Space Acceleration Measurement System-II (SAMS-II) - 01.23.19
Space Acceleration Measurement System-II (SAMS-II) is an ongoing study of the small forces (vibrations and accelerations) on the International Space Station (ISS) resulting from the operation of hardware, crew activities, dockings and maneuvering. Results generalize the types of vibrations affecting vibration-sensitive experiments and structural life of ISS. Investigators and Structural Analysts seek to better understand the vibration environment on the ISS using SAMS-II data and assessing station loads and dynamics. Science Results for Everyone Shaken, not stirred. That’s what happens to scientific experiments onboard the International Space Station (ISS), thanks to small forces created by vehicle and crew activities and by other experiments. Researchers used sensors to collect data on disturbances in the frequency range of 0.01 - 400 Hz and downlinked it to Glenn Research Center. Analysis of nearly 3.4 terabytes of data indicate that ISS is not meeting its goal of providing a quiescent, low-gravity environment for scientific research. Data also indicate that there is no clear reduction in disturbances during crew sleep periods. The measuring continues on an as-needed basis and data are available to the scientific community.
OpNom: SAMS II
Facility Manager(s)
Kevin M. McPherson, NASA Glenn Research Center, Cleveland, OH, United States
Facility Representative(s)
Information Pending
Developer(s)
ZIN Technologies Incorporated, Cleveland, OH, United States
Sponsoring Space Agency
National Aeronautics and Space Administration (NASA)
Sponsoring Organization
Human Exploration and Operations Mission Directorate (HEOMD)
ISS Expedition Duration
March 2001 - December 2002; November 2002 - May 2003; April 2003 - September 2012; September 2013 - March 2016; March 2016 - October 2019
Expeditions Assigned
2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19/20,21/22,23/24,25/26,27/28,29/30,31/32,37/38,39/40,41/42,43/44,45/46,47/48,49/50,51/52,53/54,55/56,57/58,59/60
Previous Missions
SAMS, the precursor to SAMS-II flew on numerous shuttle flights since STS-40, including STS-107 (Columbia) which was lost in 2003. SAMS-II has been operating on ISS since Expedition 2.
Availability
Information Pending
Facility Description
Operations
Facility Operations
- The SAMS-II equipment is nominally powered continuously to support specific investigations and monitor space station structural modes and document disturbances. This data can later be analyzed and incorporated into models for predictive work. The SAMS-II flight system is ground controlled.
- The crew installs and removes sensor heads and cables to relocate the SAMS-II sensors on payloads, as needed.
- Crew occasionally (every six months) complete filters cleaning and change out.
Decadal Survey Recommendations
Information Pending
^ back to topResults/More Information
One of the major goals of the ISS is to provide a quiescent low-gravity environment to perform fundamental scientific research. However, small disturbances aboard the ISS impact the overall environment in which experiments are being performed. Such small disturbances need to be measured in order to assess their potential impact on the experiments. The Space Acceleration Measurement System - II (SAMS-II) is used on board the ISS to do just that.
SAMS-II measures accelerations caused by vehicle, crew, and experiment disturbances. SAMS-II measures the vibratory/transient accelerations, which occur in the frequency range of 0.01 - 400 Hz. The sensors measure the accelerations electronically and transmit the data to the Interim Control Unit (ICU) located in the EXPRESS Rack drawer. Data is collected from all the sensors and downlinked to the TeleScience Center at Glenn Research Center. The acceleration data is processed and made available to the microgravity scientific community at Principal Investigator Microgravity Services.
SAMS-II measures vibratory acceleration disturbances in microgravity and non-microgravity modes of ISS operations. Current data indicate that ISS is not meeting its microgravity mode design requirement, and that there is no clear reduction in these disturbances during crew sleep periods (DeLombard et al. 2005).
SAMS-II has collected over 3.4 terabytes of acceleration data, much of which have been processed and analyzed to characterize the reduced gravity environment on board the ISS in order to help science teams understand the ISS environment. SAMS-II, began to have some computer difficulties at the beginning of Expedition 12 (October 2005); the harddrive was replaced at the end of Expedition 14 (April 2007) and SAMS-II functions nominally on an as-needed basis.
Zavalishin DA, Belyaev MY, Sazonov VV. Study of vibration microaccelerations onboard the International Space Station. Cosmic Research. 2013 July 19; 51(4): 261-269. DOI: 10.1134/S0010952513040096. [Original Russian Text © D.A. Zavalishin, M.Yu. Belyaev, V.V. Sazonov, 2013, published in Kosmicheskie Issledovaniya, 2013, Vol. 51, No. 4, pp. 294–302.]
McPherson K, Kelly EM, Keller J, Goto M. Acceleration Measurement Opportunities on the International Space Station. 59th International Astronautical Congress. Glasgow, Scotland; 2008
DeLombard R, Hrovat K, Kelly EM, McPherson K. Microgravity Environment on the International Space Station. 42nd Aerospace Sciences Meeting and Exhibit, Reno, NV; 2004
Jules K, Hrovat K, Kelly EM. International Space Station Increment-2 Quick Look Report. NASA Technical Memorandum; 2002.
Jules K, Hrovat K, Kelly EM, McPherson K, Reckart T, Grodsinsky C. International Space Station Increment-3 Microgravity Environment Summary Report. NASA Technical Memorandum; 2002.
Saez N, Ruiz X, Gavalda J, Shevtsova V. Comparative analyses of ESA, NASA and JAXA signals of acceleration during the SODI-IVIDIL experiment. Microgravity Science and Technology. 2014 July; 26(1): 57-64. DOI: 10.1007/s12217-014-9376-y.
Jules K, Hrovat K, Kelly EM, Reckart T. International Space Station Increment 6/8 Microgravity Environment Summary Report November 2002 to April 2004. NASA Technical Memorandum; 2006.
McPherson K, Kelly EM, Keller J. Acceleration environment of the ISS. 47th Aerospace Sciences Meeting and Exhibit, Orlando, FL; 2009
DeLombard R, Hrovat K, Kelly EM, Humphreys BT. Interpreting the International Space Station Microgravity Environment. 43rd Aerospace Sciences Meeting and Exhibit, Reno, NV; 2005
DeLombard R, Kelly EM, Jules K, Hrovat K, McPherson K. An Overview of the Microgravity Environment of the International Space Station Under Construction. 40th Aerospace Sciences Meeting and Exhibit, Reno, NV; 2002
Jules K, McPherson K, Hrovat K, Kelly EM, Reckart T. International Space Station Increment-2 Microgravity Environment Summary Report. NASA Technical Memorandum; 2002.
Jules K, McPherson A, Hrovat K, Kelly EM. Initial Characterization of the Microgravity Environment of the International Space Station: Increments 2 Through 4. Acta Astronautica. 2004 Nov; 55(10): 855-887. DOI: 10.1016/j.actaastro.2004.04.008. PMID: 15806736.
McPherson K, Kelly EM, Keller J, Ibrahim A, Wagner E, Hrovat K. Analysis of Vibratory Data Collected by the Space Acceleration Measurement System (SAMS) on Blue Origin, June 19, 2016. Gravitational and Space Research. 2017 December; 5(2): 2-10.
Ground Based Results Publications
ISS Patents
Related Publications
DeLombard R. Disturbance of the microgravity environment by experiments. AIP Conference Proceedings: Space Technology and Applications International Forum, Albuquerque, NM; 2000 614-618.
Wright T. Spread and Spread Recorder An Architecture for Data Distribution. NASA Technical Memorandum; 2006.
Related Websites
- Space Acceleration Measurements System-II
- Principal Investigator Microgravity Services
- SpaceRef.com - End of an Era for SAMS
Imagery
+ View Larger Image
+ View Larger Image
+ View Larger Image
+ View Larger Image
+ View Larger Image
+ View Larger Image
+ View Larger Image