
THE PARALLEL
UNIVERSEIssue 7

June 2011

DEVELOPER ROCK STAR:

Robert Geva

Intel® Cilk™ Plus:
A C/C++ Language Extension
for Parallel Programming
By Robert Geva

Easing the Performance Analysis
of Serial and Parallel Applications
by Levent Akyil

Three Flavors of ‘for’ Loops with
Intel® Parallel Building Blocks
by Noah Clemons

VIsIt INteL LeARNING LAB todAy

Intel Learning Lab Resource Spotlight
In this three-part series, Dr. Clay Breshears of the Intel® Academic Community
explores why parallelism is important, how to recognize where it can be
introduced, and basic methods for addressing parallelism in code.

to see a complete list of all available resources,
visit Intel Learning Lab at the link above.

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

steve Lionel
Senior Member, Technical Staff,
and Learning Lab contributor

Read. Watch. Learn.
Intel® Learning Lab puts high performance
at your fingertips
Access a broad array of resources addressing key C/C++ and Fortran
development issues and a host of Intel® Software Development
Products. The robust repository offers everything from white papers
to webcasts to videos for a range of experience levels.

Improving the performance and reliability of serial and parallel applications
requires information. You’ll find that information on Intel® Learning Lab.

WAtCh NoW

http://software.intel.com/en-us/articles/intel-learning-lab/
http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/videos/three-things-you-must-teach-module-1-recognizing-potential-parallelism/

sign up for future issues | share with a friend

ConTenTS
Letter from the editor
specifics: FLOP Count and Parallel Programming, By JAmES REInDERS 4
Reinders, lead evangelist and director of Intel® Software Development Products, shares
answers to three of the most common questions he receives, addressing FLoPS and Intel®
VTune™ Amplifier XE, Intel® Cilk Plus, and Intel® Parallel Building Blocks (Intel® PBB) “parallel for.”

Intel® Cilk™ Plus: A C/C++ Language Extension
for Parallel Programming, By ROBERT GEVA 6
Intel offers new products for parallel programming based on the new programming model
called Intel® Parallel Building Blocks (Intel® PBB).

three Flavors of ‘for’ Loops with
Intel® Parallel Building Blocks (Intel® PBB), By nOAh CLEmOnS 12
Each of the models in Intel Parallel Building Blocks offers a different kind of ‘for’ loop.
Learn why it is important to understand the build environment, type of parallelism it
represents, and level of parallel abstraction before choosing a model.

easing the Performance Analysis of
serial and Parallel Applications, By LEVEnT AKyIL 16
Intel® VTune™ Amplifier XE is a powerful performance analysis tool that helps software
developers identify issues in their applications. explore how its improved and intuitive user
interface performs powerful performance analyses with just a few mouse clicks.

Case study: Massachusetts General hospital*, By BEVIn BRETT 26
Follow the experiences of and lessons learned by developers at Massachusetts General
Hospital and Intel as they identify, prioritize, and make changes to the C++ code to improve
the serial algorithms and introduce parallelism to benefit virtual colonoscopies.

sign up for future issues | share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

© 2011, Intel Corporation. All rights reserved. Intel, the Intel Logo,
Intel Cilk, Intel Core, Intel Xeon, MMX, and VTune are trademarks
of Intel Corporation in the U.S. and other countries. *Other names
and brands may be claimed as the property of others.

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
https://swdevtoolsmag.makebettercode.com

LETTER FROm
the edItoR

James Reinders Chief Software Evangelist at Intel Corporation.
his articles and books on parallelism include Intel Threading Building
Blocks: Outfitting C++ for Multicore Processor Parallelism, which has
been translated into Japanese, Chinese, and Korean. Reinders is also
widely interviewed on the subject of parallelism.

this issue gives us three nice pieces that answer common
questions I hear all the time:

1. How do I count FLOPS (FLoating-point OPerationS)
with Intel® VTune™ Amplifier XE?

2. What is Intel® Cilk™ Plus?

3. Intel® Parallel Building Blocks offers “parallel for” in different
flavors—can you tell me more?

1. FLOPS
You might be happy to get a single number after you run the program
and have Intel VTune Amplifier XE report something like “Your program
used 12,506,718,902 floating-point operations.” In my experience,
that turns out to be pretty unsatisfying because you’ll want to know
more. Questions like, “How on earth did I use that many FLOPS?” or,
“Where did the FLOPS get used?” come up quickly. Fortunately, Intel
VTune Amplifier XE is prepared to answer them down to the precise
thread and statement line in your program or aggregate them at
thread and/or function levels. Also, Intel VTune Amplifier XE estimates
the FLOPS by statistical sampling so that it is relatively non-intrusive
while it gathers such detailed information about behavior on the
system in a single run.

Performance-minded programmers often want to see how long-
latency FLoPS are impacting their application. operations including
divide and square root are particularly rewarding to eliminate or reduce
because of how much time they take to execute. Intel VTune Amplifier
XE can help pinpoint where they are, and how often they occur.

There are many types of FLoPS and some come from using vector
instructions such as streaming SIMD extensions (SSE) or advanced
vector extensions (AVX). Operations done in vector instructions
can improve performance because they may do multiple FLoPS per
instruction. With the detailed information you can find using Intel
VTune Amplifier XE you can decide how much performance you may
be gaining or losing through the use or non-use of vector instructions.

If you are performance tuning a floating-point-intensive program,
I think this issue’s article on the subject will help inspire you to utilize
Intel VTune Amplifier XE.

SPECIFICS:
FLoP CounT AnD
PARALLeL PRoGRAMMInG

the PARALLeL UNIVeRse

4 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

“Operations done in vector instructions can
improve performance because they may do
multiple FLOPS per instruction.”

2. Intel Cilk Plus
Cilk originated in the mid-1990s at M.I.T. and has evolved to Intel Cilk
Plus today and is supported on Windows*, Linux*, and soon on Mac
OS* X, too. Intel Cilk Plus represents a very simple but powerful way to
specify parallelism in C and C++. The simplicity and power come, in no
small part, from compiler technology. The compiler allows very simple
keywords to slip into existing programs and modify a serial application
into a parallel application.

Cilk started with only two keywords—Cilk spawn and Cilk sync.
To purists, this was enough and the simplicity seemed unbeatable.
Having just the ability to send a function running in the background
(a separate thread), and the flexibility to wait for all the spawned
functions to finish with a sync, was a great start.

over time, three more things have been added to make Intel Cilk
Plus. The first was Cilk ‘for.’ Transforming a loop into a parallel loop
by simply changing ‘for’ to “cilk_for” is so easy to learn and use, it has
proven irresistible. Additionally, the alternative of spawning each
iteration imposes too much overhead by requiring every iteration to be
a task. Giving the compiler the information that the iterations of a loop
may be done in parallel is enough for the compiler to produce code
that “does the right thing” at run time. If the program is run on a single
core, the need for iterations being broken into multiple tasks is not the
same as it would be running on a quad-core system.

The second thing added to Cilk was hyper-objects, which are not
covered in the article. They would make an excellent future topic for
the magazine. Hyper-objects are already addressed in the compiler
documentation from Intel if you cannot wait. Hyper-objects help break
up a shared variable into private copies to allow parallelism without
bottlenecking on a shared variable; they also allow specification of
reduction operations. Sound complicated? Well, the beauty of hyper-
objects is that they make it look simple and they are very easy to
learn. We’ll definitely have to include an article on them in the future,
but you’ll want to start with the knowledge in this issue.

The third thing brought to Intel Cilk Plus was the ability to specify
data-parallel operations explicitly with new vector and array notations
for C and C++. Take as an example the writing of a loop such as the
following:

It is messy when you consider that what you really want to say is this:

a[:] = b[:] + c[:];

for (i=0; i<10000; i++) {
 a[i] = b[i] + c[i];
}

now you can do just that. of course, there is more detail in the
article about Intel Cilk Plus later in this issue, including how to handle
more complex slices of arrays and elemental functions.

The functionality of Intel Cilk Plus will appear in more compilers and
standards in the future because the time has come.

3. Looping in Intel Parallel Building Blocks
(Intel PBB)
Looping is fundamental, and how loops are made parallel in Intel
PBB is explored in this issue. I think you’ll find it educational, but also
reassuring because the variations are minor and intuitive.

Thank you for having a look as we explore these topics in more
detail to both educate and whet your appetite for more. I hope you’ll
find we did both.

enjoy!

James Reinders
June 2011

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

Intel®

Cilk™

Plus:
A C/C++ Language extension
for Parallel Programming
by Robert Geva
Principal Engineer, Intel Software and Solutions Group

Intel offers new products for parallel programming
based on Intel® Parallel Building Blocks. Explore the
benefits of one of its key tools, Intel® Cilk™ Plus.

Editor’s note:
Robert introduces the Cilk keywords with the names _Cilk_spawn, _Cilk_sync, and _Cilk_for. Most
developers, including the next article’s author Noah and myself, prefer to spell them cilk_spawn, cilk_sync,
and cilk_for by having #include <cilk.h> in our program. The versions with leading underscores are the
real keywords, because the compiler does not create these new keywords in the normal space where
it can theoretically conflict with a valid name. Instead, it leaves the nicer names to the cilk.h include file.
Robert decided to expose the real names. now you know and the choice is yours.

6 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

the PARALLeL UNIVeRse

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

We are now well into the era in which multicore processors are
commonplace, not just in servers, but also in mobile devices, laptops, and
PCs. Intel® processors are, increasingly, multicore in nature, offering use-
benefits such as improved application performance, usability, power-
reduction, and more. To help developers write code for these systems, Intel
continues to invest in standards such as openMP* and MPI*. At the same
time, Intel is offering new products for parallel programming, based on
the new programming model called Intel® Parallel Building Blocks (Intel®
PBB). Intel PBB currently consists of the following three components:

1. Intel® Cilk™ Plus: This is a language extension that provides both task
and data parallelism constructs. It is currently implemented and supported
in Intel® C++ Compiler. This article provides an introduction to Intel Cilk Plus.

2. Intel® Threading Building Blocks (Intel® TBB): Intel TBB provides
both low-level tasking primitives and high-level parallel algorithms.
Intel TBB is implemented as a compiler-independent template library
for C++. It is available as a supported product and as open source.

3. Intel® Array Building Blocks (Intel® ArBB): Intel ArBB is a C++ library
that provides a generalized vector parallel programming solution that
frees application developers from dependencies on particular low-
level parallelism mechanisms or hardware architectures. It is currently
available in beta-test form.

Programmer focus
The Intel PBB programming model takes into consideration the
programmer perspective and the multiple levels of parallel resources
provided in the processor hardware.

The processor architecture provides multiple parallel resources,
including multiple cores, vectors, hyper-threading, and caches.
Different programmers have different levels of interest in writing code
to take advantage of these resources. Intel PBB, and in particular Intel
Cilk Plus, support two approaches. First, programmers may choose
to explicitly describe the parallel work at the core level, using tasks,
and within each task write explicit vector-level parallelism. Second,
programmers can let their compiler and system software figure out
how processing should be done. This second approach assumes that

the work to be done in parallel is clearly defined and that the data on
which the work will be done is clearly identified.

In addition to utilization of HW resources, a central part of value
added by Intel PBB in general, and by Intel Cilk Plus in particular,
has to do with “composability.” Many applications are composed of
independently written components, which can be homegrown or
come from third parties (such as libraries). Typically, the components
(and their designers) communicate with each other through higher-
level interfaces rather than at a lower, implementation-oriented level.
To allow that level of collaboration in a parallel program, the task
scheduler has to allow composability (i.e., when modules are combined
to form the application, they continue to work and perform well).

How does Intel Cilk Plus support composability? The Intel Cilk Plus
language, as well as the other components of Intel PBB, utilize user-
mode work-stealing task schedulers. Work stealing is a task-scheduling
technique that is characterized by a mechanism in which units of work
can migrate from the worker that generates them to another worker
that will execute them—if the second worker has no work of its own
to process. A worker that runs out of work steals work from a victim
that has a queue of work items. In contrast, there is no mechanism
by which a worker that encounters opportunities for parallel work
can delegate that work to other workers. The precise details of the
scheduling mechanism are out of the scope of this article, which
focuses on the language aspects. However, the work-stealing
technique is at the heart of the composability property, which allows
for modular implementation of parallel programs.

Task parallelism with Intel Cilk Plus
The Intel Cilk Plus language provides two constructs for task level
parallelism. The first includes two keywords: _Cilk_spawn and _Cilk_
sync. Figure 2 and Figure 3 compare an implementation of the
recursive implementation of the well-known Fibonacci code in serial C
against a parallel implementation, which was derived from the serial
code by adding the new keywords:

Figure 1: Summary
of Intel® Parallel
Building Blocks

Intel® Parallel Building Blocks
Comprehensive tools to deliver outstanding app performance

the PARALLeL UNIVeRse

8 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/llgsSw
http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Notice that the addition of the keywords is non-intrusive. Changing
the serial program to a parallel program only requires insertion of the
keywords as appropriate. It does not require changes to the underlying
program. The insertion also does not impact the readability and main-
tainability of the program. The original serial code is easy to see and the
program logic is as evident as in the original. This observation highlights
one of the main design principles of Intel Cilk Plus: It is designed for
parallelizing existing serial C/C++ code. Thus, a benefit of Intel Cilk Plus is
the ability it gives developers to easily add parallelism to code by making
minimal changes, while providing strong guarantees for serial equivalence.

The _Cilk_spawn keyword
Let us now take a closer look at the _Cilk_spawn keyword, which
applies to a function call, such as fib(n-1) in Figure 3. It means that
the spawned function can execute concurrently with the remainder of
the enclosing function (fib(n) in this example). The enclosing function
is termed a “spawning function” or the parent, and the function being
spawned is the child. The _Cilk_sync keyword means that the parent
has to wait until all child tasks return control to the parent.

note that this mechanism reuses the concept of a function, which
is a well-understood concept in C/C++ programming, both as a parallel
region (on the parent side) and as the unit that can be spawned (on
the child side). Both of these serve the purpose of bringing parallelism

to existing programs with minimal effort. The reuse as a parallel region
alleviates the need to introduce a new syntactic construct that would
serve as a parallel region. The reuse of a function as the unit defining
what can be spawned may be viewed as a limitation. In parallelizing an
existing program, the programmer may want to indicate that a smaller
lexical scope, such as a statement or a loop, can execute concurrently
with another statement.

However, by using functions as a spawn unit, the data model
remains well understood to the programmer and the language
extensions do not have to introduce new rules, which have the
potential to introduce programming errors. In the current model, it
is clear to the programmer which variables are in the scope of the
spawning functions, which variables belong to the child function, and
how arguments are being passed. Indeed, argument passing is very
much conformant to the way it is done in the underlying language.
The values of the arguments are being evaluated by the parent task
before detaching the child and enabling concurrency. In the fib(n-1)
example in Figure 3, the value of n-1 is computed by the parent
before the child is spawned. A less trivial example can be observed in
Figure 4 where the computation of the arguments is more involved.

The arguments to the function f() in Figure 4 are themselves function
calls. If the operation of _Cilk_spawn applied to the whole expression,
then g() and h() might have been allowed to execute concurrently with
respect to each other, as well as with respect to the spawning function.
In a case of a data race between the code within the function g() and
h(), there is no place to insert a synchronization directive.

Arguably, the most important attribute in the behavior of _Cilk_
spawn, in support of equivalence to serial execution, relates to the
asymmetry between the two parts of the parent at a _Cilk_spawn
point. A _Cilk_spawn does not enforce parallel execution, but instead
provides an opportunity for parallel execution. The worker whose
execution reached the _Cilk_spawn keyword will continue processing
one of the two branches identified by the keyword, while the
remaining branch is detached and put in a queue for later execution.
As described earlier, the work item in the queue may or may not be
picked up for execution by another worker executing on another core.

It might seem intuitive to think that the spawned function is the
one that is queued for later execution, and that the worker executing
the parent will continue executing. But, in fact, it is the other way
around. The worker that hit the _Cilk_spawn keyword will detach and
be queued up to continue executing its work.

Why does this asymmetry matter? The reason is that the order
of evaluation corresponds to the order of evaluation of a function
call in a serial C/C++ program. The spawning function will continue
to execute the child, as is the case in a regular function call, and if
the continuation is not stolen by another worker. Then, it will return,
pop the continuation as a work item, and continue executing it. The
important thing to note is that this order of evaluation is the same as
that of a function call in a serial program.

val = _Cilk_spawn f(g(x),h(y));

Figure 4: A less trivial example of _Cilk_spawn.

int fib (int n)
{
 if (n <= 2)
 return n;
 else {
 int x,y;
 x = fib(n-1);
 y = fib(n-2);
 return x+y;
 }
}

serial Code

Figure 2: Serial implementation of Fibonacci code

int fib (int n)
{
 if (n <= 2)
 return n;
 else {
 int x,y;

 x = _Cilk_spawn fib(n-1);
 y = fib(n-2);

 _Cilk_sync;
 return x+y;
 }
}

serial Code made parallel with Intel® Cilk™ Plus keywords

Figure 3: The same code made parallel using Intel® Cilk™ Plus
keywords. note that no code was changed. Only the Intel
Cilk Plus keywords were inserted.

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

It is also important to note that Intel Cilk Plus keywords can be
elided. For example, the programmer can use the C/C++ preprocessor
and #define them away using the syntax in Figure 5.

Compiling/building an application that uses the Intel Cilk Plus keywords,
which elides them as shown, will produce a valid serial application. As
long as the parallel version of the program does not introduce data races,
the serialization of the program will be semantically equivalent to the
parallel execution of the program and will produce the same results.

The _Cilk_sync keyword
The _Cilk_sync keyword in the example of the fib() function in Figure 3
is necessary to guarantee that the values in the variables x and y are
updated by the asynchronous execution of fib(n-1) and fib(n-2) before
they are used. In addition to the explicit form of the keyword, there
is an implicit _Cilk_sync at the end of every spawning function. The
implicit keyword is, in fact, inserted by the compiler.

The effect of the implicit _Cilk_sync is that the spawning function
executes as long as any of the child tasks it spawned are executing.
One benefit of this property is that it allows the programmer to
continue viewing functions as units of work, and to see when a
function returns all its work and when it is done. A more practical
benefit is that if the spawning function is passing an address of any
of its stack variables to a child, and the child task may write onto
that location, then it is guaranteed that the stack of the parent is in
memory during the execution of the child.

The _Cilk_for keyword
The second tasking construct provides the keyword _Cilk_for. It
enables programmers to parallelize C/C++ for loops. Consider the
statement in Figure 6.

When this keyword is used, the compiler enforces a few
restrictions on the ‘for’ construct. These include:

> The index variable (i in this example in Figure 6) appearing in all three
expressions of the loop is initialized in the first instance.

> It is compared to a value that does not change within the loop.

> It is incremented by a value that does not change inside the loop.

> It cannot be changed within the body of the loop.

The effect of these restrictions is that when the loop is about to
execute, its trip count is known to the runtime scheduler.

The execution of the _Cilk_for loop uses a divide-and-conquer
approach. The worker whose execution reached the _Cilk_for
construct computes the trip count. It takes the upper half of the
iterations and puts it in its own work queue for later evaluation. It then
continues to divide and conquer the lower trip count, until the trip
count becomes sufficiently small (determined heuristically at run time).
It then executes the iterations sequentially. upon completion, the
worker pops the next work item, which was posted last, from its own
work queue. This will be the second set of iteration of the lower half.
If another worker has an empty work queue, it might steal work from
the core that created the list of work items corresponding to the loop
iterations. This is how concurrent work is created.

If this happens, it will steal an item from the top of the queue
that corresponds to a maximal number of iterations. This order of
stealing work is the least likely to interfere with the cache locality of
the worker from which the item was taken. It also provides the most
amount of work to the thief using the least number of steals. using
a minimal number of steals provides work for all workers with minimal
overhead. As long as work does not get stolen, the order of evaluation
of the loop iterations executed by a single worker is exactly the same
as the order in serial execution.

Vector-level parallelism in Intel Cilk Plus
The Intel Cilk Plus language extension provides several ways to
take advantage of the hardware-based parallelism available in Intel®
multicore processors.

A serial ‘for’ loop can be changed into a parallel loop by changing the
keyword ‘for’ to “_Cilk_for.” This change tells the compiler that there is
no ordering among the iterations of the loop. As described above, the
compiler arranges batches of iterations to execute in parallel. In addition,
it will attempt to vectorize the code within batches of consecutive iterations.

Array notations
A new syntax provided with Intel Cilk Plus also allows simple operations
on arrays. The C/C++ language standards do not provide ways to
express operations on arrays. Instead, the programmer has to write
a loop and express the operation in terms of elements of the arrays,
creating serial order, which is sometimes unintended. The downside
of writing loops with serial ordering is that in order to convert the
serial loop to a vector loop, the compiler has to prove that the vector
processing would be equivalent to the scalar processing implied by
the loop and mandated by the language. In the majority of the cases,
these proofs are bound to fail.

For example, when the program uses pointers to reference the array
(a reasonable programming practice meant to allow for operations
on any array, rather than write code to operate on a specific array),
the compiler is unlikely to prove that two pointers point to areas of
memory that are non-intersecting.

Writing a[:] = b[:] + c[:]; indicates to the compiler that the elements
of the arrays “b” and “c” need to be added and that there is no order
required among the addition operations. These semantics allow the
compiler to always generate vector code, instead of generating scalar
code and attempting to prove that vector code would be equivalent.

#define _Cilk_spawn
#define _Cilk_sync

Figure 5: Intel® Cilk™ Plus keywords can be elided to enable correct
serial execution of apps built with compilers that do not support Intel
Cilk Plus keywords. This helps keep your source code portable.

_Cilk_for (int i = 0; i < N; ++i) {
 body;
}

Figure 6: The _Cilk_for keyword

the PARALLeL UNIVeRse

10 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Intel Cilk Plus array section operator
The Intel Cilk Plus language extensions define an array section
operator whose syntax is array_base[start:length:stride] where
the following is true:

> array_base is any array expression allowed in C/C++, including arrays,
pointers, and C99 variable-length arrays.

> “Start” is the first array element to which the section applies.

> Length provides the number of array elements.

> Stride is an increment between elements. The use of stride is op-
tional. If it is not provided, the default value 1 is used.

The section operator can be applied to multidimensional arrays and
can be intermixed with array subscripts, such as in a[0:5][3][0:8:2]. In
this example, “a” has to be a three-dimensional array or a pointer to an
array. The rank of the expression is the number of dimensions in which
the section operator is used, rather than a subscript. In the example
provided, the rank is 2.

A few intrinsic functions are provided for commonly used operations
such as summation of an elemental of an array. A dot-product operation
might be expressed as:

The array notations might remind some programmers of arrays in
Fortran 90. A significant difference is that the Intel Cilk Plus array
notations expect that the arrays on the right-hand side of an assign-
ment statement do not partially overlap the array being assigned to on
the left-hand side. A violation results in undefined behavior. Therefore,
unlike in Fortran 90, the compiler does not generate temporary arrays
to hold the intermediate values of the right-hand side of an array
expression. This change results in higher performance.

Writing an array expression can be a natural way to write the program
when the programmer expresses the algorithm and the design at the
level of operations on an array. For an existing serial program, a change
to array notations might be intrusive. A less intrusive change is also
available in Intel Cilk Plus in the form of #pragma simd. The pragma
can be added to a loop to indicate that while the loop is written in
scalar syntax, the implied serial ordering is not intended. Instead, the
programmer’s intent is for the compiler to generate vector code to
implement the loop. As a language construct (rather than a perfor-
mance hint), the pragma allows the compiler to generate vector code
without having to prove that the vector code would be equivalent to
scalar code, and scalar code is not the programmer’s intent.

A third programming construct allows the programmer to write
a scalar function in standard C/C++ and declare it as an “elemental
function.” When using an elemental function, the programmer’s typical
intent is to deploy it on many elements of arrays without prescribing
an order of operations among the array elements. The simple example
in Figure 8 shows the use of elemental functions to perform
element-wise addition of arrays.

The use of __declspec(vector) indicates to the compiler that the
function “v_add” is intended to be used as an elemental function.
The Intel® C++ Compiler will generate two versions of code for such
a function. In addition to “standard” code, a vector version will be

generated, which receives a vector of arguments for “x1” and a vector
of arguments for “x2.” It performs the operations of the function using
the hardware vector registers across all the input arguments. This
returns a vector of results instead of a single result. The function can
be called in a scalar context. In such a circumstance, the compiler will
translate the function call into a call to the standard, scalar function.

When it is called in a data parallel context, such as the example of
the loop shown in Figure 8, the compiler will call the vector version.
If the target of the compilation is a CPU supporting the XMM vector
register, for example with the SSe2 instruction set extension, then the
compiler determines that four consecutive values of the input arrays
can fit within a register. It will generate a version of the function that
operates on four consecutive array elements, and the function will be
called N/4 time (or 1, 2, or 3 additional time in scalar version, if N is not
divisible by four). The benefit, of course, is enhanced performance.

Instead of calling the function using a ‘for’ loop, the programmer
may choose a “_Cilk_for” as the construct to call the function. In such
a case, not only will the compiler call the vector version, it will also
facilitate loop iteration execution by using multiple cores. With this
use of the language construct, the programmer can get the combined
benefit of both core- and vector-level parallelism.

Summary
Intel Cilk Plus is a language extension to C/C++. The main
benefits include:

1. It enables the application developer to use all parallel resources
available in the HW, including cores, vectors, and caches.

2. It provides multiple levels of abstraction, enabling the developer to
choose how parallel work can be done—by cores separately from work
done by the vector—or they can choose not to program explicitly
to the hardware and instead to indicate the intent for parallelism,
allowing the compiler to map the operations to the hardware.

3. It supports composability. By using tasking, with a work-stealing scheduler,
the extensions allow integration of an application from independently
developed components (possible third-party libraries, or modules
developed independently by sub-groups) without the need to coordinate
the parallelism architecture between the component and without risk
of hardware resource oversubscriptions resulting from the integration.

4. It simplifies adding parallelism to existing serial programs. Multiple
attributes of the extensions support this, including the non-intrusive
syntax, the ability to easily revert back to the serial program, the
guarantee of serial semantics equivalence, and the low overhead of
spawning a task. o

__declspec(vector)
float v_add(float x1, float x2)
{
 return x1+x2;
}
caller:
for (int j = 0; j < N; ++j) {
 res[j] = v_add(a[j],b[j]);
}

Figure 8: Example of the use of elemental functions to perform
element-wise addition of arrays.

x = __sec_reduce_add(a[:] * b[:]);

Figure 7: A dot-product operation expression using _sec_reduce_add

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

A common performance challenge is when most of the
processing time is being spent inside one or more ‘for’ loops. A
programmer’s first reaction is usually to get the ‘for’ parallelized across
some or all of the available cores. Each of the models included in
Intel® Parallel Building Blocks (Intel® PBB) offers a different flavor
of the ‘for’ loop, bringing similarities and differences:

> Intel® Cilk™ Plus : cilk_for

> Intel® Threading Building Blocks (Intel® TBB): parallel_for

> Intel® Array Building Blocks (Intel® ArBB): _for in conjunction with
arbb::map()

Before choosing one, it is important to understand the build environ-
ment that each ‘for’ works in, what type of parallelism the particular
‘for’ represents, and the level of parallel abstraction offered by the
particular ‘for.’ From there, the programmer can make a decision about
which ‘for’ to use without reading the reference manual for each.

The ‘for’ loops within Intel PBB consist of the following:

> Data parallel and general-purpose parallelism solutions

> Language extensions and template library solutions

> Varying levels of API control from beginner to expert

with Intel® Parallel Building Blocks (Intel® PBB)
by noah Clemons

THREE FLAVORS OF ‘FOR’ LOOPS

Each of the models in Intel Parallel Building Blocks offers a different kind
of ‘for’ loop. Learn what you need to know before choosing a model.

data Parallel or
task Parallel?

Language
extension or
template Library?

API Control

cilk_for

Task parallel —
use array nota-
tions inside the
loop to add data
parallelism

Language
extension Beginner

parallel_for Task parallel Template library
Intermediate,
but has expert
options

_for +
arbb::map() Data parallel Template library Intermediate

table 1

cilk_for (int x = 0; x < 1000000; ++x) { … }

Figure 1

int x = 0;
cilk_for(int i = 0; i < N; i++)
 x++;

Figure 2

12 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://intel.ly/lemj34
http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

cilk_for
The Cilk component of Intel Cilk Plus has a keyword style syntax that
will spawn threads to execute the ‘for,’ as shown in Figure 1.

Using this loop has a few caveats:

> Any or all iterations may execute in parallel with one another.

> All iterations complete before the program continues.

There are also a few constraints:

> Programmers are limited to a single control variable.

> Programmers have to keep in mind that jumping to the start of any
iteration happens at random.

> Iterations should be independent of one another.

In comparison with parallel_for and the Intel ArBB _for, this one
has the least amount of control. The programmer is relying on Intel®
Parallel Composer to make threading decisions. Figure 2 simply
increments a variable, but does so in parallel.

Using cilk_for indicates to the runtime that it can split the work of
the ‘for’ into chunks that can be run on different CPU cores at the same
time. There is no implicit vectorization just by using the keyword. However,
it is recommended to use the array notations component in Intel Cilk
Plus for vectorization. Since the cilk_for is such a simple keyword, there
is not a great deal of flexibility for manipulating the parameters of the
loop and how it is threaded. But as a consequence, cilk_for is very easy
to learn and start coding with, making it the simplest way to parallelize
an existing ‘for’ loop among the Intel® tools.

note the potential data race problem on the increment of x, as one
thread might read x but not increment and write it back to memory
before another thread can load the value of x and increment it. one can
use the Intel Cilk Plus reducer to resolve that data race, as in Figure 3.

Simply declaring a variable with the provided Intel Cilk Plus template
class type allows one to safely increment the shared variable while still main-
taining scalable performance. The set_value and get_value reducer member
function allows access to the data in a reducer outside of the parallel region.

note that in the simple example above, the compiler would have
simply optimized away the ‘for’ loop if the cilk_for had not been used.
Programmers frequently find situations where the cilk_for may be
more useful in conjunction with vectorization. The following example
is a blocked, vectorized, and threaded implementation of a vector dot
product while only adding three more lines of code than the original
implementation. note in Figure 4 that any possibility of a race condition
on sum is prevented by use of the reducer.

parallel_for
Intel TBB parallel_for is well-suited for a build environment that allows
for a template library with a high degree of freedom to implement task
parallel algorithms. It is very convenient for those that already have a
background in parallel programming. Most concepts learned in a parallel
programming course or through on-the-job training are templatized for
easy use within the API.

The parallel_for offers the greatest ability to manipulate behind-the-
scenes details. While the focus is more on tasking rather than managing
threads, experts still have the freedom to dig deep. Intel TBB can do an
auto-grain size determination or it can be expressed explicitly as an option
for fine-tuning. This control is best addressed by the example in Figure 5.

with Intel® Parallel Building Blocks (Intel® PBB)
by noah Clemons

THREE FLAVORS OF ‘FOR’ LOOPS

#include <cilk\reducer_opadd.h>
cilk::reducer_opadd<int> x;
x.set_value(0);
cilk_for(int i = 0; i < N; i++)
 x++;
// Use x.get_value() to access x afterward

Figure 3

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
http://intel.ly/mzbYQa
http://intel.ly/mzbYQa

Notice that one uses templatized components to “build” a parallel
‘for’ loop with Intel TBB.

> ChangeArray class defines a for-loop body for parallel_for.

> The Intel TBB template blocked_range represents the 1D iteration space.

> As usual with C++ function objects, the main work is done inside
operator().

> Finally, one can then invoke ChangeArrayParallel, which will call a
template function parallel_for<Range, Body>: with arguments Range
-> blocked_range Body -> ChangeArray.

In many scenarios, programmers can use some of these
components to do for-style computations but not necessarily have to
invoke a ‘for,’ as illustrated in the vector dot product example utilizing
blocked_range in Figure 6.

Intel ArBB _for
Intel ArBB is the data parallel analogue of Intel TBB. It uses Intel TBB
for threading and generates vectorized code through its own run time
code generation process. Programmers think differently about ‘for’
loop computations than about the other Intel PBB models. Intel ArBB
is an entire library and language to specify an arbitrary computation,
and the key word there is arbitrary. It is much more high-level than
Intel TBB. It is an entire programming platform when compared to Cilk’s
three keywords, and is well-suited for algorithm scientists that do not
want to deal with specifics of either managing tasks or vectorization.

The Intel ArBB _for is similar to the C/C++ loop, but is not meant for
parallel execution alone—it is a regular serial loop. Other parallel operations
intrinsic to the API should be used, or the _for loop should be used in con-
junction with arbb::map(). Using _for with arbb::map allows for both vector-
ization and threading without the programmer having to manage tasks.

To illustrate how many parallel operations are abstracted away, rendering
a ‘for’ loop unnecessary, take a look at an Intel ArBB implementation of
matrix/vector multiplication that works but is not actually parallelized,
in Figure 7.

Except for the use of Intel ArBB types, operators, and keywords,
this code looks very similar to the serial C implementation. However,
just like the C version, it runs sequentially. This is not the right way to
compose an efficient parallel program using Intel ArBB.

See Figure 8 for a much better implementation that shows the
simplicity of Intel ArBB syntax and expresses the intrinsic parallel
nature of the algorithm.

notice the use of container operators instead of scalar operators,
as well as the use of collective operators. not only is this code simpler,
it also allows the Intel ArBB runtime to parallelize the computation
through vectorization and/or multithreading.

So when should the _for loops be used?
The _for loop should be used in the following situations:

> Inside Intel ArBB functions

> To express serially dependent iterative computation. This is the case
where a computation must be done incrementally, with the current
step depending on the result of the previous step. A good example
would be heat dissipation using an iterative stencil in Figure 9.

In this code, computing each stencil-based update step is parallelized
through the use of the arbb::map() function. But the updating must be
done multiple times, repetitively, in a sequence in order to compute the
solution over time.

In conclusion, each of the ‘for’ loops represented in Intel PBB
addresses different programmer needs, and we encourage you to find
which one works best for your workload. o

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

#include “tbb/blocked_range.h”
#include “tbb/parallel_for.h“
using namespace tbb;
class ChangeArray{
 int* array;
public:
 ChangeArray (int* a): array(a) {}
 void operator()(const blocked_
range<int>& r) const{
 for (int i=r.begin(); i!=r.end();
i++){
 foo (array[i]);
 }
 }
};

void ChangeArrayParallel (int* a, int n)
{
 parallel_for (blocked_range<int>(0, n),
ChangeArray(a));
}
int main (){
 int A[N];
 // initialize array here…
 ChangeArrayParallel (A, N);
 return 0;
}

Figure 5

float sprod(float *a, float *b, int size) {
 float sum = 0.0;
 for (int i=0; I < size; i++)
 sum += a[i] * b[i];
 return sum;
}

 float sprod(float* a, float* b, int size) {
 int s = 4096;
 cilk::reducer_opadd<float> sum(0);
 cilk_for (int i=0; i<size; i+=s) {
 int m = std::min(s,size-i);
 sum += __sec_reduce_add(
 a[i:m] * b[i:m]);
 }
 return sum.get_value();
} Figure 4

the PARALLeL UNIVeRse

14

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

“Using _for with arbb::map
allows for both vectorization
and threading without
the programmer having to
manage tasks.”

void matvec_product(const dense<f32,
2>& matrix, const dense<f32>& vector,
dense<f32>& result)
{
 result = add_reduce(matrix * repeat_
row(vector, matrix.num_rows()));
}

void matvec_product(const dense<f32,
2>& matrix, const dense<f32>& vector,
dense<f32>& result)
{
 usize rows = matrix.num_rows();
 usize cols = matrix.num_cols();
 _for (usize i = 0, i < rows, ++i) { //
SERIAL LOOP
 f32 sum(0.0);
 _for (usize j = 0, j < cols, ++j) {
// SERIAL LOOP
 sum += matrix(j, i) * vector[j];

 } _end_for
 result = replace(result, i, sum);
 } _end_for
}

Figure 7

Figure 8

void apply_stencil(dense<f64, 2>& grid, i32
iterations) {
 _for(i32 i = 0, i < iterations, ++i) {
 map(stencil)(grid);
 } _end_for
}
void stencil(f64& cell) {
 arbb::array<usize, 2> coord;
 position(coord);
 usize x = coord[0], usize y = coord[1];
 _if(x != 0 && y != 0 && x != WIDTH-1 &&
y != HEIGHT-1) {
 cell = 0.25 * (neighbor(cell, -1,
0) + neighbor(cell, 1, 0) +
 neighbor(cell, 0, -1) + neighbor(cell, 0,
1));
 } _end_if
}

Figure 9

float sprod(float *a, float *b,
 int size) {
 float sum = 0.0;
 for (int i=0; i < size; i++)
 sum += a[i] * b[i];
 return sum;
}

 float sprod(const float a[], const float b[],
size_t n) {
 return tbb::parallel_reduce(
 tbb::blocked_range<size_t>(0,n),
 0.0f,

 [=](
 tbb::blocked_range<size_t>& r,
 float in
) {
 return std::inner_product(
 a+r.begin(), a+r.end(),
 b+r.begin(), in);
 },
 std::plus<float>()
);
}

Figure 6

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

Easing the
Performance
Analysis
of Serial
and Parallel
Applications
by Levent Akyil

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Explore how the improved and intuitive
user interface in Intel® VTune™ Amplifier XE
performs powerful performance analyses
with just a few mouse clicks.

the PARALLeL UNIVeRse

16

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Intel® VTune™ Amplifier XE is a powerful performance
analysis tool that helps software developers identify algorithmic
and microarchitectural performance issues in their applications. Intel
VTune Amplifier XE, with its improved and intuitive user interface,
performs powerful performance analyses with a few mouse clicks. It
brings new, innovative, easy-to-run analysis types for both algorithmic
and micro-architectural performance analyses; some of the pre-defined
analysis types for algorithmic tuning are lightweight hotspot analysis,
hotspot analysis, concurrency analysis, and locks and waits analysis.

> Hotspot analysis helps the developer understand the application flow
(i.e., call stack information) and identify the sections of code that
took a long time to execute (hotspots) by leveraging a low overhead
statistical sampling (a.k.a. user-mode stack sampling) technology.

> Concurrency and locks and wait analyses, similar to hotspot analysis,
identify hotspot functions and call stacks to those functions, but
additionally measure how an application utilizes the available processors
on a given system by leveraging thread-profiling technology.

• Concurrency analysis identifies where processor utilization is poor,
and how and when threads are running, synchronizing, and waiting.

• Locks and waits analysis helps identify the cause of the ineffective
processor utilization. The most common problem for poor utilization is
caused by threads waiting too long on synchronization objects (locks).

> Lightweight hotspot analysis is similar to hotspot analysis but instead
uses hardware-based event-based sampling (EBS) technology to
locate the hotspots in a given application. Figure 1

For more advanced and deeper microarchitectural analysis, the tool
is equipped with pre-defined analysis types, which use a performance
monitoring unit (PMU) to sample processor events to identify micro-
architectural issues such as cache misses, stall cycles, branch mispredictions,
and many more. The advanced analysis types are defined for processor
architectures such as Intel® Core™2 microarchiteture, Intel® Core™
microarchitecture (a.k.a. Nehalem, Westmere), and 2nd generation
Intel® Core™ microarchitecture (a.k.a. SandyBridge). When these advanced
pre-defined analysis types are used, the tool gives hints and suggestions
by highlighting the problematic functions.

In this article, you will learn how some of the advanced features
of Intel VTune Amplifier XE and EBS technology can help developers
identify computational issues and estimate key performance metrics
such as floating-point operations per second (FLOPS). FLOPS (also
known as flops or flop/s) is a measurement that is heavily used in high-
performance computing and is a common way of measuring the
performance and computational capabilities of a given microprocessor.
other analysis types such as hotspots, concurrency, and locks and waits
leverage user-mode stack sampling and API instrumentation technologies.

Identifying computational issues
Performance tuning usually focuses on reducing the time it takes to
complete a well-defined workload. Performance events can be used
to measure the elapsed time; therefore, reducing the elapsed time of
completing a workload is equivalent to reducing measured processor
cycles (clockticks). The Lightweight Hotspot, which is a pre-defined
analysis type of Intel VTune Amplifier XE, uses processor cycles and
instructions retired1 to analyze the application. The count of cycles,
also known as clockticks, forms the fundamental basis for measuring
how long a program takes to execute. The total cycle measurement is
the start-to-finish view of the total number of cycles to complete the
application of interest. In typical performance-tuning situations, the
metric total cycles can be measured by the clockticks.

one of the goals when performing microarchitectural analysis and
optimization is to identify cycles where no micro-operations are
dispatched for execution. Micro-operations, also known as a micro-ops
or μops, are simple microprocessor instructions used to implement
more complex instructions.

Cycles where no μops were dispatched will be referred to as stall cycles
and can be counted with the hardware PMu events as demonstrated in
table 1. These very stalls can turn the execution unit of a processor
into a major bottleneck. The execution unit by definition is always the
bottleneck because it defines the throughput and an application will
perform as fast as its bottleneck. Therefore, it is extremely critical to
identify the causes for the stall cycles and remove them if possible. In
sum, the execution unit should not sit idle and wait for any reason.

Intel® Core™2
processor family
(Intel® Core™2
duo/Quad)

DIV

Counts the number of divide
operations executed. This
includes integer divides, floating
point divides, and square-root
operations executed.

CyCLES_
DIV_BUSy

Counts the number of cycles the
divider is busy executing divide
or square-root operations. The
divide can be integer, X87 or
Streaming SImD Extensions (SSE).
The square-root operation can be
either X87 or SSE.

Intel® Core™
architecture
(Intel® Core™ i7, i5,
i3; Nehalem)

ARITh.DIV

Counts the number of divide
or square-root operations. The
divide can be integer, X87 SSE.
The square-root operation can
be either X87 or SSE.

ARITh.
CyCLES_
DIV_BUSy

Counts the number of cycles
during which the divider is busy
executing divide or square-root
operations. The divide can be
integer, X87, or SSE. The square-
root operation can be either X87
or SSE.

2nd generation
Intel® Core™
architecture (a.k.a.
sandyBridge)

ARITh.
FP_DIV

Counts the number of the divide
operations executed.

ARITh.FPU_
DIV_ACTIVE

Counts the number of cycles
during which the divider is busy
executing divide or square-root
operations.

table 1: PMU events used to count the specific architectural events.

Figure 1: The predefined algorithm analyses: Lightweight Hotspot,
hotspot, Concurrency, and Locks and Waits.

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
http://intel.ly/mSuoCD
http://intel.ly/mSuoCD

There are many contributing factors to the stall cycles and sub-optimal
usage of the execution unit. Examples include memory accesses (e.g.,
cache misses), branch mis-predictions (pipeline flushes as a result), compu-
tational issues (e.g., long latency operations such as division, fp control word
change, etc.), and μops not retiring due to the out of order (OOO) engine.

Long latency instructions such as division and square-root can
introduce stalls during the execution. Intel VTune Amplifier XE can
help pinpoint where such operations are taking place and if these
operations are contributing to stall cycles during the execution.

Example: Let’s consider the N-Body problem for this exercise. The
N-Body problem predicts the motion of a group of celestial objects
that interact with each other gravitationally. The sample application
proceeds over time steps and in each step computes the net force
on every body and updates its position, acceleration, and velocity
accordingly. This serial implementation requires O(N2) operations in
each iteration as shown in Figure 2.

Figure 3 reveals the analysis of the sample code on an Intel® Core™
i7 (x980)-based system (3.33GHz, 6 core + Hyper-Threading enabled)
with Intel VTune Amplifier XE.

one way to optimize the code is to replace the division with
reciprocal multiplication as shown in Figure 4.

The optimized code consumes 4,668 million
fewer clockticks and reduces the dispatch stalls
from 7,448 million cycles to 3,020 million
cycles. Figure 5

Additionally, the application can be
parallelized not only to leverage the available
cores, but also to reduce the impact of the
DIVs. Parallelization will allow utilization of
all the ports on the cores performing the
divisions.

Estimating FLOPS
In this next section, you will find out how
hardware-based EBS technology can help
developers estimate the FLoPS performed
by their applications. FLoPS will refer to
32-bit and 64-bit floating-point operations
and the operations will be either addition or
multiplication (computational).

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

As Figures 6, 7, and 8 demonstrate,
FLoPS can be performed on legacy x87
registers or on SSe registers, depending on
how the compiler generates the code. If the
floating-point instructions are executed on
SSe registers, then they can be either scalar or
packed operations.

table 2 and table 3 give the PMu
event names which can be used to
statistically estimate the computational
floating point operations executed by the
hardware. Please keep in mind that not all
the executed instructions are retired due to
the speculative nature of the architecture.
Therefore, it is possible to experience over-
counting of these events.

Intel VTune Amplifier XE can use any of
the events individually or all of them at the
same time to estimate the FLoPS executed
by the hardware. In order to measure the
elapsed time, the CPU_CLK_UNHALTED (a.k.a.
clockticks) event can be used. If the processor
frequency is constant during the measuring
period, you can use the clockticks event to
calculate the elapsed wall clock time.

...
// Run the simulation over a fixed range of time steps
for (double s = 0.; s < STEPLIMIT; s += TIMESTEP)
{
 // Compute the accelerations of the bodies
 for (i = 0; i < n - 1; ++i)
 {
 for (j = i + 1; j < n; ++j)
 {
 // compute the distance between them
 double dx = body[i].pos[0]-body[j].pos[0];
 double dy = body[i].pos[1]-body[j].pos[1];
 double dz = body[i].pos[2]-body[j].pos[2];

 double distsq = dx*dx + dy*dy + dz*dz;
 if (distsq < MINDIST) distsq = MINDIST;
 double dist = sqrt(distsq);

 // compute the unit vector from j to i
 double ud[3];
 ud[0] = dx / dist;
 ud[1] = dy / dist;
 ud[2] = dz / dist;

 // F = G*mi*mj/distsq, but F = ma, so ai = G*mj/distsq
 double Gdivd = GFORCE/distsq;
 double ai = Gdivd*body[j].mass;
 double aj = Gdivd*body[i].mass;

 // apply acceleration components using unit vectors
 for (int k = 0; k < 3; ++k)
 {
 body[j].acc[k] += aj*ud[k];
 body[i].acc[k] -= ai*ud[k];
 }
 }
 }
 // apply acceleration and advance bodies
 for (i = 0; i < n; ++i)
 {
 for (j = 0; j < 3; ++j)
 {
 body[i].vel[j] += body[i].acc[j] * TIMESTEP;
 body[i].pos[j] += body[i].vel[j] * TIMESTEP;
 body[i].acc[j] = 0.;
 }
 }
}

...

Figure 2

the PARALLeL UNIVeRse

18

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Figure 3:
Analysis of the
sample code — 85%
of the clockticks,
89.3% of the total
μops dispatch,
and 83.4% of the
dispatch, stalls are
happening in this
code segment.

// compute the unit vector from j to i
double ud[3];
ud[0] = dx / dist;
ud[1] = dy / dist;
ud[2] = dz / dist;

// compute the unit vector from j to i
double ud[3];
double dd=1.0 / dist;
ud[0] = dx * dd;
ud[1] = dy * dd;
ud[2] = dz * dd;

Figure 4

Figure 5:
Comparisons of
the original and
optimized version

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

Bits# 255

128
127

0 XMM0

YMM0

XMM2

YMM1

XMM15

YMM15

IA-32 Integer
register stack

MMX™ Technology /
IA-32 Floating Point
register stack

SSE Register

edi

eax

st7

st0

mm7

mm0

Xmm7 (x86) – Xmm 15 (Intel® 64)

Xmm0

128
80

6432

Figure 6:
Intel® architecture
integer, floating
point, MMX, SSE,
and Advanced
Vector Extensions
(AVX) registers.

“Performance
tuning usually
focuses on
reducing the
time it takes
to complete a
well-defined
workload.”

Figure 7:
Intel AVX introduced support for 256-bit wide SIMD registers (YMM0-YMM7 in
operating modes that are 32-bit or less, YMM0-YMM15 in 64-bit mode). The lower
128 bits of the YMM registers are aliased to the respective 128-bit XMM registers.

the PARALLeL UNIVeRse

20 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Processor Generation
Processor event Names

Floating-point operations using
legacy x87 Floating-point operations using sIMd

Intel® Core™2 processor family
(Intel® Core™2 Duo/Quad)

X87_OPS_RETIRED.ANY

Packed 64-bit SImD_COmP_InST_RETIRED.PACKED_DOUBLE

Packed 32-bit SImD_COmP_InST_RETIRED.PACKED_SInGLE

Scalar 64-bit SImD_COmP_InST_RETIRED.SCALAR_DOUBLE

Scalar 32-bit SImD_COmP_InST_RETIRED.SCALAR_SInGLE

Intel® Core™ architecture
(Intel® Core™ i7, i5, i3 — a.k.a. Nehalem)

FP_COMP_OPS_EXE.x87

Packed 64-bit FP_COMP_OPS_EXE.SSE_DOUBLE_PRECISION

Packed 32-bit FP_COMP_OPS_EXE.SSE_SINGLE_PRECISION

Scalar 64-bit FP_COMP_OPS_EXE.SSE_FP_SCALAR

Scalar 32-bit FP_COMP_OPS_EXE.SSE_FP_SCALAR

2nd generation
Intel® Core™ architecture
(a.k.a. SandyBridge)

FP_COMP_OPS_EXE.X87

Packed 64-bit FP_COMP_OPS_EXE.SSE_PACKED_DOUBLE

Packed 32-bit FP_COMP_OPS_EXE.SSE_PACKED_SINGLE

Scalar 64-bit FP_COMP_OPS_EXE.SSE_SCALAR_DOUBLE

Scalar 32-bit FP_COMP_OPS_EXE.SSE_SCALAR_SINGLE

table 2: PMU events are used to count the computational floating-point operations.

Scalar processing
• traditional mode
• one operation
 produces one
 result

SIMD processing
• with SSE
• one operation produces
 multiple results

X

Y

X+Y

X

Y

X+Y

x3

y3

x3+y3

x2

y2

x2+y2

x1

y1

x1+y1

x0

y0

x0+y0

=

+

=

+

Figure 8:
Scalar processing
vs. single instruction
multiple data (SImD)
processing

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

The application also reports the FLoPS measured by dividing the total
floating-point operations (2 / iteration * NUM * NUM * NUM) with the
elapsed time. The elapsed time only includes the matrix multiplication
part and does not include the initialization and thread creation overhead.

In order to collect samples for the relevant code section, __itt_pause()
(pauses the collection) and __itt_resume() (resumes the collection) APIs
are used. Please refer to Intel VTune Amplifier XE documentation for
information on how to leverage the user APIs.

Intel VTune Amplifier XE on the Intel® Xeon® processor can be
configured as shown in Figure 10 on an Intel Core i7 (x980)-based
system (six core + hyper-threading).

Using x87 registers
The sample application is compiled in released mode (optimization level
set to 0x) on a Windows* system using Microsoft Visual Studio*.

Figure 11 and Figure 12 demonstrate what the application
reports when analyzed with Intel VTune Amplifier XE. The results offer
insight about how the compiler generated the code. In this run, we
can clearly see that we only collected samples on FLoPS using x87
register stacks.

next, plug the numbers into the formula found in Figure 13.

 Alternatively, CPU_CLK_UNHALTED.REF, which counts the number
of reference cycles and is not affected by thread frequency changes,
can be used. The difference between the reference clocktick event and
clocktick event is that even if a thread enters the halt state (by running
the HLT instruction), the reference clocktick event continues to count as
if the thread is continuously running at the maximum frequency.

The FLOPS formula can be given as follows:
FLOPS = ((number of FP ops / clock) * number of total computational

FP ops) / Elapsed Time
Elapsed time = CPU_CLK_UNHALTED / Processor-Frequency /

Number-of-Cores. The cores with a non-zero CPU_CLK_UNHALTED
event count need to be considered for this formula.

To demonstrate how EBS technology can be used to estimate the
FLoPS, a simple multithreaded matrix multiplication will be used. This
sample application leverages the thread pool concept and each thread in
the thread pool executes the code in Figure 9.

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

double a[NUM][NUM];
double b[NUM][NUM];
double c[NUM][NUM];
 ...
slice = (unsigned int) tid;
from = (slice * NUM) / NUM_THREADS;
to = ((slice + 1) * NUM) / NUM_THREADS;
for(i = from; i < to; i++)
{
 for(j = 0; j< NUM; j++)
 {
 for(k = 0; k < NUM; k++)
 // 2 fp ops / iteration: 1 add, 1 multiply
 c[i][j] += a[i][k] * b[k][j];
 }
}
 ...

Figure 9

Processor Generation
Processor event Names

Floating-point operations using AVX

2nd generation Intel® Core™
architecture (a.k.a SandyBridge)

Packed 64-bit SIMD_FP_256. PACKED_DOUBLE

Packed 32-bit SIMD_FP_256. PACKED_SINGLE

Note: Packed AVX-256 can be counted as one, and will count for SIMD FP 128.

table 3: PMU events are used to count the computational floating-point operations using AVX.

the PARALLeL UNIVeRse

22

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

Figure 12:
Shows the results
of Intel® VTune™
Amplifier XE analysis
of the application
leveraging x87
register stack. The
matrixmultiply()
function is executed
almost equally by
all of the threads.

D:\Examples\flops\msvc\Release>flops.exe
MFLOPS: 1130.180 mflops
Thread #:12 Elapsed time = 15.201000 seconds

D:\Examples\flops\msvc\Release>_

Figure 11

MFLOPS formula = FP_COMP_OPS_EXE.FP / 1x106 / Elapsed Time
Elapsed time = CPU_CLK_UNHALTED.THREAD /
Processor-Frequency / Number-of-Cores

Elapsed Time = 607,652,000,000.00 / 3.33 x 109 / 12 = 15.206 secs
MFLOP = 18,470,000,000.00 / 1x106/ 15.206 secs = 1214.652 Mflops

Figure 13

Figure 10:
Shows a custom
analysis type,
which is created to
measure relevant
PmU events.

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 16:
Shows the
events that are
associated with
the function call.

Figure 15:
Shows the results
of Intel® VTune™
Amplifier XE
analysis of the
application
leveraging SSE
registers.

D:\Examples\flops\msvc\Release>flops.exe
MFLOPS: 10437.345 mflops
Thread #:12 Elapsed time = 1.646000 seconds

D:\Examples\flops\msvc\Release>_

Figure 14

MFLOPS formula = 2 * FP_COMP_OPS_EXE.SSE_DOUBLE_PRECISION / Elapsed Time
Elapsed time = CPU_CLK_UNHALTED.THREAD / Processor-Frequency / Number-of-Cores
Elapsed time = (66,178,000,000 / 3.33 x109 / 12) = 1.656 secs
MFLOPS = 2 * FP_COMP_OPS_EXE.SSE_DOUBLE_PRECISION / 1 x 106 / 1.656 secs = 11053.140 mflops

Figure 17

the PARALLeL UNIVeRse

24

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

“Parallelization will allow
utilization of all the ports
on the cores performing
the divisions.”

Using SSE registers
now, let us look at the same application when SSe registers are used.
If we compile the application using Intel® Compiler version 12.0, we see
the results with Intel VTune Amplifier XE in Figure 14.

one thing you will notice right away in the new result displayed in
Figure 15 is the difference in the function names where the samples
are happening. In the earlier example (see Figure 12), we were getting
the samples in matrixMultiply function, but now we see the samples in
threadPool function. This is due to the inlining, and drilling down into the
threadPool function call makes this clear.

It is also easy to see how clockticks consumed by each thread are
reduced from ~50 billion cycles (in the version using x87 register stacks)
down to 5 billion cycles in this current version (see Figure 15). Please
note that this improvement is not only due to the usage of vectorization
or SSe registers. other optimizations performed by the Intel Compiler are
also contributing to the improvement.

In Figure 17, you see the FP_COMP_OPS_EXE.SSE_DOUBLE_
PReCISIon event is multiplied by two because two packed, double
precision floating operations can be performed on 128-bit XMM
registers. For single precision floating-point operations, the total count
for packed single precision floating operations needs to be multiplied
by four.

In this article, I explained, with examples, how the powerful EBS
technology in Intel VTune Amplifier XE can be used to identify
computational issues introduced by long latency instructions, and how
it can help estimate FLoPS. even though this article leveraged some
of the advanced features of Intel VTune Amplifier XE, please keep in
mind that Intel VTune Amplifier XE introduced intuitive and easy-to-use,
pre-defined analysis types, which simplify the performance analysis in
both serial and parallel applications. Parallel applications tend to have
their own unique sets of problems due the complexities introduced by
parallelism. Intel VTune Amplifier XE is designed with these challenges
in mind so that it assists developers in identifying bottlenecks in serial
applications and in parallel applications by providing essential profiling
tools and techniques.

For more information, please check out the product site. o

1. Instructions retired: Recent generations of Intel® 64 and IA-32 processors feature
microarchitectures using an out-of-order execution engine. They are also accompanied
by an in-order front end and retirement logic that enforces program order. Instructions
executed to completion are referred to as instructions retired.

Blogs and Videos
About PBB
NoAh CLeMoNs, Technical Consulting Engineer,
Parallel Programming Products

There are many articles and trainings on the Intel® Software

Network (ISN) about each one of the Parallel Building Blocks,

with each of them varying from beginner to expert levels. But

what if you want to learn something new in 15 minutes or less

a day about them?

I would like to relate what I have learned from customers and

my own studies of each of the Intel® Parallel Building Blocks

(Intel® PBB) in a daily article and complementing video. My

strategy for the ISn blogs/videos is to highlight a particular

aspect of Intel PBB, starting with Intel® Cilk Plus, that can be

read and watched in 15 minutes or less. each article will have

some commentary as well about how the model in question

compares with the other two models.

These articles will start from the very beginners’ level

and ramp up, starting with the evolution of the ‘for’ loop—

something we learned about in the first week of CS101.

By the end of these blogs and videos, you should have

excellent knowledge of each of the PBB models and how

they can enhance your workload for the latest multi- (and

many-) core processors.

BLOG
highlights

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating multicore
Power into Application Performance.

see NoAh’s 15-MINUte eNtRIes:

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
http://intel.ly/jTfV22
http://intel.ly/jTfV22
http://software.intel.com/en-us/articles/intel-vtune-amplifier-xe/
http://www.go-parallel.com
http://software.intel.com/en-us/articles/100-blogs-and-videos-about-pbb/

Case study:

Massachusetts
 General Hospital*

by Bevin Brett

Follow the experiences of and lessons learned by
developers at massachusetts General hospital and
Intel as they seek to improve virtual colonoscopies.

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

A team of researchers (Dr. Hiro Yoshida PhD., Dr. Yin Wu PhD., and others) at Massachusetts General Hospital
(MGH) 3D Imaging Research had hardware and prototype software for doing a virtual colonoscopy. However, the
execution and display times were much too slow for production use, taking more than 45 minutes combined.

Steve Aylward (microsoft* general manager for commercial health and life sciences) described it this
way in an article for eWeek.com:

[They] sought the advice of Microsoft and Intel to see how the virtual colonoscopies could be speeded up while
avoiding the invasive procedures, chalky laxatives, sedation and higher costs of traditional colonoscopies.

MGH and Intel developers used the latest Intel® Parallel Studio products to identify, prioritize, and make changes
to the C++ code to improve the serial algorithms and introduce parallelism. The team started with the goal
of reducing the execution and display times to under five minutes to demonstrate the application at industry
conferences. The changes were made over a period of a few months, meeting the tight deadline, and achieving
the initial performance goals. The revised code was used in demonstrations at SC 2010* and RSnA 2010*.
 This article describes the experiences of and the lessons learned by these developers as they met the
challenge of rapidly improving the performance of a C++ program.

Caveat
Real programming, especially by multicompany teams, is complex. Time constraints, learning curves, and other
work intervene to prevent activities from happening in the ideal order. note that the following discussion does
not attempt to capture all the activities or the precise order in which the activities occurred.

the PARALLeL UNIVeRse

26

http://software.intel.com/en-us/articles/optimization-notice
http://www.eweek.com/c/a/Health-Care-IT/HP-Intel-Microsoft-Technology-Enable-LessInvasive-Virtual-Colonoscopies-380516/

sign up for future issues | share with a friend

The application
While virtual colonoscopies are already being administered to people,
the process requires that the patient avoid food and receive an
enema—both unpleasant experiences. The improved prototype virtual
colonoscopy process will have the patient eating low-texture food
and taking a pill that contains an X-ray opaque dye. A computed
tomography (CT) scan takes cross-sectional X-ray pictures of the
patient’s lower abdomen, and then a computer program processes the
pictures to erase the dyed food. A doctor can interactively view the
processed data, seeing the virtual wall of the colon.

A virtual colonoscopy has three major steps:

1. Gather the initial data from the CT scan into a cube data structure
representing the density at locations within a cubic volume
containing the patient’s abdomen.

2. Process the cube with the “electronic cleansing” code to produce a
similar, enhanced cube. This step erases the dyed food in the colon
and does some image enhancement.

3. Use a visualizer to let the medical expert do a “fly through” of the colon
in the final cube to search for interesting features, such as polyps.

The second step is the main computational step. It is the focus
of this article, although work was also done on the other steps. In
the second step, data flows through a series of stages. Each stage
receives one or more cubes produced by earlier stages, and produces
new cubes for consumption by later stages.

The input to the first stage is density data giving the density of evenly
spread samples within the patient’s abdomen encoded as DICOm data
structures. It is about 500 cross-sectional, 512 x 512, gray-scale X-ray
images of the patient’s abdomen, with each voxel (a pixel in a 3-D volume)
having values between -2000 (air density) and 2000 (something that
almost completely blocks X-rays). Bone and X-ray contrast agents are
typically somewhere in the middle. Muscle, water, and fat are less than
bone but more than air. The density recorded in each voxel depends on
the relative amounts of the various substances contributing to it. The
raw data is about 0.5 K x 0.5 K x 0.5 K x 2 bytes = 0.25 Gb in this form.

The large amounts of data have a significant impact on the CPU
time used in the stages, and the data structures and algorithms must
take into consideration the amount of RAM on the system and the time
it takes to transfer such large amounts of data to and from the disk.

Many of the intermediate cubes of data require 4-byte floats for
their voxels. Thus, they would take closer to 1 Gb, except that often
only about 1/8th of the space requires a non-zero value. The non-zeros
are clumped together, so they can also be compressed to about 0.1 ..
0.25 Gb just by omitting areas with only zeros.

Passing through the stages there may be as many as 20 or more of
these cubes, and each stage may require some intermediate cubes as
well. As a result, data quantity gets into the 2 Gb to 5 Gb range, and
any parallelism that causes the intermediate cubes to co-exist can
raise this into the 10 Gb to 20 Gb range.

The data flowing through the pipe can be written to, and read from,
the disk so that stages in the pipe can be executed standalone. The
final data is written to the disk.

One of the first decisions was to use a 64-bit address space and
keep the cubes in memory as much as possible. Because there were
relatively few pointers in the data structures, the extra length of the
pointers did not significantly increase the data size.

The data structure for the cube
The cube is implemented as a C++ template class, where the template
argument provides the type of the voxel. Various member functions
provided operations to read and write at any (X, Y, Z) index within the
cube, and to iterate over the cube.

The cube is implemented as an array of pointers to smaller cubes, and
the smaller cubes themselves have pointers to arrays of the voxels.
These smaller cubes are also implemented as a C++ template class. To
save space, sub-cubes can be omitted and share their arrays of voxels.

Using ZLIB
The decision to make a 64-bit application introduced the need for a
64-bit ZLIB library—and preferably one that was already optimized for
the hardware. This was found in the Intel® Integrated Performance
Primitives (Intel® IPP) samples, where there is an optimized version
of exactly the support that was needed.

Coding change methodology
The change to 64 bits, the introduction of ZLIB, and various small improve-
ments to the cube template classes introduced enough problems that
it took a few days to get the new code to compile and start to run again.

It took several weeks to get data all the way through the pipeline
and debug all the stages, making it difficult to determine if an impact
had been made. The preliminary feeling was that the earlier stages
were running faster.

Despite being faster, each stage was taking more than five minutes
when running a release build on production data sets. When a debug
build was used, times were much worse—for some parts of the code,
the times were 100x the release build times. For this reason, many
of the files were compiled optimized, and only files that needed to be
debugged were built that way.

The work of debugging the later stages continued in parallel as the
performance of the earlier stages was improved.

The team adopted the following methodology for the performance
improvement work:

1. Profile the application, and look at the top-down call tree and loop
view shown by Intel® Parallel Advisor, a tool that helps programmers
introduce parallelism.

2. Find the next hot outermost loop that had not already been improved
but that offered the promise of either improved serial time or the
possibility to introduce parallelism. Do the serial improvement first,
choosing approaches that can be parallelized. If adding parallelism,
add the site/task annotations and verify that the site is suitable.

3. Create a unit test for that loop or its immediate surroundings.

4. Measure the unit test.

5. Modify the loop.

a. If introducing parallelism, use Intel Parallel Advisor to look for
possible problems.

b. Make the serial changes or introduce parallelism.

6. If parallelism has been introduced, use Intel® Parallel Inspector
to look for problems. Intel Parallel Inspector includes support for
finding data races.

7. Verify that the unit test still passes.

8. Measure the unit test, and decide whether the desired speedup has
been achieved. If it has not, repeat the process.

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
http://en.wikipedia.org/wiki/DICOM
http://intel.ly/j7rYbA
http://intel.ly/j7rYbA
http://software.intel.com/en-us/articles/intel-integrated-performance-primitives-code-samples/

The measurements
The goal for the electronic cleansing (second) step was to get the
time below five minutes.

At first sight, the measurements were disappointing. Time was fairly
evenly spread over the five stages of the pipeline, and within the stages
there were a total of about 20 loops that consumed the time, most of
them taking a lot longer than their share of the five-minute goal. Most
would have to be improved to significantly reduce the elapsed time.

The unit tests
each loop was applying a complex algorithm to a large amount of
input data. The input data was coming from earlier in the pipeline and
could not easily be faked; it was not at all obvious how to create a
suitable small input set that would have the same characteristics. This
meant that the unit tests would have to be conducted on real data.

For each algorithm to be replaced, a unit test was created.
The code was modified to write the algorithm’s inputs to a file.
The unit test was created to:

1. Read the inputs from the disk.

2. Apply the existing algorithm to the inputs to get the current “new” output.

3. Apply a copy of the existing algorithm to the inputs to get the old output.

4. Compare the two outputs, and verify that they are the same.

of course, they should be the same. This comparison was really
testing the unit test, and could identify cases where all the inputs
were not captured.

The existing algorithm was then changed to the new algorithm, and
the unit test rerun to verify the same output was produced.

Using Intel Integrated Performance Primitives
The Partners HealthCare researchers had already identified the Intel
Integrated Performance Primitives (Intel IPP) convolution support as
being a good match for several of the algorithms used in the steps.

A convolution is a mathematical operation between two arrays.
Basically, one of the arrays is zero-extended at each end by as many
zeros as there are elements in the second array. The second array is
then slid along this extended array. At each position in the slide, the dot-
product is computed (corresponding elements are multiplied, and the
products summed) and the sum is placed at that position in the output.

However, the algorithms were not doing one-dimensional convolu-
tions. Instead, they were doing 3-D convolutions by first going along
the Y*Z rows parallel to the X axis to produce an intermediate result.
They then went along the X*Z rows parallel to the Y axis of this inter-
mediate cube to produce another intermediate result. Finally, they went
along the X*Y rows parallel to the Z axis to produce the final result.

The result was that each of the three loops for the three
dimensions spent most of its time indexing into the rows to produce
short vectors of Float32s for the Intel IPP convolution code to work
on. It then indexed into the output cube to write the values back to.

Four significant changes were made to this algorithm.

1. Keep the intermediate results as Float32s.

2. Reorder the indices, so that in terms of the original cube’s indices
the cell that started as (X, Y, Z) in the original was written into (Y, Z,
X) in the first intermediate result, then into (Z, X, Y) in the second
intermediate, and finally back into (X, Y, Z) in the final result.

3. Assemble longer vectors of data to feed into the convolution function.

 Consider two original rows that consisted of the following:

 (0,0,0,0, 0,1,0,0, 0,0,2,0, 0,0,0,0)

 (0,0,0,0, 1,0,1,0, 0,2,2,0, 0,0,0,0)

 Both are to be convolved with the length=3 vector (0.25, 0.5,
0.25) to do some blurring.

 one can concatenate the two rows, with enough 0s padding in
between, to form a long vector. The resulting vector can be fed into
the convolution code, yielding high-performance execution. The
portion of the result corresponding to the padding is then discarded.

 Furthermore, one can shrink long bursts of zeros, and use zeros
for these eliminated portions in the result.

 The final version turns the above two vectors into input for the
convolution:

 (0,0,1,0, 0,2,0, 0,1,0,1,0, 0,2,2,0, 0)

 The convolution results are applied in the following:

 (0,0.25,0.5,0.25,0.5,1.0,0.5,0.25,0.5,0.5,0.5,0.25,0.5,1.5,1.5,
0.5,0.0)

 The zeros and end-of-rows are reinserted to create the final answer:

 (0,0,0,0, 0.25,0.5,0.25,0.0, …) and

 (…)

4. If the entire cube was done at once, the intermediate results would not
fit in the primary or secondary caches, and main memory would be
accessed for most of the traffic. Instead, the large cubes are decomposed
into smaller cubes, and they are treated as separate problems. Experi-
mentation was used to size the smaller cubes. When they are too
small, the need to go beyond the ends of the smaller cubes results
in duplicated effort, so there is a hardware-specific optimal size.

Benefiting from multicore parallelism
The change to using Intel IPP and other serial enhancements significantly
improved the time spent in the electronic cleansing step, but a lot
more speedup was needed to get under the five-minute target.

The Intel Parallel Advisor survey feature pointed to many loops that
could be parallelized, and those were attacked one at a time. Two of the
stages performed multiple independent convolutions, and other stages had
algorithms that iterated over large subsets of the voxels within the cubes.

Parallelizing the convolutions
one stage did three convolutions and another did nine. In both cases,
all the convolutions done by the stage were on the same data.

There were three obvious choices for introducing parallelism:

1. Do the individual convolutions in parallel.

2. Do the 3-D convolution of the parts of a cube in parallel.

3. Do the 1-D convolution of the vectors in parallel.

The 1-D convolutions were already being done by Intel IPP, and so
were assumed to be efficiently exploiting the hardware.

Clearly, with nine independent convolutions, doing each on a
separate core involved the least amount of work and had the potential
for a nine-fold speedup. The team used the Intel Parallel Advisor
correctness capability to verify that they were independent, tried
running them in parallel, and measured the achieved speedup.

The achieved speedup from doing all nine convolutions in parallel
on a 16-core system was approximately 3x, even when the cube was

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

the PARALLeL UNIVeRse

28

http://software.intel.com/en-us/articles/optimization-notice

sign up for future issues | share with a friend

decomposed into the optimal-size sub-cubes. There was so much data
to read and write, and so little reuse of the data, the main memory
bandwidth was the gating factor and the caches did not hide this.

The team did more experiments correlating the number of
convolutions being run in parallel with the achieved speedup, and
discovered that, for this algorithm and hardware, three-way parallelism,
with carefully chosen decomposition cube size, was about the
best that could be done. The nine convolutions were load balanced
into three tasks doing three convolutions each. Similarly, the three
convolutions of the other stage were balanced into three tasks doing
one convolution each.

For-all-points and wave-front algorithms
There were several algorithms that processed many voxels within the
cube, either based on their location or on their presence in a set. All of
these could be done by processing various portions of the cube in parallel.

In cases where it first looked like locks were going to be needed, it
was often possible to break the iteration space into contiguous slices,
and then process these slices in a manner that avoided the need to lock.

This was done by processing these slices within an outer three-
iteration loop, as shown in Figure 1.

The middle loop could then be parallelized, knowing that the x-1, x,
and x+1 elements of the inp and out were not shared across iterations
of this loop and hence did not need to be locked.

Results
The combined changes reduced the program execution times below
the five-minute target, even before all the possible candidates
had been parallelized. As a result, the team was able to demo the
application as planned.

Summary
Intel Parallel Advisor made it possible to identify the places to focus
efforts, to avoid wasted effort on sites that would not pay off, and
to identify correctness issues before they caused non-deterministic
crashes and wrong answers.

In conjunction with Intel Parallel Inspector and Intel Parallel
Amplifier, Intel Parallel Advisor enabled major improvements to be
made in complex code on a tight schedule.

Intel IPP provided two optimized sets of functions (convolutions
and ZLIB) that met the needs of the application for reliable optimized
code that the team was not capable of producing itself, saving a lot
of time. o

Performance Analysis
of Intel® Threading
Building Blocks
dAVId MACKAy, Lead Technical Consultant

Intel® Threading Building Blocks (Intel® TBB) is a popular

abstraction for expressing parallelism in C++ software. Intel

TBB leads to good decomposition for threading. But do you

know how to check how well it is tuned, so you use Intel

Threading Building Blocks most effectively?

Douglas Armstrong, Intel® VTune™ Amplifier XE architect, joins

me to share tips on using VTune Amplifier XE for tuning TBB

software. Intel VTune Amplifier XE has built-in support for

helping find and tune the granularity of domain decomposition

in Intel TBB. Douglas feels this is an under-appreciated feature

and has captured some screen shots to share with us. Douglas

created a sample Intel TBB application and analyzed it with the

concurrency option of Intel VTune Amplifier XE.

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating multicore
Power into Application Performance.

see the Rest oF dAVId’s BLoG:

BLOG
highlights

for (int interleave = 0; interleave <
3; interleave++)
 for (int slice = interleave;
slice < xMax/sliceSize;
slice += 3)

for (int x = (slice+0)*sliceSize;
x < min((slice+1)*sliceSize, xMax);
x++)

operateOn(
inp[x-1],inp[x],inp[x+1],
out[x-1],out[x],out[x+1]);

Figure 1

the PARALLeL UNIVeRse

https://swdevtoolsmag.makebettercode.com
http://intel.ly/lemj34
http://www.go-parallel.com
http://software.intel.com/en-us/blogs/2011/05/10/performance-analysis-of-threading-building-blocks/

sign up for future issues | share with a friend
The Parallel Universe is a free quarterly magazine. Click here to sign
up for future issue alerts and to share the magazine with friends.

Optimization Notice

Intel compilers, associated libraries and associated development tools may include or utilize options that optimize for
instruction sets that are available in both Intel and non-Intel microprocessors (for example SIMD instruction sets), but
do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel compilers, includ-
ing some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors. For a detailed de-
scription of Intel compiler options, including the instruction sets and specific microprocessors they implicate, please
refer to the “Intel Compiler User and Reference Guides” under “Compiler Options.” Many library routines that are
part of Intel compiler products are more highly optimized for Intel microprocessors than for other microprocessors.
While the compilers and libraries in Intel compiler products offer optimizations for both Intel and Intel-compatible
microprocessors, depending on the options you select, your code and other factors, you likely will get extra perfor-
mance on Intel microprocessors.

Intel compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20110307

the PARALLeL UNIVeRse

30 For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.

https://swdevtoolsmag.makebettercode.com
http://software.intel.com/en-us/articles/optimization-notice

CheCK oUt the FRee GUIdes todAy

A quick and easy code boost
Try the free Intel® evaluation guides

Software development is a battle. every
day C/C++ and Fortran developers square
off against stubborn hotspots, nettle-
some memory errors, elusive resources
leaks, and a host of other obstacles.

Now, you have another weapon in the fight for
stellar application performance and reliability:
the Intel® quick evaluation guides.

Download the step-by-step guide that addresses
your development challenge, and see how quickly
you can improve your code.

Find the guide that fits your need
Intel evaluation guides offer free, hands-on tips and techniques for
resolving a range of development issues. here are just a few examples:

 > Boost PeRFoRMANCe: Learn how in many cases recompiling a single file can
give you a major performance boost.

 > Add PARALLeLIsM: Easily apply a parallel_for to a conforming for loop for a
significant performance increase—even without further tuning.

 > eLIMINAte MeMoRy eRRoRs: Find memory and threading errors before they
happen at any point in your development cycle.

Intel hopes you find the guides useful in your pursuit
of faster, more reliable code.

For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Ron Green
Manager, HPC and Fortran

Compiler Support

http://software.intel.com/en-us/articles/evaluation-guides/
http://software.intel.com/en-us/articles/optimization-notice

Intel® C++ Compiler 12.0 1.69X

Intel® C++ Compiler 11.1 1.32X

Next Best Compilers
Best of Microsoft Visual Studio* 2010 and PGI* C++ Compiler 10.6

Estimated SPECfp*_base2006 (C/C++) floating point benchmark

for Windows

for Windows

Baseline

Intel® C++ Compiler 12.0 1.19X

Intel® C++ Compiler 11.1 1.1X

Next Best Compilers
Best of Microsoft Visual Studio* 2010 and PGI* C++ Compiler 10.6

Estimated SPECint*_base2006 integer benchmark

for Windows

for Windows

Baseline

INteL® PARALLeL stUdIo Xe

Kick your code into high gear

Intel® Parallel studio Xe
the ultimate all-in-one performance
suite includes the following
industry-leading tools:

Performance compiler Immediately increase performance after
recompiling—without changing code.

Memory checker Locate memory leaks, buffer overflow,
and memory allocation mismatches to
boost quality and reliability.

static security analyzer Find 250+ security vulnerabilities and
defects to improve source-code quality
and security.

Concurrency analysis uncover race conditions and deadlocks
to enhance quality and reliability.

Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate performance of Intel® products as measured by those tests. Any difference in system hardware or software design
or configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of systems or components they are considering purchasing. For more information on performance tests and
on the performance of Intel products, refer to www.intel.com/performance/resources/benchmark_limitations.htm. Intel® Compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not
unique to Intel® microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors
not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Configuration info at: http://software.intel.com/en-us/articles/benchmark-info/#ICC.
For more information regarding performance and optimization choices in Intel® software products, visit http://software.intel.com/en-us/articles/optimization-notice.
© 2011, Intel Corporation. All rights reserved. Intel, the Intel logo, Intel Xeon, and VTune are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Download free 30-day trials of Intel® Software Development
Products at www.intel.com/software/products/eval.

The performance solution for Windows* and Linux* C/C++ and Fortran developers

Boost Application Performance with
Recompile on Intel® Xeon® Processor

Drive performance and scalability
Locks and waits analysis identifies a common cause of a slow parallel
program: waiting too long on a synchronization object (lock).

What you can do to
produce immediate results
Go parallel!: A feature of the Intel® C++ Compiler, guided auto-
parallelization (GAP) offers selective advice and, when correctly applied,
results in auto-vectorization or auto-parallelization for serially coded
applications.

stop guessing: Hotspot analysis finds the functions using the most
time. Click [+] for the call stacks. Double-click to see the source.

Go multimedia: Intel® Integrated Performance Primitives (Intel® IPP)
functions are thread safe. That means you can thread your application
and call Intel IPP functions without synchronization problems if the
same functions are called by different threads.

http://www.intel.com/performance/resources/benchmark_limitations.htm
http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/optimization-notice
http://www.intel.com/performance/resources/benchmark_limitations.htm

