incoming image.

A more complete description of this example and complete source
code can be found in the blog article, “A feature-detection example
using the Intel® threading Building Blocks flow graph” found at
http://software.intel.com/en-us/blogs/tag/flow_graph.

Choosing between a flow graph, pipeline,
or an acyclic graph of tasks
While the flow graph adds significant functionality to Intel Threading
Building Blocks 4.0, some applications suited to the flow graph can be
implemented using the existing low-level support for acyclic graphs
of tasks and the generic parallel_pipeline algorithm. Table 1
compares these different features and provides characteristics that
may help in selecting the most appropriate model to use.

Summary
Intel Threading Building Blocks (Intel TBB) 4.0 includes flow graph as
a fully supported feature. A flow graph can be used to express static
and dynamic dependency graphs, as well as reactive or event-based
graphs that respond to and pass messages between computations.
You can learn more about this feature and download the Intel tBB 4.0
library at www.threadingbuildingblocks.org. o

1. As a Community Preview feature, the flow graph was named graph. We now use the
name flow graph to emphasize that this feature expresses the control flow in an
application. the more generic name graph falsely implied a more data-structure centric
approach and a collection of classical graph-based algorithms.

2. multioutput_function_node, split_node, and or_node are Community
Preview features in Intel tBB 4.0

3. Refer to http://software.intel.com/en-us/articles/optimization-notice for more
information regarding performance and optimization choices in Intel software products.

Understanding the
Internals of tbb::graph:
Balancing Push and Pull
mICHaEL J. voSS, PH.d., Senior Software Engineer

In this post, I’m going to describe the hybrid push-pull

protocol used by Intel® threading Building Blocks graph

Community Preview Feature.

the hybrid push-pull protocol used by tbb::graph biases

communication to prevent polling and to reduce unnecessary

retries. Understanding the details of this protocol is not

necessary to use tbb::graph, but it makes understanding its

performance easier.

nodes in a graph are persistent and exist until a user

explicitly destroys them. But unlike some actor systems,

a thread is not assigned to each tbb::graph node. tasks

are created on-demand to execute node bodies and pass

messages between nodes when there is activity in the

graph. Consequently, a tbb::graph node does not spin in

a loop waiting for messages to arrive. Instead when a

message arrives, a task is created to apply the receiving

node’s body to the incoming message.

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

SEE THE rEST oF mICHaEL’S BLoG:

BLOG
highlights

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/blogs/tag/flow_graph
www.threadingbuildingblocks.org
http://software.intel.com/en-us/articles/optimization-notice
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2011/05/26/understanding-the-internals-of-tbbgraph-balancing-push-and-pull/

THE ParaLLEL unIvErSE

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

Intel ® Parallel Studio XE

by Michael D’Mello

Intel® Parallel studio Xe combines Intel’s industry-leading C/C++ and Fortran compilers,
high- performance parallel libraries, error checking, code robustness, and performance profiling
technologies into a single suite offering. the sP1 release now adds functionality to simplify
the transition from multicore to many-core hardware platforms.

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com
http://intel.ly/jTfV22

Even the most masterful software developers are often
left with nagging performance and correctness questions: Can I make
my software run faster on the current or next generation hardware?
What limits the performance of my code? How susceptible is my
software to errors and security vulnerabilities?

For years, multitudes of developers used a variety of software tools
from Intel to help them address these types of questions. In 2010,
this community of developers began moving to a new generation of
software tools called Intel® Parallel studio Xe. Designed to provide a
wide range of functionality while maximizing the user experience, this
bundle of sophisticated tools makes the identification, characterization,
and “cure” of performance bottlenecks, memory and threading errors,
and security issues as painless as possible. the toolset also provides
developers with industry-leading C++ compilers and Fortran
compilers and a set of parallel programming models to prepare and
position professionals for future generations of multicore and many-
core hardware.

Inside Intel Parallel Studio XE
It is worthwhile to examine what underlying technologies have led
to the success of Intel Parallel studio Xe, and how the upcoming sP1
release of this toolkit will further add to the power of the suite.

The essential functionality of Intel Parallel Studio XE includes:

> Intel® C++ Compiler Xe and Intel® Fortran Compiler Xe1

 • Intel® Math Kernel Library, Intel® Integrated Performance Primitives

 • Intel® Threading Building Blocks

> Intel® VTune™ Amplifier XE performance profiler

> Intel® Inspector Xe dynamic memory and threading checker

> Intel® Static Security Analysis static error and security checker

the need for excellent compilers is obvious, and Intel compilers lead
in providing performance for best single-core performance and multi-
core scalability. the compilers are maintained on a path that targets and
accommodates all the latest hardware platform innovations. A very
relevant current example of this is support for Intel® Advanced Vector
extensions (Intel® AVX). this vector register technology is available
in the latest processors based on the Intel® microarchitecture known
by its codename, sandy Bridge. the technology is capable of up to 2x

performance speedup over the existing streaming sIMD extensions
(sse) format. the sP1 release tunes support for AVX and the sandy
Bridge platform in general, and like the previous release of Intel®
Parallel Studio XE, it will provide the same set of tools on Windows*,
Linux*, and Mac OS* X operating systems.

Guided auto-parallelization
Beyond extensive support for the very latest in multicore and
many-core hardware, there are elements of the Intel compiler that users
often overlook. these are optimization modes beyond the traditional
-o1, -o2 switches that practitioners are familiar with. one such
optimization technology is guided auto-parallelization (GAP). this
is a workflow-oriented approach that provides compiler-generated
guidance to change source code so that it can be compiled for greater
performance through vectorization, parallelization, and/or data
transformations. Besides advice on source code changes and
the addition of compiler directives (pragmas, for example), GAP also
gives advice on compilation options. GAP is flexible and can be
combined with interprocedural optimization (IPo)2 and profile guided
optimization (PGo)3, two other modes of optimization also provided
by the Intel compiler.

Multicore-ready libraries
next on the list are the Intel Math Kernel Library (Intel® MKL) and the
Intel Integrated Performance Primitives (Intel® IPP) libraries. these
multicore-ready libraries provide some of the easiest and most direct
mechanisms for code parallelization and performance gain possible.
Heavily used in scientific and engineering applications, Intel MKL is a
staple in the energy, healthcare, financial analytics, and high-perfor-
mance computing (HPC) domains. the Intel IPP library plays a similar
role for optimizing software in the multimedia, data processing, and
communications domains. these libraries attempt to maximize the
use of vectorization and threading for best single-core and multicore
performance, respectively. With the sP1 release, these libraries extend
their seamless support of the benefits of AVX, among many other
optimizations specific to the Sandy Bridge microarchitecture.

Guided auto-parallelization is a workflow-oriented
approach that provides compiler-generated guidance to
change source code so that it can be compiled for greater
performance through vectorization, parallelization,
and/or data transformations.

THE ParaLLEL unIvErSE

22 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/llgsSw
http://intel.ly/mPEcCc
http://intel.ly/mPEcCc
http://intel.ly/lemj34
http://intel.ly/mSuoCD
http://intel.ly/k0oJKT
http://intel.ly/j7rYbA
http://software.intel.com/en-us/articles/optimization-notice

the C/C++ optimizing compiler includes Intel threading Building
Blocks (Intel® tBB) and Intel® Cilk™ Plus. Intel tBB provides C++ language
support for task-based parallelism while letting the compiler do
vectorization. Intel Cilk Plus provides capabilities for task, vector, and
data parallelism. Both are highly relevant as hardware evolves to include
different types of cores (i.e., heterogeneity) on the same platform. For
Fortran developers, Intel Parallel studio Xe offers Co-array Fortran and,
with the sP1 release, industry-leading support for the Fortran 2008
standard as well.

the Intel tBB C++ template library made its debut in 2006. since
then, it has enjoyed widespread adoption among C++ developers. this
task-based parallel library internally maintains a thread pool and a task
scheduler. the task scheduler maps user-created tasks to the library
managed pool of threads. The scheduler accommodates affinitization of
tasks to threads, and this feature allows
for some remarkable optimizations to be included directly into the
functionality of the library. For example, similar tasks often address
and consume similar data, and by affinitizing these tasks to a certain
thread, the library can, to some degree, ensure the data required by
these tasks remains available (i.e., “hot”) in cache. the sP1 release
offers a major enhancement to the Intel TBB library—Intel TBB flow
graph (see article by Michael Voss on page 14). the concept here is to
enable the developer to introduce parallelism by focusing on the graph
representing the functionality sought after. this higher-level perspective
is expected to reduce implementation time significantly while leveraging
all the performance benefits built into the library.

Performance profilers
Intel® VTune™ Amplifier XE represents one of the most complete
profilers available in the industry today. The functionality of this tool
is conveniently separated into two parts—time-based profiling and
event-based profiling. The time-based functionality covers traditional
profiling of code, including call stacks, as well as “Concurrency” and
“Locks and Waits” type analyses for multithreaded code. to complete
the picture provided in the time-based profiles, the tool enables the
user to leverage hardware counters and thereby track numerous
processor events (e.g., instruction retirement, cache misses, tLB misses,
etc.) generated as a code executes. this functionality is referred to as
event-based sampling (eBs), and it comes with very low overhead
because of the direct support by Intel® processors. the user therefore
gets a highly detailed characterization of how a given piece of software
drives the underlying hardware. the information is invaluable in under-
standing not only how a program runs, but also how well it is written.

Another feature of Intel VTune Amplifier XE worth highlighting
here is “Frame Analysis.” this is a feature that applies to marking the
timeline view of the profile of a code. Basically, the timeline view is a
picture of the time evolution of threads and the interactions between
them. threads “interact” via operating system objects (mutexes, locks,
etc.), and interactions are indicated on the timeline by lines drawn
between threads. the timeline view is fundamental to understanding
load balance; it is an integral part of the “concurrency” and “locks and
waits” analyses mentioned above. However, for continuously running
codes, a user may be interested in only a portion of the timeline. Frame
Analysis enables the user to mark the timeline to identify the region
or regions of interest. A computer game is a good example of a contin-
uously running code; so is a financial trading engine. Indeed, many
codes, in a variety of application areas, may be categorized as such.

Sign up for future issues | Share with a friend

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com

Perfecting your code
Finally, no code is perfect, and any comprehensive toolset has to
provide some support for error checking and detection. the Intel®
Inspector Xe component provides memory-checking and thread-
checking functionality. Memory leaks, race conditions, and deadlocks
are some of the main types of errors tracked. Intel Inspector Xe can
also be used to visualize the results of the source-level error-checking
functionality of the Intel C++ compiler. this functionality, referred to
as Intel® static security Analysis, examines source code for errors and
security vulnerabilities. Collectively, these components of the suite
provide powerful mechanisms to enhance robustness and drive overall
code quality.

Summary
Intel® Parallel studio Xe offers a suite of tools to help software
developers write better code on the latest available multicore and
many-core platforms. the suite directly addresses questions of code
quality, robustness, security, performance, and scalability. the design
and responsiveness of the suite’s components make for a positive and
highly profitable end-user experience. The SP1 release furthers the
proposition of a highly convenient mechanism to enable developers to
enhance the value of their own software solutions and that of
their enterprise. o

1. For convenience, several variations of this set are also offered. For example, the first
three items along with Intel® static security Checker have been assembled into a single
bundle called Intel® Composer Xe. A version of this bundle, called Intel® C++ Composer
Xe, is also available. this is essentially the Intel® Composer Xe bundle without the
Fortran components. Intel® C++ Composer XE along with items four and five on the
list forms Intel® C++ studio Xe. the analogous bundle for Fortran users, Intel® Fortran
studio Xe, is available as well.

2. Interprocedural optimization is a collection of compiler optimization techniques based on
analyzing the entire program rather than a single function or code block, which is typical
of other optimization techniques.

3. Profile Guided optimization is a compiler technology that seeks to produce a more
optimized executable from a given executable. the creation of the optimized version is
guided by the results of one or more runs of the original executable with a representative
dataset or workload. Using this information, the compiler tries to generate an optimized
executable that runs faster than the original one.

 The timeline view
is fundamental to
understanding load
balance; it is an
integral part of the

“Concurrency” and
“Locks and Waits”
analyses.

download a free trial of this software for a limited
time at http://intel.com/software/products.

THE ParaLLEL unIvErSE

24 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/jScBf3
http://intel.com/software/products
http://software.intel.com/en-us/articles/optimization-notice

Sign up for future issues | Share with a friend

RESOURCES AnD SITES OF InTEREST

The mission of Dr. Dobb’s Go Parallel is to assist
developers in their efforts toward “translating Multicore
Power into Application Performance.” Robust and full of
helpful information, the site is a valuable clearinghouse
of multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
this content-rich collection includes Intel® software
network tV, popular blogs, videos, tools, and downloads.

See these products in use, with video overviews that
provide an inside look into the latest Intel® software. You
can see software features firsthand, such as memory
check, thread check, hotspot analysis, locks and waits
analysis, and more.

Intel® Inspector XE

Intel® VTune™ Amplifier XE

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® software
Development Products available for free download.
For high-performance computing products, you can get
free support during the evaluation period by creating
an Intel® Premier support account after requesting the
evaluation license, or via Intel® software network Forums.
For evaluating Intel® Parallel studio, you can access free
support through Intel® software network Forums onLY.

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
test drive emerging tools, collaborate with peers,
and share your thoughts via the What If blogs and
support forums.

Go Parallel

Intel® Software network
“What If” Experimental
Software

Step Inside the Latest Software
Intel® Software
Evaluation Center

THE ParaLLEL unIvErSE

https://swdevtoolsmag.makebettercode.com
http://www.youtube.com/watch?v=Bx7M-NGuelg&NR=1
http://www.youtube.com/watch?v=n4z5p8f5L-A
http://www.drdobbs.com/go-parallel/
http://software.intel.com/en-us/
http://software.intel.com/en-us/whatif/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

Sign up for future issues | Share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets
and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization
on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are
intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are
reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more
information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

Free updates and fast downloads on even more new software technologies, tools, and best
practices for smart coding and innovative user experiences.

> Join Intel® Software dispatch.

THE ParaLLEL unIvErSE

26 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

https://swdevtoolsmag.makebettercode.com/
https://intel.p.delivery.net/m/p/int/isd/profile.asp
http://software.intel.com/en-us/articles/optimization-notice

doWnLoad THE HandS-on GuIdE Today

© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Pinpoint errors and help ensure application reliability and quality
with “Eliminate memory Errors and Improve Program Stability.”

The free step-by-step evaluation guide walks you through how to:

 > Identify, analyze, and resolve threading errors in parallel programs.

 > Find bugs and get graphics to render correctly.

 > Use a command-line interface to automate testing.

 > Choose small, representative data sets.

Smooth the path to
improved performance

Bhanu Shankar
Software Engineer

http://software.intel.com/en-us/articles/evaluation-guides/

What will your compiler do with this C++ statement?
0(i++); will trigger different responses depending on if you are using g++ or
Intel® C++ and Windows* or Linux*.

Find out how different—and learn how you can quickly improve application
performance without rewriting a single line of code.

© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

GET THE anSWEr Today

http://software.intel.com/en-us/articles/improve-performance-with-recompile/

