
Letter to the Editor
by parallelism author and expert James Reinders

Are You Ready to Enter a Parallel Universe:
Optimizing Applications for Multicore
by Intel software engineer Levent Akyil

1

Welcome to the Parallel Universe

EvolvE your codE.
Get robust parallelism from analysis and compiling through debugging and tuning. Intel® Parallel
Studio is the ultimate all-in-one toolset for Windows* applications. These advanced software
tools enable agile multicore software development for Microsoft Visual Studio* C/C++ developers.
Everything you need to take serial code to parallel and parallel to perfection.

Preorder now. Product shipping May 26.
www.intel.com/software/parallelstudio

© 2009 – 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

 Contents
Think Parallel or Perish, by James ReindeRs ...2
James Reinders, Lead Evangelist and a Director with Intel® Software Development
Products, sees a future where every software developer needs to be thinking about
parallelism first when programming. He first published “Think Parallel or Perish“ three years
ago. Now he revisits his comments to offer an update on where we have gone and what
still lies ahead.

Parallelization methodology.. 4
The four stages of parallel application development addressed by Intel® Parallel Studio.

Writing Parallel Code safely, by PeTeR VaRhol ... 5
Writing multithreaded code to take full advantage of multiple processors and multicore
processors is difficult. The new Intel® Parallel Studio should help us bridge that gap.

are you Ready to enter a Parallel Universe:
optimizing applications for multicore, by leVenT akyil .. 8
A look at parallelization methods made possible by the new Intel® Parallel
Studio—designed for Microsoft Visual Studio* C/C++ developers of Windows* applications.

8 Rules for Parallel Programming for multicore,
by James ReindeRs .. 16
There are some consistent rules that can help you solve the parallelism challenge
and tap into the potential of multicore.

© 2009-2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

3

Welcome to the Parallel Universe

2

Welcome to the Parallel Universe

 Think

 Parallel
 or

 Perishby James Reinders
James Reinders, lead evangelist
and a director with intel® software
development Products, sees a future
where every software developer
needs to be thinking about parallelism
first when programming. He first
published “Think Parallel or Perish“
three years ago. now he revisits
his comments to offer an update on
where we have gone and what still
lies ahead.

Where are we now?

Three years ago, as I thought
about my own future in software de-
velopment, I penned a piece noting that
as software developers we all need to
personally “Think Parallel” or face a future
where others will do so and we will cease
to be competitive. I am still confident that
software development in 2016 will not
be kind to programmers who have not
learned to “Think Parallel.”

Some of us will write parallel programs,
some of us will not. Some will write using
new languages to implement in, changing
the way we do most everything. Most
will not.

What we must all do is learn to “Think
Parallel.” Understanding how parallelism is
and will be used on computers, in
applications, and in our environment is
critical to our future. Grasping how to use
the good and avoid the bad in this new
world, intuitively, is the challenge ahead
of us in “Thinking Parallel.”

I still have my note stuck to my cube
wall: “Memo to self: The fastest way to
unemployment is to not hone my pro-
gramming skills for exploiting parallelism.”

This year, 2009, is the fifth year in
which Intel is shipping multicore proces-
sors. Those five years were not the first
five years of multicore processors, but
they were the five years that drove x86
processors to multicore in servers and
desktop and laptop computers. In this
time span, we’ve gone from a few multi-
core processor offerings to “game over”
for single-core processors.

This year, 2009, we will also witness
another monumental milestone: this will
be the first year that Intel has a produc-
tion manycore processor. Manycore pro-
cessors differ from multicore processors
by having a more sophisticated system of
interconnecting processors, caches, mem-
ories, and I/O. This is needed at about
16 or so cores—so manycore processors
can be expected to have more cores than
multicore processors. The world has never
seen a high-volume manycore processor,
but over the next few years it will.

This dawning of manycore proces-
sors, as profound as it is, will not affect
very many programmers in 2009. It will,
however, make this new parallel era even
more real than multicore processors
have. The opportunity for hardware to be
enormously parallel is staggering.

The “not parallel” era we are now exit-
ing will appear to be a very primitive time
in the history of computers when people
look back in a hundred years. The
world works in parallel, and it is time for
computer programs to do the same. We
are leaving behind an era of too little
parallelism, to which I say: “It’s about
time!” Doing one thing at a time is “so
yesterday.”

In less than a decade, a programmer
who does not “Think Parallel” first will not
be a programmer.

What’s intel doing to help?
When I first wrote about this a few years
ago, Intel was already a longtime cham-
pion for the OpenMP* standard (www.
openmp.org) and had many tools for MPI
support. Our performance analysis tools
and debuggers were ahead of their time
with top to bottom support for paral-
lelism. We also had emerging tools for
finding deadlocks and race conditions in
parallel programs.

Since then, we’ve helped update
OpenMP to specification version 3.0 and
were among the very first to support it in
our compilers. We launched our own MPI
library, which is more portable and higher
performing than prior options.

We created Intel® Threading Building
Blocks (Intel® TBB), which has become the
best and most popular way to program
parallelism in C++.

And, we have gone to beta with our
Intel® Parallel Studio project. This takes ev-
erything we’ve done to date, and makes it
much more intuitive, robust, and exciting.
Soon, it will be a full product from Intel.

These new projects are in addition to
all the tools we had a few years ago. We
are growing and expanding our tools to
support customers, while they expand
to use parallelism. We are generally not
forcing obsolescence as we expand to
offer parallelism. Our customers appreci-
ate that.

I’m also quite excited about Intel’s Ct
technology, and we’ll be talking more
about that as the year goes on. It is one
of several more projects we have been
experimenting with, and talking with
customers about, to guide us on what
more we should be doing to help.

We are building tools that help with
parallel programming. We are embracing
standards, extending current languages,
using library APIs—all with an eye on scal-
ability, correctness, and maintainability.

It is still up to us, as software develop-
ers, to know what to do with these
wonderful tools. Just as before parallelism,
a good design comes from the human
developer—not the tools. Parallelism will
be no different. Hence, we humans need
to work on “Think Parallel.”

James Reinders
Portland, Oregon
April 2009

James Reinders is Chief Software Evangelist
and Director of Software Development Products,
Intel Corporation. His articles and books on paral-
lelism include Intel Threading Building Blocks:
Outfitting C++ for Multicore
Processor Parallelism. Find out more at
www.go-parallelcom.

What we must all learn to
do is “Think Parallel.”

We are leaving behind an era of
too little parallelism.
To which I say: “It’s about
time!”

A good design comes
from a human developer,
not the tools.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

5

Welcome to the Parallel Universe

4

Welcome to the Parallel Universe

The Intel® Software Development Tools solve four
stages of parallel application development:

1. Code and debug with intel® Parallel Composer:
Use source code analysis capabilities of Intel Parallel
Composer to identify errors in the source code during
compilation phase. To enable source code analysis
you will need to use the /Qdiag-enable:sc {[1|2|3]}
compiler option. The number specifies the severity
level of the diagnostics (1=all critical errors, 2=all
errors, and 3=all errors and warnings). The following
scenarios represent the various ways that Intel Paral-
lel Composer supports coding of parallel applications.
These scenarios are likely to
manifest in different applications:

sCenaRio 1: User decides to use OpenMP 3.0*
to add parallelism.

sCenaRio 2: User has code with cryptography
and wants to parallelize. Add Intel® Integrated
Performance Primitives (Intel® IPP) to replace
cryptography code. Add OpenMP for parallelism.

sCenaRio 3: User adds Intel® Threading Building
Blocks (Intel® TBB) pipeline.

sCenaRio 4: User has audio/video code and wants to
parallelize. Add Intel® IPP to pertinent domains.
Add Intel TBB to parallelize additional regions.

sCenaRio 5: User has code with Windows* threads.
Add Intel TBB with Lambda function support to new
regions to parallelize.

For the scenarios where OpenMP is used to
introduce parallelism, use the intel® Parallel debugger
extension for microsoft Visual studio*
(http://software.intel.com/en-us/articles/preview/
parallel-debugger-extension) to debug the OpenMP
code. The debugger has a set of features that can be
accessed through the Microsoft Visual Studio Debug
pull-down menu. The debugger can provide insights
into thread data sharing violations, detect re-entrant
function calls, provide access to SSE registers, provide
access to OpenMP data structures, such as tasks, task
wait lists, task spawn trees,

barriers, locks, and thread teams. To debug an
application with the Intel Parallel Debugger the
application must be built with the Intel® C++
Compiler using the /debug:parallel option.

2. Verify with intel® Parallel inspector: Run Intel Paral-
lel Inspector to find threading errors such as data
races and deadlocks and memory errors that are likely
to occur. If you found errors, fix them and rebuild the
application with Intel Parallel Composer.

3. Tune with intel® Parallel Amplifier: Intel Parallel Am-
plifier enables you to get the maximum performance
benefit from available processor cores. Use Intel Par-
allel Amplifier’s concurrency analysis to find processor
underutilization cases where the code is not fully
utilizing processor resources. Implement performance
improvement changes and rebuild the application with
Intel Parallel Composer. Use Intel Parallel Inspector to
check for possible threading errors and then verify
the effects of performance improvement changes
with Intel Parallel Amplifier.

4. Check in the code.

5. Go back to step 1 and find a new region to add
parallelism to.

The “Parallelizing N-Queens with the Intel® Parallel
Composer” tutorial provided with Parallel Composer
provides hands-on training on how to apply each
of the parallelization techniques discussed in this
document to implement a parallel solution to the
N-Queens problem, which is a more general version
of the Eight Queens Puzzle (http://en.wikipedia.
org/wiki/N-queens). The tutorial is located in the
“Samples\NQueens” folder under the Intel Parallel
Composer main installation folder.

TeChniCal sUPPoRT
Visit Intel’s online Community Support User Forums and
Knowledge Base to get all of the help you need from our
own tools and parallelism experts, and your fellow develop-
ers. Go to www.intel.com/software/support to start your
search.

PaRallelizaTion meThodology
Writing Parallel
 Code safely

But these are difficult activities; understand-
ing how to protect data and system resources
during parallel operations requires technical ex-
pertise and attention to detail. The likelihood
of errors, such as race conditions or overwritten
data, is high.

And identifying areas in code where parallel
execution is feasible is a challenge in and of
itself. It typically requires a deep level of under-
standing of not only the code, but also of the
flow of application execution as a whole. This
is very difficult to achieve with current tools
and techniques.

As a result, few developers want to write
parallel code that takes advantage of multiple
processors or processor cores, or are techni-
cally prepared to do so. This kind of coding is
considered specialized and niche, even though
virtually all modern servers and many worksta-
tions and laptops use multicore processors.

But multiple processor systems and multi-
core processors aren’t going away; and in fact,
the industry is going to see processors with
an increasing number of cores over the next
several years. It is likely that even desktop
systems over the next several years will have
16 or more processor cores. Both commercial
and custom software has to make better use
of the computing power being afforded by
these processors.

It’s difficult. But tools are emerging that can
make a difference in the development of paral-
lelized applications for multicore processors and
multiple processors. For example, Intel® Parallel
Studio provides essential tools for working
with multithreaded code, enabling developers
to more easily identify errors in threads and
memory, and to be able to identify and analyze
bottlenecks.

Intel Parallel Studio is available for beta
program download at www.intel.com/soft-
ware/parallelstudio. It consists of Intel® Parallel
Composer, Intel® Parallel Inspector, and Intel®
Parallel Amplifier. Together, these tools enable
developers building multithreaded applications
for parallel execution to quickly construct and
debug applications that are able to make more

Writing multithreaded
code to take full
advantage of multiple
processors and
multicore processors
is difficult. The
new intel® Parallel
studio should help
us bridge that gap.
by Peter Varhol

With the explosion of multicore processors, the pressure is now
on application developers to make effective use of this computing
power. Developers are increasingly going to have to better identify
opportunities for multithreading and independent parallel operation
in their applications, and to be able to implement those techniques
in their code.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

http://software.intel.com/en-us/articles/preview/parallel-debugger-extension
http://software.intel.com/en-us/articles/preview/parallel-debugger-extension
http://software.intel.com/en-us/articles/preview/parallel-debugger-extension
http://software.intel.com/en-us/articles/preview/parallel-debugger-extension
http://en.wikipedia.org/wiki/N-queens
http://en.wikipedia.org/wiki/N-queens
http://en.wikipedia.org/wiki/N-queens
http://www.intel.com/software/support

7

Welcome to the Parallel Universe

6

Welcome to the Parallel Universe

efficient use of today’s processors.
Intel Parallel Composer consists of a parallel debugger plug-in

that simplifies the debugging of parallel code and helps to
ensure thread accuracy. It also includes Intel® Threading Build-
ing Blocks and Intel® Integrated Performance Primitives, which
provide a variety of threaded generic and application-specific
functions enabling developers to quickly add parallelism to
applications.

Intel Parallel Inspector detects threading and memory errors
and provides guidance to help ensure application reliability.
Intel Parallel Amplifier is a performance profiler that makes it
straightforward to quickly find multicore performance bottle-
necks without needing to know the processor architecture or
assembly code.

Challenge of PaRallel ConsTRUCTion
Developers increasingly find that their application code doesn’t
fully utilize modern multicore processors. In many cases they
can achieve high performance on a single core, but without a
significant effort geared toward making the code operate in
parallel, cannot scale to make use of the cores available.

Parallel code is that which is able to execute indepen-
dently of other code threads. On a single processor or single
core system, it can offer at least the illusion of speeding up
performance, because processor downtime on one thread can
be used to run other threads. On multiprocessor and multi-
core systems, it is essential to take full advantage of multiple
separate execution pipelines.

It’s not easy. Most code is written in either a straightforward
execution fashion or a top-down fashion. Either way, develop-
ers don’t have a good opportunity to look at their code from the
standpoint of operations that can be parallelized. The common
development processes of today simply don’t afford them the
opportunity to do so.

Instead, developers have to view their code within the
context of application execution.
They have to be able to envision the
execution of the application, and the
sequence of how the source code will
execute once a user is running that
application. Operations that can occur
independently in this context are can-
didates for parallel computation.

But that’s only the initial step in
the process. Once developers have
determined what execution paths are
able to run in parallel, they then have
to make it happen. Threading the
code isn’t enough; developers have to
be able to protect the threads once
they launch and execute indepen-
dently. This involves setting up critical
sections of the code, ensuring that
nothing related (or nothing else at all,

depending on how critical) can execute while that section is
running.

However, critical sections tend to lock resources they are
working with, slowing execution and sometimes leading to
deadlock. If the resources remain locked and other threads
cannot execute, and other threads also hold resources that
are required by the running thread, no further execution can
occur. Because such a deadlock involves different resources
from multiple threads, identifying the resources that cause the
problem and locking out those resources at the right time is a
highly detailed and error-prone activity.

Memory leaks and similar memory errors in threads are
also difficult to identify and diagnose in parallel execution.
Memory leaks are fairly common in C and C++ code as memory
is allocated for use but not automatically returned to the free
memory list. These are especially difficult to detect because
they can occur in any running thread, and typically don’t mani-
fest themselves during the short test runs often performed by
developers and testers. Rather, lost memory accumulates over
time, initially slowing down application execution as the heap
becomes larger, and finally causing program crashes as the heap
exceeds allocated memory.

The RaCe CondiTion
If multiple threads are running simultaneously and the result
is dependent upon which thread finishes first, it is known as a
race condition. The threads exchange data during execution,
and that data may be different, depending on when a particular
thread is running, and how far along it is in executing.

Of course, the threads are not supposed to be exchang-
ing data while they are supposedly executing independently.
However, the protections provided in the code—usually some
form of a mutex or critical section—are either absent or not
sufficient, allowing data to be exchanged among threads while
they should be in their critical sections.

figure 1. intel® Parallel studio’s intel® Parallel inspector enables developers to iden-
tify memory leaks and other memory errors in running multithreaded applications.

This is called a race condition, where the race of threads to
completion affects the result of the computation. It is among
the most insidious and difficult errors to find in programming,
in part because it may only occur some of the time. This turns
one of the most fundamental of tenets of computer execution
on its head—that anything a computer does is deterministic.

In reality, unless an error occurs all of the time, it is almost
impossible to identify and analyze in code. Race conditions
can only be found almost by accident—stumbled upon because
developers know that something is wrong, yet are not able
to localize that issue. Tools that provide developers with an
in-depth and detailed look at thread execution may be the only
way to identify these and other highly technical and difficult-to-
identify issues in multithreaded code.

inTel helPs find PaRallel bUgs
Intel Parallel Studio’s components enable developers to build
multithreaded applications, which are better able to take
advantage of multiple processors or processor cores, than single
threaded ones. This plug-in to Microsoft Visual Studio* provides
memory analysis, thread analysis, debugging, threaded libraries,
and performance analysis for these complex programs.

Intel Parallel Inspector lets developers analyze memory use in
multithreaded applications. Memory is a resource that is common-
ly misused in single-threaded applications, as developers allocate
memory and don’t reclaim that memory after the operations have
been completed. Finding and fixing these errors in multithreaded
programs can be a difficult and time-consuming task.

Intel Parallel Inspector can also help developers detect and
analyze threading errors such as deadlock, and will also help
detect race conditions. It does so by observing the behavior of
individual threads and how they use and free memory. For race
conditions, it can look at what threads are completing first and

how that affects results.
Intel Parallel Amplifier is first and foremost a performance

profiler—it tells you where your code is spending most of its
time—the hotspots, so to speak. But it does more than that. It
also looks at where a program or its threads are waiting, and
also looks at where concurrency might not be performing satis-
factorily. In other words, it would identify idle threads, waiting
within the program, and resources that remain idle for inordinate
lengths of time.

Intel Parallel Composer is the cornerstone to the package.
The parallel libraries and Intel Threading Building Blocks C++
template library enables developers to abstract threads to tasks
and to more easily create multithreaded applications that have
the ability to execute in parallel. These libraries provide develop-

ers with a variety of threaded generic
and application-specific functions,
which enable developers to quickly
add parallelism to applications.

Intel Parallel Composer also provides
a debugger specifically designed for
working with multithreaded applica-
tions, and a C++ compiler to build code.

Any one of these tools by itself
isn’t sufficient to assist greatly in the
development of multithreaded code
for parallel execution. Writing mul-
tithreaded code can occur without
existing, debugged libraries for paral-
lel execution. Finding memory leaks
is possible without a multithreading
memory tool. And analyzing deadlock
and race conditions is conceivable
without specialized tools for looking
at thread execution. But to write,
analyze, and debug multithreaded
code intended for high-performance

operation on multicore processors can’t easily be done with-
out the ability to easily add parallel functions, debug those
functions, look for deadlock and race conditions, and analyze
performance.

Intel Parallel Studio provides the software tools for doing all
of this, within the context of Microsoft Visual Studio. By using
Intel Parallel Studio, developers can rapidly build, analyze, and
debug multithreaded applications for use in demanding environ-
ments for parallel execution.

However we might write parallel code in the future, Intel
is now providing tools that might help us do so. It is the only
way that we can start using the computing power the last few
years have afforded us. And if we don’t take advantage of that
computing power, computer users are losing out on what Intel is
delivering in terms of new and innovative technology.

Peter Varhol is principal at Technology Strategy Research, LLC, an indus-
try analysis and consulting firm.

figure 2. Intel® Parallel Amplifier provides a way for developers to analyze the
performance of their applications from the standpoint of multithreaded execution.
It provides a performance profiler, as well as the ability to analyze idle time
and bottlenecks.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

9

Welcome to the Parallel Universe

8

Welcome to the Parallel Universe

The introduction of
multicore processors started
a new era for both consum-
ers and software developers.
While bringing vast oppor-
tunities to consumers, the
increase in capabilities and
processing power of new
multicore processors puts
new demands on developers,
who must create products
that efficiently use these
processors. For that reason,
Intel is committed to providing
the software community
with tools to preserve the
investment it has in software
development and to
take advantage of the
rapidly growing installed base
of multicore systems. In light
of this commitment, Intel
introduced Intel® Parallel Studio for Microsoft Visual Studio* C/
C++ developers and opened the doors of the parallel universe
to a wider range of software developers. Intel Parallel Studio will
not only help developers create applications that will be better
positioned in the highly competitive software marketplace, but
it will also add parallelism for multicore that forward scales to
manycore.

In this article, I’ll discuss Intel Parallel Studio products and the
key technologies introduced for different aspects of software

Are You Ready to Enter
a Parallel Universe:
optimizing applications
for Multicore

“I know how to make four horses pull a cart—I don’t know
how to make 1,024 chickens do it.” — Enrico Clementi

by levent akyil
a look at parallelization
methods made possible by
the new intel® Parallel studio—
designed for microsoft Visual
studio* C/C++ developers
of Windows* applications.

figure 1:
The four steps
in parallel software
development

design

VeRify
Co

d
e &

 d
eb

U
g

TU
n

e

development (Figure 1). Intel Parallel Studio is composed of the
following products: Intel® Parallel Advisor (design), Intel® Parallel
Composer (code/debug), Intel® Parallel Inspector (verify) and Intel®
Parallel Amplifier (tune).

Intel Parallel Composer speeds up software development by
incorporating parallelism with a C/C++ compiler and comprehen-
sive threaded libraries. By supporting a broad array of parallel
programming models, a developer can find a match to the cod-
ing methods most appropriate for their application. Intel Parallel
Inspector is a proactive “bug finder.” It’s a flexible tool that adds
reliability regardless of the choice of parallelism programming
models. Unlike traditional debuggers, Intel Parallel Inspector
detects hard-to-find threading errors in multithreaded C/C++
Windows* applications and does root-cause analysis for defects
such as data races and deadlocks. Intel Parallel Amplifier assists
in fine-tuning parallel applications for optimal performance on
multicore processors by helping find unexpected serialization(s)
that prevents scaling.

inTel PaRallel ComPoseR
Intel Parallel Composer enables developers to express paral-
lelism with ease, in addition to taking advantage of multicore
architectures. It provides parallel programming extensions,
which are intended to quickly introduce parallelism. Intel Parallel
Composer integrates and enhances the Microsoft Visual Studio
environment with additional capabilities for parallelism at the
application level, such as OpenMP 3.0*, lambda functions, auto-
vectorization, auto-parallelization, and threaded libraries support.
The award-winning Intel® Threading Building Blocks (Intel® TBB)
is also a key component of Intel Parallel Composer that offers
a portable, easy-to-use, high-performance way to do parallel
programming in C/C++.

Some of the key extensions
for parallelism Intel Parallel
Composer brings are:

n Vectorization support:
The automatic vectorizer (also
called the auto-vectorizer)
is a component of the Intel®
compiler that automatically
uses SIMD (Single Instruction
Multiple Data) instructions in
the MMX™, Intel® Streaming SIMD Extensions (Intel® SSE, SSE2,
SSE3 and SSE4 Vectorizing Compiler and Media Accelerators)
and Supplemental Streaming SIMD Extensions (SSSE3) instruc-
tion sets.

n openmP 3.0 support: The Intel compiler performs transfor-
mations to generate multithreaded code based on a developer’s
placement of OpenMP directives in the source program. The

Intel compiler supports all of the current industry-standard
OpenMP directives and compiles parallel programs annotated
with OpenMP directives. The Intel compiler also provides Intel-
specific extensions to the OpenMP Version 3.0 specification,
including runtime library routines and environment variables.
Using /Qopenmp switch enables the compiler to generate mul-
tithreaded code based on the OpenMP directives. The code can
be executed in parallel on both uniprocessor and multiprocessor
systems.

n auto-parallelization feature: The auto-parallelization
feature of the Intel compiler automatically translates serial por-
tions of the input program into equivalent multithreaded code.
Automatic parallelization determines the loops that are good
work-sharing candidates, and performs the dataflow analysis
to verify correct parallel execution. It then partitions the data
for threaded code generation as needed in programming with
OpenMP directives. By using /Qparallel, compiler will try to
auto-parallelize the application.

n intel Threading building blocks (intel Tbb): Intel TBB is an
award-winning runtime-based parallel programming model,
consisting of a template-based runtime library to help develop-
ers harness the latent performance of multicore processors.
Intel TBB allows developers to write scalable applications that
take advantage of concurrent collections and parallel algorithms.

n simple concurrent functionality: Four keywords
 (__taskcomplete, __task, __par, and __critical) are used as
statement prefixes to enable a simple mechanism to write
parallel programs. The keywords are implemented using OpenMP
runtime support. If you need more control over parallelization of
your program, use OpenMP features directly. In order to enable
this functionality, use /Qopenmp compiler switch to use parallel
execution features. The compiler driver automatically links in the
OpenMP runtime support libraries. The runtime system manages

the actual degree of parallelism.
n C++ lambda function support: C++ lambda expressions

are primary expressions that define function objects. Such
expressions can be used wherever a function object is expected;
for example, as arguments to Standard Template Library (STL)
algorithms. The Intel compiler implements lambda expressions
as specified in the ISO C++ document, which is available at

void sum (int length, int *a, int *b, int *c)
{
 int i;
 for (i=0; i<length; i++)
 c[i] = a[i] + b[i];
}

//Serial call
sum(1000, a, b, c);

// Using concurrent functionality
__taskcomplete
{
 __task sum(500, a, b, c);
 __task sum(500, a+500, b+500, c+500);
}

examPle

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

11

Welcome to the Parallel Universe

10

Welcome to the Parallel Universe

www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/.
By using /Qstd=c++0x switch, lambda support can be enabled.

n intel® integrated Performance Primitives (intel® iPP): Now
part of Intel Parallel Composer, Intel IPP is an extensive library
of multicore-ready, highly optimized software functions for
multimedia data processing and communications applications.
Intel IPP provides optimized software building blocks to comple-
ment Intel compiler and performance optimization tools. Intel
IPP provides basic low-level functions for creating applications
in several domains, including signal processing, audio coding,
speech recognition and coding, image processing, video coding,
operations on small matrices, and 3-D data processing.

n Valarray: Valarray is a C++ standard template (STL)
container class for arrays consisting of array methods for high-
performance computing. The operations are designed to exploit
hardware features such as vectorization. In order to take full
advantage of valarray, the Intel compiler recognizes valarray as
an intrinsic type and replaces such types by Intel IPP library calls.

n intel® Parallel debugger extension: The Intel Parallel
Debugger Extension for Microsoft Visual Studio is a debug-
ging add-on for the Intel® C++ compiler’s parallel code
development features. It doesn’t replace or change the
Visual Studio debugging features; it simply extends what is
already available with:

• Thread data sharing analysis to detect accesses to identical
data elements from different threads

• Smart breakpoint feature to stop program execution on a
re-entrant function call

• Serialized execution mode to enable or disable the creation
of additional worker threads in openmP parallel loops
dynamically

• Set of OpenMP runtime information views for advanced
openmP program state analysis

• SSE (Streaming SIMD Extensions) register view with exten-
sive formatting and editing options for debugging parallel
data using the simd (single instruction, multiple data)
instruction set

As mentioned above, the Intel Parallel Debugger extension
is useful in identifying thread data sharing problems. Intel
Parallel Debugger Extension uses source instrumentation in
order to detect data sharing problems. To enable this feature,
set /debug: parallel by enabling Enable Parallel Debug Checks
under Configuration Properties > C/C++ > Debug. Figure 2
shows Intel Parallel Debugger Extension breaking the execu-
tion of the application upon detecting two threads accessing
the same data.

// Create a valarray of integers
valarray_t::value_type ibuf[10] = {0,1,2,3,4,5,6,7,8,9};
valarray_t vi(ibuf, 10);

// Create a valarray of booleans for a mask
maskarray_t::value_type mbuf[10] = {1,0,1,1,1,0,0,1,1,0};
maskarray_t mask(mbuf,10);

// Double the values of the masked array
vi[mask] += static_cast<valarray_t> (vi[mask]);

examPle

figure 2:
intel® Parallel debugger extension can break the execution upon detecting a data sharing problem

inTel PaRallel insPeCToR

“It had never evidenced itself until
that day … This fault was so deeply
embedded, it took them weeks
of poring through millions of lines
of code and data to find it.”

—Ralph DiNicola
Spokesman for U.S.-Canadian task force investigating the
Northeast 2003 blackout

Finding the cause of errors in multithreaded applications can
be a challenging task. Intel Parallel Inspector, an Intel Parallel
Studio tool, is a proactive bug finder that helps you detect and
perform root-cause analysis on threading and memory errors in
multithreaded applications.

Intel Parallel Inspector enables C and C++ application devel-
opers to:

➤ Locate a large variety of memory and resource problems
including leaks, buffer overrun errors, and pointer problems

➤ Detect and predict thread-related deadlocks, data races,
and other synchronization problems

➤ Detect potential security issues in parallel applications
➤ Rapidly sort errors by size, frequency, and type to identify

and prioritize critical problems
Intel Parallel Inspector (Figure 3) uses binary instrumentation

technology called Pin to check memory and threading errors.
Pin is a dynamic instrumentation system provided by

Intel (www.pintool.org), which allows C/C++ code to be
injected into the areas of interest in a running executable.
The injected code is then used to observe the behavior
of the program.

inTel PaRallel insPeCToR
memoRy analysis leVels
Intel Parallel Inspector uses Pin in different settings to provide
four levels of analysis, each having different configurations
and different overhead, as seen in Figure 4. The first three
analysis levels are targeted for memory problems occurring on
the heap while the fourth level can also analyze the memory
problems on the stack. The technologies employed by Intel
Parallel Inspector to support all the analysis levels are the
Leak Detection (Level 1) and Memory Checking (Levels 2–4)
technologies, which use Pin in various ways.

leVel 1 The first analysis level helps to find out if the
application has any memory leaks. Memory leaks occur when a
block of memory is allocated and never released.

leVel 2 The second analysis level detects if the application
has invalid memory accesses including uninitialized memory
accesses, invalid deallocation, and mismatched allocation/dea-
llocation. Invalid memory accesses occur when a read or write
instruction references memory that is logically or physically
invalid. At this level, invalid partial memory accesses can also be
identified. Invalid partial accesses occur when a read instruction
references a block (2 bytes or more) of memory where part of
the block is logically invalid.

leVel 3 The third analysis level is similar to the second level
except that the call stack depth is increased to 12 from 1, in
addition to the enhanced dangling pointer check being enabled.
Dangling pointers access/point to data that no longer exist. Intel
Parallel Inspector delays a deallocation when it occurs so that the
memory is not available for reallocation (it can’t be returned by
another allocation request). Thus, any references that follow the
deallocation can be guaranteed as invalid references from dan-
gling pointers. This technique requires additional memory and the
memory used for the delayed deallocation list is limited; therefore
Intel Parallel Inspector must eventually start actually deallocating
the delayed references.

leVel 4 The fourth analysis level tries to find all memory
problems by increasing the call stack depth to 32, enabling enhan-
ced dangling pointer check, including system libraries in
the analysis, and analyzing the memory problems on the stack.
The stack analysis is only enabled at this level.

figure 3: intel® Parallel inspector toolbar

figure 4: memory errors analysis levels

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

13

Welcome to the Parallel Universe

12

Welcome to the Parallel Universe

As seen in Figure 5, it is possible to filter the results by
the severity, problem description, source of the problem,
function name, and the module.

inTel PaRallel insPeCToR ThReading
eRRoRs analysis leVels
Intel Parallel Inspector also provides four levels of analysis for
threading errors (Figure 6).

leVel 1 The first level of analysis helps determine if the appli-
cation has any deadlocks. Deadlocks occur when two or more
threads wait for the other to release resources such as mutex,
critical section, thread handle, and so on, but none of the threads
releases the resources. In this scenario, no thread can proceed.
The call stack depth is set to 1.

leVel 2 The second analysis level detects if the application has
any data races or deadlocks. Data races are one of the most com-
mon threading errors and happen when multiple threads access
the same memory location without proper synchronization. The
call stack depth is also 1 in this level. The byte
level granularity for this level is 4.

leVel 3 Like the previous level, Level 3
tries to find data races and deadlocks, but
additionally tries to detect where they occur.
The call stack depth is set to 12 for finer
analysis. The byte level granularity for this
level is 1.

leVel 4 The fourth level of analysis tries
to find all threading problems by increasing

the call stack depth to 32, and by analyzing the problems on the
stack. The stack analysis is only enabled at this level. The byte
level granularity for this level is 1.

The main threading errors Intel Parallel Inspector identifies
are data races, (Figure 7, p.13), deadlocks, lock hierarchy
violations, and potential privacy infringement.

Data races can occur in various ways. Intel Parallel Inspector
will detect write-write, read-write, and write-read race conditions:

➤  Write-write data race condition occurs when two or more
threads write to the same memory location

➤  Read-write race condition occurs when one thread reads
from a memory location, while another thread writes to it
concurrently

➤  Write-read race condition occurs when one thread writes
to a memory location, while a different thread concurrently
reads from the same memory location

In all cases, the order of the execution will affect the data
that is shared.

figure 5: intel® Parallel inspector analysis result showing memory errors found

figure 6: Threading errors analysis levels

inTel PaRallel amPlifieR

“Programmers waste enormous
amounts of time thinking about, or
worrying about, the speed of
noncritical parts of their programs …
We should forget about small
efficiencies, say about 97 percent
of the time: premature optimization
is the root of all evil.”

— Donald Knuth (adapted from C. A. R. Hoare)

Multithreaded applications tend to have their own unique
sets of problems due to the complexities introduced by paral-
lelism. Converting a serial code base to thread-safe code is not
an easy task. It usually has an impact on development time,
and results in increasing the complexity of the existing serial
application. The common multithreading performance issues
can be summarized in a nutshell as follows:

➤  Increased complexity (data restructuring, use of
synchronization)

➤  Performance (requires optimization and tuning)
➤  Synchronization overhead
In keeping with Knuth’s advice, Intel Parallel Amplifier (Figure

8) can help developers identify the bottlenecks of their code
for optimization that has the most return on investment (ROI).
Identifying the performance issues in the target application

and eliminating them appropriately is the key to an efficient
optimization.

With a single mouse click, Intel Parallel Amplifier can perform
three powerful performance analyses. These analysis types
are known as hotspot analysis, concurrency analysis, and locks
and waits analysis. Before explaining each analysis level it is
beneficial to explain the metrics used by Intel Parallel Amplifier.

Elapsed Time The elapsed time is the amount of time the
application executes. Reducing the elapsed time for an
application when running a fixed workload is one of the key
metrics. The elapsed time for the application is reported in
the summary view.

CPU Time The CPU time is the amount of time a thread spends
executing on a processor. For multiple threads, the CPU time of
the threads is aggregated. The total CPU time is the sum of the
CPU time of all the threads that run during the analysis.

Wait Time The wait time is the amount of time that a given
thread waited for some event to occur. These events can be
events such as synchronization waits and I/O waits.

figure 7: intel® Parallel inspector analysis result showing data race issues found

figure 8: intel® Parallel Amplifier toolbar

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

15

Welcome to the Parallel Universe

14

Welcome to the Parallel Universe

hoTsPoT analysis
By using a low overhead statistical sampling (also known as
stack sampling) algorithm, hotspot analysis (Figure 9) helps
the developer understand the application flow and identify
the sections of code that took a long time to execute
(hotspots). During hotspot analysis, Intel Parallel Amplifier
profiles the application by sampling at certain intervals us-
ing the OS timer. It collects samples of all active instruction
addresses with their call sequences upon each sample. Then
it analyzes and displays these stored sampled instruction
pointers (IP), along with the associated call sequences.
Statistically collected IP samples with call sequences enable
Intel Parallel Amplifier to generate and display a call tree.

ConCURRenCy analysis
Concurrency analysis measures how an application utilizes
the available processors on a given system. The concurrency
analysis helps developers identify hotspot functions where
processor utilization is poor, as seen in Figure 10. During
the concurrency analysis, Intel Parallel Amplifier collects and
provides information on how many threads are active, meaning
threads that are either running or are queued and are not wait-
ing at a defined waiting or blocking API. The number of running
threads corresponds to the concurrency level of an application.
By comparing the concurrency level with the number of proces-

sors, Intel Parallel Amplifier classifies how the application utilizes
the processors in the system.

The time values in the concurrency and locks and waits win-
dows correspond to the following utilization types (Figure 11):

idle: All threads in the program are waiting—no threads are
running. There can be only one node in the Summary tab graph
indicating idle utilization.

Poor: Poor utilization. By default, poor utilization is when the
number of threads is up to 50% of the target concurrency.

ok: Acceptable (OK) utilization. By default, OK utilization is
when the number of threads is between 51% and 85% of the
target concurrency.

ideal: Ideal utilization. By default, ideal utilization is when the
number of threads is between 86% and
115% of the target concurrency.

loCks and WaiTs analysis
While concurrency analysis helps develop-
ers identify where their application is not
parallel or not fully utilizing the available
processors, locks and waits analysis helps
developers identify the cause of the
ineffective processor utilization (Figure
12, p.15). The most common problem for
poor utilization is caused by threads wait-
ing too long on synchronization objects
(locks). In most cases no useful work is
done; as a result, performance suffers,
resulting in low processor utilization.

During locks and waits analysis,
developers can estimate the impact of
each synchronization object. The analysis
results help to understand how long the
application was required to wait on each
synchronization object, or in blocking APIs,
such as sleep and blocking I/O.

figure 9: intel® Parallel Amplifier Hotspot analysis results

figure 10: intel® Parallel Amplifier concurrency analysis results.
granularity is set to function-Thread

figure 11: intel®

Parallel Amplifier
concurrency
analysis results
summary view

The synchronization objects analyzed can be given as mu-
texes (mutual exclusion objects), semaphores, critical sections,
and fork-joins operations. A synchronization object with the
longest waiting time and high concurrency level is very likely to
be a bottleneck for the application.

It is also very important to mention that for both Intel
Parallel Inspector and Intel Parallel Amplifier, it is possible to
drill down all the way to the source code level. For example, by
double-clicking on a line item in Figure 13, I can drill down to
the source code and observe which synchronization object is
causing the problem.

VasT oPPoRTUniTies
Parallel programming is not new. It has been well studied and
has been employed in the high-performance computing
community for many years, but now, with the expansion of
multicore processors, parallel programming is becoming main-
stream. This is exactly where Intel Parallel Studio comes into
play. Intel Parallel Studio brings vast opportunities and tools
that ease the developers’ transition to the realm of parallel
programming and hence significantly reduce the entry barriers
to the parallel universe. Welcome to the parallel universe.

levent akyil is Staff Software Engineer in the Performance, Analysis,
and Threading Lab, Software Development Products, Intel Corporation.

figure 12: locks and waits analysis results

figure 13: source code view of a problem in locks and waits analysis

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

16

Welcome to the Parallel Universe

Programming for multicore processors
poses new challenges. Here are eight
rules for multicore programming to help
you be successful:

1
Think parallel. Approach all prob-
lems looking for the parallelism.
Understand where parallelism is,
and organize your thinking to ex-

press it. Decide on the best parallel approach
before other design or implementation
decisions. Learn to “Think Parallel.”

2
Program using abstraction. Focus
on writing code to express paral-
lelism, but avoid writing code to
manage threads or processor

cores. Libraries, OpenMP*, and Intel® Thread-
ing Building Blocks (Intel® TBB) are all exam-
ples of using abstractions. Do not use raw
native threads (Pthreads, Windows* threads,
Boost threads, and the like). Threads and
MPI are the assembly languages for paral-
lelism. They offer maximum flexibility, but
require too much time to write, debug, and
maintain. Your programming should be at a
high enough level that your code is about
your problem, not about thread or core
management.

3
Program in tasks (chores), not
threads (cores). Leave the map-
ping of tasks to threads or proces-
sor cores as a distinctly separate

operation in your program, preferably an
abstraction you are using that handles
thread/core management for you. Create
an abundance of tasks in your program, or
a task that can be spread across processor
cores automatically (such as an OpenMP
loop). By creating tasks, you are free to
create as many as you can without worrying
about oversubscription.

4
Design with the option to turn
concurrency off. To make debug-
ging simpler, create programs
that can run without concurrency.

This way, when debugging, you can run
programs first with—then without—con-
currency, and see if both runs fail or not.
Debugging common issues is simpler
when the program is not running concur-
rently because it is more familiar and better
supported by today’s tools. Knowing that
something fails only when run concurrently
hints at the type of bug you are tracking
down. If you ignore this rule and can’t force
your program to run in only one thread, you’ll
spend too much time debugging. Because
you want to have the capability to run in
a single thread specifically for debugging,
it doesn’t need to be efficient. You just
need to avoid creating parallel programs
that require concurrency to work correctly,
such as many producer-consumer models.
MPI programs often violate this rule, which
is part of the reason MPI programs can be
problematic to implement and debug.

5
Avoid using locks. Simply say “no”
to locks. Locks slow programs,
reduce their scalability, and are
the source of bugs in parallel

programs. Make implicit synchronization the
solution for your program. When you still
need explicit synchronization, use atomic
operations. Use locks only as a last resort.
Work hard to design the need for locks
completely out of your program.

6
Use tools and libraries designed
to help with concurrency. Don’t
“tough it out” with old tools. Be
critical of tool support with regard

to how it presents and interacts with
parallelism. Most tools are not yet ready
for parallelism. Look for thread-safe
libraries—ideally ones that are designed to
utilize parallelism themselves.

7
Use scalable memory allocators.
Threaded programs need to use
scalable memory allocators. Period.
There are a number of solutions,

and I’d guess that all of them are better
than malloc(). Using scalable memory alloca-
tors speeds up applications by eliminating
global bottlenecks, reusing memory within
threads to better utilize caches, and par-
titioning properly to avoid cache line sharing.

8
Design to scale through increased
workloads. The amount of work
your program needs to handle
increases over time. Plan for that.

Designed with scaling in mind, your program
will handle more work as the number of
processor cores increases. Every year, we
ask our computers to do more and more.
Your designs should favor using increases
in parallelism to give you advantages in
handling bigger workloads in the future.

I wrote these rules with implicit mention
of threading everywhere. Only rule no. 7 is
specifically related to threading. Thread-
ing is not the only way to get value out of
multicore. Running multiple programs or
multiple processes is often used, especially
in server applications.

These rules will work well for you to get
the most out of multicore. Some will grow
in importance over the next 10 years, as
the number of processor cores rises and we
see an increase in the diversity of the cores
themselves. The coming of heterogeneous
processors and NUMA, for instance, makes
rule no. 3 more and more important.

You should understand all eight and
take all eight to heart. I look forward to
any comments you may have about these
rules or parallelism in general.

8 Rules for Parallel
Programming for multicore
by James Reinders
There are some consistent rules that can help you solve the parallelism challenge and tap into the potential of multicore.

James Reinders is Chief Software Evangelist and Director of Software Development Products,
Intel Corporation. His articles and books on parallelism include Intel® Threading Building Blocks:
Outfitting C++ for Multicore Processor Parallelism. Find out more at www.go-parallel.com.

Preorder now.
Product shipping May 26.
www.intel.com/software/parallelstudio

© 2009 – 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

For more information regarding performance and optimization choices in Intel software products, visit http://software.intel.com/en-us/articles/optimization-notice.

18

Welcome to the Parallel Universe

19

Welcome to the Parallel Universe

EvolvE your codE.
Parallelism breakthrough.

Analyze, compile, debug, check, and tune your code for multicore with
Intel® Parallel Studio. Designed for today’s serial apps and tomorrow’s
parallel innovators.

Available now: www.intel.com/software/parallelstudio

© 2009 – 2010, Intel Corporation. All rights reserved. Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and other countries. *Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® compilers, associated libraries and associated development tools may include or utilize options that optimize
for instruction sets that are available in both Intel® and non-Intel microprocessors (for example SIMD instruction
sets), but do not optimize equally for non-Intel microprocessors. In addition, certain compiler options for Intel
compilers, including some that are not specific to Intel micro-architecture, are reserved for Intel microprocessors.
For a detailed description of Intel compiler options, including the instruction sets and specific microprocessors they
implicate, please refer to the “Intel® Compiler User and Reference Guides” under “Compiler Options.” Many library
routines that are part of Intel® compiler products are more highly optimized for Intel microprocessors than for other
microprocessors. While the compilers and libraries in Intel® compiler products offer optimizations for both Intel and
Intel-compatible microprocessors, depending on the options you select, your code and other factors, you likely will
get extra performance on Intel microprocessors.

Intel® compilers, associated libraries and associated development tools may or may not optimize to the same degree
for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations
include Intel® Streaming SIMD Extensions 2 (Intel® SSE2), Intel® Streaming SIMD Extensions 3 (Intel® SSE3), and
Supplemental Streaming SIMD Extensions 3 (Intel® SSSE3) instruction sets and other optimizations. Intel does not
guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by
Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors.

While Intel believes our compilers and libraries are excellent choices to assist in obtaining the best performance on
Intel® and non-Intel microprocessors, Intel recommends that you evaluate other compilers and libraries to determine
which best meet your requirements. We hope to win your business by striving to offer the best performance of any
compiler or library; please let us know if you find we do not.

Notice revision #20101101

