
THE PARALLEL
UNIVERSEIssue 2

March 2010

Advisor Origins
by Paul Petersen

by James Reinders

Letter from the

Editor

Intel® VTune™ Performance
Analyzer and Finding Threading
and Parallelism Issues

Where Are
My Threads?

by Levent Akyil

DEVELOPER
ROCK STAR:

Levent
Akyil

© 2010, Intel Corporation. All rights reserved. Intel, the Intel logo,
Intel Core, Pentium, and VTune are trademarks of Intel Corporation
in the U.S. and other countries. *Other names and brands may be
claimed as the property of others.

Contents
Letter from the Editor
Think Parallel: Good Programming
Starts with the Developer, by JAmES REInDERS 4
James Reinders, lead evangelist and director of Intel® software Development Products,
addresses recent innovations in apps and tools, highlights key 2010 milestones, and
explores what’s next in the new year and beyond.

Where Are My Threads? Intel® VTune™ Performance Analyzer
and Finding Threading and Parallelism Issues, by LEVEnT AKyIL 6
Do you ever wonder how your parallel workload is distributed or scheduled across
the available cores/processors? explore how Intel® Vtune™ Performance Analyzer
helps make such analysis easy.

Advisor Origins, by PAuL PETERSEn 10
As you change your application to make it ready to introduce parallelism, your test suite can
be your biggest asset. Intel® Parallel Advisor is designed to be your assistant as you analyze
your existing sequential implementations.

Understanding the Features of
Intel® Parallel Inspector by Example, by bRADLEy J. WERTh 14
Intel® Parallel Inspector eases the correctness burden on programmers. explore how it helps
maintain memory and thread integrity.

Thread Your C# Code with Intel® Integrated
Performance Primitives, by nAVEEn GV 18
the most important consideration is how to manage the calls between the managed .net
application and the unmanaged Intel® IPP Library.

Resources & Sites of Interest 26

DEVELOPER ROCK STAR:

Tony Mongkolsmai

APP EXPERTISE:

Threading Performance Tools

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

PumP OuT
PERFORmAnCE
GAInS.

Tony’s tip to boost performance:
A key to using Intel® Parallel Studio is understanding what your goals
are. Our tools allow you to focus on specific areas of your program run,
so if you use the pause button you can get the results you want more
quickly and efficiently.

ROCk YOUR COdE.
become a developer rock star with Intel® Parallel Studio. Learn how to add
parallelism to microsoft Visual Studio* by visiting www.intel.com/software/
products/eval for a free evaluation.

THE PARALLEL UNIVERSE

http://www.intel.com/software/products/eval
http://www.intel.com/software/products/eval

Parallel:
Think

Good Programming Starts
with the Developer

LETTER FROM THE EDITOR

Both the Go-Parallel site and the multicore
portal on the Intel® Software Developer
network offer a rich set of forums and
training materials used by many developers
to hone their knowledge and skills. And Intel®
software tools, long recognized for offering
high-performance solutions, deliver strong
support for parallel programming.

Meanwhile, Intel investments continue to
yield results.

2010 marks the sixth year of both Intel
shipping multicore processors and of Intel
tBB. Given these milestones, in addition
to Intel Parallel studio entering its second
year and the teams from Cilk Arts* and
RapidMind* now at work in Intel, one might
ask “What’s next?”

Intel tBB has received awards and been
cited as the most popular abstraction for
parallelism in use. We are obviously pleased
with the strong interest and many prod-
ucts that are produced using Intel tBB. In
2010, Intel tBB will support Microsoft’s new
Concurrency Runtime, a runtime designed
for use by parallel models like Intel tBB to
ensure a new level of compatibility. this
move represents an important step forward
in coordinating parallelism running on the
Windows* operating system.

Intel Parallel studio recently offered its
first service pack, which added Windows 7*
support and command line functionality for
Intel® Parallel Inspector and Intel® Parallel
Amplifier. It will also grow to include Intel®
Parallel Advisor to help in the design and
design evaluation steps of adding parallelism.
We expect that the key insights into how to
accelerate the error-prone and tedious step
of deciding how to add parallelism will be put
to good use by program architects.

support for Microsoft Visual studio* (Vs)
includes full support under Vs 2005* and Vs
2008*, and will expand to Vs 2010* shortly
after it is available from Microsoft. We will
continue to offer developers a choice when it
comes to deciding which version of Vs they
can use for parallel programming. We will also
see tangible results from our acquisitions of
a couple of great teams last year, specifically
on Intel® compilers thanks to Cilk technology
and on our Ct technology, available for field
tests in beta form.

of course, parallelism for high performance
computing continues as well. Intel will offer the
first and only OpenMP to support Microsoft®
Concurrency Runtime, a new MPI library with
split-rail support, MPI tools, a compiler, and
an updated and expanded Intel® Vtune™
Performance Analyzer. Parallel programming
just keeps getting better and better.

As I always like to point out, despite
a great record with helping adapt legacy
applications, educating developers, and
providing really great help with tools, it is
still up to us, as software developers, to
know what to do with these wonderful
tools. Just as before parallel programming,
a good design comes from the human
developer —not the tools. Parallel programming
is no different. therefore, we humans need
to work on “think Parallel.”

JAMES REINdERS
Portland, oregon
March 2010

James Reinders is Chief Software Evangelist and
Director of Software Development Products at Intel
Corporation. his articles and books on parallelism
include Intel Threading Building Blocks: Outfitting
C++ for Multicore Processor Parallelism.

It is no surprise that Intel® Parallel
studio is consistently cited in articles and
analyst reports about software that helps
with parallel programming. of course,
Intel has a long history with high perfor-
mance computing (HPC) through efforts
with openMP* and MPI*. Recently, Intel
led non-HPC efforts on projects like Intel®
threading Building Blocks (Intel® tBB) and
Intel® Parallel studio.

offering real assistance for multicore
programming has meant addressing modi-
fication of existing applications, addressing
ease-of-use issues, and supplying tools to aid
in the entire process of designing a program.
to these ends, Intel started with Intel tBB
to address the many challenges of using
C++—designed in an age of single-processor
systems—in a multiprocessor and multicore
processor world.

encouraged by the success of Intel tBB,
Intel addressed the whole design cycle with
Intel Parallel studio. By not just focusing on
the alluring topic of language extensions for
parallelism, Intel has made significant progress
on debugging and tuning issues that have
long perplexed parallel programming. Beyond
helping debug the most common parallel
programming issues, deadlocks, and data
races, Intel found key advances to address
memory leak errors, which have proven harder
to debug in a parallel program.

serious advances here have proven
immensely helpful for development teams
striving to have predictable schedules and
results. It is not a stretch to say that without
these new tools from Intel, a foray into parallel
programming is much less likely to succeed.

Legacy, education, and tools were the
three key needs identified in a recent joint
Intel-Microsoft* customer roundtable on
parallelism that I was fortunate enough to
attend. Intel’s alignment with our activities
and these needs are the strongest that I
see in the industry.

James Reinders, lead evangelist and director
of Intel® Software Development Products,
addresses recent innovations in apps and tools,
highlights key 2010 milestones, and explores
what’s next in the new year and beyond.

Encouraged by the success of Intel
Tbb, Intel addressed the whole design
cycle with Intel® Parallel Studio.

Efforts include:
 > Helping with legacy applications by making

it possible to add parallelism into existing
programs without unreasonable changes

 > Helping address multicore opportunities
through software developer education
when truly needed, while developing,
where possible, better approaches to
avoid the need for additional education

THE PARALLEL UNIVERSE

4 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://www.ddj.com/go-parallel/
http://intel.com/software/multicore
http://intel.com/software/multicore
http://intel.com/software/products
http://intel.com/software/products

Figure 2

Figure 1

Figure 3

Figure 4

Thread view

The Show/hide CPu Information button

SOT view

One common question developers ask
is how their parallel workload is distributed or
scheduled across the available cores/processors.

Intel Vtune Performance Analyzer helps
make such analysis easy. the event-based
sampling (EBS) technology identifies system-
wide software performance problems by
sampling processor events, such as clock
ticks and cache misses (Figure 1). From the
eBs data, you can determine which process,
thread, module, function, and source line in
a given application generated a particular
event. By leveraging this technology you can
see how many events were sampled on each
core as well as which thread generated them.

 the show/Hide CPU Information button
(Figure 1) in the sampling toolbar displays
collected samples and events per processor
in the Process, thread, Module, and Hotspot
sampling views (Figure 2).

 We now know that this particular program
(sort_mt1.exe) was executed on two cores
and we can see the number of samples
collected on each core. But what we don’t
know yet is how many threads this applica-
tion created and how the threads executed
on these cores. selecting the thread view
(Figure 2) when the CPU button is also
selected will show us the desired informa-
tion. (Figure 3) tells us that sort_mt1.exe
created two threads (thread18 and thread13)
and that each thread was executed on both
cores (os scheduled these threads to run
on each core) during the analysis. If you look
at the clock ticks (i.e., CPU_CLK_UnHALteD.
CoRe) for thread18, it becomes clear that this
particular thread was executed on each core
while running most of the time on Processor 0.

If you are still curious and would like to
see how these samples are distributed over
time per thread and per core, the sampling
over time (sot) view can help. By selecting
sot view (Figure 3) in thread view (or in
any other view) the samples collected will
be displayed per thread and/or core (Figure
4). the view seen in (Figure 4) is useful for
many reasons.

By Levent Akyil

Do you ever wonder how
your parallel workload is
distributed or scheduled across
the available cores/processors?
Explore how Intel® VTune™
Performance Analyzer helps
make such analysis easy.

The SOT view can help you:
 > see how the operating system (os)

scheduled the threads to run.

 > Identify scheduling problems
(Figure 5).

 > Identify load balancing issues among
threads (Figure 6).

 > Correlate microarchitectural problems.

The event-based sampling (EBS) technology identifies
system-wide software performance problems by sampling
processor events, such as clock ticks and cache misses.

Intel® VTune™ Performance Analyzer
and Finding Threading and
Parallelism Issues

Where
Are My
Threads?

THE PARALLEL UNIVERSE

6 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 5: Manually setting thread affinity can create problems. Each thread is scheduled/pinned to
the Core/Processor 0.

Figure 6: The SOT shows a load imbalance issue.

Figure 7: Identify the stall cycles per thread per cpu.

Figure 8: The SOT view shows how the OS scheduled the particular application.

Figure 9: Note the SOT view after setting the thread affinity.

Figure 10: Results showing how setting thread affinity affects the application runtime.

Fun with Locks and Waits—
Performance Tuning
BY dAVId MACkAY, PH.d.

At times threaded software requires some critical sections,

mutexes or locks. Do developers always know which of the

objects in their code have the most impact? If I want to

examine my software to minimize the impact, or restructure

data to eliminate some of these synchronization objects and

improve performance, how do I know where I should make

changes to get the biggest performance improvement?

Intel® Parallel Amplifier can help me determine this.

Intel Parallel Amplifier provides three basic analysis types:

hotspots (with call stack data), concurrency, and locks

and waits. the locks and waits analysis highlights which

synchronization objects block threads the longest. It

is common for software to have too many or too few

synchronization points. Insufficient synchronization points

lead to race conditions and indeterminant results (if you

have this problem you need Intel® Parallel Inspector, not

Intel Parallel Amplifier. See this MSDN Web seminar for more

on Intel Parallel Inspector: Got memory Leaks?). If you have

too many synchronization objects, you want to know which

ones, if removed, would improve performance the most.

Thread Affinity
At this point, it is important to introduce the concept of thread affinity.
Thread affinity restricts execution of certain threads to a subset of the
physical processing units in a multiprocessor computer. Depending on
the topology of the machine, thread affinity can have a dramatic effect
on the execution speed of an application.

However, you must have a good reason and be cautious before
interfering with the os scheduler’s ability to schedule threads
effectively across processors/cores. Most recent oss and their
schedulers have improved significantly; generally speaking, modern
schedulers will perform efficiently.

the Intel® compiler openMP* runtime library has the ability to
bind OpenMP threads to physical processing units. Thread affinity is
supported on the Windows* os systems and versions of the Linux*
OS systems that have kernel support for thread affinity. There are
three types of interfaces you can use to specify this binding. these are
collectively referred to as the Intel® OpenMP* Thread Affinity Interface.
For more information, click here. The affinity types supported by the
Intel OpenMP runtime library are: none (default) / compact / disabled /
explicit / scatter.

After Setting the Affinity
For this exercise and for this particular system, setting the affinity as
“scatter” or “compact” will not make any difference. Please see the
information provided in the link above for more details.

Figure 10 shows that both thread17 and thread64 remained on
the same cores on which they were initially scheduled. Thread17
initially got scheduled to run on Core 0 and Core 1, but it stayed on
Core 0 for the remainder of the run. o

selecting the thread view button (Figure 2)
when the CPU button is also selected
provides insight into the execution and
scheduling of these threads (Figure 7).
A closer look at thread9 and thread59 and
how they are executed on the cores, as
shown in (Figure 7), reveals how the os,
Windows XP sp3* in this particular case, is
scheduling the threads on both cores. It also
illustrates that each thread is running almost
the same amount of time on each core.

Note: the Rs_UoPs_DIsPAtCHeD.
CYCLes_none event shown in (Figure 7)
counts the cycles where no μops were
dispatched (stalls cycles). the overall formula
is CPU_CLK_UnHALteD.CoRe (clockticks)
~= Rs_UoPs_DIsPAtCHeD.CYCLes_AnY +
Rs_UoPs_DIsPAtCHeD.CYCLes_none
(stall cycles).

You can zoom in to any region on the
timeline by identifying the region of interest
with the mouse and selecting “Zoom In” from
the context menu (right-click menu). Figure 8,
which shows the zoomed region (0-1.8 secs),
reveals how threads are actually tossed
back and forth between the cores. the os
scheduler simply doesn’t keep the threads
on the same core (i.e., thread9 on core 0
and thread59 on core 1 or vice versa). this
particular scheduling pattern might not be
an issue for such a system since the cores
share the same second-level cache. For
multi-socket systems, however, such a
scheduling pattern will be a problem.

you can zoom in to any
region on the timeline by
identifying the region of
interest with the mouse
and selecting “Zoom In”
from the context menu
(right-click menu).

BLOG
highlights

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

8 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://msevents.microsoft.com/CUI/WebCastEventDetails.aspx?culture=en-US&EventID=1032433592&%3bEventCategory=5&%3bEventCategory=5&%3bculture=en-US&%3bculture=en-US&%3bCountryCode=US%22%3Ehttp%3a%2f%2fmsevents.microsoft.com%2fCUI%2fWebCastEventDetails.aspx%3fEventID%3d1032433592&%3bCountryCode=US
http://www.intel.com/software/products/compilers/docs/fmac/doc_files/source/extfile/optaps_for/common/optaps_openmp_thread_affinity.htm

ADVISOR ORIGINSADVISOR ORIGINS

A blank sheet of paper. It’s frightening, and also empowering.
It’s a license for unlimited creative freedom. As software developers, how
often do you get this opportunity? If your work is like mine, it turns out to
be less often than you might think.

Most software development is adapting an existing solution to serve
a new purpose. It is optimizing an existing algorithm. It is enabling new
execution models for solutions customers already find valuable.

Maybe you are one of the developers who can afford to recreate your
current source code base as you seek to exploit parallel execution. You
likely will have the biggest payoff since you have unlimited freedom to
design your algorithms and implementation to maximize the parallel
execution benefit.

If you need to reuse large portions of an existing implementation, you
still have a significant opportunity. In some ways, your job is much easier.
Maybe you have a “diamond in the rough.” You already know the “correct”
definition you are trying to implement. The correct behavior is defined by
the external behavior of your existing serial algorithms.

Your test suites validate your application against this correct behavior.
As you change your application to make it ready to introduce parallelism,
your test suite can be your biggest asset. After every transformation step
you perform, the validity of the transformation can be checked by verifying
your test suite application passes.

If you introduce changes to your algorithms that change the behavior
of your application, it is important to determine early if these changes are
desirable. In such a case, you need to update your test suite to allow this
new behavior. If the behavior is in error, you need to revert these changes
and go back to the prior version.

Intel® Parallel Advisor (part of Intel® Parallel studio) is designed to be
your assistant as you analyze your existing sequential implementations to
discover how it can be refactored or redesigned to exploit parallel execution
of your application. this article explains some of the principles upon which
the design of Intel Parallel Advisor is based.

By Paul Petersen

As you change your application
to make it ready to introduce
parallelism, your test suite can
be your biggest asset. Intel®
Parallel Advisor is designed to
be your assistant as you analyze
your existing sequential
implementations.

THE PARALLEL UNIVERSE

11For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

void QuickSort(Value A[], int L, int H) {
 if (H-L < TooSmallLimit) {
 SerialSort(A, L, H);
 return;
 }
 Value Pivot = A[L+(H-L)/2];
 int L1 = L; int H1 = H;
 while (L1 < H1) {
 if (A[L1] < Pivot)
 ++L1;
 else if (A[H1] >= Pivot)
 --H1;
 else
 Swap(A[L1], A[H1]);
 }
 parallel {
 task { QuickSort(A, L, L1-1); }
 task { QuickSort(A, L1, H); }
 }
}

Figure 5

for (int i = 0; i < N; ++i)
 A[i] = B[i] + C[i]

Figure 3

parallel {
 for (int i = 0; i < N; ++i)
 task { A[i] = B[i] + C[i] }
}

Figure 4

Figure 1

T1 = F1(A + B)
T2 = F2(C * D)

Figure 2

parallel {
 task { T1 = F1(A + B) }
 task { T2 = F2(C * D) }
}

Refactoring to Enable Relaxed Sequential Execution
If your application already embodies the “correct” definition, you want to preserve it. This means
that you can use refactoring techniques to uncover the latent parallelism in your application. this
parallelism is latent because using a serial language to express your algorithm over-constrains
the dependences that are necessary for correct execution. Refactoring is the process of
changing your application’s internal structure without modifying its external functional behavior.
this allows you to express your intentions more clearly and eliminate the implicit serial depen-
dences that may be present in the sequential implementation of your algorithms.

In Figure 1, the serial semantics are that first you must add A+B, apply the function F1, and
then store this result into t1. only then do you multiply C*D, apply the function F2, and store
the result into t2. Assuming F1 and F2 are pure functions, mathematically the semantics are
equivalent if you calculate T2 first, and then calculate T1.

the act of writing down these two statements creates a constraint that did not exist before
the two statements were written down. optimizing compilers (and out-of-order execution
hardware) try to understand the real and false dependences to enable faster execution. By
declaring task boundaries (i.e., the parallel actions shown as tasks in Figure 2), you can use the
same technique statically in the source code, indicating when implied control or data dependences
do not need to be enforced to ensure correct execution.

Figure 3 shows a similar situation. this loop is shorthand for the set of assignment statements
where the variable i is in the range of 0:N-1. The result generated by this loop produces each
element of A containing the sum of the corresponding elements of B and C. In the serial
program, this loop is over-constrained by specifying that the index variable i is calculated via the
induction i=i+1. Declaring the task boundaries as shown in Figure 4 defines all iterations of the
loop as logically separate tasks (capturing the value of i when each task is created).

Introducing parallelism via refactoring performs the primary task of identifying the places
where the serial semantics are over-constraining the problem you need to solve. Designing your
parallel application via refactoring creates the key property that the original serial execution
is just one trivial execution of the parallel program. to see that this is true, consider a parallel
program. What happens when you execute this program on a single thread? If you have only
relaxed or removed artificial serial dependences, then adding them back in by executing the
parallel program on a single thread preserves the same behavior.

When you don’t care about the order of execution, the program can execute in parallel. When
you do care about the order of execution (e.g., the next statement has dependences on the
prior computation), then you retain a serial execution.

multi-Level Parallel
Task Execution
Refactoring to identify opportunities for
relaxed sequential execution is typically
implemented via fork-join parallelism. You fork
when you want to relax the constraints of
serial execution, and you join (using a barrier)
when you want to enforce the constraints
of serial execution. the barrier at the join
point allows any dependence from before the
barrier to after the barrier to be satisfied.

In simple fork-join parallelism the application
is either executing serially or it is executing
in parallel. From Amdahl’s law you know that
potential speedup is limited by the percentage
of time the program is executing serially.
therefore, any time you transition from parallel
to serial you are losing performance.

to overcome this problem, you can think
hierarchically. The trick is to find a way to
replicate the serializing algorithms at the
inner level, and create multiple tasks at an
outer level that each works independently.
the Quicksort algorithm is a good example
(Figure 5).

the algorithm has a serial phase (i.e.,
sorting small arrays, choosing the pivot, and
partitioning the array) and a parallel phase (i.e.,
sorting the two halves of the now partitioned
array). the hierarchy you can exploit is the
recursive call to the Quicksort function.

thinking hierarchically (sometimes recursively) expands your
ability to specify independent work that can be exploited for parallel
execution. If you only create parallelism from the two top-most
independent Quicksort calls, then your speedup will be implicitly
limited to, at most, a factor of 2x. Recursively subdividing these
tasks into smaller tasks enables additional parallelism.

Another reason why hierarchical parallelism design is helpful is in
increasing the number of tasks that can be launched. Problems best
suited for parallelism have large collections of objects, each of which
needs to be transformed independently by the application of a function.
If you can transform your algorithm into this form you will achieve the
best results.

Often, the objects are not this independent; you may only have a
small collection of “top-level” objects that are independent. If you apply
parallelism only to this “top-level” collection of objects you may get a
large enough grain size to allow effective parallel execution, but your
scalability will be limited to the number of “top-level” objects you have.

If your algorithm runs long enough to warrant the use of parallelism,
you may find another level of nested algorithms that also does an
independent computation over a different small set of independent
data items. Applying parallelism to both levels increases the scalability
of your parallel algorithm.

Choosing Tasks
You can imagine that in the serial execution of the program tasks could
exist at multiple levels. At one extreme, you could assume that the
entire application is one task. At the other extreme, you could assume
that every statement or expression is a task. Both extremes are usually
incorrect when trying to pick where to add tasks to your application.

the potential concurrency of your application is bounded by the
number of tasks you create. If you only create two tasks (your main
program is also logically a task), your ideal parallel speed-up is only 2x
faster than serial (ignoring serial cache or memory bandwidth effects),
regardless of the number of processors you have available. Various forms
of overhead will also reduce the potential benefit of creating parallel
tasks, so you need to identify many more tasks than the available
processors in order to achieve the best performance.

Having many tasks available also helps in another way. If you have
two tasks, and one task is very short (e.g., one second), and the other
task is very long (e.g., 59 seconds), then running these two tasks
serially will take one minute. How fast will they run when executed
in parallel? You might hope that you would achieve a 2x speedup and
finish both tasks in 30 seconds.

Unfortunately, the answer is that you will finish both tasks in 59
seconds. the minimum time to execute both tasks is the maximum
time it would take to execute either task. since the duration of the
second task is 59 seconds, you must wait at least this long. If possible,
it would be better to break up the second task much finer into a
larger collection of tasks. For example, if instead of having one task
that takes 59 seconds, you could create 59 tasks that each take one
second, you could potentially achieve a 2x speed-up and finish all 60
tasks in 30 seconds using two processors.

You can see that a larger number of smaller tasks are necessary
to have enough potential concurrency to achieve the performance
improvement you desire. two effects serve to balance this and prohibit
tasks that are too small.

First, scheduling a task onto a thread is inexpensive, but does have a
cost. scheduling 10 tasks, each with a single action, onto a thread will
be slightly more expensive than combining all 10 of those actions into
a single task and only scheduling that one task onto a thread. Most
parallel frameworks have the capability to combine tasks to create
larger chunks of work to be scheduled onto a thread for execution.
this is a simple mechanical process. However, the opposite—splitting a
monolithic large task into many smaller tasks—is very difficult for the
parallel framework, but may be fairly easy for you to specify.

second, a good task encapsulates a consistent computation on an
object or set of objects. If you examine all of the variables accessed by
a task you will find that they fall into three cases.

These cases are:

1. the variable is already private to a task or read-only by all tasks.

2. the variable can be made private to a task.

3. the variables communicate values between tasks.

In the second half of this article, we examine these cases by
showing how the way you use variables in your application affects
the choices you will make as you understand how to transform your
application to exploit available latent parallelism. o

THE PARALLEL UNIVERSE

12 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Figure 1: Intel Parallel Inspector appears as a toolbar in the microsoft Visual Studio 2008* IDE.

Figure 2: Intel Parallel Inspector allows configuration options for both memory
and threading analysis.

Intel® Parallel Inspector is a combination of tools that performs two important
functions: verifying memory integrity and verifying thread correctness. Memory integrity has
been a key challenge for software development throughout the history of computing. When some
high-profile program gets hacked through a buffer overrun, that is a breach of memory integrity.
even without malicious intent, it is all too easy for a programmer to make a mistake using the
complex memory syntax of a language like C. Likewise, multithreaded semantics provide plenty of
leeway for programming mistakes. Intel Parallel Inspector aims to ease the correctness burden
on programmers by providing some assurance that memory and thread integrity are maintained.

Accompanying this article is a sample C++ project that contains examples of all the memory
and threading problems that Intel Parallel Inspector can detect, with clear labels of each
problem. This article describes how Intel Parallel Inspector can be configured to catch those
problems, which will help you find and fix similar problems in your own projects.

The data for graphs in this article were measured on a Windows 7* PC with an Intel® Core™ i7
extreme edition processor using the referenced example project. the time dilation or slowdown
caused by Intel Parallel Inspector inspection analysis will vary based on the platform, system
configuration, and your project of analysis.

Getting Started with Intel Parallel Inspector
Intel Parallel Inspector is installed into the Microsoft Visual studio 2008* IDe and appears as a
toolbar. Figure 1 shows how Intel Parallel Inspector appears after a typical install.

the typical use of Intel Parallel Inspector is to build an application with debugging information
included, and then run Intel Parallel Inspector memory analysis or threading analysis by choosing
the type of analysis from the combo box and clicking the Inspect button.

Intel Parallel Inspector is a dynamic analysis
tool, which means that it doesn’t look at the
source code but at the running program itself.
This is both good and bad; good because
many problems cannot be caught with just
static analysis, but bad because this dynamic
analysis can significantly slow down the
execution of the program. Understanding
this tradeoff, Intel Parallel Inspector provides
“levels” of both memory and threading
analysis. Levels range from 1 to 4 in order
of increasing accuracy and decreasing perfor-
mance. Figure 2 shows the interface for
specifying the level of memory analysis.

When the user clicks the Run Analysis
button from the configuration screen, Intel
Parallel Inspector will begin analysis and run
the program to completion, or until the stop
button is pressed on the toolbar. some problems
will not be detected properly if the stop button
is pressed. When analysis is complete, Intel
Parallel Inspector displays the analysis results
in a tab in the Microsoft Visual studio IDe.
Figure 3 shows the results of running Level 3
memory analysis on the sample project.

Double-clicking on one of the errors will
display the source of the problem as well as
additional detail to help diagnose the problem.

Features of Intel® Parallel Inspector
by Example

Understanding the

By Bradley J. Werth

Intel® Parallel Inspector
eases the correctness
burden on programmers.
Explore how it helps
maintain memory and
thread integrity.

THE PARALLEL UNIVERSE

14 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

8.00

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

0 1 42 3

T
im

e
in

 S
ec

on
ds

A
cc

ur
ac

y

Level

Memory Analysis Time and Accuracy by Level

88% accuracy

Time
% Found

0.11 seconds

2.82 seconds
(25x normal running time)

Figure 4: memory analysis accuracy improves with analysis level —to a point.

3.00

2.50

2.00

1.50

1.00

0.50

0.00

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

0 1 42 3

T
im

e
in

 S
ec

on
ds

A
cc

ur
ac

y

Level

Threading Analysis Time and Accuracy by Level

80% accuracy

2.03 seconds
(18x normal running time)

Time
% Found

0.11 seconds

Figure 5: Threading analysis accuracy improves with analysis level—to a point.Figure 3: Analysis results appear in a tab in the IDE.

memory Analysis: Features, Accuracy, and Performance
The sample project contains 11 memory errors findable by Intel Parallel Inspector
at the highest analysis level. three of these errors are fundamentally unsafe in that
they corrupt the heap or write to arbitrary memory. For this reason, those errors are
only included as an optional preprocessor definition that is disabled by default. At
level 1, Intel Parallel Inspector detects all of the memory leaks in the code, although
deep memory leaks may not get the full call stack recorded. At level 2, read/write
accesses to invalid memory are detected. At levels 3 and 4, the call stack depth for
issues is progressively increased.

Figure 4 shows the tradeoff between
accuracy and runtime for memory analysis of
the sample program, when run on a Windows
7 PC with an Intel Core i7 Extreme Edition
processor. Analysis levels 1 through 4 are
shown alongside the percentage of problems
found at each level. Analysis level 0 represents
the case where Intel Parallel Inspector is
not run on the code at all (i.e., the raw
performance of the code).

the data indicates that level 3 memory
analysis has an excellent accuracy rate for an
acceptable increase in runtime. For memory
analysis, 88 percent of the problems in this
project are found with the runtime expanding
to 25x of normal. Level 4 analysis provides
additional information (e.g., deeper call stacks
and thread stack analysis), but does not find
additional memory problems in this project.
Your project may have a more complex
memory access pattern that necessitates
level 4 memory analysis, but for most
projects level 3 is sufficient and is certainly
the right level for regular testing.

Threading Analysis: Features,
Accuracy, and Performance
The sample project contains five threading
errors findable by Intel Parallel Inspector at
the highest analysis level. Unlike the memory
analysis, all of the threading errors are safe in
the sense that they do not corrupt memory.
At level 1, Intel Parallel Inspector only detects
potential deadlocks. At level 2, data races are
also detected. Levels 3 and 4 increase the call
stack depth of the reported data races.

The sample project contains the
following threading problems:

 > 3 heap data races

 > 1 stack data race

 > 1 deadlockThe following “safe” memory
problems are present in the
sample project:

 > 4 memory leaks at different call stack depths

 > 2 invalid memory reads

 > 1 uninitialized memory access

 > 1 mismatched allocation/deallocation

Figure 5 shows the tradeoff between
accuracy and runtime for threading analysis
of the sample program, when run on a
Windows 7 PC with an Intel Core i7 Extreme
edition processor. Analysis levels 1 through
4 are shown alongside the percentage of
problems found at each level. Analysis level
0 represents the case in which Intel Parallel
Inspector is not run on the code at all
(i.e., the raw performance of the code).

the data for threading analysis tells a
similar story as the memory analysis. Level 2
analysis catches 80 percent of the problems
with a runtime expanding to 18x of normal.
Level 4 analysis will check for data races among
stack variables. stack variables are not meant
to be shared, so data races are not common.
A lower level analysis, such as level 2 or 3, are
more commonly used for regular testing.

Further Reading and Resources
The help files installed with Intel Parallel
Inspector (accessible in Microsoft Visual
studio* from the Help Menu as Intel® Parallel
studio—Parallel studio Help—Inspector Help)
give additional examples of detectable errors
in the section “Problem type Reference.” o

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

16 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Windows* Unmanaged
Code Libraries

IPP Unmanaged
Code ‘C’ Libraries

.NET Common Language Runtime (CLR)

.NET Framework Class
 Libraries (FCL)

.NET Framework Application

Figure 1: Intel IPP in .nET Framework

This article is intended to educate Intel® Integrated Performance Primitives
(Intel® IPP) users on the basics of calling Intel IPP from .net Framework languages
such as C#. the most important consideration is how to manage the calls between
the managed .net application and the unmanaged Intel® IPP Library. Figure 1
provides a high-level perspective.

Intel® IPP is an unmanaged code library written in native programming languages
and compiled to machine code that can run on a target computer directly.

In this article, we consider the Platform Invocation services (P/Invoke) .net
interoperability mechanism specifically for calling the Intel IPP from C#. We describe
the basic concepts such as passing callback functions and arguments of the different
data types from managed to unmanaged code and the pinning of array arguments.

Assembly: An assembly is a collection of types and resources that
are built to work together and form a logical unit of functionality.
they are the building blocks of the .net Framework applications,
are stored in the portable executable (PE) files, and can be a DLL or
eXe. Assemblies also contain metadata, the information used by the
CLR to guarantee security, type safety, and memory safety for code
execution.

Garbage collector: the .net Framework’s garbage collector (GC)
service manages the allocation and release of memory for the managed
objects in the application. the GC checks for objects in the managed
heap that are no longer used by the application and performs the
operations necessary to reclaim their memory. the data under control
of the GC is managed data.

Unsafe code: C# code that uses pointers is called unsafe code. the
keyword “unsafe” is a required modifier for the callable members such
as properties, methods, constructors, classes, or any block of code.
Unsafe code is a C# feature for performing memory manipulation using
pointers. Use the keyword fixed (pin the object) to avoid movement
of the managed object by the GC. note that unsafe code must be
compiled with the /unsafe compiler option.

microsoft* .nET Framework Overview
.NET Framework Terminology

.NET Framework: the Microsoft* .net Framework is a managed
runtime environment for developing the applications that target
the common language runtime (CLR) layer. this layer consists of
the runtime execution services needed to develop various types of
software applications, such as AsP .net, Windows* forms, XML Web
services, distributed applications, and others. Compilers targeting the
CLR must conform to the common language specification (CLS) and
common type system (Cts), which are sets of language features and
types common among all the languages. These specifications enable
type safety and cross-language interoperability. It means that an
object written in one programming language can be invoked from
another object written in another language targeting the runtime.

C#: C# is a programming language designed as the main language of
the Microsoft .net Framework. It compiles to a common intermediate
language (CIL) like all the other languages compliant with the .net
Framework. CIL provides a code that runs under control of the CLR.
this is managed code. All codes that run outside the CLR are referred
to as unmanaged codes. CIL is an element of an assembly.

By Naveen Gv

Investigate the basics
of calling Intel® Integrated
Performance Primitives
(Intel® IPP) from .nET
Framework languages
such as C#.

The most important consideration
is how to manage the calls between
the managed .nET application and
the unmanaged Intel® IPP Library.

THE PARALLEL UNIVERSE

18

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

Structured Parallel
Programming
BY MICHAEL MCCOOL

one way of looking at parallel patterns (sometimes called

algorithmic skeletons) is through an analogy with “structured

programming.” the premise of structured programming is that

a small number of control flow and data management patterns

can be composed to implement the necessary control flow

and data access logic in most serial programs. there is some

evidence (see, for example, work by skillicorn, Campbell, Cole, and

the berkeley Dwarfs) that a relatively small number of patterns

can also express the necessary task and data organization in a

large fraction of parallel programs.

Back in the ‘70s there was a heated argument about

structured vs. unstructured control flow. Basically, you can

obviously do anything you want with a conditional goto, which

is usually the only control flow construct made available in

machine language. From the point of view of completeness,

this is all a programming language really needs to support.

However, many computer scientists noted that there were

certain maintainability advantages to restricting control flow

to the composition of a small number of patterns supporting

iteration (do/while, repeat/until, for) and selection (if/then/

else, switch) in high-level languages.

// fixed statement in unsafe code
[DllImport(“custom.dll”)]
unsafe static extern float
foo(float *x);

// automatic pinning
[DllImport(“custom.dll”)]
static extern float
foo(float[] x);

Figure 3: Pinning Arrays and Other Objects: Declarations are
similar for both methodsFigure 2

DllImport(“custom.dll”)]
static extern double
foo(double a, double b);

MANAGEd UNMANAGEd

boolean bOOL, Win32 bOOL, or Variant

Char ChAR, or Win32 WChAR

Object Variant, or Interface

String LPStr, LPWStr, or bStr

Array SafeArray

Table 1: mapping of several data types, unmanaged-managed environment

.NET Framework
Interoperability Mechanisms

the CLR supports the Platform
Invocation service (P/Invoke) that allows
mapping a declaration of a managed
method to unmanaged methods. the
resulting declaration describes the stack
frame but assumes the external method
body from a native DLL.

P/Invoke Service

P/Invoke enables managed code to call C-style
unmanaged functions in native DLLs. P/Invoke
can be used in any .net Framework-compliant
language. It is important to be familiar
with the attributes DllImport, MarshalAs,
structLayout, and their enumerations to use
P/Invoke effectively.

When a P/Invoke call is initiated to call an
unmanaged function in the native DLL, the P/
Invoke service will perform the following steps:

1. Locate the DLL specified by the
DllImport attribute by searching either
in the working directory or in the
directories and sub-directories specified
in the PAtH variable, and then load
the DLL into the memory.

2. Find the function declared as static
extern in the DLL loaded to memory.

3. Push the arguments on the stack by
performing marshalling and, if required,
using the attributes MarshalAs and
structLayout.

4. Disable pre-emptive garbage collection.

5. transfer the control to the
unmanaged function.

Declare Static Extern method with the DllImport Attribute
An unmanaged method must be declared as static extern with the DllImport attribute.
This attribute defines the name of a native shared library (native DLL) where the unmanaged
function is located. The attribute DllImport and function specifiers static extern specify the
method that is used by the .net Framework to create a function and to marshal data.

the DllImport attribute has parameters to specify correspondence rules between managed and
native methods, such as Charset (Unicode or Ansi), exactspelling (true or false), CallingConvention
(cdecl or stdCall), entryPoint.

In the simplest case, the managed code can directly call a method foo() as illustrated in Figure 2.

marshalling for the Parameters and Return Values
the .net Framework provides an interoperability marshaller to convert data between managed
and unmanaged environments. When managed code calls a native method, parameters are
passed on the call stack. these parameters represent data in both the CLR and native code.
they have the managed type and the native type.

some data types have identical data representations in both managed and unmanaged code.
they are called isomorphic, or blittable, data types. they do not need special handling or conversion
when passed between managed and unmanaged code. Basic data types of this kind are: float/
double, integer, and one-dimensional arrays of isomorphic types. these are common types
in Intel IPP.

However, some types have different representations in managed and unmanaged code. these
types are classified as non-isomorphic, or non-blittable, data types and require conversion, or
marshalling. Table 1presents some non-isomorphic types commonly used in the .net Framework.

In some cases, the default marshalling can be used. But not all parameters or return values
can be marshalled with the default mechanism. In such cases, the default marshalling can
be overridden with the appropriate marshalling information. Marshalling includes not only
conversion of the data type, but other options such as the description of the data layout and
direction of the parameter passing. There are some attributes for these purposes: MarshalAs,
structLayout, Fieldoffset, InAttribute, and outAttribute.

MarshalAsAttribute and Marshal class in the system.Runtime.Interopservices namespace can
be used for marshalling non-isomorphic data between managed and unmanaged code.

Pinning Arrays and Other Objects
All objects of the .net Framework are managed by the GC. the GC can
relocate an object in memory asynchronously. If managed code passes
to native code a reference to a managed object, this object must be
prevented from being moved in the memory. Its current location must
be locked (or pinned) for the life of the native call.

Pinning can be performed manually or automatically. Manual, or
explicit, pinning can be performed by creating GCHandle: GCHandle
pinnedobj = GCHandle.Alloc(anobj, GCHandletype.Pinned).

Pinning can also be performed using the fixed statement in unsafe
code. An /unsafe compilation option is required in this case.

the other method is automatic pinning. When the runtime
marshaller meets managed code that passes an object to the native
code, it automatically locks the referenced objects in memory for the
duration of the call. Declarations are similar for both methods. see
Figure 3.

Automatic pinning enables calling native methods in a usual manner
and does not require the /unsafe option during compiling.

note that aggressive pinning of short-lived objects is not good
practice because the GC cannot move a pinned object. this can cause
the heap to become fragmented, which reduces the available memory.

Callback Function
A callback function is a managed or unmanaged function that is passed
to an unmanaged DLL function as a parameter. to register a managed
callback that an unmanaged function uses, declare a delegate with
the same argument list and pass an instance of it through P/Invoke.
Figure 4: on the unmanaged side, it appears as a function pointer.

the CLR automatically pins the delegate for the duration of the
native call. Moreover, there is no need to create a pinning handle for
the delegate for the asynchronous call: In this case, the unmanaged
function pointer actually refers to a native code stub dynamically
generated to perform the transition and marshalling. this stub exists
in fixed memory outside of the GC heap. The lifetime of the native
code stub is directly related to the lifetime of the delegate.

the delegate instance, which is passed to unmanaged code,
employs the stdCall calling convention. An attribute to specify the
Cdecl calling convention is available only in the .net Framework v2.0+.

BLOG
highlights

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

20 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://en.wikipedia.org/wiki/Structured_programming
http://en.wikipedia.org/wiki/Structured_programming
http://view.eecs.berkeley.edu/wiki/Main_Page

using System;
using System.Runtime.InteropServices;
namespace ipp {
 public enum IppStatus {
 …
 ippStsNoErr = 0,
 …
 };
 [StructLayout(LayoutKind.Sequential,CharSet=CharSet.Ansi)]
public struct IppiSize {
 public int width;
 public int height;
 public IppiSize(int width, int height) {
 this.width = width;
 this.height = height;
 };
 };
 unsafe public class ip {
 [DllImport(“ippi-6.1.dll“)] public static extern
 IppStatus ippiAndC_8u_C1R(byte* pSrc, int srcStep, byte value,
 byte* pDst, int dstStep, IppiSize roiSize);
 };
};

namespace ExampleIP
{
 using System;
 using System.Windows.Forms;
 using System.Drawing;
 using System.Drawing.Imaging;
 using ipp;

 public class tip : System.Windows.Forms.Form {
 private System.Drawing.Bitmap bmpsrc, bmpdst;

private BitmapData getBmpData(Bitmap bmp) {
 return bmp.LockBits(new Rectangle(0,0,bmp.Width,bmp.Height),
 ImageLockMode.ReadWrite, PixelFormat.Format24bppRgb);
 };

 unsafe private void FilterBoxFunction() {
 …
 BitmapData bmpsrcdata = getBmpData(bmpsrc);
 BitmapData bmpdstdata = getBmpData(bmpdst);
 IppiSize roi = new IppiSize(bmpsrc.Width*3/4, bmpsrc.Height*3/4);
 const int ksize = 5, half = ksize/2;
 // the three-channels images
 byte* pSrc = (byte*)bmpsrcdata.Scan0+(bmpsrcdata.Stride+3)*half,
 pDst = (byte*)bmpdstdata.Scan0+(bmpdstdata.Stride+3)*half;
 IppStatus st = ip.ippiFilterBox_8u_C3R(pSrc,bmpsrcdata.Stride,
 pDst,bmpdstdata.Stride,
 roi,
 new IppiSize(ksize,ksize),
 new IppiPoint(half,half)});
 …
 };
 };
 };

Figure 9Figure 8

public enum IppRoundMode {
ippRndZero = 0,
ippRndNear = 1,
ippRndFinancial = 2,
};

Figure 6

 // ipps.cs
 namespace ipp {
 public class sp {
 …
 };
 };
// ippi.cs
 namespace ipp {
 public class ip {
 …
 };
};

Figure 5

[StructLayout(LayoutKind.
Sequential,CharSet=CharSet.Ansi)]
public struct Ipp64fc {
 public double re;
 public double im;
 public Ipp64fc(double re, double im) {
 this.re = re;
 this.im = im;
 };
};

Figure 7

public delegate void MyCallback();
[DllImport(“custom.dll”)]
public static extern void
MyFunction(MyCallback callback);

Figure 4

C# interface to Intel IPP
namespace and Structures
the Intel IPP software, in addition to the libraries, provides special
wrapper classes for the functions of several Intel IPP domains:
signal and image processing, color conversion, cryptography, string
processing, data compression, JPeG coding, and math and vector math.
the wrappers allow Intel IPP users to call Intel IPP functions in C# appli-
cations. these classes, in the case of signal sp and image processing ip
functions, are declared as in Figure 5.

enumerated data types that are used in the Intel IPP library must be
declared in the wrapper classes with a keyword “enum”. For example,
the enumerator IppRoundMode is declared in ippdefs.cs as illustrated
in Figure 6.

Many Intel IPP functions use structures as parameters. to
pass structures from a managed environment to an unmanaged
environment, the managed class struct must comply with the
corresponding library in the unmanaged code. the attribute
structLayout is used with the value LayoutKind.sequential.
Figure 7 shows how to use the structure Ipp64fc, which is a
type of double complex number.

Almost all Intel IPP functions have pointers as parameters. the
functions with pointers must be declared in the unsafe context. For
example, the function ippiAndC_8u_C1R is declared as in Figure 8.

this code must be compiled with the /unsafe option.
note that working with pointers in the C# application requires using

the operator fixed. The fixed statement sets a pointer to a managed
variable, and this variable is used during execution of the statement.
Without the fixed statement, pointers to managed variables may be
relocated unpredictably by the GC.

For the class Bitmap, the methods LockBits and UnlockBits
must be used.

Intel IPP Overview
Intel IPP is a low-level software library. It provides a set of basic functions
highly optimized for the IA-32, IA-64, and Intel® 64 architectures. The
use of the library significantly speeds up a wide variety of software in
different application areas: signal and image processing, speech (G.728,
GSM-AMR, Echo Canceller), audio (MP3, AAC), and video (MPEG-2, MPEG-4,
H.264, VC1) coding, image coding, data compression (BWT, MFT, RLE, LZSS,
LZ77), cryptography (SHA, AES, RSA certified by NIST), text processing,
and computer vision. the Intel IPP software runs on different operating
systems: Windows* OS, Linux* OS and Mac OS* X.

Intel IPP is a C-style API library. However, due to the stdCall calling
convention, the primitives can be used in applications written in many
other languages. For example, they work in applications written in Fortran,
Java*, Visual Basic, C++, and C#. the Intel IPP functions can be used in
the Microsoft .net Framework managed environment to speed up the
performance of applications on Intel® processors and compatible platforms.

Almost all Intel IPP functions
have pointers as parameters.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

22 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

namespace ExampleIP
{
 using System;
 using System.Windows.Forms;
 using System.Drawing;
 using System.Drawing.Imaging;
 using System.Reflection;
 using System.Collections;
 using ipp;

 public class tip : System.Windows.Forms.Form {
 private Assembly assembly;
 private object ippi;
 private Type ippiType;
 private Hashtable hash;
 …
 public tip(Bitmap bmp) {
 assembly = Assembly.LoadFrom(“ippi_cs.dll”);
 ippi = assembly.CreateInstance(“ipp.ip”);
 ippiType = ippi.GetType();

 …
 };
 void CreateMenu() {
 hash = new Hashtable();

MenuItem miBlur =
 new MenuItem(“Blur”, new EventHandler(MenuFilteringOnClick));
 hash.Add(miBlur, “ippiFilterBox_8u_C3R”);
 MenuItem miMin =
 new MenuItem(“Min Filter”,
 new EventHandler(MenuFilteringOnClick));
 hash.Add(miMin, “ippiFilterMin_8u_C3R”);
 …
 };

 private void MenuFilteringOnClick(object sender,System.EventArgs e) {
 FilteringFunction((string)hash[sender]);
 };

 unsafe private void FilteringFunction(string func) {…
 MethodInfo method = ippiType.GetMethod(func);
 const int ksize = 5, half = ksize/2;
 byte* pSrc = (byte*)bmpsrcdata.Scan0+(bmpsrcdata.Stride+3)*half,
 pDst = (byte*)bmpdstdata.Scan0+(bmpdstdata.Stride+3)*half;
 IppStatus st = (ipp.IppStatus)method.Invoke(null, new object[]
 {(IntPtr)pSrc,bmpsrcdata.Stride,(IntPtr)pDst,bmpdstdata.Stride,
 roi, new IppiSize(ksize,ksize), new IppiPoint(half,half)});
 …};
 };
};

Figure 10

INTEL IPP FUNCTION PERFORMANCE OVERHEAd

ippiFiltermedian_8u_C3R 14%

ippiRotateCenter_8u_C3R 14%

ippiWarpAffine_8u_C3R 39%

ippimirror_8u_C3R 47%

Table 2: Cost of C# call—the lighter an operation, the bigger the overhead.

When calling functions with
the same set of parameters,
you can use the dynamic
method of function search
and execution.

Intel IPP Performance from C#
Intel IPP functions are optimized for Intel® and compatible processors.
this optimization can speed up performance of various applications.
However, specific features of using these libraries in the .NET
Framework can decrease performance of the application.

Two possible reasons for a decrease in performance:
 > Managed C# code calls unmanaged code through P/Invoke.

Every P/Invoke call requires from eight to 27 CPU clocks.

 > When a function is called from a DLL for the first time, the
corresponding DLL must be loaded into memory (e.g., using
LoadLibrary() on Windows* oss), which takes 1000 to 2000
CPU clocks. More CPU clocks are needed to create the entry
points for all functions that are exported by this DLL.

Table 2 shows the performance overhead numbers for Intel IPP
image processing functions. Because Intel IPP functions are several
times faster at corresponding C# implementations, it still makes sense
to call Intel IPP despite the overhead of a C# call. to decrease the
overhead effect, developers can create a component- or application-
level interface in which one C# call leads to the execution of many
IPP functions.

An example of this approach is the .net interface for DMIP. Also, we
can compare the performance of the C# implementation and C# call
of Intel IPP functions. For example, the C# .net library Mirror costs
5.7 CPU cycles per pixel; the Intel IPP-based C# call of Mirror function
costs 1.7 cycles per pixel.

Conclusion
the managed-unmanaged code interoperability provided in the .net
Framework environment can be performed in different ways. the
best way to call C functions residing in a native DLL is to use the P/
Invoke service, which is available in any managed language. P/Invoke
provides a powerful and flexible interoperability with inherited codes.
the DllImport attribute declares the external entry point. Marshalling
attributes allow describing various options for the data conversion
and data layout in addition to the default data marshalling.

the use of suppressUnmanagedCodesecurityAttribute, InAttribute,
and OutAttribute may significantly reduce the performance overhead.
Automatic pinning of the objects passed prevents them from being
garbage collected for the duration of the call. Manual pinning is also
available if the pointer to the object is kept and used in native code
after the call returns. A managed delegate type allows implementing
callback functions.

References
to download an Intel IPP evaluation package, sample code, and other
documents, visit http://software.intel.com/en-us/intel-ipp/. o

Intel IPP Components—
Image Processing Sample
Intel IPP samples include C# interface and a demo application
illustrating how C# developers can build applications with Intel IPP
calls. The demo application performs filtering and morphological and
geometric operations.

Additionally, the image compression functions are used in the
demo to read and write JPEG files. The application uses the wrapper
classes for the image processing (ippi.cs) and image compression
(ippj.cs) domains. the application launches the P/Invoke mechanism
for unmanaged code in ippi-6.1.dll and loads the dispatcher of the
processor-specific libraries. This dispatcher loads the most efficient
library for a given processor. For example, the library ippiv8-6.1.dll
is loaded on a system with an Intel® Core™2 Duo processor, and
the library ippiw7-6.1.dll is loaded on a system with an Intel®
Pentium® 4 processor.

Image ROI Processing
special attention must be paid when working with the functions
that require border pixels (e.g., image filtering functions). the Intel
IPP functions operate only on pixels that are part of the image.
therefore, a region of interest (RoI) is implied to be inside the image
in such a way that all neighborhood pixels necessary for processing
the RoI edges actually exist. For example, for filtering functions, the
width of the border outside the RoI must not be less than half of
the filter kernel size with the centered anchor cell.

When processing an image RoI, the developer has to perform two
additional operations: shifting the pointer to the data and specifying
the RoI size that is less than the image size. In Figure 9 the sample
code illustrates how to work with RoI (using the example of the Intel
IPP function ippiFilterBox that performs image blurring).

Runtime Function Invocation
the code example in Figure 9 shows how an Intel IPP function is
launched via a direct call, and how static code is generated when the
application is compiled. this method is rather simple and obvious.

When calling functions with the same set of parameters, you can
use the dynamic method of function search and execution. this
method is called reflection and can noticeably reduce the size of
the executable code.

Figure 10 shows the demo application, the reflection method is
used to launch filtering and morphological functions from the menu.

THE PARALLEL UNIVERSETHE PARALLEL UNIVERSE

24 For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/intel-ipp/

DEVELOPER ROCK STAR:

Steve Lionel

APP EXPERTISE:

Fortran Compilers

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

AmP uP yOuR APP
PERFORmAnCE.

Steve’s tip to boost productivity:
build and debug a mixed C# and Fortran application using Intel® Visual
Fortran. Turn on generated interface checking to find errors in your
older Fortran code. use C_F_POInTER and C_LOC to do a “type cast.”

ROCk YOUR COdE.
be a developer rock star with Intel® high-performance software tools.
Visit www.intel.com/software/products/eval for a free evaluation.

The mission of Dr. Dobb’s Go Parallel is to assist
developers in their efforts toward “translating Multicore
Power into Application Performance.” Robust and full of
helpful information, the site is a valuable clearinghouse
of multicore-related blogs, news, videos, feature stories,
and other useful resources.

Check out a range of resources on a wide variety
of software topics for a multitude of developer
communities ranging from manageability to parallel
programming to virtualization and visual computing.
this content-rich collection includes Intel® software
network tV, popular blogs, videos, tools, and downloads.

What if you could experiment with Intel’s advanced
research and technology implementations that are still
under development? And then what if your feedback
helped influence a future product? It’s possible here.
test drive emerging tools, collaborate with peers,
and share your thoughts via the What If blogs and
support forums.

The Intel® Software Evaluation Center
makes 30-day evaluation versions of Intel® software
Development Products available for free download.
For High Performance Computing Products, you can get
free support during the evaluation period by creating
an Intel® Premier support account after requesting
the evaluation license, or via Intel® software network
Forums. For evaluating Intel® Parallel studio, you
can access free support through Intel® software
network Forums onLY.

For its fall 2009 webinar series Intel invited Microsoft
Visual studio* C/C++ developers from a range of
industry-leading companies to share the secrets behind
their real-world successes using Intel® Parallel studio.
All webinars, including those from previous series, are
available for immediate, on-demand download.

RESOuRCES AnD SITES OF InTEREST

THE PARALLEL UNIVERSE

26

http://www.intel.com/software/products/eval

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

© 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries.

Unleash multicore platform performance.
Intel® compilers, libraries, and debugging and tuning tools provide everything
you need to roll out reliable apps that scale for today’s multicore innovations.
From super computers to laptops, and embedded systems to mobile devices,
Intel® software tools enable you to optimize legacy serial and threaded code
and plug in to multicore.

become a developer rock star with Intel® Software development Products.
Visit www.intel.com/software/products/eval for free evaluations.

28

http://www.intel.com/software/products/eval

