
MASTER
MULTICORE

Introducing Intel®
Parallel Studio 2011
by Leila Chucri

Intel® Cilk Plus for
Fine-Grained Parallelism
by Krishna Ramkumar

The World’s First
Sudoku ‘Thirty-Niner’
by Stephen Blair-Chappell

THE PARALLEL
UNIVERSEIssue 4

Fall 2010

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, and Intel VTune are trademarks of Intel Corporation
in the U.S. and other countries. *Other names and brands may be
claimed as the property of others.

Contents
Letter from the Editor
Breaking Ground and Building Trust, by James Reinders	 4
James Reinders, lead evangelist and director of Intel® Software Development Products,
addresses recent innovations in apps and tools, highlights key 2010 milestones, and
explores what’s next in the new year and beyond.

Intel® Parallel Studio 2011: Getting Your App Ready
for Multicore Just Got Easier by Leila chucri	 6
Engineer Leila Chucri introduces Intel® Parallel Studio 2011, examining new features
with an eye to enabling the development environment for multicore.

Using Serial Modeling Tools to Tame
the Parallel Beast, by John Pieper	 12
Addressing many of the key reasons why parallelism is considered difficult, Intel® Parallel
Advisor offers a proven threading methodology, and enables parallel and serial modeling.

Intel® Cilk Plus, by Krishna Ramkumar	 16
Intel® Cilk Plus adds fine-grained task parallelism support to C and C++, making it
easy to add parallelism to both new and existing software, and efficiently exploit
multiple processors.

Nine Tips to Parallel Programming Heaven
by Stephen blair-chappell	 19
In this interview, Dr. Yann Golanski shares with us his favorite tips on parallel programming.
The tips are based on investigative work on parallel n-body simulation code carried out
during his doctoral studies.

The World’s First Sudoku* “Thirty Niner”
by Stephen blair-chappell	 20
Lars Peters Endresen and Håvard Graff, two talented engineers from Oslo, share with us
how they created what may be the world’s first Sudoku* puzzle that has 39 clues.

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Tired of
bottlenecks?
Introducing Intel® Parallel Amplifier 2011

	 Quickly find multicore performance
	 bottlenecks without needing to know the
processor architecture or assembly code.

A powerful threading and performance profiler, Intel
Parallel Amplifier helps Microsoft Visual Studio* C/C++
developers fine-tune applications to ensure cores are
fully exploited and new capabilities supported.

Find the functions in your application that
consume the most time.

The source view shows you the exact location on your source.

Rock your code.
Rock your world.
Intel Parallel Amplifier 2011 is part of Intel® Parallel Studio 2011, the ultimate all-in-one performance toolkit
for serial and parallel C/C++ applications.

Learn more about Intel Parallel Amplifier at http://software.intel.com/en-us/intel-parallel-amplifier/.

http://software.intel.com/en-us/intel-parallel-amplifier/

Multicore processors have brought parallel computing into the
mainstream. Software developers are embracing parallelism tools and
programming models.

In September 2010, after a successful summer of beta testing with
customers around the world, we are introducing Intel® Parallel Studio
2011 (see the article on Intel Parallel Studio 2011 in this issue),
which includes a range of new features, including:

>> A comprehensive set of parallelism development models –
Intel® Parallel Building Blocks (Intel® PBB)

>> An innovative threading assistant – Intel® Parallel Advisor 2011

>> Full support for Microsoft Visual Studio 2010*, as well as 2005
and 2008

>> Premier technical support

Both Intel Parallel Studio 2011 and Intel PBB build on prior products,
provide even more support for parallel programming, and are backward
compatible.

When we decide to rely on a product, we are looking for signs that
it is worthy of our trust. The key for me is figuring out the commitment
level of the company behind the product, and of those who are already
using it.

I have a great job because I’m working with products that have a
high commitment level from Intel and very committed customers.

Our most popular parallelism project is Intel® Threading Building
Blocks (Intel® TBB), which has been adopted widely. One of the most
recent expressions of trust for Intel TBB was its inclusion in Adobe
Creative Suite 5*. The reliable portability and outstanding performance
of Intel TBB has proven valuable to software developers on many
operating systems and processors.

The groundbreaking Intel® Parallel Studio is now demonstrating
value by helping software developers on Windows* tap into the power
of multicore processors.

It is my distinct pleasure to see us extend our product base and
capabilities in a natural way to serve both current and new customers.

Intel PBB augments the broad foundation of Intel TBB with two

Breaking
Ground and
Building Trust

Letter From
the Editor

significant additions: the compiler-assisted capabilities of Intel® Cilk
Plus and the sophisticated vector parallelism capabilities of Intel® Array
Building Blocks (Intel® ArBB) (see the article on Intel Cilk Plus in this
issue). Intel TBB continues to supply key functionality, including a
thread-aware memory allocator, concurrent containers, portable locks
and atom operations, a task-stealing scheduler, and a global timer.

Intel TBB has not stood still; the latest version includes support
for FIFO scheduling, additional support for C++ 0x, a new container
(concurrent_unordered_map), a “Design Patterns” manual, and
Microsoft Visual Studio 2010* support. Also available is a community
preview feature called tbb::graph, which is a unified approach that lets
applications use graphs to express parallelism. This is a versatile feature
that can be used to implement anything from simple static dependency
graphs to complex message-passing, actor-like graphs. It is an exciting
new feature that adds substantial coordination capabilities.

Intel Cilk Plus is made up of four things:

>> Three simple but very powerful keywords to express parallelism:
cilk_for, for parallel loops, and cilk_spawn + cilk_sync for parallel
function invocation

>> A solution, called hyperobjects, to deal with contention for shared
variables by replicating them as local copies to match tasks created by
the new keywords, and providing for their reduction back to a shared
value at the conclusion of a parallel computation

>> Array notations for data parallel operations on array slices, such
as a[] = b[] + c[] to sum two vectors, or a[][1] = sqrt(b[][2])

>> Array notations used with elemental functions to allow
computations such as __sec_map(saxpy, 2.0, x[0:n], y[0:n])

With Intel Cilk Plus, we have focused a compiler implementation.
Unlike Intel TBB, Intel Cilk Plus involves the compiler in optimizing
and managing parallelism. Benefits include: (1) code that is easier
to write and comprehend because it is better integrated into the
language through use of keywords and native syntax, and (2) compiler
optimizations that allow for more avoidance of data race conditions,
and slightly better performance.

The compiler understands these four parts of Intel Cilk Plus, and is
therefore able to help with compile-time diagnostics, optimizations,
and runtime error checking. Intel Cilk Plus has an open specification,
so other compilers may also implement these exciting new C/C++
language features.

With Intel ArBB, we have focused on offering very sophisticated
vector parallelism capabilities in an easy-to-program and highly
portable fashion. Features include the ability to use parallelism from
SIMD instructions, multicore, and manycore processors. Intel ArBB
offers built-in support for regular, irregular, and sparse matrices. These
features allow a program written in mathematical terms to harness
parallelism for performance without undue effort by the developer.

Intel Parallel Studio 2011 builds on the original Intel Parallel Studio
(released in May 2009) by augmenting it with Intel® Parallel Advisor
and Intel PBB (see the article on Intel Parallel Advisor 2011 in
this issue). Intel Parallel Advisor helps software architects consider
different possible approaches to adding parallelism to an existing
application without having to fully implement the parallelism. This can
greatly reduce the time spent evaluating implementation options and
choosing the right one for your application.

James Reinders
September 2010

Figure 1. Intel® Parallel Building Blocks

Fig.2: Intel Parallel Studio 2011

James Reinders is Chief Software Evangelist and Director of
Software Development Products at Intel Corporation. His articles
and books on parallelism include Intel Threading Building Blocks:
Outfitting C++ for Multicore Processor Parallelism.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Design Phase Bug and Debug Phase Verify Phase Tune Phase

INNOVATIVE
THREADING
ASSISTANT

COMPILER
AND THREADED
LIBRARY

MEMORY AND
THREADING
ERROR CHECKER

THREADING AND
PERFORMANCE
PROFILER

Intel® Parallel Advisor Intel® Parallel Composer Intel® Parallel Inspector Intel® Parallel Amplifier

Threading design guide tool
simplified, and speeds parallel
application design

>> Identifies the areas in
applications that can benefit
the most from parallelism

>> Provides step-by-step guidance
for threading applications

Optimizing compiler boosts
performance and threaded
application design

>> C++ Compiler and libraries

>> Code Coverage

>> Debugger

>> Intel® Parallel Building Blocks—
Set of comprehensive parallel
models that supports multiple
ways to exploit parallelism

Error detection analysis tool for
higher code reliability and quality

>> Error detection analysis tool for
higher code reliability and quality

>> Finds memory leaks and
corruption

>> Finds data races and deadlocks

Tuning analysis for optimized
and scalability

>> Tuning analysis for optimized
and scalability

>> Performance and
scalability analysis

>> Locks and waits analysis

Getting Your App
Ready for Multicore
Just Got Easier
Intel® Parallel Studio 2011

Multicore: The Game Changer
Once relegated to a small niche of performance-hungry apps like gaming, parallel programming
is making speedy inroads with mainstream developers. Designing applications that exploit the
performance and scalability attributes of multicore technology is no longer considered “nice
to have” functionality. Today, every developer knows that as the number of processor cores
increases, serial applications can no longer rely on the latest processor chip to automatically
provide greater headroom or a better user experience. Parallel programming enables applications
to fully utilize multicore innovations and stay competitive. Whether optimizing serial code or
creating new applications for multicore, parallel programming has evolved to improve proficiency
with flexible design models and tools that make applications reliable and fast.

Making Parallel Application Design – Simple, Efficient, and Fast
Over a year ago, Intel launched the first product to ease mainstream developers adopting
multicore. Intel® Parallel Studio was the first development tool to enable auto-scaling features
through a comprehensive set of compilers, threaded libraries, memory error detection, and
analysis tools. Although other companies have jumped on this new development environment,
including Microsoft with Visual Studio PPL*, Intel maintains its strong leadership with the
introduction of Intel® Parallel Studio 2011. The latest edition includes the first tool to guide
a developer on where their application can benefit most from multicore, plus a new set of task
and data parallel models. This quick overview introduces some of the noteworthy new features
of Intel Parallel Studio 2011.

Intel Parallel Studio 2011Revealed
The advanced tools and methodologies of Intel Parallel Studio 2011 help developers thrive in the
multicore world. It enables Microsoft Visual Studio 2005*, 2008*, 2010* C/C++ developers to
easily ramp up to parallelism and achieve the application performance and scalability benefits of
multicore processor technology today, and in the future.

What’s New
>> Expanded Threading Options with Intel® Parallel Building Blocks (Intel® PBB): Intel® Parallel Building

Blocks is a comprehensive and complementary set of parallel models that provide solutions ranging
from general-purpose to specialized parallelism. It enables developers to mix and match parallel models
within an application to suit their specific environment and needs, providing a simple yet scalable way to
develop for multicore.

>> Intel® Threading Building Blocks 3.0: The widely adopted, award-winning C++ template library
solution provides flexible, cross-platform parallelism solution enabling general parallelism.

>> Intel® Cilk Plus: Built into the Intel® C/C++ Compiler, it provides an easy-to-use, well-structured model
that simplifies parallel development, verification, and analysis.

>> Intel® Array Building Blocks: An API backed by a sophisticated runtime library, it provides a
generalized data parallel programming solution that frees developers from dependencies on particular
low-level parallelism mechanisms or hardware architectures. (Available in beta at: software.intel.com/
en-us/data-parallel/)

>> Intel® Parallel Advisor: An innovative threading guide simplifies and demystifies parallel
application design

>> Microsoft Visual Studio 2010 support

By Leila Chucri
Product Marketing,
Intel Corporation

Leila Chucri introduces
Intel® Parallel Studio 2011,
examining new features
with an eye to enabling the
development environment
for multicore.

“Intel® TBB was surprisingly quick
and simple to implement, and made
the Simul Weather SDK really fly on
the Intel® Core™ i7 processor. With
close to linear scaling, Simul Weather*
and Intel’s tools open up great
opportunities for game developers
to integrate dynamic weather and
clouds.”

Roderick Kennedy,
Principal and founder of Simul
Software

THE PARALLEL UNIVERSE THE PARALLEL UNIVERSE

6 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

software.intel.com/en-us/data-parallel/
software.intel.com/en-us/data-parallel/

Intel® Parallel Advisor: An innovative threading guide
simplifies and demystifies parallel application design.

Take the easy path to parallelism with Intel Parallel Advisor to design your parallel
application and tap into the performance and scalability advantages of multicore.

Whether you are new to parallelism or currently developing parallel applications, you will
find Intel® Parallel Advisor an essential tool to use during the design and discovery phase of
parallelizing code.

Intel Parallel Advisor offers visibility to developers on where to consider parallelism in C/C++
code; helps developers identify and experiment with parallel opportunities; exposes performance
benefits; identifies how to restructure the application, as well as what time saving tools to
use to debug and tune the application; and enables developers to evaluate the return on their
investment before committing to the process of parallelizing their application.

Intel Parallel Advisor gives developers a clear roadmap for parallelizing applications, with
step-by-step guidance for threading applications using widely adopted, proven abstractions for
parallelism; provides the steps for task-oriented parallelism; and targets coarse-grain parallelism.

Intel® Parallel Advisor analyzes
the executing serial program as
developers progress through the
methodology.

>> Survey Target—Helps focus on hot
call trees and loops as locations to
experiment with parallelism.

>> Annotate Sources—Enables develop-
ers to insert Parallel Advisor annota-
tions into their sources to describe
parallel experiments.

>> Check Suitability—Helps evaluate the
performance of their parallel experi-
ment by displaying the performance
projection for each parallel site and
how each site’s performance impacts
the entire program.

>> Check Correctness—Assists develop-
ers by identifying data issues such as
races in the parallel experiment.

Intel® Parallel Composer 2011C/C++ Compiler boosts perfor-
mance with libraries, parallel models, and debugging capabilities.

Intel® Parallel Composer 2011– C/C++ optimized compiler with Intel® Integrated Performance
Primitives’ advanced libraries and Intel® Parallel Building Blocks (Intel® PBB), a set of
comprehensive parallel development models. Together, these tools help enhance performance
and streamline parallel application development.

Intel Parallel Composer helps simplify adding parallelism with the newest versions of Intel®
Compilers and libraries for parallelism and thousands of lines of ready-to-use code. Supports
the entire spectrum of parallel expression from simple to complex, data to task, by offering
application-class-specific, pre-threaded, and thread-safe libraries. Saves time and takes
advantage of multicore processors with automatic functions.

“Here at Trading Systems Lab, we got a 10% to 20% performance boost in the multimode
trading simulator that’s used in our TSL Algo Auto-Design Platform by using the C++
compiler in Intel® Parallel Studio. The compatibility with Microsoft Visual C++* is great,
and we’re looking forward to using more parallelism features in Parallel Studio.”

Mike Barna,
President Trading Systems Lab

Build and Debug Phase
Optimizing Compiler with Libraries Boosts Application Performance

Design Phase

“The Intel® Parallel Advisor design
approach was instrumental in
introducing parallelism into our code.
The survey feature helped improve
our code by finding areas in our serial
code that took a lot of CPU time, and
where our code would benefit from
parallelism.”

Dr. William Orttung,
Emeritus Professor of Chemistry

“Intel® Parallel Advisor reduces the
risk of adding parallelism, since it
helps focus effort in the right place,
avoiding wasted implementation
effort.”

Matt Osterberg,
Vickery Research Alliance

“As a Microsoft Visual Studio* C++
developer for many years, and with
no previous experience with parallel
programming, Intel® Parallel Advisor
proved to be a major boon in making
it easier and efficient to implement
parallelism through the planning and
production phase.”

Brian Reynolds,
Brian Reynolds Research

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

As you evolve your code to
parallelism through the design
phase, you also need future-proof
tools to further optimize, verify, and
tune your application to get the full
benefits of the performance and
scalability attributes of multicore and
manycore technology. Intel Parallel
Studio 2011 provides developers
with critical assistance throughout
the development lifecycle, from
design, code and debug, and
verification, to tuning application
performance and reliability.

Verify Phase
Dynamic Analysis Memory and Threading Checker

Intel® Parallel Inspector 2011 with memory and threading
error checker enhances application reliability.

Catching software defects early in the development cycle can save you time and cost, and
increase your ROI. Intel® Parallel Inspector provides a comprehensive solution for serial and
multithreading error checking. Pinpoints memory leaks and memory corruption as well as
thread data races and deadlocks.

“The performance benefits of multicore and manycore are critical to SIMULIA’s business.
Intel® Parallel Inspector provides a powerful way to develop parallel code compared to
traditional methods, which can be lengthy and costly— especially if the price of
unstable code is paid by the customer.”

Matt Dunbar,
Chief Architect SIMULIA

Tune Phase
Threading and Performance Profiler

The Intel® Parallel Amplifier 2011 threading and
performance profiler enhances performance.

By removing the guesswork and analyzing performance behavior in Windows* applications,
Intel® Parallel Amplifier 2011 provides developers quick access to scaling information for faster
and improved decision making. Fine-tune for optimal performance, ensuring cores are fully
exploited and new capabilities supported.

“Thanks Intel, you guys rock! I decided to give Intel® Parallel Amplifier a run. I was delighted
when it pointed me to the right source line that was taking much of the time. I made the
change, and voilà, our app is now almost 10 times faster. The GUI is very easy to use,
in my opinion.”

Dat Chu,
Research Assistant Computational Biomedicine Lab
University of Houston

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

10 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

By John Pieper

Senior Staff
Software Engineer

using serial modeling tools to

Addressing many of the key reasons why parallelism is
considered difficult, Intel® Parallel Advisor offers a proven
threading methodology, and enables parallel and serial modeling.

the

beast
parallel
tame

THE PARALLEL UNIVERSE

12 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

A lot of programmers seem to think parallelism is hard.
A quick Internet search will yield several blogs talking about the difficulty of writing parallel
programs (or parallelizing existing serial code). There do seem to be many stumbling blocks
waiting to trip up the novice. Here’s a representative list (based on one by Anwar Ghuloum):

Evolving serial code to parallel
with Intel Parallel Advisor
Intel Parallel Advisor leads the programmer with a proven threading
method. This method was developed by Intel engineers over years
of working with customers to thread their applications. The key to
the method is to consistently check and resolve problems early, while
slowly evolving the code from pure serial, to serial but capable of being
run in parallel, to parallel.

The first step is to measure where the application spends
time—effort spent in hot areas will be effective, while effort spent
elsewhere is wasted. The next step is to insert annotations to
describe a potential parallelization. The annotations form an
experiment: what would happen if this code ran in parallel?
The annotations do not create actual parallelism, but describe where
in the serial program parallelism could be inserted. Intel Parallel Advisor
observes the execution of the program with annotations, and uses the
serial behavior to predict the performance and bugs that might occur
if the program actually executed in parallel.

Intel Parallel Advisor models the performance of the theoretical
parallelism. This allows the programmer to check the effect of
overheads of parallelization. Checking early in the process, while
the program is still serial, ensures that time is not wasted on
parallelizations that are doomed to poor performance. Either the
annotations are changed to model a different parallelization that
resolves the performance issue or, if no alternative is practical, the
programmer can focus effort on a more profitable location.

Intel Parallel Advisor also models the correctness of the theoretical
parallel program described by the annotations. This lets the tool detect
race conditions and other synchronization errors, while still running
the serial program. Because the program still runs serially, it is easy
to debug and test, and computes the same results. The programmer
can change the program—either the annotations or the code itself—to
resolve the potential races. After each change, the program remains
a serial program (with annotations) and can be tested and debugged
using the normal processes.

When the program has fully evolved, the result is a correct serial
program with annotations describing a parallelization with known
good performance and no synchronization issues. The final step in
the process is to convert those annotations to parallel code. After
conversion, the parallel program can undergo final tuning
and debugging with the other tools in Intel® Parallel Studio.

The value of the Intel Parallel Advisor method
Intel Parallel Advisor addresses many of the key reasons why
parallelism is considered difficult. Evolving a program step- by-step is
much easier than attempting to convert all at once. Taking small steps
and testing after each change allows a more comfortable development
model. It also reduces risk—at any point, the parallelization effort can
be suspended and resumed later. The partially evolved code is still a
correct serial program. In fact, it’s often a simpler, easier-to-understand
program, since the changes to enable parallelism tend to regularize
and simplify the code.

Focusing on the hot parts of the program ensures that time is spent
effectively. It also encourages the programmer to consider coarse-
grained task parallelism, which is more likely to result in good scaling.
Intel Parallel Advisor’s performance model builds on this approach. By
modeling parallel overheads for a range of processors, Intel Parallel
Advisor encourages the programmer to resolve scaling issues at the
design stage.

Serial modeling gives the programmer the best of both worlds. The
code remains serial, computes the same answer, and uses the same test
system, even as it evolves to parallelism. The serial modeling tools allow
the programmer to fix problems that might occur in the parallel program
without the difficulty inherent in non-deterministic execution.

When the method “fails”
Another advantage of the Intel Parallel Advisor method becomes
evident when we consider what happens if the parallelization effort
fails. If the programmer is unable to find a correct, high-performing
parallelization, the annotations can be deleted or commented out.
Further, since the effort of adding annotations and modeling
performance and correctness is much lower than the effort of
implementing parallelism, the end result—the original serial program—is
reached much more quickly with Intel Parallel Advisor, so the amount of
“wasted” effort is minimized. o

Other reasons that parallel programming is considered hard include the complexity of the effort,
not enough help for developers unfamiliar with the techniques, and a lack of toolsfor dealing
with parallel code. When adding parallelism to existing code, it can also bedifficult to make all
the changes needed to add parallelism all at once, and to ensure that there is enough testing
to eliminate timing-sensitive bugs.

Intel® Parallel Advisor is a new tool for developers who need to add parallelism to
existing serial code, and it helps to address these problems. Intel Parallel Advisor makes it easier
to parallelize. It increases the programmer’s return on investment by focusing effort where
it matters. It helps the programmer identify problems early, so that little effort is wasted on
unproductive directions. The key to Intel Parallel Advisor’s success is its reliance on a well-
proven method of introducing parallelism: serial modeling.

“By modeling parallel
overheads for a range of
processors, Intel® Parallel
Advisor encourages the
programmer to resolve
scaling issues at the
design stage.”

Design it right the first time with Intel®
Parallel Advisor.
Intel Parallel Advisor is available as part of Intel®
Parallel Studio. Download an evaluation kit, and
see how easy parallelism can be.

>> Finding the parallelism: This can be
difficult because in tuning code for serial
performance, we often use memory in
ways that limit the available parallelism.
Simple fixes for serial performance often
complicate the original algorithm and hide
the parallelism that is present.

>> Avoiding the bugs (data races, dead-
locks, and other synchronization problems):
Certainly there is a class of bugs that af-
fect parallel programs that serial programs
don’t have. And in some sense, they are
worse, because timing-sensitive bugs are
often hard to reproduce—especially in a
debugger.

>> Tuning performance (granularity,
throughput, cache size, memory band-
width): Serial programmers have to worry
about memory locality, but for parallel
programs, the programmer also has to
consider the parallel overheads, and
unique problems like false sharing
of cache lines.

>> Future proofing: Serial programmers
don’t worry about whether the code they
are writing will run well on next year’s
processors—it’s the job of the processor
companies to maintain upward compatibil-
ity. But parallel programmers need to think
about how their code will run on a wide
range of machines, whether there are one
or two, or many processors. Software that
is tuned for today’s quad-core processors
may still be running unchanged on future
16-, 32-, or even 64-core machines.

>> Using modern programming methods:
Object-oriented programming makes it
much less obvious where the program is
spending its time.

“When the program
has fully evolved,
the result is a correct
serial program with
annotations describing
a parallelization
with known good
performance and
no synchronization
issues.”

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/intel-parallel-advisor/
http://software.intel.com/en-us/intel-parallel-advisor/
http://software.intel.com/en-us/intel-parallel-advisor/
http://software.intel.com/en-us/intel-parallel-advisor/
http://software.intel.com/en-us/intel-parallel-advisor/

Intel® Cilk
By Krishna Ramkumar
Technical Consulting Engineer,
Intel Corporation

Intel® Cilk Plus adds fine-grained
task parallelism support to C and C++,
making it easy to add parallelism to
both new and existing software, and
efficiently exploit multiple processors. Plus

parallelism to both new and existing software to efficiently tap the
potential of multiple processors.

Intel Cilk Plus is particularly well suited for, but not limited to “divide
and conquer” algorithms. This strategy solves problems by breaking
them into sub-problems (tasks) that can be solved independently and
then combining the results. Recursive functions are often used for
divide-and-conquer algorithms, and are well supported by Intel Cilk
Plus. Tasks can either be functions or iterations of a loop. Intel Cilk Plus
keywords identify function calls and loops that can run in parallel. The
Intel Cilk Plus runtime schedules these tasks to run efficiently on the
available processors.

From a C/C++ developer perspective, it is a simple yet powerful
model because it adds very little overhead in transforming an existing
serial program to a parallel implementation. This simplicity may seem
limiting at first when compared to OpenMP* or Intel TBB, both of which
come with many parallel programming constructs. However, Intel Cilk
Plus has all the features needed to support the implementation of
parallel algorithms. Its sophistication is in its minimalism.

Intel Cilk Plus requires minimal to no intrusion into the source code,
making a serial program just a few keywords away from parallelism,
thus easing the transition to parallelism for programmers trained
to solve problems serially. In fact, a program parallelized (and which
is race free) using Intel Cilk Plus technology can be interpreted as a
serial program if the keywords are ignored. This makes such a program
easy to debug and test. Please refer to the code samples in the final
section for an illustration on the use of Intel Cilk Plus keywords.

Intel Cilk Plus’ semantics allow you to design a program without
specifying the number of processors on which the program will
execute. The runtime scheduler takes care of efficiently load balancing
your program across however many processors are available. When a
portion of your parallel computation executes
on a single processor, Intel Cilk Plus can execute it just like ordinary

C code, taking full advantage of all the compiler optimizations and
runtime efficiencies that a good C system offers. By starting from good
single-core performance, Intel Cilk Plus ensures that a program with
sufficient parallelism gets good speedup (an increase in performance)
whether it is run on a large number of processors or just a few.

In practice, most Intel Cilk Plus programs require few (if any) locks.
Its parallel control constructs obviate the need for the locks that
many other parallel programming models require for interthread
communication and synchronization. In many common situations
where locking would seem to be necessary to avoid a race, Intel Cilk
Plus provides hyperobjects, novel data structures that resolve races on
global variables without sacrificing performance or determinism.

By avoiding locks and using hyperobjects, Intel Cilk Plus sidesteps
many performance anomalies caused by locks, such as lock
contention, which can slow down parallel programs significantly; and
deadlock, which may cause your application to freeze. In fact, Intel
Cilk Plus doesn’t even have mutex locks of its own. You can use
Intel TBB locks if you ever need one. However, locking works against
parallelism. In other words, if your application suffers from lock
contention, then it means that you have to revisit your algorithm
and see if it is possible to restructure your data so as to make it
amenable to parallelism.

By using reducers, you only need to identify the global variables as
reducers where they are declared. No logic needs to be restructured.
In contrast, most other concurrency platforms have a hard time
expressing race-free parallelization of this kind of code. The reason is
that reductions in most languages are tied to a control construct.
For example, reduction in OpenMP is tied to the parallel for loop
pragma. Moreover, the set of reductions in OpenMP is hardwired into
the language, and in particular, list appending is not supported.

Introduction
It has been five years since we had free lunches. I am referring
to the legendary article by Microsoft’s Herb Sutter on the multicore
revolution and the imperative to write software that takes advantage
of multiple execution units on the same chip or die. As Sutter points
out, this entails a fundamental turn or a paradigm shift in programming
for the multicore era. From a software development perspective, it
clearly means that developers have to revisit the implementation of
their software and “parallelize” their erstwhile serial application. They
have to decompose their application into tasks, and identify tasks that
are independent of each other so that such tasks can be run in “parallel”
(you may read it as “at the same time”). Also, with hardware support for
vectorization constantly improving, it is definitely wise to harness data
parallelism in your program. In order to take advantage of multicore
platforms with advanced vectorization capabilities, easy and efficient
programming models are required to realize both task and data
parallelism, which could potentially result in faster execution of code.

Intel’s software group provides a range of tools specifically
designed to help developers parallelize their applications. Intel® Parallel
Building Blocks (Intel® PBB) is a comprehensive and complementary
set of models that provide solutions ranging from general purpose to
specialized parallelism, and includes Intel® Cilk Plus, Intel® Threading
Building Blocks (Intel® TBB) and Intel® Array Building Blocks. This article
focuses on the concepts and features of Intel Cilk Plus.

Intel® Cilk Plus
Intel Cilk Plus is a programming methodology/platform designed to
enable developers to take advantage of today’s multicore computer
systems. It is the result of nearly two decades of research by some of
the industry’s smartest minds. Intel Cilk Plus is a technology that adds
task and data parallelism support to C and C++, making it easy to add

Relationship/Co-existence with Intel TBB
Intel TBB is a widely used C++ template library for parallelism that
extends C++ by abstracting away thread management, thereby
allowing straightforward parallel programming. A full-blown discussion
of Intel TBB is beyond the scope of this article. The interested reader
could pick up a copy of the book titled Intel Threading Building Blocks
written by Intel’s James Reinders and published by O’Reilly, which has a
comprehensive treatment of the concepts and features of Intel TBB.

The underlying symmetry in the runtime shared by Intel Cilk Plus
and Intel TBB is extremely useful for developers. While Intel Cilk
Plus is suitable for both procedural as well as an object-oriented
codebase, Intel TBB can also be used to parallelize C++ code where
portability to non-Intel compilers is required. Intel Cilk Plus and Intel
TBB are different interfaces for similar underlying threading runtime
implementation. Both implement work/task stealing where the
runtime steals work from chunks that have busy workers and runs
them on chunks that have idle workers. This is what makes software
developed using Intel Cilk Plus and Intel TBB scalable.

When it comes to programming in parallel, the importance of
synchronization primitives, thread-safe container data structures,
and scalable memory allocators cannot be overemphasized. Thanks to
Intel TBB being implemented as a C++ standards-compliant portable
library, a program written using Intel Cilk Plus can use all of the above
features, which are implemented by Intel TBB in an elegant fashion.
We already discussed above that Intel Cilk Plus can use Intel TBB’s
synchronization primitives if needed. Intel Cilk Plus can also use Intel
TBB’s thread-safe containers and scalable memory allocators.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

16 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Listing 2: cilk_for

/* The below cilk_for keyword enables parallel loop iterations. If the
cilk_for keyword is replaced by for, it is then an ordinary for loop */

cilk_for (int i = begin; i < end; i += 2)
{
		 foo(i);
}

By Stephen Blair-Chappell
Intel Compiler Labs

In this interview, Dr. Yann Golanski
shares with us his favorite tips on parallel
programming. The tips are based on investigative
work on parallel n-body simulation code carried
out during his doctoral^ studies.

Just buy a faster machine.
First look at how much it will cost
you to make your program parallel. If it
will take, say two months of coding, can you
just buy a faster machine that will give you
the speedup you want? Of course, once you
reach the limits of a machine’s speed, you
are going to have to do some parallelization.

Start small.
Don’t try to make everything parallel
at once, just work on small bits of code.

Starting from scratch?
Use someone else’s wheel.
If you are starting from scratch, see what
other people have done. Learn from others.
Don’t reinvent the wheel.

Find a way of logging\
debugging your application.
Make sure you have a way of tracing what
your application is doing. If necessary, buy
some software tools that will do the trick.
Prints on their own will probably not help.

Look at where the code is struggling.
Examine the runtime behavior of
your application. Profile the code with
Intel®VTune™ Performance Analyzer.
The hotspots you find should be the
ones to make parallel.

The Formation
of Stars

It is thought that stars are formed
from the Inter Stellar Medium (ISM),
an area populated with particles of
predominantly hydrogen and helium.
Within the ISM, there are dense clouds.
These clouds are normally in equilibrium,
but can collapse if triggered by various
events.

In the research work done by Dr.
Golanski, the model simulates the
collapse of the ISM, by seeding the ISM
with coolant from a supernova.

The collapsing cloud continues
collapsing until equilibrium is reached.
This cloud is known as a protostellar
cloud.

Further contraction and fusion of the
protostellar cloud takes place, resulting
in the eventual formation of a star.

A cloud of cold interstellar gas

TO PARALLEL
PROGRAMMING

HEAVEN

1

2

3

4

5

Write a parallel version
of the algorithm.

Try rewriting the algorithm so it is
parallel-friendly.

Stop when it’s good enough.
When you think it’s good enough, stop.
Step back, go for a pint. Have set goals—
when you’ve achieved them, you’re done.

Tread carefully. You are walking
on eggs, and some eggs are land
mines.
Take care with the parallel code. Some
 innocent errors could blow up your
program. Use a good tool to check for
any data races and other parallel errors.

Get the load-balancing right.
Once you’ve made your code parallel,
make sure all the threads are doing
equal amounts of work

The tips were recorded over a pleasant Thai
meal in the City of York. Between the various
dishes, Dr. Golanski spoke about the advice
he’d give to someone starting to parallelize
an application. At the end of the meal, the
restaurant owner asked if we would mention
the restaurant. Well here goes—if you are ever
in the center of York, look for Siam House on
Goodramgate.

^Y. Golanski and M. M.Woolfson. A smoothed particle
hydrodynamics simulation of the collapse of the
interstellar medium. Monthly Notices Royal
Astronomical Society. 320, 1-11 (2001).

The complete case study, along with hands-on examples,
will be available in the WROX book, Parallel Programming
with Intel® Parallel Studio. Stephen Blair-Chappell
and Andrew Stokes, Wiley Publishing Inc. ISBN
9780470891650 (March, 2011)

Photo credit: NASA, ESA, and M. Livio and the Hubble
20th Anniversary Team (STScI)

6

7

8

9

Tips
Nine

Exploiting data-parallel hardware
More often than not, in software programs that massage a lot of
data there is scope for processing the data in parallel when the
same operation is to be performed on all of the data. Fortunately,
modern computer systems come with additional instruction sets and
associated registers that are capable of processing one operation
on multiple pairs of operands at the same time. This is called
vectorization. The Intel® Compiler automatically analyzes a program
and generates vector code that exploits vector hardware capabilities.
Besides automatic vectorization, it also has features that let you
explicitly enforce vectorization in the form of compiler directives and
C/C++ language extensions. These features can be used along with
any programming platform such as Intel Cilk Plus, Intel TBB, or OpenMP,
which gives developers a lot more choice and flexibility.

The #pragma simd compiler directive can be used for loop
vectorization. The simd pragma is used to guide the compiler to
vectorize a loop. Vectorization using the simd pragma complements
(but does not replace) the fully automatic approach.

The C/C++ language extensions (part of Intel Cilk Plus) provide
explicit data parallel array notations so that the compiler can perform

Examples illustrating use of Intel Cilk Plus keywords

void mergesort(int a[], int left, int right)
	 {
		 if(left < right)
		 {
			 int mid = (left + right)/2 ;

			 /* The below calls to the mergesort function are independent of each 	
			 other. In other words, they are task parallel. This parallelism can 	
			 easily be expressed by using the keyword cilk_spawn as shown below. */

			 cilk_spawn mergesort(a, left, mid);
			 mergesort(a, mid+1, right);

			 /* Use of cilk_sync ensures that the threads spawned in this
			 function join at this point. Serial execution resumes after this point */

			 cilk_sync;
			 merge(a, left, mid, right);

		 }

	 }

transformations to generate vectorized code. As an example, the
following array notation can be used if element-wise multiplication
of arrays b and c is to be performed.

a[:] = b[:] * c[:];

To summarize, Intel Cilk Plus is a language extension with support
for task parallelism so as to make full use of multiple cores and data
parallelism that can use vectorization capabilities within each core.
Combined, these extensions can harness the power of modern
microprocessors.

Intel Cilk Plus is part of Intel® Parallel Composer. We encourage
you to try Intel Cilk Plus by downloading Intel® Parallel Composer
from the following link: http://software.intel.com/en-us/articles/
intel-software-evaluation-center/. The download also includes
documentation that provides detailed reference information about
Intel Cilk Plus. o

Listing 1: cilk_spawn and cilk_sync

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

18 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/intel-software-evaluation-center/
http://software.intel.com/en-us/articles/intel-software-evaluation-center/

for(int num=0; num < 9; num++)
{
	 __m128i xmm0 = _mm_and_si128(BinSmallNum, BinNum[num]);
	 for(int i=0; i < 9; i++)
	 {
	 __m128i BoxSum = _mm_and_si128(BinBox[i], xmm0);
	 __m128i RowSum = _mm_and_si128(BinRow[i], xmm0);
	 __m128i ColumnSum = _mm_and_si128(BinColumn[i], xmm0);
	 if (ExactlyOneBit(BoxSum))
	 {
		 int cell=BitToNum(BoxSum);
		 FoundNumber(cell, num);
		 return true;
		 }
	 }
}

Figure 2: Using SSE compiler intrinsics to improve performance

The Nature of the Challenge
There are over 6 x 1021 valid Sudoku boards in a 9x9 grid.
Using brute force to try all the combinations of numbers is not that
difficult a programming exercise, the real challenge is in getting a
program that will complete the calculations within the lifetime of
the programmer!

The challenge our engineers squared up to, was how to produce
a puzzle with 39 clues, a thirty-eighter having already been produced
by others.

Adding SSE Intrinsics
SSE intrinsics are compiler-generated, assembler-coded functions that
can be called from C\C++ code and provide low-level access to SIMD
functionality without the need to use inline assembler. Compared to
using inline assembler, intrinsics can improve code readability, assist
instruction scheduling, and help reduce debugging effort. Intrinsics
provide access to instructions that cannot be generated using the
standard constructs of the C and C++ languages.

The Intel® Compiler supports a wide range of architectural
extensions from the early MMX instructions to the latest generation
of SSE4.2 instructions.

The code in Figure 2 shows how 128-bit SSE2 registers are used in
the Sudoku code.

The first version of the Sudoku generator did not use SSE
instructions or intrinsics. Reworking the first version of the code to
use SSE2 registers took a significant amount of time. The adding of
SSE intrinsics gave us a speedup of several hundred.

Using SSE intrinsics does have its drawbacks. You can end up locking
your implementation to a particular generation of architecture. The
long names of the SSE functions can make your C++ code almost
unreadable, and there is a significant learning curve the programmer
has to climb. In the case of the Sudoku generator, the performance
improvement far outweighed the extra effort that was needed.

Step 3: Adding Parallelism
We used OpenMP* tasks - which are defined in the OpenMP 3.0*
standard. OpenMP 3.0 is supported by the Intel® C\C++ Compiler
beginning with version 11. Adding the parallelism took about two
weeks of work – which felt a lot of effort at the time, but in relation
to the length of the project the time was fairly short and well spent.
Figure 3 gives an example of using OpenMP tasks.

One of the most difficult aspects of adding the OpenMP code was
to grasp how variables were treated. Data in OpenMP can be shared or
private. The fine-tuning of our code to get the right scope level for our
variables took several iterations. Much of the time taken in adding the
parallelism was reworking the code so that there was less need
to share data between the different running tasks, and making
sure that there were no dependencies between the different
loops that were parallelized.

Using Intel® Cilk Rather than OpenMP
Today, Intel® Parallel Studio supports a number of different ways of
parallelizing a program. The diagram in Figure 4 shows Intel® Parallel
Building Blocks, which offers multiple support for parallel programming.

As stated earlier, the Sudoku thirty-niner was parallelized using
OpenMP, it being much easier to use than native threads.

By Stephen Blair-Chappell
Intel Compiler Labs

Lars Peters Endresen and
Håvard Graff, two talented
engineers from Oslo, share with
us how they created what may
be the world’s first Sudoku
puzzle that has 39 clues.

The World’s
First Sudoku*
‘Thirty-Niner’

Figure 1: Creating a new
17-clue Sudoku

Developing the Code
After writing the initial non-optimized code, we
worked on performance improvements in three steps:

>> Step 1: Changing the algorithm to shortcut the brute
force approach

>> Step 2: Optimizing the serial code, taking advantage of
SSE instructions.

>> Step 3: Adding parallelism

The code was developed over two years, much of the
work done in out-of-office hours, consuming 2,000-
3,000 programming hours.

xmm0 becomes a bitmask for all
occurrences of a particular number

i is used to traverse each row, column and box

Test to see if exactly one
number is used

Step 1: Changing the Algorithm
Rather than using a brute force method to create all the different
possible solutions, we decided to take an existing puzzle, remove one
or two clues, and then use a recursive solver to produce a new puzzle.

To find a new 17-clue puzzle, we start with an 18-clue puzzle,
remove two clues, and search for any valid solutions. So for example,
in the puzzle below in Figure 1, clues 3 and 9 are first removed from
column 1. The solver then populates each of the unsolved cells with a
list of valid alternatives.

The solver then recursively prunes down the alternatives to find a
valid puzzle, taking care there are no redundant clues. This method of
creating a new puzzle we call the “-2 + 1” algorithm.

 We use the same technique to find the ‘thirty-niner’. Taking an
existing ‘thirty-eighter, we remove one clue and then add two new
clues—we call this a “-1 + 2” algorithm.

Step 2: Optimizing the Serial Code
Modern CPUs have instructions that can work on more than one data
item at the same time, that is, Single Instruction Multiple Data (SIMD).
Replacing traditional instructions with SIMD instructions can lead to
code that runs much faster. Examples of such instructions include
MMX and the various Streaming SIMD Extension (SSE, SSE2, …) .

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

20 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 5. The three Intel Cilk Plus keywords

Figure 4. Intel Parallel
Building Blocks offers
multiple models
for parallel programming.

#include <cilk/cilk.h>
void work(int num}
{
	 // add code here
}

void func1()
{
		 cilk_spawn work(1);
		 work(2);
		 cilk_sync;
}

void func2()
{
	 cilk_for(int i=0; i<9; i++)
	 {
		 work(3);
	 }

}

cilk_spawn and cilk_sync
The lines between cilk_spawn and
cilk_sync are known as the continuation.
The cilk_spawn gives permission to the
runtime to run work(1) in parallel with
the continuation code. If there is a spare
worker available, the scheduler steals the
continuation code from the first worker
and assigns it to a second worker—at
the same time the first worker continues
executing work(1). After cilk_sync the
code reverts to serial execution

cilk_for
Replaces a standard C/C++ for loop.
The loops are shared between available
workers. No particular order of execution
is guaranteed. Once all the loops have
been executed the program continues.
If loops do unequal amounts of work, load
balancing will be taken care of by the
scheduler’s work-stealing algorithm.

#pragma omp parallel
{
	 #pragma omp single nowait
	 {
		 for(int i=0; i< NUM_NODES -1; i++)
		 {	
			 NODE Node1 = pPuzzle ->Nodes [i];
			 if (Node1.number > 0)
		 {
			 //create copy of the top level node;
			 memcpy (&gPuzzles[i];pPuzzle, sizeof (SUDOKU));
			 #pragma omp taskprivate (i)
			 GenDoWork (&gPuzzles[i],i;
		 }
	 }
}
}
	

Figure 3. Code using OpenMP tasks

#include <cilk/cilk.h>
.
.
.
cilk_for(int i = 0 ; i < NUM_NODES -1; i++)

 {
		 NODE Node1 = pPuzzle->Nodes[i];
		 if(Node1.number > 0)
		 {
			 // create a copy of the top level node;
			 memcpy(&gPuzzles[i],pPuzzle,sizeof(SUDOKU));
			 GenDoWork(&gPuzzles[i],i);
		 }
	 }

Figure 6. Adding cilk_for to the Sudoku code

One thread gets to execute the for loop

If the project was starting again today, then using Intel® Cilk
Plus would be an attractive choice. Cilk is one of the easiest ways
to parallelize an existing program. Adding Cilk to existing C code is
extremely easy.

Cilk uses three key words: cilk_spawn, cilk_sync, and cilk_for. Once
the header file cilk.h is included in a file, the key words are available for
use. See Figure 5.

In Cilk the programmer does not control the parallelism of a program
but rather expresses intent. By placing Cilk keywords in a program,
the developer is giving permission for the code to be run in parallel.
The decision whether or not to run code in parallel is made by the Cilk
scheduler at runtime. The Intel Cilk Plus runtime automatically takes
care of load balancing.

Figure 6 shows how the Sudoku code is made parallel using the Cilk
cilk_for keyword. The code is inserted in the same place as the original
OpenMP tasks (see Figure 3). The solution is embarrassingly simple!

Intel Cilk Plus Is the Easiest Way to Parallelize
an Existing Program

When making code parallel, the programmer has to be careful that
no data races are introduced. If there are any global variables then
the code should be reworked so that the scope of the variables is
restricted—by, for example, using local or automatic variables rather
than global variables. If it is impossible to remove all global variables,
then access to such variables should be protected so that only one
thread at a time can modify them.

In Cilk the easiest way to deal with global and shared variables is
to declare them to be a reducer. When a worker accesses a reducer
it is given its own private view that it can safely manipulate.
Views are then later merged in the serial part of the code by a
call to get_value(). The code in Figure 7 shows how the global
gNumCilkPuzzlesSolved is declared to be a reducer_opadd. The call to
get_value(),which is called from the serial part of the code, combines
all the values of the reducer, thus obtaining the correct value.

A pool of threads is created here

The single “for loop” thread creates a task
for each instance of GenDoWork ()

“Whether optimizing serial code
or creating new applications for
multicore, parallel programming has
evolved to improve proficiency with
flexible design models and tools that
make applications reliable and fast.”

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 7. Fixing data race problems by using Intel Cilk Plus reducers

Figure 8. With the
parallelism implemented
in the code, each
hardware thread ran
at 100 percent use.

Figure 9. The three 39 minimal solutions found using the minus-one-plus-two search

int gNumCilkPuzzlesSolved; // global variable
.
.
gNumCilkPuzzlesSolved++;	 // somewhere in parallel code
.
.
int Tmp = gNumCilkPuzzlesSolved; // somewhere in serial code

(a) The global variable gNumCilkPuzzlesSolved is unsafe to use in parallel code.

#include <cilk/reducer_oppad.h>
cilk::reducer_opadd<int> gNumCilkPuzzlesSolved;
.
.
gNumCilkPuzzlesSolved++;		 // in parallel code
.
.
int Tmp = gNumCilkPuzzlesSolved.get_value();// in serial code

(b) The global variable is declared to be a reducer, making it safe to access.

The Results
In our original OpenMP solution once the
parallel code was added to the project, it
was rewarding to see that on an SMT quad
core—which can support eight hardware
threads—all eight hardware threads were kept
busy. See Figure 8.

Later experimentations using Cilk showed
that the Cilk solution performed equally well
to the OpenMP one, and was much easier to
implement.
 Figure 9 shows the three new “thirty-niners”
that were found using our Sudoku generator. o

Intel® Cilk Plus is made up
of these main features:

>> A set of keywords, for expression of task
parallelism

>> Reducers, which eliminate contention for
shared variables among tasks by automati-
cally creating views of them for each task
and reducing them back to a shared value
after task completion

>> Array notations, which provide data
parallelism for sections of C\C++ notation
to manipulate arrays

>> Elemental functions, which enable data
parallelism of whole functions or opera-
tions which can then be applied to whole
or parts of arrays or scalars

>> The simd pragma, which lets you express
vector parallelism for utilizing hardware
SIMD parallelism while writing standard
compliant C/C++ code with an Intel®
Compiler.

** Lars Peters Endresen and Håvard Graff wrote the original program using OpenMP. The design
was later rewritten by Stephen Blair-Chappell using Intel® Cilk Plus.

The complete case study, along with hands-on examples, will be available in the WROX
book Parallel Programming with Intel Parallel Studio. Stephen Blair-Chappell and Andrew Stokes,
Wiley Publishing Inc. ISBN 9780470891650 (March 2011)

Intel® Cilk Plus

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

24 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Which comes first:
parallel languages or parallel
programming patterns?
Clay Breshears,
Courseware Architect/Instructor,
Intel CORPORATION

On the shuttle to the recent UPCRC (Universal Parallel
Computation Research Center) Annual Summit meeting on
the Microsoft* campus in Redmond, WA, I was listening in
on a discussion about parallel programming patterns. Be-
ing a parallel programmer, I was interested in what people
(and these were some of the experts in the field) had to
say about parallel programming patterns, how they are
evolving, and how they will impact future parallel coders.
The discussion turned to whether patterns would affect
programming languages directly or remain something that
would be constructed from statements of the language. I
think I’m in the former camp. Here’s why.

For those of us that were programming when Elvis was
still alive, think back to writing with assembly language.
For the most part, there were instructions for Load, Store,
Add, Compare, Jump, plus some variations on these and
other miscellaneous instructions. To implement a counting/
indexing loop you would use something like the following:

Initialize counter
LOOP: test end condition,
		 goto EXIT if done
Loop Body
increment counter
goto LOOP
EXIT: next statement

This is a programming pattern. (Surprised?) With the
proper conditional testing and jumping (goto) instructions
within the programming language, this pattern can be
implemented in any imperative language.

Since this pattern proved to be so useful and pervasive in
the computations being written, programming language
designers added syntax to “automate” the steps above.
For example, the for-loop in C.

for (i = 0; i < N; ++i) {
Loop Body
}

Once we had threads and the supporting libraries to
create and manage threads, parallel coding in shared
memory was feasible, but at a pretty crude level since the
programmer had to be sure the code handled everything
explicitly. For example, dividing the loop iterations among
threads can be done with each thread executing code
that looks something like this:

start = (N/num_threads) * (myid)end =
(N/num_threads) * (myid + 1)
if (myid == LAST) end = N
for (i = start; i < end; ++i) {
Loop Body
}

Parallel programming patterns will be abstractions that
can be “crudely” implemented in current languages and
parallel libraries, like the pseudocode above. New lan-
guages (or language extensions) will make programming
parallel patterns easier and less error prone. From the
example above, OpenMP* has the syntax to do this, but it
only takes a single line added to the serial code:

#pragma omp for
for (i = 0; i < N; ++i) {
Loop Body
}

From the evidence above, I think future parallel programming
languages or language extensions supporting parallelism
will be influenced by the parallel programming patterns we
define and use today. And nothing will remain static. Ralph
Johnson (Design Patterns), during his presentation, remarked
that some of the original patterns saw early use, but this
use has slacked off. Two reasons he noted for this was that
some of the patterns couldn’t easily be implemented in Java*
and modern OO languages had better ways to accomplish
the same tasks—most likely these new languages found
inspiration from the patterns and their usage.

For an answer to the question posed in the title, it boils
down (no pun intended) to the old chicken-and-egg
paradox. There were algorithms (patterns) to do com-
putations before there were computers; prior to that,
those algorithms were modifications of previous algo-
rithms influenced by the tools available. Looking forward,
though, we’re still in the relative stages of infancy for
programming, let alone parallel programming. Clearly, the
next generation of parallel programming languages or
libraries or extensions bolted onto serial languages will
be influenced by the patterns we use now for specifying

parallel computations.

Visit Go-Parallel.com
Browse other blogs exploring a range of related

subjects at Go Parallel: Translating Multicore
Power into Application Performance.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Struggling to
see clearly?
Introducing Intel® Parallel Advisor 2011

	 Pinpoint where your application can
	 benefit most from threading—before
major effort has been committed.

Intel Parallel Advisor is the only step-by-step
guide available for Microsoft Visual Studio*
C/C++ developers who want to add threading to
existing serial or parallel applications.

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Rock your code.
Rock your world.
Intel Parallel Advisor 2011 is part of Intel® Parallel Studio 2011, the ultimate all-in-one performance toolkit
for serial and parallel C/C++ applications.

Learn more about Intel Parallel Advisor at http://software.intel.com/en-us/intel-parallel-advisor/.

Follow the steps for task-oriented parallelism
and target coarse-grain parallelism.

As you work
through the

methodology,
Intel Parallel

Advisor analyzes
the executing

serial program.

http://www.go-parallel.com
http://software.intel.com/en-us/intel-parallel-advisor/

28 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

 The Ultimate All-in-One
Performance Toolkit
Introducing Intel® Parallel Studio 2011
Intel® Parallel Studio 2011 simplifies and speeds the analysis, compiling, debugging, error-checking,
and tuning of your serial and parallel apps. With Intel Parallel Studio, you get everything you need
to optimize legacy serial code, exploit multicore, and scale for manycore.

Intel® Parallel Studio Components
Intel Parallel Studio supports every stage of the development lifecycle.

Innovative threading assistant

Intel® Parallel Advisor 2011: Follow the steps for task-oriented
parallelism and target coarse-grain parallelism.

Memory and threading
error checker

Intel® Parallel Inspector 2011: Quickly find memory errors in
your single and multithreaded applications.

Optimizing compiler and
threaded libraries

Intel® Parallel Composer 2011: A simple recompile with
Intel Parallel Composer can yield better performance.

Threading and
performance profiler

Intel® Parallel Amplifier 2011: Find the functions in your
application that consume the most time.

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and may be claimed as the property of others.

Rock your code.
Rock your world.
If you own the original Intel Parallel Studio, upgrade for free. Learn more and check out what’s
new in Intel Parallel Studio 2011 at http://software.intel.com/en-us/intel-parallel-studio-home/.

http://software.intel.com/en-us/intel-parallel-studio-home

