
THE PARALLEL
UNIVERSEIssue 6

March 2011

Walter Shands
Technical Consulting Engineer

Parallelizing
Intel® Integrated Performance
Primitives Functions Using
Intel® Cilk™ Plus and Intel®
Threading Building Blocks
by Walter Shands

Code Tips
Intel® Array Building Blocks
by Zhang Zhang

Letter from the

Editor
by James Reinders

Intel® Parallel StudIo haS gone extreMe

Intel® Parallel StudIo xe
Intel Parallel Studio XE includes three
next-generation revisions of industry-
leading products:

 › Intel® Composer xe
Optimizing compilers and
high-performance libraries

 › Intel® Inspector xe
Powerful thread and memory error checker

 › Intel® VTune™ Amplifier XE
Advanced performance profiler

Intel® Parallel Studio XE combines Intel’s
industry-leading C++ and Fortran compilers;
libraries; and error-checking, security, and
profiling tools into a single tool suite that
helps high-performance computing and
enterprise developers maximize application
performance, security, and reliability.

Intel® C++ Studio XE offers the same
benefits for developers who only need
the C++ compiler.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice
© 2011, Intel Corporation. All rights reserved. Intel the Intel logo, and VTune are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Save with suites
When purchased as part of a suite, all components can be had for
a significant savings. For details on buying tools individually, visit
http://software.intel.com/en-us/articles/buy-or-renew/.

already own the software?
If you currently own Intel® software tools, you could be eligible for
special upgrade pricing. For details, visit http://software.intel.com/
en-us/articles/intel-xe-product-comparison/#upgrade.

Download free 30-day trials of Intel® Software Development Products at
www.intel.com/software/products/eval.

Achieve unprecedented performance
with Intel® Parallel Studio XE
From the makers of
Intel® VTune™ Performance
Analyzer and Intel® Visual
Fortran Compiler comes
the ultimate all-in-one
performance toolkit.

Victoria gromova
Technical Consultant Engineer

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/buy-or-renew/
http://software.intel.com/ en-us/articles/intel-xe-product-comparison/#upgrade
http://software.intel.com/ en-us/articles/intel-xe-product-comparison/#upgrade
http://www.intel.com/software/products/eval

© 2011, Intel Corporation. All rights reserved. Intel, the Intel logo, Cilk
Plus, Intel Core, and Intel VTune are trademarks of Intel Corporation
in the U.S. and other countries. *Other names and brands may be
claimed as the property of others.

COnTEnTS
letter from the editor
PBB, XE, Cambrian Explosion, and
the Art of Computer Programming, By JAmES REInDERS 4
James Reinders, lead evangelist and director of Intel® Software Development Products,
discusses the challenge of choice when determining which products and programming
models make sense for your programming needs.

Parallelizing Intel® Integrated Performance Primitives
Functions using Intel® Cilk™ Plus and Intel® threading
Building Blocks, By WALTER ShAnDS 6
The parallel models in Intel® Parallel Building Blocks easily integrate into existing
applications, help preserve investments in existing code, and speed development
of parallel applications.

Intel® array Building Blocks Code tips, By ZhAng ZhAng 12
Assist the runtime system in generating high-performance code and develop a sound
understanding of the Intel® Array Building Blocks API to help avoid errors.

Success Story roundup 20
Envivio, The Creative Assembly, and Altair share how they employed Intel® Software
Development tools to achieve increased performance, productivity, and reliability.

Subscribe today: The Parallel Universe is a free quarterly magazine.
Click the link below to sign up for future issue alerts and to share the
magazine with friends.

the Parallel unIVerSe

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

I like choices because they provide
options. For computer programming, like a
mechanic, we look for the right tools for
the job. This issue of The Parallel Universe
magazine helps educate us to select those
tools for the job by educating us on program-
ming methods and tools. Articles in this issue
highlight parallel programming using the latest
Intel® XE tools by showing results and tips
using programming models and tools.

As tasty as a Smörgåsbord may be, some
people find too many choices distracting. I
have noticed that when I am with a group
at a Chinese restaurant, with 185 numbered
entrees on the menu, many people are slow to
choose. I have also noticed that decisions are
faster if someone makes a recommendation
or if there is a “special of the day” highlighted.

If you are hungry for multicore program-
ming, let me recommend the Intel® Parallel
Studio XE product and the Intel® Parallel
Building Blocks.

If you have a bigger appetite that includes
clusters of processors, let me recommend the
Intel® Cluster Studio product and the Intel®
Message Passing Interface (MPI) Library.

I received some very nice feedback on
the articles in the last issue that helped
detail these recommendations. If you missed
it, I’d encourage you to go back and read
Issue 5 as well at http://i.cmpnet.com/ddj/
go-parallel/assets/Parallel_Mag_Issue5.pdf.

In this issue, we’ll further explore my
recommendations by showing more of what
these products and programming models
are capable of in practice. The aim is to help
you determine when these products and
programming models make sense for your
programming needs. We can’t cover every-
thing, but hopefully you’ll find something in
these pages that helps you.

We have solutions that
extend the most used
programming languages
and programming
environments.
 As I’ve mentioned before, computer hard-
ware has never been more complex. The
challenge with programming models and
tools is to make this complexity manageable
by being high level enough to be usable,
while still offering control that is sufficiently
low level to make the results useful.

Despite our best efforts, the number
of solutions can look overwhelming. A
colleague of mine called this the “Cambrian
Explosion for Parallel Programming.” Can we
pick the winners?

I think so, because I think we are actu-
ally pretty far into the “Cambrian Explosion”

(it started with programming languages in
general in the 1950s). The winners of this
latest era need to extend the winners of
the last explosion. We are not starting over.
Should we? I don’t think so, and I’ll leave
elaborating on that for another day.

The most popular solutions, a.k.a. “the
winners,” will be those that extend the most
used programming languages.

That explains why Intel® Parallel Building
Blocks and the Intel® Parallel Studio XE tools
focus on C, C++, and Fortran developers, and
enjoy a high degree of popularity as a result.
We have solutions that extend the most
used programming languages and program-
ming environments.

That said, we still have a lot to learn
together.

The articles in this issue will help by
exploring programming models and tools to
share success and offer tips.

I’m taking feedback on what additional
articles, and perhaps a book, would be
useful to you. Feel free to drop me a note
at james.r.reinders@intel.com if you have
some suggestions. I have enjoyed hearing
from many of you in the past year. Keep
the comments coming!

Enjoy!

JaMeS reInderS
Portland, Oregon
March 2011

LETTER FROm ThE EDITOR

PBB, XE, CAmBRIAn EXPLOSIOn,
AnD ThE ART OF COmPUTER PROgRAmmIng

the Parallel unIVerSe

4

http://software.intel.com/en-us/articles/optimization-notice

James reinders is Chief Software Evangelist at
Intel Corporation. his articles and books on parallelism
include Intel Threading Building Blocks: Outfitting C++

for multicore Processor Parallelism, which has been
translated into Japanese, Chinese, and Korean. Reinders
is also widely interviewed on the subject of parallelism.

the Parallel unIVerSe

5

Intel® Integrated Performance Primitives (Intel® IPP) is an extensive library of
multicore-ready, highly optimized software functions for multimedia, data processing,
and communications applications. Intel® IPP is included in Intel® Composer XE, which
is a component of Intel® Parallel Studio XE; and Intel® C++ Composer XE, which is a
component of Intel® C++ Studio XE.

Parallelizing Intel®
Integrated Performance
Primitives Functions
Using Intel® Cilk™ Plus and Intel®
Threading Building Blocks
by Walter Shands

6

Walter Shands
Technical Consulting Engineer

7

the Parallel unIVerSe

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Intel IPP is available in single-threaded and
multithreaded versions that can be linked either statically or
dynamically. Software developers sometimes prefer to use the single-
threaded versions of the library. There are various reasons for this,
one of which is to control the number of threads in an application that
uses Intel IPP. For instance, if the threaded Intel IPP library is used and
an Intel IPP threaded function is called by the application, the Intel
IPP threading subsystem will create a number of software threads
equal to the number of hardware threads available on the system.
If the application code is threaded at a higher level, the total number
of threads running in the application when an Intel IPP function is
called could exceed the available hardware threads. This can cause
increased thread synchronization overhead.

Even so, it is sometimes important to thread individual Intel IPP
functions when using the single-threaded versions of the Intel
IPP library. This can be the case when an application that has been
threaded and tuned for a certain number of hardware threads is run
on a system with many more cores. An Intel IPP function call that was
not a hotspot on a small number of cores can emerge as a hotspot
when the original CPU-intensive portion of the application is spread
across many more cores.

It turns out that Intel Composer XE and Intel C++ Composer XE
also have tools to add threading to single-threaded Intel IPP functions;
these tools are called Intel® Parallel Building Blocks (Intel® PBB). Intel
PBB is not the name of a product but a term for a collection of models
(or tools) that assist developers with implementing parallelism. Since
they share the same foundation, you can mix and match the models
that suit your unique parallel implementation needs. These models
easily integrate into existing applications, help preserve investments
in existing code, and speed development of parallel applications.
They consist of Intel® Cilk™ Plus, Intel® Threading Building Blocks
(Intel® TBB), and Intel® Array Building Blocks (Intel® ArBB).

Two of these building blocks, Intel TBB and Intel Cilk Plus, provide
parallel algorithms and keywords, respectively, to thread existing code.

In the following paragraphs, I’ll describe how to use these to write
wrappers to provide threading to Intel IPP functions.

Intel TBB is a C++ template library solution that can be used to
enable general parallelism. It is for C++ developers who write general-
purpose loop and task parallelism applications. It includes scalable
memory allocation, load-balancing, work-stealing task scheduling,
a thread-safe pipeline and concurrent containers, high-level parallel
algorithms, and numerous synchronization primitives.

Intel TBB and lambda functions can be used to thread Intel IPP
functions on an as-needed basis. The basic idea is to wrap the
Intel IPP function call with an Intel TBB parallel algorithm such as
parallel_for and use a lambda function to simplify the code. The
Intel TBB template function parallel_for parallelizes a for loop by
breaking the iteration space into chunks, and running each chunk on
a separate thread.

Here is an example of an Intel IPP function that has been threaded
using Intel TBB and a lambda function. Figure 1.

The Intel IPP function ippiSet_8u_C1R sets the elements of an
array of eight bit unsigned integers, which typically represents a
piece of an image, to a specific value. The piece of the image to
work on is called the region of interest (ROI). The Intel IPP functions
with ROI support are distinguished by the presence of an R
descriptor in their names.

parallel_for works with a template class provided by Intel TBB called
blocked_range<T>, which describes a one-dimensional iteration space
over type T. This is essentially the range of data that will be broken up
and run on individual threads.

ippiSet_8u_C1R takes a value, the pointer to the start of the ROI,
the distance in bytes between lines in the ROI, and a structure that
describes the size of the ROI as parameters. By passing the ROI height
in lines to the blocked_range template, we have instructed the parallel_
for statement to break up the iteration space based on ROI lines.

Since the blocked_range breaks up the iteration space into
subspaces, we have to adjust the ippiSet_8u_C1R input ROI size to

inline

void inl_ippiSet_8u_C1R(const Ipp8u value, Ipp8u* pDstROI, int dstStep, IppiSize _roisize)

{

 parallel_for(blocked_range<int> (0,_roisize.height), [value, pDstROI, dstStep, _roisize] (const blocked_
range<int> &r) {

 IppiSize roisize = {_roisize.width, r.end() - r.begin()};

 ippiSet_8u_C1R(value, &pDstROI[dstStep * r.begin()], dstStep, roisize);

 }, auto_partitioner());

}

Figure 1

the Parallel unIVerSe

8

http://software.intel.com/en-us/articles/optimization-notice

the size of the ROI subspace that is being worked on. We must also
move the input pointer to the ROI array to point to the subspace ROI
by providing the appropriate index into the ROI array.

By using a lambda function as the second parameter to parallel_for
we can avoid writing an STL-style function object outside the parallel_
for statement and put all of the code in the parallel_for. In addition,
the wrapper function inl_ippiSet_8u_C1R is made inline to attempt to
avoid the cost of an extra function call.

The Intel TBB wrapper provides a reliable, portable, and scalable
parallel version of the operation. The Intel IPP function provides
low-level optimizations based on the processor’s available features
such as Streaming SIMD Extensions (SSE) and other optimized
instruction sets.

Intel Cilk Plus is an extension to C and C++ implemented by the
Intel® C++ Compiler, offering a quick, easy, and reliable way to add
threading to applications. Intel Cilk Plus is for C++ software developers
who write simple loop and task parallel applications. It offers superior

functionality by combining vectorization features with high-level
loop-type data parallelism and tasking.

A function wrapper constructed using Intel Cilk Plus can be used
instead of an Intel TBB wrapper to thread the Intel IPP call.

Here is an example of the same Intel IPP function threaded using
Intel Cilk Plus. Figure 2.

In this example, the keyword cilk_for is used to parallelize the
original for loop so it scales across multiple cores. A cilk_for loop is a
replacement for the normal C++ for loop that permits loop iterations
to run in parallel.

In the cilk_for loop the data from the ROI is processed one line at
a time so the ROI height is set to one. However, Intel Cilk Plus will
divide up the work to be done in the loop so that several lines can be
processed by the same thread. Like Intel TBB, Intel Cilk Plus uses a
work-stealing task scheduler that ensures load balancing and prevents
oversubscription of available hardware threads.

the Parallel unIVerSe

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

The method of using Intel TBB or Intel Cilk Plus wrappers to
externally thread Intel IPP functions can be used for many other Intel
IPP functions with appropriate adjustments to parameters passed to
the function. Intel IPP functions are thread safe, so as long as input
data is protected there is no danger of deadlocks or data races when
the same Intel IPP function is called from different threads.

This is because Intel IPP functions do not use internal global
variables; state changes cannot occur when the same Intel IPP
function called on one thread is then called from a different thread
with different parameters.

In addition, threading wrappers can be used with the Intel
IPP threaded library if parallelization inside the library is disabled
beforehand by using the Intel IPP ippSetnumThreads API call with a
parameter of 1.

Furthermore, Intel TBB and Intel Cilk Plus constructs can be nested.
For instance, you can use an Intel Cilk Plus cilk_for call inside a call to
Intel TBB parallel_for and vice versa.

Finally, Intel Composer XE and Intel C++ Composer XE are available
on both Linux* and Microsoft Windows* platforms. If you are on a
Microsoft Windows platform and using Microsoft Visual Studio*,
there is an easy way to add Intel TBB and Intel IPP support to your
application. In the case of Microsoft Visual Studio* 2010, edit the
project properties, select the Intel Performance libraries item
under Configuration Properties, and then select Yes in both the
Intel Integrated Performance Primitives and Intel Threading Building
Blocks drop-down list boxes. Then include the Intel IPP and Intel TBB
headers in your application code.

Intel Composer XE and Intel C++ Composer XE combine optimized
compilers with high-performance libraries, advanced vectorization, and
Intel Parallel Building Blocks, speeding and simplifying threading and
performance on Linux and Microsoft Windows with the same code
base. Because Intel PBB technologies in Intel Composer XE and Intel
C++ Composer XE are compatible with the Intel IPP library, developers
can use them to create tailored software solutions that scale across
multiple cores. FIgure 3. o

BLOG
highlights

Using the Intel® Threading
Building Blocks graph Community
Preview Feature: An Implementation
of Dining Philosophers
BY MIChael VoSS

Intel® Threading Building Blocks (Intel® TBB) Version 3 Update
5 introduced the class graph as a Community Preview (CP)
feature. There is an introductory post that provides an
overview of the class and the nodes that can be used with
it. You can download the open-source version of this release
at www.threadingbuildingblocks.org and are encouraged to
provide feedback about the graph via the forum. In a previous
post, I provided an example that created a simple message
graph. In this post, I describe a more complicated example
that highlights some interesting features of the API.

This example will demonstrate:

• How to use the graph’s run function

• How to mix explicit puts with explicit edges

• The non-greedy nature of the join_node

In this post, I’ll provide an implementation for the Dining
Philosophers’ problem shown below. In this problem,
several philosophers are sitting together at a table. Each
philosopher needs to both think and eat, but can only do
one of these at a time.

10

the Parallel unIVerSe

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/intel-tbb-community-preview-features/
http://software.intel.com/en-us/articles/intel-tbb-community-preview-features/
http://software.intel.com/en-us/blogs/2010/12/23/intel-threading-building-blocks-version-30-update-5-introduces-graph-as-a-community-preview-feature-2/
http://www.threadingbuildingblocks.org
http://software.intel.com/en-us/forums/intel-threading-building-blocks/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/
http://software.intel.com/en-us/blogs/2011/01/03/using-the-intel-threading-building-blocks-graph-community-preview-feature-creating-a-simple-message-graph/

inline

void inlc_ippiSet_8u_C1R(const Ipp8u value, Ipp8u* pDstROI, int dstStep, IppiSize _roisize)

{

 cilk_for(int i=0; i < _roisize.height; i++) {

 IppiSize roisize = {_roisize.width, 1};

 ippiSet_8u_C1R(value, &pDstROI[dstStep * i], dstStep, roisize);

 };

}

Figure 2

Figure 3

For more information, see the links below:
Intel® Parallel Studio XE—http://software.intel.com/en-us/articles/intel-parallel-studio-xe

Intel® Composer XE and Intel C++ Composer XE—http://software.intel.com/en-us/articles/intel-composer-xe

Intel® Parallel Building Blocks—http://software.intel.com/en-us/articles/intel-parallel-building-blocks

Intel® CilkTM Plus—http://software.intel.com/en-us/articles/intel-cilk-plus

Intel® Integrated Performance Primitives—www.intel.com/software/products/ipp

Intel® Threading Building Blocks—www.intel.com/software/products/tbb

InFORMATIOn In THIS DOCUMEnT IS PROVIDED In COnnECTIOn WITH InTEL PRODUCTS. nO LICEnSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO AnY InTELLECTUAL PROPERTY RIGHTS IS GRAnTED BY THIS
DOCUMEnT. EXCEPT AS PROVIDED In InTEL’S TERMS AnD COnDITIOnS OF SALE FOR SUCH PRODUCTS, InTEL ASSUMES nO LIABILITY WHATSOEVER AnD InTEL DISCLAIMS AnY EXPRESS OR IMPLIED WARRAnTY, RELATInG
TO SALE AnD/OR USE OF InTEL PRODUCTS InCLUDInG LIABILITY OR WARRAnTIES RELATInG TO FITnESS FOR A PARTICULAR PURPOSE, MERCHAnTABILITY, OR InFRInGEMEnT OF AnY PATEnT, COPYRIGHT OR OTHER
InTELLECTUAL PROPERTY RIGHT.

UnLESS OTHERWISE AGREED In WRITInG BY InTEL, THE InTEL PRODUCTS ARE nOT DESIGnED nOR InTEnDED FOR AnY APPLICATIOn In WHICH THE FAILURE OF THE InTEL PRODUCT COULD CREATE A SITUATIOn WHERE
PERSOnAL InJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this
information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

the Parallel unIVerSe

http://software.intel.com/en-us/articles/intel-parallel-studio-xe
http://software.intel.com/en-us/articles/intel-composer-xe
http://software.intel.com/en-us/articles/intel-parallel-building-blocks
http://software.intel.com/en-us/articles/intel-cilk-plus
http://www.intel.com/software/products/ipp
http://www.intel.com/software/products/tbb

Intel® arraY BuIldIng BloCkS

by Zhang Zhang

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

the Parallel unIVerSe

12

http://software.intel.com/en-us/articles/optimization-notice

Intel® Array Building Blocks (Intel® ArBB) is a parallel programming solution
designed specifically for dynamic data parallelism. It is the newest component
of Intel® Parallel Building Blocks (Intel® PBB), which currently also includes
Intel® Threading Building Blocks (Intel® TBB) and Intel® Cilk™ Plus.

What makes Intel® arBB unique is a runtime system that
is capable of doing retargetable and dynamic compilation. The runtime
system includes a virtual machine (VM) with a JIT compiler that can
adapt to the target architecture by generating parallelized, vectorized,
and optimized code dynamically. On top of this VM, Intel ArBB is
implemented as an embedded language whose syntax is implemented
as a C++ library API compatible with the ISO C++ standard. The
programming model imposed by this API supports structured,
deterministic, and race-free data parallelism.

Developers programming in Intel ArBB focus on algorithms. They
do not need to deal with low-level architectural details, such as SIMD
instructions, thread management, and intrinsic functions, to get good
performance. The runtime system takes care of those. However, there
are certain things that a programmer can do to assist the runtime
system in generating high-performance code. There are also areas in
the Intel ArBB API that need to be well-understood in order to avoid
errors. This article summarizes these tips and explains them using
code examples.

CODE TIP 1:
Expressing Parallelism
The first question a programmer who wants to code an algorithm
using Intel ArBB asks is, “How do I express parallelism?” Designed to
be a language suited for data parallelism, Intel ArBB allows parallelism
to be expressed at a high level in two ways.

1. using vector operations directly on data collections

A vector operation is a function that takes containers as parameters.
Parallelism is achieved when using these operations because
computations on the elements of a container are either independent
or have known parallel implementation strategies. As an example,
consider the computation of the Euclidean distances between two
points in an m-dimensional space. The distance between these points
is calculated using the formula:

Suppose we also have n points. In this case, the result will include
n distances.

One way to code this is to use 2-D dense containers to represent
a collection of points, each of which requires multiple coordinates.
The width of the 2-D dense containers can be n, the number of
points, while the height can be the dimensionality m of the points.
Figure 4 shows the code. The distance function reads in and
operates on two containers (X and Y) as a whole, and writes output
to another container (d) as a whole.

2. applying elemental functions to data collections

An elemental function (i.e., a kernel function) is written to operate on
individual data elements, as opposed to data collections. An elemental
function can be invoked, in parallel, on all elements in a container by

d
m

i=1

= ∑ | |xi–yi
2

1/2

std::size_t length = N, dim = M;

dense<f64, 2> vec_X(length, dim), vec_Y(length, dim);

void distance(dense<f64, 2> X, dense<f64, 2> Y, dense<f64>& d) {

 dense<f64, 2> sqdiff = (X ñ Y) * (X ñ Y);

 dense<f64> s = add_reduce(sqdiff, 1);

 d = sqrt(s);

}

Figure 4. Use vector operations to express parallelism.

13

the Parallel unIVerSe

static const int max_count = 1000;

// kernel function

void mandel(i32& d, std::complex<f32> c) {

 i32 i;

 std::complex<f32> z = 0.0f;

 _for (i = 0, i < max_count, i++) {

 _if (abs(z) >= 2.0f) {

 _break;

 } _end_if;

 z = z*z + c;

 } _end_for;

 d = i;

}

// use map() to invoke the kernel function

void doit(dense<i32, 2>& D, dense<std::complex<f32>, 2> C) {

 map(mandel)(D,C);

}

// from within C++ code

call(doit)(dest, pos);

Figure 5. Use the map operator to apply an elemental function to each item in a data collection.

using the arbb::map operator to map the function across the container.
Figure 5 shows an example of computing the Mandelbrot set in the
complex plane. The kernel function evaluates a quadratic polynomial
for an individual complex number. Then, the arbb::map operator takes
a pointer to this kernel function as argument, mapping it across all
the elements of the 2-D dense containers D and C used. note that
the “_for” used here is a serial control flow construct acting on one
element of the input array, not a parallel for.

CODE TIP 2:
Programming for Performance
The Intel ArBB virtual machine performs many types of
optimizations during code generation. All are transparent to the
user. However, a set of best practices can be adopted by users
to allow more optimization opportunities and to assist the virtual
machine in generating efficient code.

1. use arbb::expect_size to achieve good memory allocation

and cache-friendly data distribution.

Intel ArBB has a segregated memory management model in which
Intel ArBB container objects are allocated and managed in a memory
space separated from regular C++ objects. This is for both data safety
and performance reasons. In cases where the size of a container is
known before the container is passed to a function, the runtime can
pre-allocate the memory and can slice and distribute the data in a way
that leads to efficient cache usage, vectorization, and multithreading.
All that is needed is for the user to communicate the size expectation
to the JIT compiler using arbb::expect_size. Listing 3 shows examples
of giving shape expectations for 1-D, 2-D, and 3-D dense containers.

The arbb::expect_size statements must be the first statements in
a function that takes parameters of Intel ArBB containers. Sizes must
be given for each dimension of a container. Sizes can be specified as
integer constants, C++ variables, or expressions that evaluate to an
integer. note that sizes can be computed at runtime, but the size used
to construct an Intel ArBB closure and the actual size used when the
closure is invoked must match.

arbb::expect_size(1d_dense, width);

arbb::expect_size(2d_dense, width, height);

arbb::expect_size(3d_dense, width, height, depth);

Figure 6. give shape expectations.

2. Prefer memory managed by Intel arBB to avoid
unnecessary data copying.

There are two ways to create a container: Bind an Intel ArBB handle
to an existing C++ array, or let Intel ArBB create it entirely in the
managed memory space. The first approach makes it easier to work
with existing C++ data, but it requires the runtime to both copy the
data into the managed memory space before an operation, and copy
the data back into the original space at the end of an operation. The
extra data movements do have performance impacts, and they may
also require extra synchronization.

On the other hand, using Intel ArBB managed memory allows
the associated data to reside in the runtime memory space during
the entire lifetime of the container. no data copying between the
managed memory space and the regular memory space takes place
unless explicitly specified. Also, the runtime can better manage
alignment requirements (which may, in fact, be hardware platform
specific). Figures 7 and 8 show examples of both approaches.

http://software.intel.com/en-us/articles/optimization-notice

the Parallel unIVerSe

14

http://software.intel.com/en-us/articles/optimization-notice

dense<f32> a(1024), b;

// init ‘a’ using write range

range<f32> ra = a.write_only_range();

for (size_t i = 0; i < ra.size(); ++i) {

 ra[i] = . . .;

}

// copy in of ‘a’

call(fun1)(a, b);

// NO copy out of ‘b’

// NO copy in of ‘a’

call(fun2)(a, b);

// NO copy out of ‘b’

// get data out of ‘b’ when we need it

const_range<f32> rb = b.read_only_range();

std::vector<float> result(rb.size());

std::copy(rb.begin(), rb.end(), result.begin());

Figure 7. Prefer memory managed by ArBB.

dense<f32> a, b;

bind(a, c_arr, 1024);

bind(b, c_brr, 1024);

// copy in of ‘a’

call(fun1)(a, b);

// sync; copy out of ‘b’

// copy in of ‘a’

call(fun2)(a, b);

// sync; copy out of ‘b

Figure 8. The bind interface is convenient but may result in
extra copies.

3. use collective operations sparingly.

Collective operations such as reductions, scans, gathers, scatters, and
permutations are necessary for implementing many algorithms. However,
collective operations typically introduce irregularities into the computation
flow that may require synchronization. Synchronization can significantly
reduce chances for the runtime to do optimizations across a big chunk of
code. The rules of thumb for using collective operations are:

> They should be used sparingly and only if necessary.

> If possible, move a collective operation to the beginning or the end of
the function that invokes it.

4. Use the most specific function to avoid unnecessary
data dependencies.

To help the runtime generate efficient code, programmers should avoid
writing code that introduces unnecessary data dependencies. This means
two things. First, if an operation can be accomplished in one step using
a specialized operator, then it should not be done using multiple steps
with more general operations. Second, intermediate copies of containers
should be avoided as much as possible. In particular, don’t unnecessarily
reuse a temporary variable, especially if you are only updating part of a
collection. Introduce a new temporary for logically disjoint operations.

15

the Parallel unIVerSe

Figure 9 shows three equivalent ways to restrict values in a container
to a range. The first two ways each need two statements. However, the
first way introduces shadow intermediate copies of the container, which
are only partly updated, and the second way has unnecessary serial
dependencies. By contrast, the third way achieves the same effect using
one specialized statement and has a better chance to yield optimal code.

dense<f32> x = ..;

// dep. between ‘x’ copies

x = select(x < 0.0f, 0.0f, x);

x = select(x > 255.f, 255.f, x);

// dep. between ‘x’ copies

x = max(0.0f, x)

x = min(255.f, x);

// Optimal

x = clamp(x, 0.0f, 225.f)

Figure 9. Avoid unnecessary data dependencies and use the
most specialized operation available.

CODE TIP 3:
Use _for Properly for Serial Control Flow
Users sometimes have a false impression that the _for loop is
parallelized. In fact, the _for loop, and all other loop constructs
provided by Intel ArBB, are serial loops. Iterations of a _for loop are
executed sequentially. Intel ArBB does not auto-parallelize _for
loops. In other words, the _for loop cannot be used to express data
parallelism. Refer to Code Tip 1 to see how to properly express
parallelism in Intel ArBB.

The _for loop is designed to express serially dependent iterative
computation. This is the case in which a computation must be
done incrementally, with the current step depending on the result
of the previous step. A good example would be an iterative stencil
computation (like the one found in heat dissipation), as shown in
Figure 10. In this code, each stencil-based update step is parallelized
through the use of the arbb::map operator. But the updating must be
done multiple times in a sequence in order to compute the solution
over time.

void apply_stencil(dense<f64, 2>& grid, i32 iterations)

{

 _for(i32 i = 0, i < iterations, ++i)

 {

 map(stencil)(grid);

 } _end_for

}

Figure 10. Use _for loop to express serial iterative computation.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

the Parallel unIVerSe

16

http://software.intel.com/en-us/articles/optimization-notice

CODE TIP 4:
Use Intel ArBB Expressions for
Intel ArBB Control Flow
The control flow statements (_for, _while, _do_until, _if/_else, etc.) in
Intel ArBB must be constructed using condition expressions, just like
their counterparts in C++. However, the condition expressions must
be Intel ArBB types. It is a common error to use a conditional variable
of C++ type. For example, Figure 11 shows the wrong way and the
correct way of constructing a _for statement. To understand this,
remember that statements with C++ types are executed once and for
all at the JIT time (i.e., capture time). The effect of these statements
is “backed” into the generated code and will not change during the
subsequent Intel ArBB execution.

_for(int i = 0, i < iterations, ++i) { // WRONG

 . . .

} _end_for

_for(i32 i = 0, i < iterations, ++i) { // CORRECT

 . . .

} _end_for

Figure11. Do not use C++ type for condition variables.

CODE TIP 5:
Properly Exit from Intel ArBB Control Flow
Another common misuse related to Intel ArBB control flows is to use a
return statement to jump out of a _if/_else branch or to break out from
an Intel ArBB loop. Using return statements inside Intel ArBB control
flow statement is not supported. This leads to runtime errors since the
Intel ArBB control flow statements are not properly nested. Fortunately,
there are easy solutions for this situation.

For loop constructs (_for, _while, and _do/_until), Intel ArBB provides
the _break statement that can be used to properly terminate a loop. For
_if/_else branches, users need to restructure the code to avoid the need
of a return statement. Examples in Figure 12 depict both the _break
statement and the proper way of jumping out of a branch.

BLOG
highlights

TBB 3.0 and processor affinity
BY andreY MaroChko

A week ago I started telling you about a couple of new,
helpful features in the TBB 3.0 Update 4 task scheduler,
and we talked about the support for processor groups—
an extension of Win32 API available in 64-bit edition of
Windows* 7. The main purpose of processor groups is to
extend Win32 capabilities to allow applications to work with
more than 64 logical CPUs. By its nature, this functionality
is pretty close to the classic processor affinity concept,
essentially turning a flat processor affinity model into a
hierarchical one. First, you affinitize a thread to a processor
group, and then you can apply a conventional affinity mask to
tie the thread to a subset of CPUs in the current group.

Such an obvious relation between the two concepts reminded
me of one idea that TBB team kicked around some time ago.
Truth be told, that idea was pushed upon us by the issue one
of our customers faced when trying to fuse TBB and MPI on a
nUMA system. Their MPI processes were running on multicore
nUMA nodes, and they wanted to parallelize computation
inside the MPI process by means of TBB. The problem they
stumbled upon was that TBB, when initialized by default,
instantiated its worker thread pool in accordance with the
total system concurrency, disregarding the number of cores
on the current nUMA node. naturally, this resulted in huge
oversubscription and performance plunge.

Fortunately, in this particular case the developers had full
control over the TBBfied part of the code, so they were able
to resolve the issue by specifying desired amount of threads
via tbb::task_scheduler_init constructor. But what if your
code relies on task scheduler auto-initialization? Or, even
worse, you do not even suspect that TBB is present because
it is internally used by a third party component, which most
probably initializes it by default (only if it is not configurable
through a fancy API)?

17

the Parallel unIVerSe

http://software.intel.com/en-us/blogs/2010/12/16/tbb-30-high-end-many-cores-and-windows-processor-groups/
http://en.wikipedia.org/wiki/Processor_affinity
http://en.wikipedia.org/wiki/Message_Passing_Interface
http://en.wikipedia.org/wiki/Non-Uniform_Memory_Access

the Parallel unIVerSe

18

Intel ArBB variable is to use a debugger, or to use printf or std::cout
statements with the environment variable ARBB_OPT_LEVEL
being set to O0. These are equivalent since both debugging and
ARBB_OPT_LEVEL=O0 put the execution into “emulation mode.”
In this mode, Intel ArBB operations are emulated using regular
C++ execution rather than JIT compilation. This mode is just for
debugging purposes and so does not provide performance benefits.
After inspecting the values, ARBB_OPT_LEVEL should be switched
back to O2 or O3 to get performance benefits. Figure 13.

CODE TIP 7:
Implicit Type Conversion Is not Supported
C/C++ programmers are often surprised at first that Intel ArBB does
not perform automatic type conversions for Intel ArBB types. For
example, Figure 14 shows a function definition that tries to multiply
a container of floating points by an integer factor. If it were written
for C/C++ types, then the compiler would automatically “promote”
the integer factor to a float pointing value. However, code in Intel
ArBB is required to have an explicit cast for the integer factor.

Intel ArBB intentionally does not support implicit type conversion
because it is expensive in the context of vectorization (since this may
require lane changes, generations of intermediate values, and the like),
and it is error prone. Basically, implicit casts would invisibly introduce
extra and potentially expensive operations, and the philosophy of
Intel ArBB is that any expensive operation should be explicit so it can
be controlled. Programmers can always do an explicit cast as shown.
Both C-type and C++ casts work, but the C++ cast (as shown in the
example) is generally preferred. note that this rule also applies to
constants, so constants should have the correct type. For example, a
single-precision, floating-point value for “one” should be written as
1.0f, not 1.0. The latter has a double-precision type. Figure 14.

// Break out of a loop using _break

_for(int i = 0, i < iterations, ++i) {

 . . .

 _break;

} _end_for

// This leads to runtime error

_if(x == 0) {

 return;

} _else {

 . . .

} _end_if

// This is OK

_if(x != 0) {

 . . .

} _end_if

Figure 12. Properly exit from Intel ArBB control flow statements.

CODE TIP 6:
Only Inspect the Values of
Intel ArBB Variables in Debug Mode
An Intel ArBB variable is an opaque handle that will hold a value
only when the generated code is executed. It does not have
any value at “capture” (i.e., JIT) time. Therefore, using printf or
std::cout statements to inspect Intel ArBB variable values inside
functions invoked from inside a “call” does not work because these
statements are executed only at JIT time when they don’t have
values (see Figure 13). The proper way to inspect the value of an

void arbb_func(i32 var) {

 . . .

 printf (ì%dî, var); // Does not work in O2, O3

 printf (ì%dî, value(var)); // Does not work in O2, O3

 . . .

}

Figure 13. This use of printf does not work in O2 and O3 modes.

void arbb_func(i32 factor, dense<f64>& vec) {

 vec = vec * factor; // WRONG

 vec = vec * std::static_cast<f64>(factor); // CORRECT

}

 Figure 14. Intel ArBB does not support implicit casting.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/optimization-notice

double c_mat[NROW][NCOL];

dense<f64, 2> matA(NCOL, NROW); // Same shape as c_mat

dense<f64, 2> matB;

bind(matB, &c_mat[0][0], NCOL, NROW);// Note the order of NCOL and NROW

Figure 15. Declare and bind a multidimensional container.

void arbb_func(dense<f64, 2>& m) {

 . . .

 f64 e = m(2, 3);

 . . .

}

Figure 16. Access an individual element of a 2-D dense.

the Parallel unIVerSe

19

void stencil(f64& e) {

 f64 N = neighbor(e, 0, -1);

 f64 S = neighbor(e, 0, +1);

 f64 W = neighbor(e, -1, 0);

 f64 E = neighbor(e, +1, 0);

 . . .

}

Figure 17. Access neighboring cells in a 2-D dense.

Summary
Intel ArBB offers an interface that makes it easy to write code
to operate in parallel over collections of data. The syntax allows
structured, readable, and maintainable code, and decreases
development time. The runtime provides performance portability and
scalability across SIMD units, multiple cores, and even accelerator
devices. A good understanding of the syntax and proper usage can
help us harness the full potential of productivity and performance. o

CODE TIP 8:
Be Aware of the Indexing Conventions for
Multidimensional Intel ArBB Containers
Multidimensional containers have row-major order layout in
memory. However, the indexing conventions are different for Intel
ArBB and C/C++. Specifically, a multidimensional container in Intel
ArBB (that is, a 2-D or 3-D dense container) is always indexed in
the order of width, height, and depth. This has implications in at
least the following situations:

> When declaring or binding a multidimensional container that
 requires the size of each dimension, width is specified before height
and height before depth. You can think of this as an x, y, z order.
See Figure 15 for examples.

> When accessing an individual element using indices, the column
index goes before the row index, and then the page index follows
after that. See Figure 16 for an example.

> When accessing a neighboring element using the arbb::neighbor
operator, the column offset goes before the row offset, followed
by the page offset. See Figure 17 for examples.

For more information about Intel ArBB programming techniques, see the links below:
Intel® ArBB Knowledge Base: http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/1/

Intel® online forum: http://software.intel.com/en-us/forums/intel-array-building-blocks/

InFORMATIOn In THIS DOCUMEnT IS PROVIDED In COnnECTIOn WITH InTEL PRODUCTS. nO LICEnSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO AnY InTELLECTUAL PROPERTY RIGHTS IS GRAnTED
BY THIS DOCUMEnT. EXCEPT AS PROVIDED In InTEL’S TERMS AnD COnDITIOnS OF SALE FOR SUCH PRODUCTS, InTEL ASSUMES nO LIABILITY WHATSOEVER AnD InTEL DISCLAIMS AnY EXPRESS OR IMPLIED
WARRAnTY, RELATInG TO SALE AnD/OR USE OF InTEL PRODUCTS InCLUDInG LIABILITY OR WARRAnTIES RELATInG TO FITnESS FOR A PARTICULAR PURPOSE, MERCHAnTABILITY, OR InFRInGEMEnT OF AnY
PATEnT, COPYRIGHT OR OTHER InTELLECTUAL PROPERTY RIGHT.

UnLESS OTHERWISE AGREED In WRITInG BY InTEL, THE InTEL PRODUCTS ARE nOT DESIGnED nOR InTEnDED FOR AnY APPLICATIOn In WHICH THE FAILURE OF THE InTEL PRODUCT COULD CREATE A SITUATIOn
WHERE PERSOnAL InJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or “undefined.” Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725, or go to: http://www.intel.com/design/literature.htm

http://software.intel.com/en-us/articles/intel-array-building-blocks-kb/all/1/
http://software.intel.com/en-us/forums/intel-array-building-blocks/
http://www.intel.com/design/literature.htm

Helping ensure the best video
quality and performance
Intel® Parallel Studio XE helps Envivio create safe and secured code

Company
Any video—Anytime, Anywhere. Envivio’s goal is to make the world’s
video content universally enjoyable by all viewers, on any device,
across any network, at any time. Since its founding in 2000 as an
inventor of video encoding technology, Envivio has amassed dozens
of patents, pioneered video-over-IP methods, and continually leads
with support for emerging technology. Today Envivio* solutions
deliver millions of content streams to hundreds of different styles of
mobile phones, set top boxes, and PC platforms, on behalf of content
owners, telecomm operators, cable and satellite companies, and
mobile service providers in every market in the world. Using codecs
from standard H.264 through the Elite and Extreme codecs developed
in the Envivio labs, Envivio optimizes the viewing experience for every
screen, on every network. Deployment and support are backed by a
global staff that is familiar with local technical, regulatory, and market
guidelines encountered around the world. Envivio is headquartered in
San Francisco, and has offices in Rennes, France; Beijing; Tokyo, and
Singapore. For more information, visit www.envivio.com.

Mission
To grow the quality of the 4Caster C4* product to achieve the best
video quality, best performance, and fastest time to market

Product
4Caster C4 is a real-time transcoding application that supports one
channel of high-definition or multiple channels of standard-definition
encoding for IPTV, Internet TV encoding up to VGA resolution, and 3G
Mobile TV encoding.

Challenge
As code size grows, a simple IDE is no longer enough to properly
follow large sections of code. Larger code generates more bugs of an
increased complexity, compromising reliability and time to market.

Impact
The likelihood that a bug will return to the encoding team has been
lowered, while both developer ramp-up time and time to market
have improved.

Company: envivio Inc.
Industry: Video Compression

“having such a tool this early in the

development stage frees the validation

from trivial bug reports and gives our

engineers the opportunity to code more

efficiently from the very beginning of

the product cycle.”

Jean Kypreos
ADVAnCED VIDEO PROCESSInG TEAM MAnAGER

Envivio

SucceSS Story RoundupSUCCESS STORY rounduP

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.20

http://software.intel.com/en-us/articles/optimization-notice

Why Envivio’s products benefit from
utilizing parallelism

Depending on the formats, several cores are required to perform a single
encoding. In particular, for high-definition content repurposing from
MPEG2 to H.264, a single core is not enough to achieve the encoding
task in real time. In that case, both multicore and multiprocessor (DP)
technologies are required to provide the minimum horsepower for the
application.

For standard-definition content, a high level of video quality is
required for the broadcast market segment. This quality is obtained
using heavy-processing algorithms while keeping the real-time
constraint. At the same time, in order to keep a modular level of
density (i.e., 2/4 SD channels per platform), a parallelization (2/4
cores per channels) schema is mandatory to take advantage of
the platform capabilities.

The density problematic is induced by the economic equation
of the BOM cost: more channels per platform lead to smaller COGS.
In Envivio applications, the H.264 codec is the most “time-critical”
software component. Particular care is taken in the parallelization
balance of this module.

Results

Using the static security analysis (SSA) capability in Intel® Parallel
Studio XE to analyze sample code, all the falsely inserted bugs were
detected. SSA was then introduced into the process with a real test
case: the encoding core of the 4Caster C4. Based on the results of the
analysis, some sections of unused but executed code were removed,
thus improving performance. Sections of unused but executed code
were removed, improving performance.

Even if no examples of potential memory corruption were
found, many areas of the code saw improved safety, adding error
management and tracking the potential null pointer errors. Special
care was taken with the in-and-out interface as the last test for SSA
allowed the front end of the encoder to be secured. Misuse in the
product of this critical module will result in immediate detection.

On its first launch, SSA found approximately 300 errors, most
related to potential pointer usage. Five critical bugs were discovered,
in addition to three minor bugs and approximately 50 vulnerabilities.
As a result, some detected areas were rewritten, most of the dead
code was eliminated, and many critical pointers were secured.

Globally, more reliable code was delivered to the integrators,
minimizing the possibility that a bug will return to the encoding team.

how Intel® Software Development
Products assisted
The SSA capability in Intel Parallel Studio XE was used to analyze
the core module of the product: the H264 encoder. It was set to its
maximum sensitivity, helping reduce the floating validation time,
while improving product quality and facilitating on-time delivery.

SSA also offers more resilience to the code. This protection
promoted developer confidence in the code, making it safe to connect
one piece of software to the other. Safe and secured code will return
errors immediately, preventing long, demanding debugging sessions.
Used in the early stages of development, SSA fixed bugs before
they appeared, saving time and resources. By combining with Intel®
Inspector XE, also in the early stage of development, greater dynamic
error resilience was achieved.

The SSA tool was easy to set up, launch, and use. And because
results are displayed within Intel Inspector XE, there was only a single
interface to master. In addition, access to the source code was fast,
and problems could be found and fixed within minutes.

SSA is fully integrated with the compiler, and results could be
manipulated in many ways. The user-friendly interface and filters
enabled the developers to focus on a category of problems, while the
documentation clarified tricky and advanced coding issues.

SucceSS Story Roundup
the Parallel unIVerSe

21

Enabling an immersive and realistic
PC game experience
The Creative Assembly relies on Intel® Software Development Products to
conquer threading and graphics challenges in new napoleon: Total War game

Company
Founded in 1987, The Creative Assembly is a leading computer games
developer based in Sussex in the UK, and is best known for the Total
War* series of strategy games. Napoleon: Total War* is the fifth major
release in the franchise and, like its predecessors, is a PC-only release.
The company has also had major successes in the console market
with Spartan: Total Warrior* and Viking: Battle for Asgard*. From 2003
to 2005, the Total War* engine was used for the BBC game show,
Time Commanders, which won international acclaim. In 2005, The
Creative Assembly was acquired by SEGA. For more information, visit
www.creative-assembly.co.uk.

Mission
Marry real-time strategy battles with the slower, turn-by-turn tactical
overview of a campaign map to create realistic, immersive games
people want to play.

Product
Napoleon: Total War is the first in an all-new story-driven branch of
The Creative Assembly’s multi-award-winning Total War RTS franchise.
napoleon: Total War will keep the franchise’s genre-leading 3D battles
on land and sea. The turn-based campaign is split into three different
story-driven campaigns, telling the story of the rise and fall of
napoleon Bonaparte through his most famous battles.

Challenge
Harness the power of multicore PCs to support development of an
immersive and realistic game environment.

Impact
The Creative Assembly programmers can scale to as many cores
as provided, which, for strategy games, frees them from being CPU
bound, while future-proofing the engine.

Company: the Creative assembly
Industry: gaming

“Two things drew us to Intel® TBB.

First and foremost was the relative

ease with which it could be integrated

into the existing serial code, and second

was the speed at which programmers

can learn to use it.”

yuri O’Donnell
SEnIOR EnGInE CODER

The Creative Assembly

SucceSS Story RoundupSUCCESS STORY rounduP

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.22

http://software.intel.com/en-us/articles/optimization-notice

Why The Creative Assembly’s products
benefit from utilizing parallelism
The more processing and graphics power that can be devoted to a
game, the better it looks and the greater the sense of immersion.
The heavy customization of individual details in napoleon: Total War
was made possible by multithreading techniques. Although it will run
on a single-core processor, the game engine has been coded with a
dual-core or greater target in mind, and is split into two parts: logic and
rendering. These routines are further subdivided into individual “mini-
task” algorithms, such as sea geometry refreshes and pathfinding. The
idea is that no one process holds up another and the game can take
advantage of available hardware.

Results

napoleon: Total War achieved a more realistic user experience and
significantly increased the fidelity of the visual experience by adding
greater animation, all while delivering lower system requirements than
its predecessor. The team is confident that it would not have been able
to ship on time without Intel® Threading Building Blocks (Intel® TBB).

The efficiency of the engine means that the battlefields and
naval encounters in napoleon can be vast and heavily populated,
with individual AI routines for every unit. napoleon includes battles
with 10,000 to 20,000 men, each one created with a level of detail
comparable to that of games with only 10 to 20 characters on screen.
One of the key new tools for napoleon is a custom unit builder, which
allows designers to add details to the models. napoleon represents
the most advanced incarnation of the Total War series, and yet boasts
lower system requirements than its predecessor.

how Intel® Software Development
Products assisted
The Creative Assembly team drew heavily on the experience of
Intel® engineers and Intel® tools when designing their current
gaming engine.

Intel® Thread Checker helped validate every memory operation
undertaken by The Creative Assembly team. By notifying them of
any simultaneous access to shared memory, race conditions could be
identified and remedied. Even more useful were the Intel TBB libraries,
which developers used to parallelize their code. not only was it
relatively easy to integrate into existing serial code, the programmers
could quickly learn how to use it. Within days it was yielding
performance benefits.

One of the advantages of targeting the PC, rather than writing
for a multiplatform audience, was that Intel TBB could be completely
integrated into the engine, saving an enormous amount of time
and money. The Creative Assembly avoided having to write its own
job queue system, which saved effort on development, testing, and
debugging. The team is confident that it would not have been able to
ship on time without Intel TBB.

In order to reduce the system requirements, the team turned to
Intel® Graphics Performance Analyzers. Developers got the timing of
each API call and saw how long it took on the GPU. This enabled them
to modify the render state and determine the performance impact.
The tool’s real-time analysis of the rendering pipeline helped identify
bottlenecks, and spot instances of overdraw in any scene.

the Parallel unIVerSe

23

SucceSS Story Roundup

Creating a new standard in virtual
crash testing
Altair advances frontal crash simulation with help from Intel® Software
Development Products

Company
Altair Engineering, Inc. empowers client innovation and decision making
through technology that optimizes the analysis, management, and
visualization of business and engineering information. Privately held,
with more than 1,300 employees, Altair has offices throughout North
America, South America, Europe, and Asia-Pacific. With a 25-year
track record for product design, advanced engineering software, and
grid-computing technologies, Altair consistently delivers a competitive
advantage to customers in a broad range of industries. Built on a
foundation of design optimization, performance data management, and
process automation, HyperWorks is an enterprise simulation solution for
rapid design exploration and decision making. To learn more, please visit
www.altair.com and www.altairhyperworks.com.

Mission
Write the first simulation code to solve a full vehicle frontal crash
simulation, with more than 1 million elements in less than five minutes.

Product
RADIOSS is a next-generation finite element analysis (FEA) solver
for linear and non-linear simulations. It can be used to simulate
structures, fluids, fluid-structure interaction, sheet metal stamping,
and mechanical systems. This robust, multidisciplinary solution
allows manufacturers to maximize durability, noise and vibration
performance, crashworthiness, safety, and manufacturability of
designs in order to bring innovative products to market faster.

Challenge
Use state-of-the-art hybrid programming mixing different
parallelization techniques to achieve more scalability and deliver
optimal performance for very large number of processors.

Impact
Altair improved customer satisfaction by exceeding customer
performance and timeline requirements.

Company: altair engineering, Inc.
Industry: Manufacturing and Industrial

“This breakthrough delivers the

missing link for CAE-driven design in

vehicle safety. This, combined with

our new hybrid solver approach, has

enabled us to eliminate the turnaround

time bottleneck inherent to virtual

crash testing. now, multi-disciplinary

optimization for crash, durability, and

nVh will be able to provide valuable

input to the design process.”

Dr. Uwe Schramm
CTO FOR HYPERWORKS

Altair Engineering, Inc.

SucceSS Story RoundupSUCCESS STORY rounduP

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.24

http://software.intel.com/en-us/articles/optimization-notice

Why Altair’s products benefit
from utilizing parallelism

Virtual crash tests are one of the most time-consuming tasks in
the automotive development process. Altair wished to demonstrate
the feasibility of a new analysis process that drastically reduces
the simulation time needed for virtual crash testing. In terms of the
product lifecycle, it sought to reduce both prototyping costs and time
to market, two key competitive advantages for Altair customers.

Massively parallel programming enables very good scalability using
domain decomposition techniques and an MPI communication library;
such scalability tends to decrease as the number of processors
increases and the amount of data to compute decreases.

Altair used state-of-the-art hybrid programming mixing different
parallelization techniques (MPI and OpenMP) to achieve more
scalability and deliver optimal performance at very large number of
processors. To accomplish their goal, Altair leveraged the optimization
made possible by Intel® compilers, libraries, and tools to sustain the
required efficiency. There exists no real alternative to achieve the
necessary level of performance.

Results

The five-minute goal was successfully exceeded (294s achieved
using 1024 cores [128 MPI x 8 OpenMP) and overall performance
was increased by 10x. As a result of hybrid programming, scalability
of the code demonstrated up to 1024 cores. In addition, a new
numerical algorithm, called Advance Mass Scaling (AMS), decreased
computational costs.

Altair enjoyed improved customer satisfaction by exceeding
current customer performance and timeline requirements by
enabling faster design variant evaluations and less time-consuming
design sensitivity and robustness analysis. For the market, this
advancement can be considered a disruptive approach by cutting
simulation time from the hours previously required to minutes,
making possible new processes and advancements in virtual crash
testing such as finer meshes, integration of better material laws
with rupture, optimizations, and scatterings, etc. By decreasing the
delay of virtual crash testing, both time to market and costs can be
drastically decreased.

how Intel® Software Development
Products assisted
To meet its speed, scalability, and performance objectives, Altair
incorporated a range of Intel Software Development tools, including
the following:

> Intel® Compilers

> Intel® VTune™ Analyzer (now called Intel® VTune Amplifier™ XE)

> Intel® Cluster Toolkit

> Intel® Trace Analyzer and Collector

> Intel® MPI Library

Altair and Intel were also able to leverage the Intel® Xeon®
processor 5500 series-based clusters and deliver substantial
performance improvement for crash simulations. This improvement
will have long-term benefits for the industry.

Finally, Intel provided technical help for running and optimization,
access to computing resources, and marketing support.

the Parallel unIVerSe

25

SucceSS Story Roundup

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

the Parallel unIVerSe

26

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

http://software.intel.com/en-us/articles/optimization-notice

Intel® hIgh-PerForManCe tool SuIteS

For high-performance
computing and
enterprise developers

Intel® Parallel Studio XE

Intel® Parallel Studio XE combines Intel’s industry-leading C++ and

Fortran Compilers; libraries; and error-checking, security, and profiling

tools into a single tool suite that helps high-performance computing

and enterprise developers maximize application performance, security,

and reliability. Intel® C++ Studio XE offers the same benefits for

developers who only need the C++ Compiler.

For MPI developers on
high-performance clusters

Intel® Cluster Studio
(Formerly Intel® Cluster Toolkit Compiler Edition)

Intel® Cluster Studio is an integrated software package of best-in-class

cluster tools that includes Intel® C++ and Intel® Fortran Compilers,

optimized performance libraries, Intel® Trace Analyzer and Collector,

Intel® MPI Library, and Intel® MPI Benchmarks to help increase MPI

cluster performance on Linux and Windows.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice
© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Save with suites
When purchased as part of a suite, all components can be had for
a significant savings. For details on buying tools individually, visit
http://software.intel.com/en-us/articles/buy-or-renew/.

already own the software?
If you currently own Intel® software tools, you could be eligible
for special upgrade pricing. For details, visit http://software.intel.
com/en-us/articles/intel-xe-product-comparison/#upgrade.

Download free 30-day trials of Intel® Software Development Products at www.intel.com/software/products/eval.

Achieve unprecedented
application performance
and reliability
Whatever your
development goal,
Intel has the high-
performance tool
suite to meet
your needs.

Werner krotz-Vogel
Technical Marketing Engineer

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/buy-or-renew/
http://software.intel.com/en-us/articles/intel-xe-product-comparison/#upgrade
http://software.intel.com/en-us/articles/intel-xe-product-comparison/#upgrade
http://www.intel.com/software/products/eval

Intel® hIgh-PerForManCe tool SuIteS

Create, debug, and boost
performance for serial and
parallel applications
Whatever your
development goal,
Intel has the all-in-one
tool suite to meet your
needs. Find the right
suite for you below.

essential
Performance

Intel® Parallel
Studio

Intel® Parallel Studio provides a comprehensive
tool suite that includes an innovative threading
assistant, optimizing compiler and libraries,
memory and threading error checker, and
threading performance profiler for Microsoft
Visual Studio* C/C++ developers that want to
take advantage of multicore.

advanced
Performance

Intel® Parallel
Studio XE

Intel® Parallel Studio XE combines Intel’s
industry-leading C++ and Fortran Compilers,
libraries; and error-checking, security, and
profiling tools into a single tool suite that
helps high-performance computing and
enterprise developers maximize application
performance, security, and reliability.

distributed
Performance

Intel® Cluster
Studio
(Formerly Intel® Cluster
Toolkit Compiler Edition)

Intel® Cluster Studio is an integrated software
package of best-in-class cluster tools that
includes Intel® C++ and Intel® Fortran
Compilers, optimized performance libraries,
Intel® Trace Analyzer and Collector, Intel®
MPI Library, and Intel® MPI Benchmarks to
help increase MPI cluster performance on
Linux and Windows .

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice
© 2011, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Save with suites
When purchased as part of a suite, all components can be had for
a significant savings. For details on buying tools individually, visit
http://software.intel.com/en-us/articles/buy-or-renew/.

already own the software?
If you currently own Intel® software tools, you could be eligible
for special upgrade pricing. For details, visit http://software.intel.
com/en-us/articles/intel-xe-product-comparison/#upgrade.

Download free 30-day trials of Intel® Software Development Products at www.intel.com/software/products/eval.

Bhanu Shankar
Software Engineer

http://software.intel.com/en-us/articles/optimization-notice
http://software.intel.com/en-us/articles/buy-or-renew/
http://software.intel.com/en-us/articles/intel-xe-product-comparison/#upgrade
http://software.intel.com/en-us/articles/intel-xe-product-comparison/#upgrade
http://www.intel.com/software/products/eval

	Button 31:
	Button 32:
	Button 33:
	Button 34:
	Button 36:
	Button 37:
	Button 38:
	Button 39:
	Button 40:
	Button 41:
	Button 42:
	Button 43:
	Button 44:
	Button 45:

